
A Simple Framework to Accelerate
Multilingual Language Model for Monolingual Text Generation

Anonymous ACL submission

Abstract

Recent advancements in large language mod-001
els (LLMs) have remarkably enhanced per-002
formances on a variety of tasks in multi-003
ple languages. However, tokenizers in LLMs004
trained primarily on English-centric corpora005
often overly fragment a text into character or006
Unicode-level tokens in non-Roman alphabetic007
languages, leading to inefficient text generation.008
We introduce a simple yet effective framework009
to accelerate text generation in such languages.010
Our approach involves employing a new lan-011
guage model head with a vocabulary set tai-012
lored to a specific target language for a pre-013
trained LLM. This is followed by fine-tuning014
the new head while incorporating a verifica-015
tion step to ensure the model’s performance016
is preserved. We show that this targeted fine-017
tuning, while freezing other model parame-018
ters, effectively reduces token fragmentation019
for the target language. Our extensive exper-020
iments demonstrate that the proposed frame-021
work increases the generation speed by a fac-022
tor of 1.7 while maintaining the performance023
of pre-trained multilingual models on target024
monolingual tasks.025

1 Introduction026

Modern large language models (LLMs) (OpenAI,027

2023; Touvron et al., 2023a; Antropic, 2023) have028

exhibited remarkable capabilities for a variety of029

tasks in multiple languages (Eloundou et al., 2023;030

Solaiman et al., 2023). Although these models are031

predominantly trained on English-centric data, they032

have shown a significant degree of multilingual033

proficiency (Bandarkar et al., 2023).034

However, when applied to non-alphabetic lan-035

guages, these models often suffer from slower036

text generation due to English-centric tokeniza-037

tion (Rust et al., 2021; Ahia et al., 2023; Petrov038

et al., 2023). Current tokenization techniques used039

in Large Language Models (LLMs) are data-driven040

and optimize segmentation based on the frequency041

of characters or bytes within a specific corpus (Sen- 042

nrich et al., 2016; Kudo, 2018). As a result, the 043

tokenizers of multilingual models, which are heav- 044

ily influenced by English-dominant training data, 045

are predominantly composed of English subwords. 046

This leads to excessive fragmentation, where non- 047

English words are overly segmented into a large 048

number of subword units (Rust et al., 2021; Ahia 049

et al., 2023; Petrov et al., 2023). The autoregressive 050

nature of LLMs further amplifies this inefficiency, 051

as it sequentially requires the generation of text. 052

To address these challenges, previous stud- 053

ies (Wang et al., 2019; Rust et al., 2021; Cui 054

et al., 2023) have proposed replacing or augment- 055

ing the existing vocabulary of pre-trained multi- 056

lingual models with language-specific vocabular- 057

ies to more effectively encode monolingual text 058

corpora. Specifically, Rust et al. (2021) improved 059

mBERT (Devlin et al., 2019) by replacing its tok- 060

enizer with a monolingual one and incorporating an 061

additional 100,000 pre-training steps. On the other 062

hand, Cui et al. (2023) enhanced Llama (Touvron 063

et al., 2023a) by expanding the Chinese vocabu- 064

lary and further pre-training it on a 120GB text 065

corpus that includes Chinese texts. However, this 066

approach requires an extensive pre-training phase 067

with a substantial amount of data. 068

Another approach to address the challenges is 069

the use of small draft models (Leviathan et al., 070

2023; Chen et al., 2023a). These models gener- 071

ate draft output tokens, which are then verified by 072

the original language model. However, a significant 073

challenge arises when trying to identify or train a 074

suitable small model that can handle multiple lan- 075

guages with reliable performance (Conneau et al., 076

2020; Bandarkar et al., 2023). 077

In response to these challenges, our research 078

introduces MuMo, a framework designed to accel- 079

erate Multilingual language models for targeted 080

Monolingual text generation, particularly in non- 081

alphabetic languages. MuMo incorporates a new 082
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Figure 1: Overview of the proposed framework. Illustration of (Left) the generation with a pre-trained multilingual
model and (Right) the generation of MuMo Framework. Given the Korean prefix “천왕성은” (Uranus is), the model
generates the consecutive phrase “태양으로부터”(from the Sun) that consisted of 3 morphemes (“태양”, “으로”,
“부터”) in Korean. The generation with the pre-trained multilingual model faces inefficiency due to excessive
fragmentation, requiring 12 steps to generate only 3 Korean morphemes. However, the MuMo framework empowers
the multilingual language model to generate multiple tokens in a single iteration by extracting a word from the
Korean Vocabulary, requiring 3 steps.

vocabulary of a target language into the output083

layer, also known as the Language Model (LM)084

head, and predicts the next token from this ex-085

panded vocabulary. This approach requires training086

only the extended portion of the output layer and087

specific layers of the feed-forward network. Impor-088

tantly, MuMo eliminates the need for extensive text089

corpora or a draft model, requiring only a modest090

corpus of the target language, approximately 44M091

tokens in size. Empirical results across summariza-092

tion, and translation tasks in Korean and Japanese093

demonstrate that MuMo significantly accelerates094

text generation, achieving over a 1.7-fold increase095

in speed without significantly compromising output096

quality.097

The contributions of our research are as follows:098

• We propose MuMo, a framework that accel-099

erates the decoding speed of non-Roman al-100

phabetic languages without compromising the101

performance of the language model.102

• Our study directly addresses the issue of slow103

inference speed of non-English languages, a104

problem that arises due to the excessive frag-105

mentation in pre-trained models that are pri-106

marily English-centric.107

• We empirically demonstrate the efficacy of108

our approach across various language models.109

Lang Word Multilingual Tokens
KO 서울 (“서”, “\0xec”, “\0xb8”, “\0x9a”)
JA 発売 (“発”, “\0xe5”, “\0xa3”, “\0xb2

Table 1: Examples of the tokenization results. These
examples are preprocessed by the Llama tokenizer (Tou-
vron et al., 2023b). The target monolingual word are
excessively segmented into byte units, when a suitable
match is not found in the multilingual vocabulary.

2 Related Work 110

Tokenization Disparity Subword tokenization, 111

a common approach in LMs, is typically data- 112

driven. Most of pre-trained tokenizers, which are 113

often trained on predominantly English corpora, 114

frequently result in excessive fragmentation of non- 115

English scripts (Rust et al., 2021; Zhang et al., 116

2022). Ahia et al. (2023); Petrov et al. (2023) have 117

found significant tokenization disparities across lan- 118

guages in popular LLMs (Xue et al., 2021, 2022; 119

Scao et al., 2022; OpenAI, 2023). Our work endeav- 120

ors to address the slowdown in inference that arises 121

due to tokenization disparity in non-alphabetic lan- 122

guages. 123

Modifying Pre-trained Vocabulary Previous 124

works have explored the adaptation of pre-trained 125

vocabularies or the addition of new tokens (Artetxe 126

et al., 2020; Rust et al., 2021; Liu et al., 2023), these 127

methods often necessitate extensive pre-training to 128

integrate the new tokens effectively (Wang et al., 129

2019; Chau et al., 2020; Cui et al., 2023; Liu 130
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et al., 2023). In contrast, our MuMo framework131

sidesteps the need for fine-tuning the parameters132

of pre-trained models to preserve the original capa-133

bilities of the pre-trained language model. Efforts134

to select items of pre-trained embedding matrix135

have been made (Abdaoui et al., 2020; Domhan136

et al., 2022; Ushio et al., 2023), but these have not137

yielded significant speed up where the size of the138

embedding layer is relatively small (Bogoychev139

et al., 2023).140

Accelerating LLM Inference The quest to ac-141

celerate inference in auto-regressive large language142

models (LLMs) has led to a variety of approaches.143

There has been a proliferation of systems specif-144

ically engineered for LLM inference (Yu et al.,145

2022; Sheng et al., 2023; Xiao et al., 2023). Our146

proposed methodology can be harmonically inte-147

grated with the aforementioned techniques. Specu-148

lative decoding (Leviathan et al., 2023; Chen et al.,149

2023a) have also been explored to increase infer-150

ence velocity. However, the approach often relies151

on the assumption that a small model can maintain152

high fidelity when generating a series of multiple153

tokens. Moreover, acquiring a small yet competi-154

tive model may be tricky, especially in a multilin-155

gual setup (Conneau et al., 2020; Bandarkar et al.,156

2023). Our work distinguishes itself by specifically157

solving the inference inefficiency that arises from158

excessive fragmentation in the non-alphabetic con-159

text.160

Parameter Efficient Cross-lingual Transfer161

Learning The curse of multilinguality, which162

refers a trade-off between the language cover-163

age and model capacity (Conneau et al., 2020),164

is a significant issue even in massively multi-165

lingual models, such as mBERT, XLM-R, and166

mT5 (Devlin et al., 2019; Conneau et al., 2020;167

Xue et al., 2021; Ansell et al., 2021). The problem168

has been mitigated through modular parameter-169

efficient adaptations of the multilingual models170

through lightweight adapters (Houlsby et al., 2019):171

additional trainable parameters inserted into the172

transformer layers of model (Pfeiffer et al., 2020;173

Üstün et al., 2020; Vidoni et al., 2020; Parović et al.,174

2022) for a target language. These techniques bear175

a resemblance to ours, in that they involve train-176

ing partial parameters of a language model with177

a small amount of target language corpus. How-178

ever, our goal is fundamentally different: we aim to179

accelerate the inference, whereas previous studies180

focus on improving the representational capability 181

in target languages for multilingual models. 182

3 Proposed Framework 183

We propose a framework named MuMo to acceler- 184

ate the inference speed of a pre-trained multilingual 185

LM for a non-alphabetic monolingual language via 186

a given small monolingual dataset. In the section, 187

we introduce 1) the model architecture, 2) the fine- 188

tuning process on a small monolingual dataset, and 189

3) the inference process of the proposed frame- 190

work. 191

3.1 Model Architecture 192

We illustrate the model architecture of MuMo in 193

Fig. 2. 194

Pre-trained Multilingual Model We consider a 195

setting in which a pre-trained multilingual model 196

fmulti is given. The model consists of 1) Trans- 197

former layers that consist of attention and feed- 198

forward network, and 2) an output embedding 199

layer called language model (LM) head. We de- 200

note Vmulti as the multilingual vocabulary set 201

of the model objective, as LMLE(pmulti,x) = 202∑T
t=1 log pmulti(xt|x<t) 203

Target Monolingual LM Head The primary 204

concept involves modifying pre-trained represen- 205

tations to predict a singular token unit within a 206

target monolingual vocabulary Vmono. We refer to 207

the Target Monolingual LM head as fmono, which is 208

composed of two main components: a feed-forward 209

network (FFN) and an output linear layer, repre- 210

sented as gmono : Rdmono → R|Vmono|: 211

FFN(h) = q(W⊤
1 h)W2 ∈ Rdmono , (1) 212

where W1 ∈ Rdmulti×dffn and W2 ∈ Rdffn×dmono are 213

the weight matrices, q is non-linearity function, and 214

dmono represents the dimension of the target lan- 215

guage representaiton. We set dffn as dmulti/4, and 216

the non-linearity function q as SwiGLU (Shazeer, 217

2020). The output linear layer gmono then generates 218

a word: 219

fmono(h) = gmono(FFN(h)) ∈ R|Vmono|. (2) 220

MuMo LM Head Note that the output space 221

of fmono is restricted to tokens in the Vmono. In- 222

spired by Lan et al. (2023), we simply extend the 223

fmono by concatenating the output linear layer of 224

pre-trained multilingual model. This is particularly 225
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Figure 2: Illustration of a single-step prediction with MuMo. Initially, the MuMo LM Head fmumo selects the top
6 candidates. Then, the pre-trained multilingual model verifies the feasibility of the candidates. Among the modules
in MuMo, the Target Monolingual LM head (the Korean LM Head in the figure) is only trained.

useful when there is no suitable token in Vmono to226

predict, such as special symbols or alphabet-based227

tokens for non-alphabet languages.228

Formally, given context representation ht−1, the229

output of the MuMo LM head is computed as:230

fmumo(ht−1) =231

[fmulti(ht−1); fmono(ht−1)] ∈ R|Vmulti|+|Vmono| (3)232

where the symbol ; indicates the concatenation of233

two vectors, and the fmumo indicates the output of234

the MuMo LM head. Thus, the MuMo LM head235

is composed of a combination of the pre-trained236

language model head and Target Monolingual LM237

head.238

3.2 Fine-tuning239

In the proposed framework, we only fine-tune240

the target monolingual LM head fmono leverag-241

ing a small given target monolingual dataset. Note242

that the parameters of the pre-trained multilingual243

model remain frozen during the process. The model244

is fine-tuned by maximizing the log-likelihood of a245

sequence:246

max
fmono

LMLE(pmumo,x) =
∑T

t=1 log pmumo(xt|x<t) ,

(4)247

where pmumo(xt|x<t) = Softmax(fmumo(ht−1)).248

3.3 Inference 249

Despite the availability of direct generation based 250

on the pmumo, the newly initialized Target Mono- 251

lingual LM head, which is trained on limited data, 252

may be constrained by generalization capabilities 253

beyond the training dataset. The key concept is to 254

leverage the probabilistic knowledge acquired by 255

the pre-trained model pmulti, which has been exten- 256

sively trained on large text corpora. 257

3.3.1 Step 1: Top-k Selection 258

Initially, we select top k candidates based on the 259

probability pmumo(xt|x<t). We set k as 10 for all 260

experiments. Given the fact that we do not modify 261

the input embedding of the pre-trained model, we 262

are unable to feed the predicted word if a word 263

does not belong in Vmulti during the subsequent 264

iteration. Instead, we input the predicted word as 265

the tokenization units of the pre-trained vocabulary. 266

For example, let’s consider the Korean word “수 267

소”, which corresponds to a sequence of two tokens 268

(“수”, “소”) in Vmulti. If the Korean word “수소” is 269

selected among the Top-k candidates, we employ 270

these two multilingual tokens. 271

3.3.2 Step 2: Verification 272

Then, the feasibility of these potential completions 273

is measured using the log-joint probability distribu- 274

tion over pmulti. To account for shorter sequences 275
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naturally having higher scores (Jean et al., 2015;276

Murray and Chiang, 2018), we normalize each can-277

didate’s score by its token length.278

We measure the feasiblity for a candidate se-279

quence as follows:280

σ(ci) =
1

li

li∑
k=1

log pmulti(c
i
t+k|ci<t+k,x<t), (5)281

where ci symbolizes a predicted token within the282

top-k candidates, pmulti represents the probabil-283

ity as determined by the pre-trained multilingual284

model, and li corresponds to the sequence length285

of the candidate ci.286

From the k candidates, the ultimate prediction287

can be derived from both deterministic and stochas-288

tic manners, depending on decoding strategies.289

4 Experiments290

4.1 Setup291

Languages We focus on two non-roman alpha-292

betical languages: Korean and Japanese. These lan-293

guages constitute over 0.05% of the pre-training294

corpus used in Llama-2 (Touvron et al., 2023b).295

Furthermore, they are of particular interest due to296

their tokenization disparity when compared to En-297

glish scripts (Ahia et al., 2023; Petrov et al., 2023).298

Model We utilize the Llama-2 13B model (Tou-299

vron et al., 2023b) for all experiments. We observed300

some language alignment discrepancies between301

instructions and responses when using the Llama-2302

13B chat model.1 To address the issue, we con-303

duct multilingual instruction tuning (Muennighoff304

et al., 2022) for English, Korean, and Japanese305

languages using the ShareGPT and Alpaca (Chen306

et al., 2023c). This process improve the model’s307

fluency in each language (Muennighoff et al., 2022;308

Chen et al., 2023b). We also report our results test309

on Llama-1 13B (Touvron et al., 2023a) in Ap-310

pendix.311

Implementation of MuMo To construct targeted312

monolingual vocabularies in MuMo Framework,313

we levergage the tokenizers from the off-the-shelf314

model, as shown in Table 2. We selected mono-315

lingual tokens by filtering vocabulary items based316

on the Unicode range of each monolingual script.317

Additionally, we excluded items from the selec-318

tion if they were already present in the pre-trained319

vocabulary.320

1meta-llama/Llama-2-13b-chat

Language Language Family Pre-trained Tokenizer
Korean Koreanic EleutherAI/polyglot-ko-12.8b
Japanese Japonic rinna/japanese-gpt-neox

Table 2: Selected languages and tokenizers. We utilize
the tokenizers to construct Vmono in each language.

Regarding the initialization of gmono, we utilize 321

the LM head of the pre-trained multilingual model. 322

For example, when the Korean word "태양" is to- 323

kenized into subword units (“\0xed”, ..., “\0x91”) 324

using the pre-trained vocabulary, we initialize the 325

Korean LM head of "태양" by taking the mean 326

of the corresponding subword embeddings of the 327

multilingual LM head. This process ensures that 328

the initialized embeddings of Target Monolingual 329

head represent the original word in the multilingual 330

context. 331

Fine-tuning We only train the Target Monolin- 332

gual LM head gmono with the translated ShareGPT 333

and Alpaca datasets (Chen et al., 2023c) in Korean, 334

and Japanese. The training is done with 1500 steps 335

with one batch consisting of 128 examples. We use 336

the AdamW (Loshchilov and Hutter, 2019) opti- 337

mizer with a learning rate of 0.001, weight decay 338

of 0.01, and 150 steps of warm-up. 339

Evaluation We choose two representative gen- 340

eration tasks: summarization and translation. For 341

summarization, we use 500 examples from XL- 342

Sum (Hasan et al., 2021), and for translation, we 343

use 500 examples from the FLoRes-200 (Goyal 344

et al., 2022) dataset. We translate English sentences 345

to each target language sentence. 346

For each task, we report 0-shot results for sum- 347

marization, and 3-shot results for translation. We 348

set the maximum sequence length as 512. We uti- 349

lize flash-attention 2 (Dao, 2023) and bfloat16 350

types for text generation. 351

Metrics In the summarization task, we gauge the 352

reliability of the generated content by calculating 353

the ROUGE-2 and ROUGE-L (Lin, 2004) scores, 354

averaging the results across 5 different generated 355

summaries. Likewise, for the translation task, we 356

measure the quality of the translations by comput- 357

ing the BLEU (Papineni et al., 2002) score, again 358

averaging over 5 translation results.2 We report 359

Tokens/sec to measure the inference speed of the 360

models. 361

2We utilize SacreBLEU scores with the signature BLEU
|nrefs:1 |case:mixed |eff:no |tok:ko,ja-mecab|smooth:exp |ver-
sion:2.2.0.
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Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up BLEU Tokens/sec Speed Up

KO

Vanilla Decoding 20.7 36.1 28.9 1.00x 21.2 29.8 1.00x
Spec. (w/o Rejection) 18.7 33.5 35.2 1.21x 18.6 36.5 1.22x

Spec. 20.3 35.2 27.5 0.95x 21.5 29.2 0.98x
Shortlisting 20.5 36.3 30.6 1.06x 19.5 32.7 1.03x

MuMo (Ours) 20.3 35.9 55.3 1.92x 21.7 50.9 1.70x

JA

Vanilla Decoding 11.3 26.6 29.3 1.00x 26.3 33.4 1.00x
Spec. (w/o Rejection) 10.8 24.2 35.4 1.21x 22.7 39.9 1.21x

Spec. 11.6 26.5 28.5 0.97x 26.0 29.7 1.03x
Shortlisting 11.4 26.3 30.3 1.03x 25.2 34.9 1.04x

MuMo (Ours) 11.6 26.3 59.2 2.02x 24.3 58.3 1.75x

Table 3: Comparative study of Language Model (LM) inference speed. The column labeled “Speed Up”
represents the relative performance improvement in inference speed compared to the vanilla decoding method. The
highest performance in each category is highlighted in Boldface, and the second highest score is underlined. All
models use sampling-based decoding. MuMo outperforms the compared baselines in the inference speed. Detailed
information about the generation hyperparameters, including those used for sampling-based decoding, can be found
in Appendix E.

4.2 Baselines362

We consider the following several baselines for the363

comparison with the proposed method.364

Vanilla Decoding The autoregressive generation365

is to sequentially sample the subsequent word366

based on the probability distribution over the pre-367

trained vocabulary. This approach serves as the368

standard against which improvements are mea-369

sured. Accounting for the nature of task, all the370

baselines and our framework utilizes sampling-371

based decoding strategy with temperature as 0.1, k372

as 10 for top-k sampling (Fan et al., 2018) and p as373

0.7 for nucleus sampling (Holtzman et al., 2020).374

Speculative Decoding Speculative decoding ap-375

proach (Chen et al., 2023a; Leviathan et al., 2023)376

employs a preliminary "draft" model to rapidly377

generate a set of token candidates at each decod-378

ing step. Subsequently, these candidates undergo a379

validation process by the original language model380

to ascertain their likelihood as plausible continua-381

tions of the text. We implement two variants of this382

method: one with the capability to reject unsuitable383

candidates (Spec.) and another without its rejection384

module (Spec. w/o Rejection). For the draft model,385

we utilize Llama-2 7B (Touvron et al., 2023b). Fol-386

lowing the implementation of Chen et al. (2023a),387

we generate 5 draft tokens at each iteration.388

Lexical Shortlisting Lexical Shortlisting (Short-389

listing) (Abdaoui et al., 2020; Ushio et al., 2023),390

or vocabulary selection, is the approach that opti-391

mizes the decoding process by allowing it to gen-392

erate a word within a set of tokens during the in-393

ference stage (Ushio et al., 2023). We implement394

to filter out tokens that are not present within the 395

corresponding target language subset of the mC4 396

corpus (Xue et al., 2021), as Ushio et al. (2023). 397

4.3 Results 398

Table 3 shows the generation results in both summa- 399

rization and translation tasks. For the summariza- 400

tion task in Korean, MuMo outperforms all base- 401

lines in terms of speed, achieving a 1.92x speed- 402

up over the Vanilla Decoding while maintaining 403

competitive ROUGE scores. In translation, MuMo 404

again demonstrates superior efficiency with a 1.70x 405

speed-up and even shows an improvement in BLEU 406

score compared to Vanilla Decoding. 407

In the case of Japanese, the results are similar, 408

with MuMo achieving a 2.02x speed-up in summa- 409

rization and a 1.75x speed-up in translation. The 410

ROUGE and BLEU scores for MuMo are on par 411

with or slightly below Vanilla Decoding, indicat- 412

ing that the increase in speed does not significantly 413

compromise the quality of the output. 414

Shortlisting shows only marginal gains in speed 415

across both languages and every tasks, while pre- 416

serving the generation capability. This is likely be- 417

cause the relative computational cost of processing 418

the embedding matrix is reduced in larger models, 419

making vocabulary reduction less impactful (Be- 420

rard et al., 2021; Ushio et al., 2023). On the other 421

hand, the Spec. heavily relies on the capacity of 422

the draft model, as shown as the comparison with 423

(Spec. w/o Rejection). If the draft model lacks of 424

sufficient multilingual capacity, it may not generate 425

high-quality candidates, leading to a lower accep- 426

tance rate by the original model and thus reduced 427

efficiency. 428
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Summarization (0-shot) Translation (3-shot)
Method Update Param. Dataset size (Tokens) ROUGE-2 ROUGE-L Morphemes/sec Speed Up BLEU Morphemes/sec Speed Up

Vanilla Fine-tuning 13.0B 44M 21.0 36.0 9.8 1.00x 21.4 10.1 1.00x
Vocabulary Expansion 13.1B 44M 13.7 23.1 17.1 1.92x 12.3 20.2 2.00x
Vocabulary Expansion† 13.1B 60B + 44M 20.3 37.3 20.5 2.12x 20.3 23.1 2.29x

MuMo (Ours) 70M 44M 20.5 36.3 15.3 1.73x 21.7 17.2 1.71x

Table 4: Comparsion with the fine-tuning strategies. The column labeled “Speed Up” represents the relative
performance improvement in inference speed compared to Vanilla Fine-tuning. Vocabulary Expansion† was pre-
trained on over 60B tokens, comprised of both Korean and English text corpora. Other methods are only trained
with the instruction dataset (44M tokens) (Chen et al., 2023c), ShareGPT and Alpaca translated in Korean. The
Boldface signifies the superior performances, and the second highest score is underlined.

The superior performance of MuMo in terms of429

inference speed can be primarily attributed to its ca-430

pability to predict larger linguistic units compared431

to those in the pre-trained vocabulary. We found432

that the target language tokens in Vmono are typi-433

cally tokenized into 3-4 separate tokens in Vmulti,434

suggesting that the decoding step could potentially435

be reduced by 3-4 times. It is hypothesized that436

the inference speed is significantly influenced by437

the disparity between the pre-trained multilingual438

vocabulary and the target language.439

5 Further Analysis440

5.1 Comparative Analysis of Fine-Tuning441

Strategies442

In the section, we provide a comparative analysis443

of three distinct fine-tuning strategies for multilin-444

gual models. This analysis aims to highlight the445

advantages and disadvantages of each strategy, par-446

ticularly in terms of dataset requirements. and the447

number of parameters to train.448

5.1.1 Setup449

The two strategies compared in the analysis are:450

1. Vanilla Fine-tuning: This strategy, which451

serves as a baseline, involves fine-tuning a stan-452

dard multilingual model on a target monolingual453

instruction dataset (40M tokens) without any modi-454

fications to the pre-trained vocabulary.455

2. Vocabulary Expansion: Inspired by prior456

work (Chau et al., 2020; Cui et al., 2023), this457

strategy involves expanding the vocabulary of the458

pre-trained multilingual model and fine-tuning on459

the instruction dataset. This method, unlike MuMo,460

expands not only the LM head but also the token461

embedding in the input layer. Two implementations462

of this strategy are considered. The first involves463

pre-training on large-scale text corpora (60B to-464

kens)3 before fine-tuning on the instruction dataset.465

3We use the off-the-shelf checkpoint from beomi/llama-2-
koen-13b

This strategy is marked with a dagger in Table 4. 466

The second only undergoes the fine-tuning phase 467

on the instruction dataset. 468

To account for the variability of token unit be- 469

tween the different strategies, we report the infer- 470

ence speed with the morphemes per second (Mor- 471

phemes/sec), providing a standardized measure- 472

ment.4 We only compare the baselines in Korean, 473

because of the availability of model. 474

5.1.2 Discussion 475

Table 4 reveals a consistent trend across both sum- 476

marization and translation tasks. The vocabulary 477

expansion strategies, which expand the dimension 478

of both the token embeddings and LM head, ex- 479

hibit significant increases in inference speed, but 480

this is accompanied by a substantial decrease in the 481

quality of the generated output when not trained on 482

large-scale text corpora. This indicates that merely 483

fine-tuning with an expanded vocabulary on a lim- 484

ited downstream dataset may not suffice to main- 485

tain high-quality text generation, as suggested by 486

(Conneau et al., 2020). Furthermore, while vocabu- 487

lary expansion with pre-training achieves notable 488

speed improvements, it does not exhibit significant 489

enhancements in generation quality. 490

In contrast, our proposed method exhibits a mod- 491

est increase in speed while also slightly improving 492

BLEU scores relative to vanilla fine-tuning. The 493

principal advantage of our method lies in its ca- 494

pacity to attain these results without necessitating 495

vast monolingual text corpora. This approach not 496

only reduces the number of parameters that need to 497

be fine-tuned, making it more parameter-efficient 498

but also lessens the dependency on large-scale data 499

for pre-training, making it a more data-efficient 500

solution. 501

4python-mecab-ko

7

https://huggingface.co/beomi/llama-2-koen-13b
https://huggingface.co/beomi/llama-2-koen-13b
https://pypi.org/project/python-mecab-ko/


Summarization (0-shot) Translation (3-shot)
LM HEAD INITIALIZATION ROUGE-2 ROUGE-L BLEU

MONO-INIT 20.7 36.2 21.5
RANDOM-INIT 19.2 35.5 17.2

MULTI-INIT 20.3 36.3 21.7

Table 5: Comparative analysis for the initialization strategy. MONO-INIT signifies to leverage the pre-existing
embedding representation. We use the language model head of the monolingual model from EleutherAI/polyglot-
ko-12.8b. In the case of RANDOM-INIT, we randomly initialize with Gaussian distribution. MULTI-INIT indicates
to leverage multilingual model representation by averaging its subword embedding as the main experiment. The
Boldface signifies the superior performances.

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec BLEU Tokens/sec

KO
MuMo 20.3 35.9 55.3 21.7 50.9
w/o Verification 11.0(-9.3) 26.4(-9.5) 60.8(+5.5) 16.3(-5.4) 62.3(+11.4)

JA
MuMo 11.6 26.3 59.2 24.3 58.3
w/o Verification 6.7(-4.9) 20.4(-5.9) 69.1(+9.9) 10.8(-13.5) 73.6(+15.3)

Table 6: Ablation Study. While the exclusion of the verification accelerates approximately 1.2 times in inference
speed, it significantly compromises the quality of the generation.

5.2 Initialization of Target Monolingual LM502

Head503

We investigate the impact of three different initial-504

ization strategies on the target monolingual LM505

head gmono in the Target Monolingual LM head.506

The first strategy involves leveraging embeddings507

that correspond to the pre-trained representation508

of a targeted monolingual LM head, termed as509

MONO-INIT. The second strategy is initializing510

the parameters with random value using Gaussian511

distribution (RANDOM-INIT). Lastly, we utilize512

the embeddings from the pre-trained multilingual513

LM head (MULTI-INIT), as the main experiment.514

This is achieved by averaging the output embed-515

dings of the multilingual model.516

Table 5 shows that MULTI-INIT achieves a517

ROUGE-L score of 36.3 and a BLEU score of 21.7,518

which are close to the 36.2 ROUGE-L and 20.9519

BLEU scores of MONO-INIT. On the other hand,520

RANDOM-INIT shows a decrease in performance,521

with a ROUGE-L score of 35.5 and a BLEU score522

of 17.2.523

The result demonstrates that the MULTI-INIT524

approach is almost equally effective with MONO-525

INIT. This suggests that our framework can be uti-526

lized even without a pre-existing target monolin-527

gual model, making it applicable to low-resource528

languages.529

5.3 Effectiveness of Verification Step 530

We design an ablation study to investigate the role 531

of the verification step in the inference process ( 532

Sec. 3.3.2). To assess the impact of the verification 533

step, we generated sequences without employing 534

the verification step. 535

From the results in Table 6, conducted in both 536

Korean and Japanese, we notice that the overall 537

generation speed is approximately 1.2 times faster 538

when the verification is excluded. However, it is 539

crucial to highlight that the exclusion of the veri- 540

fication step in the inference phase leads to a sig- 541

nificant reduction in the generation quality. This is 542

evident in the decrease in ROUGE-2, ROUGE-L, 543

and BLEU scores for both languages when the ver- 544

ification module is not used, as shown in the table. 545

This suggests that while the verification step may 546

slightly slow down the generation process, it plays 547

a vital role in preserving the model’s generation 548

capability. 549

6 Conclusion 550

Our study has successfully tackled the challenges 551

in generating text for non-alphabet languages, par- 552

ticularly those associated with excessive fragmen- 553

tation issues. The approach not only speeds up text 554

generation but also paves the way for more effi- 555

cient multilingual language applications. Our fu- 556

ture work will broaden our experimental scope to 557

languages that were not sufficiently represented in 558

the pre-trained multilingual language model. 559
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Limitations560

Our proposed framework has not been evaluated561

with languages that exhibit excessive fragmentation562

issues, such as Tamil, Hebrew, and Arabic (Ahia563

et al., 2023; Petrov et al., 2023). These languages564

were not included in the pre-training corpus of565

Llama-2 (Touvron et al., 2023b) Furthermore, there566

is a lack of available instruction data or off-the-567

shelf tokenizers for these languages. The language568

models evaluated in the study are restricted to a569

maximum size of 13B. Larger models, such as570

Llama-2 30B or 70B, were not implemented due to571

constraints on available computational resources.572
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Korhonen. 2022. BAD-X: Bilingual adapters im- 734
prove zero-shot cross-lingual transfer. In Proceed- 735
ings of the 2022 Conference of the North American 736
Chapter of the Association for Computational Lin- 737
guistics: Human Language Technologies. 738

Aleksandar Petrov, Emanuele La Malfa, Philip HS Torr, 739
and Adel Bibi. 2023. Language model tokenizers 740
introduce unfairness between languages. In Proceed- 741
ings of the Advances in Neural Information Process- 742
ing Systems (NeurIPS). 743
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Appendix843

A Details of LM844

Lang. Percent Lang. Percent

en 89.70% uk 0.07%
unknown 8.38% ko 0.06%
de 0.17% ca 0.04%
fr 0.16% sr 0.04%
sv 0.15% id 0.03%
zh 0.13% cs 0.03%
es 0.13% fi 0.03%
ru 0.13% hu 0.03%
nl 0.12% no 0.03%
it 0.11% ro 0.03%
ja 0.10% bg 0.02%
pl 0.09% da 0.02%
pt 0.09% sl 0.01%
vi 0.08% hr 0.01%

Table 7: Language distribution in the pre-training
corpora of Llama-2. The statistic was reported in Tou-
vron et al. (2023b). Most data is in the European lan-
guage.

Llama-2 (Touvron et al., 2023b) has been trained845

on English-centric corpora with some in European846

languages, as shown as Table 7. The 13B version847

of the model is employed in our experiments.848

B Dataset Details849

Training Data Our study employed a mul-850

tilingual instruction dataset from Chen et al.851

(2023c), encompassing Korean and Japanese,852

for multilingual instruction tuning. Specifically,853

we utilized ShareGPT and Alpaca-GPT4 for854

each respective language. For English, we use855

a dataset from https://huggingface.co/datasets/856

anon8231489123/ShareGPT_Vicuna_unfiltered.857

The dataset comprises 56k, 55k, and 168k858

examples for Korean, Japanese and English859

respectively.860

To train MuMo LM head, we use ShareGPT and861

Alpaca-GPT4 (Chen et al., 2023c) in Korean and862

Japanese for each language.863

Evaluation Data In summarization task, we use864

validation and test split of XLSum (Hasan et al.,865

2021), which consist of 1100 examples. We found866

that more than half of the samples within the valida-867

tion and test split surpassed the maximum sequence868

length of Llama-2. Consequently, we filtered out 869

examples exceeding 1536 tokens. From the remain- 870

ing examples, we randomly selected 300 for our 871

experiments. 872

Regarding translation task, the dev-test set of 873

FLoRes-200 (Goyal et al., 2022) is employed, con- 874

sisting of 1012 parallel examples across both lan- 875

guages. We randomly use 3 examples as 3-shot 876

prompts from training set for individual run. 877

C Additional Results 878

Experiment on other Language Model Ta- 879

ble 12 presents the comparative study in Llama-1 880

13B (Touvron et al., 2023a).5 881

Generation Results Table 14 and Table 15 882

present generated texts in summarization and trans- 883

lation tasks. 884

D Environment Details 885

All experiments are implemented using an A100- 886

40GB GPU. The library versions utilized across all 887

experiments include Python 3.9.10, Pytorch 2.1.0, 888

and Transformers 4.34.0. 889

E Hyperparameter Details 890

Hyperparameter Value
Learning rate 2e-5
Epoch 3
Dropout 0.1
Tensor Type bfloat16
Batch size 128
Optimizer AdamW
Weight decay 0.01
Warmup ratio 0.04
Maximum sequence length 2048
Learning rate scheduler cosine

Table 8: Hyperparameters settings for multilingual in-
struction tuning. We follow the script from FastChat
Library.

5We have also conducted experiments with bloomz-MT
7B (Muennighoff et al., 2022). However we found that the
underlying capability of the model for Korean and Japanese is
significantly limited.
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Hyperparameter Value
Learning rate 1e-3
Epoch 3
Dropout 0.1
Tensor Type bfloat16
Batch size 128
optimizer 1.05
Weight decay AdamW
Warmup ratio 0.04
Maximum sequence length 2048
Learning rate scheduler cosine
dffn 1280
non-linearity function q SwiGLU

Table 9: Hyperparameters settings for training MuMo
framework.

Hyperparameter Value
temperature 0.1
sampling True
p for top-p sampling 0.7
repetition penalty 1.05
exponential decay length penalty (256, 1.03)
max sequence length 512
k for top-k sampling 20

Table 10: Hyperparameter settings for inference.
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Task Evaluation Prompt
Summarization A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,

detailed, and polite answers to the human’s questions.
# Document
{{sourceDocument}}
## HUMAN: Summarize the document into a {{targetLang}} sentence.
## ASSISTANT:

Translation A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
Translate the following text into {{targetLang}}.
## HUMAN: {{sourceString1}}
## ASSISTANT: {{targetString1}}
## HUMAN: {{sourceString2}}
## ASSISTANT: {{targetString2}}
## HUMAN: {{sourceString3}}
## ASSISTANT: {{targetString3}}
## HUMAN: {{sourceString}}
## ASSISTANT:

Table 11: The evaluation prompt for the main experiment (Sec. 4). We report on 0-shot results on summarization
task, and 3-shot results on translation task respectively.

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up BLEU Tokens/sec Speed Up

KO
Vanilla Decoding 14.7 31.2 29.0 1.00x 18.6 29.7 1.00x

MuMo (Ours) 12.8 30.7 45.0 1.51x 18.1 43.0 1.49x

JA
Vanilla Decoding 10.4 21.0 28.6 1.00x 20.7 32.6 1.00x

MuMo (Ours) 9.6 20.2 54.3 1.89x 20.0 53.8 1.64x

Table 12: Comparative study of the inference speed in Llama-1 13B (Touvron et al., 2023a). The column labeled
“Speed Up” represents the relative performance improvement in inference speed compared to the vanilla decoding
method.
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Texts (ko) Tokens/sec ROUGE-L
Document 환경부는 22일사회관계장관회의에서 ’1회용품함께줄이기계획’을추

진한다고 발표했다. 2022년까지 일회용품 사용량을 35% 이상 줄이는
것이정부의목표다.종이일회용컵사용금지현재카페나빵집등에서
일회용 플라스틱 컵은 사용이 금지되지만, 종이컵은 사용이 가능했다.
하지만 2021년부터 종이컵 제공 또한 전면 금지된다. 식당, 카페, 급식
소에서플라스틱빨대,젓는막대등도 2022년부터금지된다.매장에서
머그잔에음료를받아마시다포장해서가져가려는경우에도일회용컵
사용에 따른 추가 비용을 내야 한다. 환경부는 ’컵 보증금제’ 재도입을
검토중이다.소비자가커피등음료를구매할때일정금액의보증금을
내고,컵을반환하면그돈을돌려받는방식이다. ’컵보증금제’는과거
한 차례 도입됐다가 2008년 폐지됐다. 포장과 음식 배달에서 제공되는
일회용식기류무상제공도 2021년부터금지된다.정부는배달음식용
기 또한 친환경 소재 또는 다회용기로 전환을 유도하겠다고 발표했다.
장례식장에서도 2021년부터일회용식기용품사용이금지된다.비닐봉
지도금지현재비닐봉지는백화점이나슈퍼마켓등대규모점포에서는
사용이금지되어있다.편의점같은종합소매업이나빵집등에서는유
상으로구매가가능하다.하지만 2022년부터는제과점이나가게에서도
일괄금지된다.호텔등숙박업소의경우, 50실이상의시설에서는 2022
년부터샴푸,린스,칫솔등일회용위생용품무상제공이금지된다. 2024
년부터는모든숙박업소에일괄적용된다.택배포장재줄이기최근택
배와 신선식품 배송이 급격히 늘면서, 환경부는 배송용 포장재 사용량
증가해소를위한사업도추진한다고발표했다.과대포장문제가제기된
배송 상품의 경우 포장기준을 강화하고, 업계와 협의해 종이 완충재와
테이프없는상자등친환경포장재를마련할계획이다. 2020년부터이
미포장된제품을다시포장해서묶어판매하는소위이중포장행위가
금지된다.올해 13살인라니엘은 8살때부터강물에떠내려온쓰레기를
줍기시작했다다른나라는 2018년 10월,유럽연합은바다오염을막기
위해 일련의 일회용 플라스틱 제품 사용을 완전히 금하는 법안을 통과
시켰다. 유럽연합은 2021년부터 법안이 발효할 것으로 기대하고 있다.
금지 품목에는 플라스틱 식기류, 빨대, 면봉 등이 있으며 식품과 음료
에사용되는플라스틱컵등일회용플라스틱사용역시줄이도록하는
내용을 담았다. 인도의 경우 2022년부터 일회용 플라스틱 사용이 전면
금지된다.

GT 2021년부터 카페에서 음료를 포장할 경우, 일회용 컵을 무상으로 사용
하지못한다.

Vanila Decoding 환경부는 2022년까지일회용품사용량을 35%이상줄이는것을목표로
’일회용품함께줄이기계획’을추진한다고발표했다.

27.7 33.4

MuMo 환경부에 따르면 2022년까지 일회용품 사용량에서 35% 이상 줄이기
를목표로하며,현재는일회용플라스틱컵사용이금지되었으며 2021
년부터는종이컵제공도금지될예정입니다.

47.2 38.1

Table 13: Generated texts on summarization task in Korean. The sample is extracted from the validation set of
XLSum (Hasan et al., 2021). GT indicates the ground truth summary of the example.
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Texts (ja) Tokens/sec ROUGE-L
Document 犬のマックスは16時間、女の子に寄り添った 女の子のオーロ

ラちゃんは前の日から行方が分からなくなり、家族や警察など
約100人が捜索に当たっていた。クイーンズランド・サザンダウ
ンズの自宅を出て原野に迷い込んだオーロラちゃんの後を、犬の
マックスが追い、16時間近くずっと寄り添っていたとみられてい
る。高齢のマックスは、目と耳が部分的に不自由。1人と1匹が丘の
斜面で一緒にいるのを、親族が21日朝に発見した。オーロラちゃ
んの祖母、レイサ・マリー・ベネットさんは、自宅から約2キロ離
れた場所で、オーロラちゃんの叫び声を聞いたと豪ABCに話した。
「大急ぎで山を駆け上がって上までたどりつくと、犬がこちらに
向かってきて、オーロラのところへ一直線に連れて行ってくれた」
親類によると、気温が15度まで下がるなか、オーロラちゃんは犬の
マックスと岩の下に避難していたという。警察車両の横に立つ
マックス。動物の専門家によると、高齢な犬ほど人間とのつなが
りを特に重視するというクイーンズランド警察は、マックスの行
動を称え、名誉警察犬の地位を与えた。「3歳の子供なら、夜間とて
も怖かっただろうし、とても寒かったはずだ。犬が寄り添っていた
おかげで、女の子は心強かっただろうし、寒くならなかったのだろ
う。明るい結末でよかった」とクレイグ・ベリー警部は話した。ツ
イッターでは大勢が、マックスをほめちぎり、おやつをたくさんあ
げてほしいと書き込んだ。なぜずっとそばになぜマックスがずっ
とオーロラちゃんのそばを離れなかったのかについて、シドニー
大学のポール・クリービー教授 （動物行動学）は、高齢な犬ほど人
間とのつながりを大事にするので、女の子の動揺を察知したのだ
ろうと話す。「もし女の子が泣いていたなら、犬は元気付ける行動
をとった可能性が高い」とクリービー教授はBBCに話した。「女の
子のそばにずっといて、支えてあげるのが、なにより大事な行動
だったはずだ」

GT 豪クイーンズランドの警察は21日午前、原野に迷い出て行方不明
になった3歳少女を発見したと発表すると共に、家族の17歳になる
牧牛犬が女の子に約16時間寄り添っていたと明らかにした。

Vanila Decoding クイーンズランド州のサザンダウンズに住む小さな女の子オーロ
ラが、家族や警察など約100人が捜索に当たっていたが、16時間前
に行方不明になった。

29.2 27.8

MuMo オーストラリアのクイーンズランド州サバーンダウンズ地域で行
方不明になった子供を見つけ、オーストラリア警察の名誉警察犬
になった高齢の犬マックス （Max）についてのジャーナル記事とと
もに、オーストラリア警察の名誉警察犬になったという内容です。

57.3 31.9

Table 14: Generated texts on summarization task in Japanese. The sample is extracted from the validation set of
XLSum (Hasan et al., 2021). GT indicates the ground truth summary of the example.
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Texts (en→ko) Tokens/sec BLEU
Source Since moving to the Catalan-capital, Vidal had played 49 games for the club.

GT 바르셀로나로이적한후비달은클럽을위해 49경기를뛰었습니다.
Vanila Decoding 바르셀로나로이적한이후로비달은이클럽에서 49경기에출전했습니다. 27.2 22.8

MuMo 바르셀로나로이적했던비달은클럽에서총 49경기를출전했습니다. 45.7 26.9

Texts (en→ko) Tokens/sec BLEU
Source Just after 11:00, protesters blocked traffic on the northbound carriage in White-

hall.
GT 11시가 막 지난 후, 시위대는 화이트홀에 있는 북쪽으로 향하는 마차들의

교통을막았다.
Vanila Decoding 백알화이트홀에서오전 11시 15분경,시위자들이북쪽차선을차단하여교

통을방해했습니다.
27.6 5.1

MuMo 백알화이트홀에서오후 11시이후,시위대가북쪽선행차량을차단했습니
다.

44.3 4.3

Texts (en→ja) Tokens/sec BLEU
Source Since moving to the Catalan-capital, Vidal had played 49 games for the club.

GT カタルーニャの州都に移って以来、ビダルはクラブで49試合に出場し
ました。

Vanila Decoding バルセロナに移動してから、ビダルさんは約49試合でプレーしていま
す。

27.5 6.8

MuMo バルセロナに移動してから、ビダルさんは約49試合でプレーしていま
す。

52.2 6.8

Texts (en→ja) Tokens/sec BLEU
Source Just after 11:00, protesters blocked traffic on the northbound carriage in White-

hall.
GT 11時すぎちょうどに抗議者たちはホワイトホールの北行き車両の交通

を遮断しました。
Vanila Decoding 11時過ぎに、ホワイトホールの北行線上で抗議者が交通を妨害しまし

た。
28.3 26.7

MuMo 午前11時過ぎ、デモ隊はホワイトホールの北へ向かう馬車の交通を阻
止した。

50.3 25.0

Table 15: Generated texts on translation task. The samples are extracted from the dev-test set of FLoRes-200 (Goyal
et al., 2022). GT indicates the ground truth sentence of the example.
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