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Abstract001

Relational Triple Extraction (RTE) is a funda-002
mental task in Natural Language Processing003
(NLP). However, prior research has primar-004
ily focused on optimizing model performance,005
with limited efforts to understand the internal006
mechanisms driving these models. Many exist-007
ing methods rely on complex preprocessing to008
induce specific interactions, often resulting in009
opaque systems that may not fully align with010
their theoretical foundations. To address these011
limitations, we propose SMARTe: a Slot-based012
Method for Accountable Relational Triple ex-013
traction. SMARTe introduces intrinsic inter-014
pretability through a slot attention mechanism015
and frames the task as a set prediction problem.016
Slot attention consolidates relevant informa-017
tion into distinct slots, ensuring all predictions018
can be explicitly traced to learned slot repre-019
sentations and the tokens contributing to each020
predicted relational triple. While emphasiz-021
ing interpretability, SMARTe achieves perfor-022
mance comparable to state-of-the-art models.023
Evaluations on the NYT and WebNLG datasets024
demonstrate that adding interpretability does025
not compromise performance. Furthermore, we026
conducted qualitative assessments to showcase027
the explanations provided by SMARTe, using028
attention heatmaps that map to their respective029
tokens. We conclude with a discussion of our030
findings and propose directions for future re-031
search.032

1 Introduction033

Relational Triple Extraction (RTE) is a well-034

established and widely studied task in Natural Lan-035

guage Processing (NLP). Its primary objective is to036

automatically extract structured information such037

as names, dates, and relationships from unstruc-038

tured text, thereby enhancing data organization and039

accessibility (Nayak et al., 2021). These extracted040

relationships are represented as relational triples041

consisting of (Subject, Relation, Object).042

For example, the sentence “Barack Obama is the043

President of America” can be expressed as the 044

triple (Barack Obama, Head of, America). 045

Such structured representations underpin a range 046

of downstream applications, including knowledge 047

graph construction, question answering, and in- 048

formation retrieval. RTE is often confused with 049

Joint Entity and Relation Extraction (JERE) (Zhang 050

et al., 2017; Gupta et al., 2016; Miwa and Sasaki, 051

2014), or the terms are used interchangeably by 052

some scholars (Sui et al., 2023; Li et al., 2021). 053

However, there is a key distinction: JERE addresses 054

both entity identification and relation extraction, 055

which require annotation of all entities in a text, re- 056

gardless whether they participate in a relationship. 057

In contrast, RTE focuses exclusively on entities 058

that are part of a relationship, specifically a set of 059

annotated relational triples. In this paper, we focus 060

solely on RTE. 061

Traditional approaches to RTE often prioritize 062

performance metrics such as precision, recall, and 063

F1 score, with limited consideration for inter- 064

pretability. According to a comprehensive survey 065

by Zhao et al. (2024), we found that many existing 066

methods introduce novel architectures, claiming 067

that these designs facilitate specific interactions 068

that enhance model performance. However, such 069

claims are frequently supported solely by empiri- 070

cal results, with minimal analysis or explanation 071

of the underlying mechanisms, leaving the validity 072

of these assertions largely unexplored. Moreover, 073

we observed that none of the reviewed methods 074

explicitly address explainability, which highlights 075

a significant gap in current research. In this study, 076

we introduce SMARTe: a Slot-based Method 077

for Accountable Relational Triple Extraction, a 078

transparent architecture designed to address inter- 079

pretability in RTE. SMARTe incorporates intrinsic 080

interpretability through the use of a slot attention 081

mechanism. This approach ensures that every pre- 082

diction from SMARTe can be explicitly traced back 083

to its learned slot representations and the specific 084
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Figure 1: Architecture Diagram of our SMARTe model. The Slot Attention module iteratively refines the slots over
T iterations to obtain a final representation, from which relational triples are extracted.

tokens contributing to each predicted relational085

triple. This results in informed and transparent086

outputs, embodying the Accountability, which di-087

rectly equates to explainability, in our model. Since088

the learned slots do not follow any inherent order,089

the RTE task is framed as a set prediction problem.090

Our goal is to demonstrate how slot attention091

can be effectively applied to NLP tasks to gener-092

ate meaningful explanations. By clustering rele-093

vant information, this method facilitates informed094

and transparent predictions. Although we illustrate095

our approach in the context of RTE, it is broadly096

applicable to other NLP tasks characterized by097

set-based target structures. Interpretability be-098

comes especially valuable in high-stakes scenar-099

ios where transparency and trust are paramount100

(Danilevsky et al., 2020). As stakeholders increas-101

ingly demand clear and interpretable explanations102

for AI-driven decisions, our approach effectively103

addresses these critical requirements. We introduce104

SMARTe, a Slot-based Method for Accountable105

Relational Triple extraction. Our contributions are106

as follows:107

• To the best of our knowledge, the proposed108

SMARTe framework is the first to introduce in-109

terpretability to relational triple extraction tasks,110

marking a significant contribution to the field of111

Explainable AI (XAI) in Natural Language Pro-112

cessing (NLP). This is achieved by adapting the113

slot attention mechanism, originally developed114

for unsupervised learning in computer vision.115

• We conduct extensive experiments on two widely116

used datasets and demonstrate that our model117

achieves performance comparable to current118

state-of-the-art systems, all while offering inter- 119

pretability. 120

• We provide a qualitative assessment and demon- 121

strate how slot attention facilitates explanations 122

which allow users to understand the model’s rea- 123

soning behind its predictions. 124

2 Related Work 125

Recent advancements in relation triplet extraction 126

(RTE) have investigated various architectures to 127

better capture interactions between entities and re- 128

lations. We group these approaches into three main 129

categories: sequence-to-sequence (seq2seq) Meth- 130

ods, Tagging-Based Methods, and Pairwise-Based 131

Methods. 132

Seq2seq methods treat triples as token se- 133

quences, leveraging an encoder-decoder framework 134

akin to machine translation. CopyRE (Zeng et al., 135

2018) uses a copy mechanism to generate relations 136

and entities but struggles with multi-token entities. 137

CopyMTL (Zeng et al., 2020) addresses this by em- 138

ploying a multi-task learning framework. CGT (Ye 139

et al., 2021) introduces a generative transformer 140

with contrastive learning to enhance long-term de- 141

pendency and faithfulness. R-BPtrNet (Chen et al., 142

2021) uses a binary pointer network to extract ex- 143

plicit and implicit triples, while SPN (Sui et al., 144

2023) reframes relational triple extraction as a set 145

prediction problem, utilizing a non-autoregressive 146

decoder with iterative refinement for improved con- 147

textual representation. 148

Tagging-Based Methods, also known as se- 149

quence labeling methods, utilize binary tagging 150

sequences to identify the start and end positions of 151
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entities and, in some cases, to determine relations.152

Early approaches, such as NovelTagging (Zheng153

et al., 2017), introduced a tagging-based framework154

that reformulates joint extraction as a tagging prob-155

lem, enabling direct extraction of entities and their156

relations. CasRel (Wei et al., 2019) improves on157

this by first identifying all potential head entities158

and then applying relation-specific sequence tag-159

gers to detect corresponding tail entities. Recent160

methods, however, are not entirely sequence-based.161

For instance, BiRTE employs tagging only for enti-162

ties. It employs a pipeline strategy in which entities163

are tagged as either subjects or objects, after which164

all possible subject-object pairs are generated and165

classified using a biaffine scorer. Similarly, PRGC166

(Zheng et al., 2021) includes a component to pre-167

dict potential relations, constraining subsequent168

entity recognition to the predicted relation subset.169

PRGC’s strong performance stems from its use of170

a global correspondence table, which effectively171

captures interactions between token pairs.172

Pairwise-Based Methods focus on enhancing173

token-pair interaction representations to improve174

relation classification. These methods eliminate175

the need to explicitly predict head or tail entities,176

as token pairs classified as NA (no relationship) are177

directly discarded. Notably, approaches in this cate-178

gory have achieved state-of-the-art (SOTA) F1 per-179

formance. Early works often framed these methods180

as table-filling approaches. For example, GraphRel181

(Fu et al., 2019) models entity-relation interactions182

through a relation-weighted Graph Convolutional183

Network. TPLinker (Wang et al., 2020) redefines184

triple extraction as a token-pair linking task, utiliz-185

ing a relation-specific handshaking tagging scheme186

to align boundary tokens of entity pairs. Similarly,187

PFN (Yan et al., 2021) introduces a partition filter188

network that integrates task-specific feature genera-189

tion to simultaneously model entity recognition and190

relation classification. Modern SOTA techniques191

further refine these approaches. UniRel (Tang et al.,192

2022) employs a unified interaction map to effec-193

tively capture token-relation interactions and also194

incorporating relation-specific token information195

into the prediction process. Similarly, DirectRel196

(Shang et al., 2022) reformulates relational triple197

extraction (RTE) as a bipartite graph linking task,198

focusing on generating head-tail entity pairs.199

Our approach builds on the seq2seq paradigm,200

eliminating the need to permute token pairs. Slot201

attention also disentangles relational triplets into202

distinct slots, delivering superior performance over203

the earlier seq2seq and tagging-based models. It is 204

also competitive to pairwise-based methods while 205

maintaining computational efficiency. Most im- 206

portantly, the RTE field has given limited atten- 207

tion to explainability. Existing research primar- 208

ily focuses on optimizing performance metrics 209

such as F1 scores and surpassing benchmarks, 210

often achieving only marginal gains (typically 211

less than 1%, as seen in newer research). Since 212

benchmark datasets already exhibit performance 213

exceeding 90%, this raises questions about their 214

practical relevance. The latest SOTA models (usu- 215

ally based on pairwise methods) lack interpretabil- 216

ity, which stems from their prediction mechanisms 217

that classify relationships by evaluating token pairs 218

in a pairwise manner. Since these models rely on to- 219

ken representations derived from fine-tuned BERT 220

models, the surrounding context is already embed- 221

ded within these token pairs, making it difficult 222

to trace the specific context each pair has “ab- 223

sorbed.”. For example, given the sentence “Barack 224

Obama is the President of America,” these mod- 225

els predict the triple (Barack Obama, Head of, 226

America) by relying solely on the representations 227

of Barack Obama and America to classify the rela- 228

tionship Head of. The token president does not 229

contribute to the prediction, as its information is ab- 230

sorbed into the representations of the paired tokens. 231

In contrast, our model employs slot attention to 232

directly learn relational triple representations. This 233

method allows us to explicitly identify the tokens 234

contributing to each slot, which corresponds to a re- 235

lational triple prediction. By focusing on slot-level 236

representations rather than pairwise token interac- 237

tions, our approach enhances interpretability, as it 238

provides a clearer understanding of how individual 239

tokens influence the final predictions from the slot 240

attention mechanism as shown in Appendix A. 241

3 Approach 242

The architecture of our SMARTe model is depicted 243

in Figure 1, consisting of three primary compo- 244

nents: an encoder, a slot attention module and a 245

structured relational triple extractor. 246

3.1 Encoder 247

The encoder transforms the input text into dense, 248

contextual representations that capture the seman- 249

tic and syntactic information necessary for down- 250

stream processing. In our implementation, we uti- 251

lize pre-trained transformer-based models BERT- 252
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Base-Cased (Devlin et al., 2019). The process be-253

gins with tokenizing the input text into subword254

units, which are then fed into the transformer. The255

output is a sequence of contextualized embeddings,256

each corresponding to a token in the input text.257

Given an input text sequence X = x1, x2, . . . , xn,258

where xi represents the i-th token, the encoder259

transforms this sequence into a sequence of contex-260

tualized embeddings:261

H = {h1,h2, . . . ,hn} = Encoder(X). (1)262

Here, H ∈ Rn×d, where n is the length of a se-263

quence of contextualized embeddings (including264

[CLS] and [SEP], two special start and end mark-265

ers), with each hi corresponding to a token in the266

input text, and d is the embedding size produced267

by the encoder for each token.268

3.2 Slot Attention Module269

Slot Attention is a neural network module de-270

signed for object-centric representation learning271

(Locatello et al., 2020), enabling a model to de-272

compose a scene into distinct entities or objects.273

It uses iterative attention mechanisms to map in-274

put data (like image features) to a fixed number of275

slots, which are learnable feature vectors represent-276

ing objects or parts of the input. This approach is277

highly effective in unsupervised learning settings,278

as it disentangles objects without requiring explicit279

annotations. The general form of Slot Attention is280

as follow:281

Q(l) = Z(l)WQ,K = XWK ,V = XWV (2)282

A(l) = normalize(softmax(Q(l)K⊤)) (3)283

Z(l+1) = GRU(Z(l),A(l)V). (4)284

At iteration l, the current slots Z(l) are transformed285

into query vectors Q(l) using a learnable weight286

matrix WQ, while the input features X, derived287

from the sequence of contextualized embeddings288

from the encoder H, are projected into key K and289

value V vectors using WK and WV , respectively.290

Attention weights A(l) are computed as the dot291

product between Q(l) and K⊤, followed by soft-292

max to produce a probability distribution that en-293

sures each slot attends to specific parts of the in-294

put. The slots are updated using a Gated Recurrent295

Unit (GRU) (Chung et al., 2014), combining the296

previous slot representation Z(l) with the weighted297

aggregation of values A(l)V. This iterative process298

refines the slots, allowing the model to disentangle299

objects or entities in the input data. After complet- 300

ing the iterative process, the output is a refined slots 301

Z ∈ Rk×d, where k is the number of slots and d is 302

the dimensionality of each slot. 303

However, the softmax function in slot attention 304

can be too restrictive for relational triple extrac- 305

tion tasks, particularly when certain tokens, such as 306

“Barack Obama,” are involved in multiple triples 307

and need to be associated with multiple slots. For 308

instance, in the triples (Barack Obama, Born 309

In, Hawaii), (Barack Obama, President Of, 310

United States), and (Barack Obama, Married 311

To, Michelle Obama), the token Barack Obama 312

serves as the subject in each case. Softmax en- 313

forces a normalization constraint where attention 314

scores must sum to 1, causing the token’s contribu- 315

tion to be distributed across slots. This can dilute 316

its impact and make it difficult for the model to 317

maintain consistent associations across triples. To 318

address this limitation, our SMARTe model em- 319

ploy the optimal transport variant outlined in Zhang 320

et al. (2023), which is more relaxed and provides 321

a flexible framework for assigning tokens to slots 322

while preserving their relevance across multiple 323

contexts. Specifically, this involves replacing equa- 324

tion 3 with the optimal transport algorithm (Villani 325

et al., 2009), as follows: 326

C′ =
Q ·K

∥Q∥∥K∥
(5) 327

MESH(C) = argmin
C′∈V(C)

H(sinkhorn(C′)) (6) 328

A = sinkhorn(MESH(C)). (7) 329

In equation 5, the initial transport cost C′ is com- 330

puted as the cosine similarity between Q and 331

K. Next, in equation 6, MESH(C) selects, from 332

the set V(C), the candidate matrix C′ that min- 333

imizes the entropy of the initial cost function, 334

H
(
sinkhorn(C′)

)
. Here, sinkhorn(·) iteratively 335

normalizes the row and column sums to produce 336

a doubly stochastic matrix. MESH(·) corresponds 337

to Minimizing the Entropy of Sinkhorn. Finally, in 338

equation 7, the chosen matrix MESH(C) is passed 339

once more through the Sinkhorn operator to yield 340

the final attention matrix A. This “transport plan” 341

preserves row- and column-stochastic constraints, 342

providing a refined set of attention weights. For 343

more details, we refer readers to the work of Zhang 344

et al. (2023). We have also provided the results and 345

analysis for the softmax variant for reference. 346
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3.3 Structured Relational Triple Extractor347

In the original Slot Attention paper (Locatello348

et al., 2020), the approach was designed for fixed-349

size images. However, when applied to text, vari-350

able input lengths make direct coordinate predic-351

tion more challenging. To address this, we re-352

formulate coordinate prediction as a one-hot se-353

quence labeling task to identify the start and end354

positions. We perform matrix multiplication be-355

tween the slot attention outputs and the sequence356

tokens to encode information from the slot atten-357

tion representation into each token. A feedfor-358

ward neural network with linear layers predicts359

the indices for entity head-tail pairs, along with360

their corresponding relationships, in a unified man-361

ner. Specifically, it identifies five key components:362

[subject-start (ss), subject-end (se),363

object-start (os), object-end (oe), and364

relationship (rs)], which collectively form a365

structured relational triple:366

Pss
i = σ(V⊤

1 tanh(W1Zi +W2H)) (8)367

Pse
i = σ(V⊤

2 tanh(W3Zi +W4H)) (9)368

Pos
i = σ(V⊤

3 tanh(W5Zi +W6H)) (10)369

Poe
i = σ(V⊤

4 tanh(W7Zi +W8H)) (11)370

Prs
i = σ(WtZi). (12)371

P∗
i refers to the prediction for each component at372

the ith slot, with Zi representing the ith slot embed-373

ding; the matrices Wt ∈ Rt×d, [Wi]
8
i=1 ∈ Rd×d,374

where t represents the total number of relation375

types in the RTE task and [Vi]
4
i=1 ∈ Rd are learn-376

able parameters. The function σ refers to the377

softmax operation and H represents the sequence378

of contextualized embeddings.379

Since the slots inherently lack ordering, directly380

comparing predictions with the ground truth during381

model training presents a challenge. To overcome382

this, the predictions must first be aligned with the383

ground truth. This alignment is achieved using384

the Hungarian matching algorithm (Kuhn, 1955).385

After optimally matching the predictions to the386

ground truth, cross-entropy loss is applied to each387

component to train the model:388

L =
k∑

i=1

{− logPrs
π∗(Trs

i ) + 1{Trs
i ̸=NA}389

[− logPss
π∗(Tss

i )− logPse
π∗(Tse

i )390

− logPos
π∗(Tos

i )− logPoe
π∗(Toe

i )]} (13)391

where π∗ represents the optimal assignment that 392

minimizes the total pairwise matching cost and 393

P∗
π(i) denotes the prediction, T∗

i represents the cor- 394

responding ground truth target at the ith slot and 395

the indicator function 1{Trs
i ̸=NA} ensuring only valid 396

relational triples contribute to the loss. 397

4 Experimental Setup 398

We evaluate our model using two widely recog- 399

nized benchmark datasets frequently employed in 400

the existing literature on relational triple extraction: 401

the New York Times (NYT) dataset (Riedel et al., 402

2010) and the Web Natural Language Generation 403

(WebNLG) dataset (Gardent et al., 2017). Both 404

datasets include two variants of annotation: Partial 405

Matching and Exact Matching. In Partial Matching, 406

only the head words of the ground truth entities are 407

annotated, whereas in Exact Matching, the entire 408

span of the entities is annotated. Therefore, Exact 409

Matching offers a more precise and comprehensive 410

representation of the task. It is worth mention- 411

ing that most prior studies primarily report results 412

based on Partial Matching, often neglecting Exact 413

Matching. In our study, we present results for both 414

matching strategies to facilitate comparisons in fu- 415

ture research. Detailed statistics for these datasets 416

are provided in Table 5 and 6. Please note that 417

these are the only two benchmark datasets specifi- 418

cally designed for this task. Our experiments were 419

conducted on a GeForce RTX 2080 Ti GPU (11GB 420

VRAM) and ran with 12 random seeds (11, 29, 33, 421

39, 42, 53, 57, 62, 65, 73, 96, 98). Training time 422

per epoch is approximately 7 minutes for NYT and 423

1 minute for WebNLG. Please refer to Appendix C 424

for a detailed overview of the key hyperparameters 425

used in our experiments. 426

5 Experimental Results 427

We present our experimental results for the NYT 428

dataset in Table 1 and the WebNLG dataset in Table 429

2, evaluating on both partial and exact matching 430

criteria. Additionally, Table 3 and Table 4 provide 431

an analysis of our model’s performance on overlap- 432

ping patterns and varying numbers of triples for the 433

NYT and WebNLG datasets, respectively. 434

Our results are benchmarked against the latest 435

state-of-the-art (SOTA) methods from 2020 on- 436

wards, as we find comparisons with outdated mod- 437

els serve limited purpose beyond formality. To en- 438

sure a fair comparison, all models including ours, 439

use BERT-Base-Cased as encoder, with all com- 440
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Table 1: Precision (%), Recall (%), and F1-score (%) of SMARTe and baselines on the NYT dataset (* indicates
partial matching, while exact matching is indicated without it). † represents the best-performing seed in terms of
overall F1 score for reference. ± represents the standard deviation of the results across 12 runs.

Model
NYT* NYT

Prec. Rec. F1 Prec. Rec. F1

CasRel (Wei et al., 2019) 89.7 89.5 89.6 90.1 88.5 89.3
TPLinker (Wang et al., 2020) 91.3 92.5 91.9 91.4 92.6 92.0
CGT (Ye et al., 2021) 94.7 84.2 89.1 - - -
PRGC (Zheng et al., 2021) 93.3 91.9 92.6 93.5 91.9 92.7
R-BPtrNet (Chen et al., 2021) 92.7 92.5 92.6 - - -
BiRTE (Ren et al., 2022) 92.2 93.8 93.0 91.9 93.7 92.8
DirectRel (Shang et al., 2022) 93.7 92.8 93.2 93.6 92.2 92.9
UniRel (Tang et al., 2022) 93.5 94.0 93.7 - - -
SPN (Sui et al., 2023) 93.3 91.7 92.5 92.5 92.2 92.3

SMARTe (Softmax) 92.2±0.3 91.2±0.4 91.7±0.3 92.1±0.2 91.7±0.2 91.9±0.2

SMARTe (Opt Transport) 92.4±0.3 92.9±0.2 92.6±0.2 92.5±0.2 93.0±0.1 92.7±0.1

SMARTe† (Opt Transport) 92.5 93.3 92.9 92.7 93.1 92.9

Table 2: Precision (%), Recall (%), and F1-score (%) of SMARTe and baselines on the WebNLG dataset (* indicates
partial matching, while exact matching is indicated without it). † represents the best-performing seed in terms of
overall F1 score for reference. ± represents the standard deviation of the results across 12 runs.

Model
WebNLG* WebNLG

Prec. Rec. F1 Prec. Rec. F1

CasRel (Wei et al., 2019) 93.4 90.1 91.8 - - -
TPLinker (Wang et al., 2020) 91.7 92.0 91.9 88.9 84.5 86.7
CGT (Ye et al., 2021) 92.9 75.6 83.4 - - -
PRGC (Zheng et al., 2021) 94.0 92.1 93.0 89.9 87.2 88.5
R-BPtrNet (Chen et al., 2021) 93.7 92.8 93.3 - - -
BiRTE (Ren et al., 2022) 93.2 94.0 93.6 89.0 89.5 89.3
DirectRel (Shang et al., 2022) 94.1 94.1 94.1 91.0 89.0 90.0
UniRel (Tang et al., 2022) 94.8 94.6 94.7 - - -
SPN (Sui et al., 2023) 93.1 93.6 93.4 - - -

SMARTe (Softmax) 92.8±0.4 92.5±0.4 92.7±0.3 85.2±0.2 83.8±0.4 84.5±0.2

SMARTe (Opt Transport) 93.4±0.4 93.4±0.3 93.4±0.3 86.0±0.4 85.6±0.4 85.8±0.3

SMARTe† (Opt Transport) 93.7 94.0 93.9 86.6 86.0 86.3

parative results sourced directly from their original441

publications. For our model, we report the mean442

and standard deviation across multiple runs443

with our provided seeds in our previous section.444

Moreover, we also include the best-performing445

seed in terms of overall F1 score for reference446

(indicated with †), recognizing that many related447

works do not explicitly state whether their results448

are derived from experiments using multiple ran-449

dom seeds or from optimizing the F1 score with450

a single specific seed. Furthermore, we include451

results for the softmax variant as a comparison to452

the optimal transport approach (labeled as “Opt 453

Transport”). Our SMARTe model achieves highly 454

competitive performance, coming within 1% of 455

the top-performing methods and outperform- 456

ing most previous attempts, while offering the 457

added advantage of interpretability. We also ac- 458

knowledge that our model may exhibit a slightly 459

higher dependency on larger datasets compared 460

to SOTA methods as this became evident in the 461

WebNLG exact matching benchmark, where our 462

model’s performance was comparatively lower. We 463

attribute this to the presence of numerous poorly 464

6



Table 3: F1-score (%) on sentences with different overlapping patterns and triple numbers for NYT* test set. †
represents the best-performing seed in terms of overall F1 score for reference. ± represents the standard deviation
of the results across 12 runs.

Model Normal EPO SEO N=1 N=2 N=3 N=4 N≥5

CasRel (Wei et al., 2019) 87.3 92.0 91.4 88.2 90.3 91.9 94.2 83.7
TPLinker (Wang et al., 2020) 90.1 94.0 93.4 90.0 92.8 93.1 96.1 90.0
PRGC (Zheng et al., 2021) 91.0 94.5 94.0 91.1 93.0 93.5 95.5 93.0
BiRTE (Ren et al., 2022) 91.4 94.2 94.7 91.5 93.7 93.9 95.8 92.1
DirectRel (Shang et al., 2022) 91.7 94.8 94.6 91.7 94.1 93.5 96.3 92.7
UniRel (Tang et al., 2022) 91.6 95.2 95.3 91.5 94.3 94.5 96.6 94.2
SPN (Sui et al., 2023) 90.8 94.1 94.0 90.9 93.4 94.2 95.5 90.6
SMARTe (Softmax) 90.3±0.3 93.4±0.4 92.9±0.4 90.3±0.3 93.1±0.4 93.3±0.4 95.5±0.5 85.3±1.3

SMARTe (Opt Transport) 90.7±0.4 94.5±0.3 94.3±0.3 90.6±0.4 93.6±0.3 94.4±0.5 96.2±0.4 90.7±0.8

SMARTe† (Opt Transport) 90.7 95.1 94.7 90.7 94.2 94.3 96.5 91.4

Table 4: F1-score (%) on sentences with different overlapping patterns and triple numbers for WebNLG* test set. †
represents the best-performing seed in terms of overall F1 score for reference. ± represents the standard deviation
of the results across 12 runs. *Note: UniRel results are not available for this dataset.

Model Normal EPO SEO N=1 N=2 N=3 N=4 N≥5

CasRel (Wei et al., 2019) 89.4 94.7 92.2 89.3 90.8 94.2 92.4 90.9
TPLinker (Wang et al., 2020) 87.9 95.3 92.5 88.0 90.1 94.6 93.3 91.6
PRGC (Zheng et al., 2021) 90.4 95.9 93.6 89.9 91.6 95.0 94.8 92.8
BiRTE (Ren et al., 2022) 90.1 94.3 95.9 90.2 92.9 95.7 94.6 92.0
DirectRel (Shang et al., 2022) 92.0 97.1 94.5 91.6 92.2 96.0 95.0 94.9
SPN (Sui et al., 2023) - - - 89.5 91.3 96.4 94.7 93.8
SMARTe (Softmax) 89.3±0.5 90.2±1.2 93.3±0.3 89.1±0.5 91.3±0.8 95.1±0.6 93.9±0.5 92.9±0.7

SMARTe (Opt Transport) 90.5±0.9 90.1±1.0 94.0±0.3 90.1±0.8 91.8±0.7 96.0±0.5 94.8±0.5 93.2±0.7

SMARTe† (Opt Transport) 90.6 90.6 94.5 90.0 92.4 96.9 95.0 93.8

defined relationships in the dataset, as illustrated465

in Figure 11, many of which have fewer than 10466

training examples. Additionally, it is also impor-467

tant to note that many previous models were not468

benchmarked against this variant, making the com-469

parison less conclusive. Furthermore, our analysis470

shows that the optimal transport algorithm consis-471

tently outperforms the softmax approach, particu-472

larly in handling overlapping patterns, where the473

softmax approach shows significantly weaker per-474

formance. These findings justify the integration475

of optimal transport into our model for enhanced476

performance.477

6 Qualitative Analysis of Explanations478

The qualitative analysis of our SMARTe model479

demonstrates its capability to accurately predict480

relational triples while providing interpretable481

explanations. In Figure 2, Slot 7 successfully482

identifies the relational triple (Weinstein, 483

/business/person/company, Films) by 484

focusing on semantically relevant tokens, 485

such as the subject-object pair and founders, 486

which aligns directly with the relationship 487

/business/person/company. Unlike other slots 488

that generate random attention patterns and fail 489

to predict valid relationships, Slot 7 exhibits a 490

clear and focused attention map. This highlights 491

its ability to isolate critical tokens necessary for 492

prediction, validating the model’s decision-making 493

process while offering valuable insights into its 494

reasoning. 495

Importantly, this reasoning extends beyond 496

merely predicting (Weinstein, founders, 497

Films). The model demonstrates a deeper 498

understanding by inferring that founders 499

is semantically tied to the relationship 500

/business/person/company, capturing the 501

7



relational context effectively. Such interpretability502

is not an isolated occurrence; similar patterns503

of focused attention and explainable reason-504

ing have been consistently observed across505

diverse examples. For instance, entities such506

as {coach, salary, chef, president,507

executive} are systematically grouped under508

the /business/person/company relationship, as509

shown in Figure 3.510

Beyond analyzing successful predictions, we511

are also interested in examining explanations be-512

hind incorrect predictions. For example, in NYT*513

test sentence 8: “Mary L. Schapiro, who ear-514

lier this year became the new head of NASD,515

was more amenable to fashioning a deal to516

the New York Exchange’s liking than her pre-517

decessor, Robert R. Glauber.” The ground518

truth is (Glauber, /business/person/company,519

NASD), but our model predicted (Schapiro,520

/business/person/company, NASD). This pre-521

diction is not entirely unreasonable, as Schapiro is522

correctly identified as the head of NASD, making523

the prediction logically valid. The model’s rea-524

soning is illustrated in Figure 4, where Schapiro’s525

association with NASD is highlighted. Hence, this526

demonstrates that explainability can provide valu-527

able insights into model predictions and help iden-528

tify potential ambiguities or gaps in the dataset,529

ultimately supporting efforts to improve data qual-530

ity and annotation consistency.531

For location-related relationships, such as532

/location/location/contains, the attention533

mechanism predominantly focuses on the object lo-534

cation, as it appears to encapsulate all the necessary535

information needed to predict the relational triple,536

as shown in Figure 5 & 6. In these instances, the537

model’s task shifts from deriving relational mean-538

ing from the sentence to recognizing pre-existing539

factual associations. Since such location-based re-540

lationships typically represent fixed world knowl-541

edge, the annotations often reflect factual truths542

rather than information inferred from the sentence543

context. This underscores a key limitation in pro-544

viding meaningful explanations for certain types545

of relationships, as they depend more on external546

knowledge or the training data than on contextual547

cues within the text.548

For relationship types that are not well-549

trained due to the limited number of in-550

stances, such as /people/person/ethnicity and551

/people/ethnicity/people, as shown in the552

training data statistics in Figure 8, the model strug-553

gles to generate reliable explanations. Although 554

the model correctly predicts the relationship, the 555

generated explanations are incoherent and fail to 556

provide meaningful insights into the model’s rea- 557

soning process as seen in Figure 7. 558

By providing clear and interpretable explana- 559

tions, our SMARTe model establishes a new bench- 560

mark in understanding and visualizing relational 561

reasoning, particularly in areas where many exist- 562

ing models fail. Notably, the quality of explana- 563

tions can vary based on the complexity and nature 564

of the relationship. This is especially evident when 565

dealing with less straightforward or sparsely rep- 566

resented relationships, where limited training data 567

can hinder the model’s ability to produce coherent 568

explanations. Despite these challenges, the model’s 569

capacity to deliver meaningful insights across a 570

wide range of relationships demonstrates its poten- 571

tial for improving interpretability and fostering a 572

deeper understanding of relational extraction tasks. 573

7 Conclusion 574

In this paper, we introduce SMARTe: a Slot-based 575

Method for Accountable Relational Triple extrac- 576

tion, addressing the critical need for interpretability 577

in relational triple extraction models. By leverag- 578

ing a slot attention mechanism and framing the 579

task as a set prediction problem, SMARTe ensures 580

that predictions are explicitly traceable to their 581

learned representations, providing intrinsic trans- 582

parency. Our experimental results on the NYT 583

and WebNLG datasets demonstrate that SMARTe 584

achieves performance comparable to state-of-the- 585

art models (within 1% range), while simultaneously 586

offering meaningful explanations through attention 587

heatmaps. These findings underscore the feasibil- 588

ity of combining interpretability with effectiveness, 589

addressing the “black-box” limitations inherent in 590

prior approaches. The pursuit of interpretability in 591

machine learning models is not merely an academic 592

exercise but a pressing necessity. As NLP systems 593

are increasingly deployed in high-stakes domains 594

requiring accountability, such as healthcare (Loh 595

et al., 2022), finance (Chen et al., 2023), and law 596

(Górski and Ramakrishna, 2021), ensuring mod- 597

els are both effective and interpretable becomes 598

paramount. 599

8 Limitations 600

For limitations, we acknowledge that our model’s 601

performance slightly lags behind leading models 602

8



due to its seq2seq design, which does not incorpo-603

rate combinatorial token interactions like bipartite604

graphs or interaction tables. Future work will fo-605

cus on improving token interactions to boost per-606

formance while preserving interpretability. Ad-607

ditionally, explanations for complex interactions608

remain indirect and less intuitive, highlighting dif-609

ferences between model and human text interpre-610

tation. To address this, we plan to explore more611

user-friendly explanation methods to enable users612

to derive clearer and more actionable insights from613

predictions.614
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A Analysis of our SMARTe model Explanations 793

Figure 2: Visualization of the logarithmic attention scores for each token across all slots for the prediction
in NYT partial matching test set sentence 429. Slot 7 successfully predicts the relational triple (Weinstein,
/business/person/company, Films), while other slots yield no valid predictions (classified as NAs). The con-
tributing tokens are highlighted, with the model assigning high attention scores to tokens such as its subject / object
pair and founders which aligns with the relationship /business/person/company.

Figure 3: Snippets of explanation in NYT partial matching test set for various sentences: 188,196, 263, 349, 371 for
/business/person/company relational triple.
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Figure 4: Visualization of incorrectly predicted relational triple for NYT partial matching test sentence 8. The
golden triple for the sentence is (Glauber, /business/person/company, NASD). However, our model predicted
(Schapiro, /business/person/company, NASD). This misprediction occurred because the model identified
Schapiro as being associated with NASD in a valid context, as Schapiro held a leadership (head) position in the
organization. Although this reasoning is correct, the prediction does not match the ground truth, leading to an
incorrect result under the evaluation criteria.

Figure 5: Explanations for NYT partial matching test sentence 279 show that the attentions primarily highlight the
object location for the relationship /location/location/contains, where information from the object location
alone is sufficient to predict the relational triple. In this sentence, Jersey contains Plainfield, Bellmawr, Paramus,
and Manville.
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Figure 6: Explanations for NYT partial matching test sentence 325 show that the attentions primarily highlight the
object location for the relationship /location/location/contains, where information from the object location
alone is sufficient to predict the relational triple. In this sentence, California contains Alto, Jose, Pasadena.

Figure 7: Explanations for NYT partial matching test sentence 411: While the model correctly predicts the
relationship, the generated explanations are incoherent and lack meaningful insights into the model’s reasoning
process, likely due to the scarcity of training instances for these specific relationships.

13



B Statistics of NYT and WebNLG datasets794

Table 5: Statistics of the datasets used in the study. The symbol (*) denotes datasets involving partial matching,
whereas datasets without this symbol correspond to exact matching. ‡ relations not in train dataset are removed.

Category
Dataset

Train Valid Test
Relations

Sents Triples Sents Triples Sents Triples

NYT* 56195 88253 4999 7976 5000 8110 24
NYT 56196 88366 5000 7985 5000 8120 24
WebNLG* 5019 11776 500 1117 703 1591 170‡

WebNLG 5019 11313 500 1224 703 1607 211‡

Table 6: Statistics of the overlapping patterns (Zeng et al., 2018) across Train, Valid, and Test sets, following prior
work. Please note that this form of evaluation is only applicable to partial matching datasets.

Category
Train Set Valid Set Test Set

Normal SEO EPO Normal SEO EPO Normal SEO EPO

NYT* 37013 14735 9782 3306 1350 849 3266 1297 978
WebNLG* 1600 3402 227 182 318 16 246 457 26
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Figure 8: NYT partial matching train dataset relationship statistics

Figure 9: NYT exact matching train dataset relationship statistics
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Figure 10: WebNLG partial matching train dataset relationship statistics
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Figure 11: WebNLG exact matching train dataset relationship statistics
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C Experiment Hyperparameter Configuration795

Parameter NYT* NYT WebNLG* WebNLG

batch_size 8 8 8 8
epochs 80 100 340 340
num_classes 25 25 170 211
num_generated_triples 15 15 15 15
optimizer AdamW AdamW AdamW AdamW
encoder_lr 2.00E-05 1.00E-05 2.00E-05 2.00E-05
decoder_lr 8.00E-05 6.00E-05 6.00E-05 6.00E-05
mesh_lr 6 6 6 6
n_mesh_iters 4 4 4 4
num_iterations 6 3 3 3
slot_dropout 0.2 0.2 0.2 0.2
max_grad_norm 2.5 2.5 2.5 2.5
weight_decay 1.00E-05 1.00E-05 1.00E-05 1.00E-05
lr_decay 0.01 0.01 0.01 0.01
warm-up_rate 0.1 0.1 0.1 0.1

Table 7: Parameter settings for NYT and WebNLG experiments

D Licensing and Terms of Use796

D.1 Dataset797

We utilize the NYT dataset, which originates from the New York Times corpus and is distributed under798

the Linguistic Data Consortium (LDC) license. Additionally, we employ the WebNLG dataset, which is799

publicly available under the GNU General Public License v3.0 (GPL-3.0). Both datasets serve as standard800

benchmarks for evaluating relational extraction tasks and are also accessible through existing research801

repositories.802

D.2 Model and Code Release803

We will make our SMARTe implementation publicly available upon acceptance. The code will be released804

under the MIT License.805

D.3 Software Dependencies and Implementation806

The model is implemented using PyTorch1. We utilize the BERT-Base Cased transformer model from807

the Hugging Face library2. We use Weights & Biases (WandB)3 for experiment logging. We adopt the808

relational triple extraction evaluation metrics and preprocessing steps from an existing implementation4 to809

ensure consistency with prior work.810

D.4 Ethical and Legal Considerations811

No personally identifiable information (PII) is contained in the datasets we use. We adhere to the terms of812

service for all datasets and do not scrape or collect additional proprietary data.813

D.5 Information About Use Of AI Assistants814

We used ChatGPT5 for minor writing refinements and code debugging but ensured all final content was815

reviewed and verified by the authors.816
1https://pytorch.org/
2https://huggingface.co/google-bert/bert-base-cased
3https://wandb.ai/
4https://github.com/DianboWork/SPN4RE
5https://chatgpt.com/
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