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Abstract

Recent advancements in large language mod-
els (LLMs) have remarkably enhanced per-
formances on a variety of tasks in multi-
ple languages. However, tokenizers in LLMs
trained primarily on English-centric corpora
often overly fragment a text into character or
Unicode-level tokens in non-Roman alphabetic
languages, leading to inefficient text generation.
We introduce a simple yet effective framework
to accelerate text generation in such languages.
Our approach involves employing a new lan-
guage model head with a vocabulary set tai-
lored to a specific target language for a pre-
trained LLM. This is followed by fine-tuning
the new head while incorporating a verifica-
tion step to ensure the model’s performance
is preserved. We show that this targeted fine-
tuning, while freezing other model parame-
ters, effectively reduces token fragmentation
for the target language. Our extensive exper-
iments demonstrate that the proposed frame-
work increases the generation speed by a fac-
tor of 1.7 while maintaining the performance
of pre-trained multilingual models on target
monolingual tasks.

1 Introduction

Modern large language models (LLMs) (OpenAl,
2023; Touvron et al., 2023a; Antropic, 2023) have
exhibited remarkable capabilities for a variety of
tasks in multiple languages (Eloundou et al., 2023;
Solaiman et al., 2023). Although these models are
predominantly trained on English-centric data, they
have shown a significant degree of multilingual
proficiency (Bandarkar et al., 2023).

However, when applied to non-alphabetic lan-
guages, these models often suffer from slower
text generation due to English-centric tokeniza-
tion (Rust et al., 2021; Ahia et al., 2023; Petrov
et al., 2023). Current tokenization techniques used
in Large Language Models (LLMs) are data-driven
and optimize segmentation based on the frequency

of characters or bytes within a specific corpus (Sen-
nrich et al., 2016; Kudo, 2018). As a result, the
tokenizers of multilingual models, which are heav-
ily influenced by English-dominant training data,
are predominantly composed of English subwords.
This leads to excessive fragmentation, where non-
English words are overly segmented into a large
number of subword units (Rust et al., 2021; Ahia
et al., 2023; Petrov et al., 2023). The autoregressive
nature of LLMs further amplifies this inefficiency,
as it sequentially requires the generation of text.

To address these challenges, previous stud-
ies (Wang et al., 2019; Rust et al., 2021; Cui
et al., 2023) have proposed replacing or augment-
ing the existing vocabulary of pre-trained multi-
lingual models with language-specific vocabular-
ies to more effectively encode monolingual text
corpora. Specifically, Rust et al. (2021) improved
mBERT (Devlin et al., 2019) by replacing its tok-
enizer with a monolingual one and incorporating an
additional 100,000 pre-training steps. On the other
hand, Cui et al. (2023) enhanced Llama (Touvron
et al., 2023a) by expanding the Chinese vocabu-
lary and further pre-training it on a 120GB text
corpus that includes Chinese texts. However, this
approach requires an extensive pre-training phase
with a substantial amount of data.

Another approach to address the challenges is
the use of small draft models (Leviathan et al.,
2023; Chen et al., 2023a). These models gener-
ate draft output tokens, which are then verified by
the original language model. However, a significant
challenge arises when trying to identify or train a
suitable small model that can handle multiple lan-
guages with reliable performance (Conneau et al.,
2020; Bandarkar et al., 2023).

In response to these challenges, our research
introduces MuMo, a framework designed to accel-
erate Multilingual language models for targeted
Monolingual text generation, particularly in non-
alphabetic languages. MuMo incorporates a new
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Figure 1: Overview of the proposed framework. Illustration of (Left) the generation with a pre-trained multilingual
model and (Right) the generation of MuMo Framework. Given the Korean prefix “Z-A1-2” (Uranus is), the model
generates the consecutive phrase “Bj % © 2 ELE{”(from the Sun) that consisted of 3 morphemes (“EjF”, “0.2”,
“XE]”) in Korean. The generation with the pre-trained multilingual model faces inefficiency due to excessive
fragmentation, requiring 12 steps to generate only 3 Korean morphemes. However, the MuMo framework empowers
the multilingual language model to generate multiple tokens in a single iteration by extracting a word from the

Korean Vocabulary, requiring 3 steps.

vocabulary of a target language into the output
layer, also known as the Language Model (LM)
head, and predicts the next token from this ex-
panded vocabulary. This approach requires training
only the extended portion of the output layer and
specific layers of the feed-forward network. Impor-
tantly, MuMo eliminates the need for extensive text
corpora or a draft model, requiring only a modest
corpus of the target language, approximately 44M
tokens in size. Empirical results across summariza-
tion, and translation tasks in Korean and Japanese
demonstrate that MuMo significantly accelerates
text generation, achieving over a 1.7-fold increase
in speed without significantly compromising output
quality.

The contributions of our research are as follows:

* We propose MuMo, a framework that accel-
erates the decoding speed of non-Roman al-
phabetic languages without compromising the
performance of the language model.

* Our study directly addresses the issue of slow
inference speed of non-English languages, a
problem that arises due to the excessive frag-
mentation in pre-trained models that are pri-
marily English-centric.

* We empirically demonstrate the efficacy of
our approach across various language models.

Lang Word Multilingual Tokens
Ko A< (“A”, “\0xec”, “\Oxb8”, “\0x9a”)
Ja FEor (R, “\0xe5”, “\0xa3”, “\0xb2

Table 1: Examples of the tokenization results. These
examples are preprocessed by the Llama tokenizer (Tou-
vron et al., 2023b). The target monolingual word are
excessively segmented into byte units, when a suitable
match is not found in the multilingual vocabulary.

2 Related Work

Tokenization Disparity Subword tokenization,
a common approach in LMs, is typically data-
driven. Most of pre-trained tokenizers, which are
often trained on predominantly English corpora,
frequently result in excessive fragmentation of non-
English scripts (Rust et al., 2021; Zhang et al.,
2022). Ahia et al. (2023); Petrov et al. (2023) have
found significant tokenization disparities across lan-
guages in popular LLMs (Xue et al., 2021, 2022;
Scao et al., 2022; OpenAl, 2023). Our work endeav-
ors to address the slowdown in inference that arises
due to tokenization disparity in non-alphabetic lan-
guages.

Modifying Pre-trained Vocabulary Previous
works have explored the adaptation of pre-trained
vocabularies or the addition of new tokens (Artetxe
etal.,2020; Rust et al., 2021; Liu et al., 2023), these
methods often necessitate extensive pre-training to
integrate the new tokens effectively (Wang et al.,
2019; Chau et al., 2020; Cui et al., 2023; Liu



et al., 2023). In contrast, our MuMo framework
sidesteps the need for fine-tuning the parameters
of pre-trained models to preserve the original capa-
bilities of the pre-trained language model. Efforts
to select items of pre-trained embedding matrix
have been made (Abdaoui et al., 2020; Domhan
et al., 2022; Ushio et al., 2023), but these have not
yielded significant speed up where the size of the
embedding layer is relatively small (Bogoychev
et al., 2023).

Accelerating LLM Inference The quest to ac-
celerate inference in auto-regressive large language
models (LLMs) has led to a variety of approaches.
There has been a proliferation of systems specif-
ically engineered for LLLM inference (Yu et al.,
2022; Sheng et al., 2023; Xiao et al., 2023). Our
proposed methodology can be harmonically inte-
grated with the aforementioned techniques. Specu-
lative decoding (Leviathan et al., 2023; Chen et al.,
2023a) have also been explored to increase infer-
ence velocity. However, the approach often relies
on the assumption that a small model can maintain
high fidelity when generating a series of multiple
tokens. Moreover, acquiring a small yet competi-
tive model may be tricky, especially in a multilin-
gual setup (Conneau et al., 2020; Bandarkar et al.,
2023). Our work distinguishes itself by specifically
solving the inference inefficiency that arises from
excessive fragmentation in the non-alphabetic con-
text.

Parameter Efficient Cross-lingual Transfer
Learning The curse of multilinguality, which
refers a trade-off between the language cover-
age and model capacity (Conneau et al., 2020),
is a significant issue even in massively multi-
lingual models, such as mBERT, XLM-R, and
mT5 (Devlin et al., 2019; Conneau et al., 2020;
Xue et al., 2021; Ansell et al., 2021). The problem
has been mitigated through modular parameter-
efficient adaptations of the multilingual models
through lightweight adapters (Houlsby et al., 2019):
additional trainable parameters inserted into the
transformer layers of model (Pfeiffer et al., 2020;
Ustiin et al., 2020; Vidoni et al., 2020; Parovi¢ et al.,
2022) for a target language. These techniques bear
a resemblance to ours, in that they involve train-
ing partial parameters of a language model with
a small amount of target language corpus. How-
ever, our goal is fundamentally different: we aim to
accelerate the inference, whereas previous studies

focus on improving the representational capability
in target languages for multilingual models.

3 Proposed Framework

We propose a framework named MuMo to acceler-
ate the inference speed of a pre-trained multilingual
LM for a non-alphabetic monolingual language via
a given small monolingual dataset. In the section,
we introduce 1) the model architecture, 2) the fine-
tuning process on a small monolingual dataset, and
3) the inference process of the proposed frame-
work.

3.1 Model Architecture

We illustrate the model architecture of MuMo in
Fig. 2.

Pre-trained Multilingual Model We consider a
setting in which a pre-trained multilingual model
Sfmuti 1s given. The model consists of 1) Trans-
former layers that consist of attention and feed-
forward network, and 2) an output embedding
layer called language model (LM) head. We de-
note Vpui as the multilingual vocabulary set
of the model objective, as LyrLg(Pmuii; X) =

Z?:l log Pmulti (wt ‘X<t)

Target Monolingual LM Head The primary
concept involves modifying pre-trained represen-
tations to predict a singular token unit within a
target monolingual vocabulary Vpono. We refer to
the Target Monolingual LM head as fiono, Which is
composed of two main components: a feed-forward
network (FFN) and an output linear layer, repre-
sented as gmono : R%mono — R[Vimonol

FEN(h) = q(W{ h)Wy € Rmere (1)

where Wy € RémuiXdin and Wy € R%m>Xdmono gre
the weight matrices, g is non-linearity function, and
dmono represents the dimension of the target lan-
guage representaiton. We set dgg, as dunri/4, and
the non-linearity function ¢ as SwiGLU (Shazeer,
2020). The output linear layer gmono then generates
a word:

fmono(h) - ngno(FFN(h)) = R'vmonol‘ (2)

MuMo LM Head Note that the output space
of fmono 18 restricted to tokens in the Vpono. In-
spired by Lan et al. (2023), we simply extend the
fmono by concatenating the output linear layer of
pre-trained multilingual model. This is particularly
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Figure 2: Illustration of a single-step prediction with MuMo. Initially, the MuMo LM Head f,umo selects the top
6 candidates. Then, the pre-trained multilingual model verifies the feasibility of the candidates. Among the modules
in MuMo, the Target Monolingual LM head (the Korean LM Head in the figure) is only trained.

useful when there is no suitable token in Vyono tO
predict, such as special symbols or alphabet-based
tokens for non-alphabet languages.

Formally, given context representation h;_1, the
output of the MuMo LM head is computed as:

fmumo(ht—l) =
[fmulti(ht—1)§ fmono(ht—l)] S R‘Vmum‘ﬂvmoml (3)

where the symbol ; indicates the concatenation of
two vectors, and the fiume indicates the output of
the MuMo LM head. Thus, the MuMo LM head
is composed of a combination of the pre-trained
language model head and Target Monolingual LM
head.

3.2 Fine-tuning

In the proposed framework, we only fine-tune
the target monolingual LM head fiyono leverag-
ing a small given target monolingual dataset. Note
that the parameters of the pre-trained multilingual
model remain frozen during the process. The model
is fine-tuned by maximizing the log-likelihood of a
sequence:

max ﬁMLE(pmumoa X) = ZtT=1 log Prmumo (xt|X<t) s
4)
where Pmumo (7t|X<¢) = Softmax( fmumo(ht—1))-

3.3 Inference

Despite the availability of direct generation based
on the pmumo, the newly initialized Target Mono-
lingual LM head, which is trained on limited data,
may be constrained by generalization capabilities
beyond the training dataset. The key concept is to
leverage the probabilistic knowledge acquired by
the pre-trained model ppyyi, which has been exten-
sively trained on large text corpora.

3.3.1 Step 1: Top-k Selection

Initially, we select top k candidates based on the
probability pmumo(x¢|x<t). We set k as 10 for all
experiments. Given the fact that we do not modify
the input embedding of the pre-trained model, we
are unable to feed the predicted word if a word
does not belong in Vpyyi during the subsequent
iteration. Instead, we input the predicted word as
the tokenization units of the pre-trained vocabulary.
For example, let’s consider the Korean word “4~
4~”, which corresponds to a sequence of two tokens
(“4=”, “A”) in Viu. If the Korean word “4=4" is
selected among the Top-k candidates, we employ
these two multilingual tokens.

3.3.2 Step 2: Verification

Then, the feasibility of these potential completions
is measured using the log-joint probability distribu-
tion over pmyli- To account for shorter sequences



naturally having higher scores (Jean et al., 2015;
Murray and Chiang, 2018), we normalize each can-
didate’s score by its token length.

We measure the feasiblity for a candidate se-
quence as follows:

li

) 1 ) )
o(c’) = 5 > _log pmuti (€ lcbe i x<r), )
k=1

where ¢’ symbolizes a predicted token within the
top-k candidates, pyuy represents the probabil-
ity as determined by the pre-trained multilingual
model, and [* corresponds to the sequence length
of the candidate c’.

From the k candidates, the ultimate prediction
can be derived from both deterministic and stochas-
tic manners, depending on decoding strategies.

4 Experiments

4.1 Setup

Languages We focus on two non-roman alpha-
betical languages: Korean and Japanese. These lan-
guages constitute over 0.05% of the pre-training
corpus used in Llama-2 (Touvron et al., 2023b).
Furthermore, they are of particular interest due to
their tokenization disparity when compared to En-
glish scripts (Ahia et al., 2023; Petrov et al., 2023).

Model We utilize the Llama-2 13B model (Tou-
vron et al., 2023b) for all experiments. We observed
some language alignment discrepancies between
instructions and responses when using the Llama-2
13B chat model." To address the issue, we con-
duct multilingual instruction tuning (Muennighoff
et al., 2022) for English, Korean, and Japanese
languages using the ShareGPT and Alpaca (Chen
et al., 2023c). This process improve the model’s
fluency in each language (Muennighoff et al., 2022;
Chen et al., 2023b). We also report our results test
on Llama-1 13B (Touvron et al., 2023a) in Ap-
pendix.

Implementation of MuMo To construct targeted
monolingual vocabularies in MuMo Framework,
we levergage the tokenizers from the off-the-shelf
model, as shown in Table 2. We selected mono-
lingual tokens by filtering vocabulary items based
on the Unicode range of each monolingual script.
Additionally, we excluded items from the selec-
tion if they were already present in the pre-trained
vocabulary.

"meta-1lama/Llama-2-13b-chat

Language Language Family Pre-trained Tokenizer
EleutherAl/polyglot-ko-12.8b
rinna/japanese-gpt-neox

Koreanic
Japonic

Korean
Japanese

Table 2: Selected languages and tokenizers. We utilize
the tokenizers to construct Vyono in each language.

Regarding the initialization of gmeno, We utilize
the LM head of the pre-trained multilingual model.
For example, when the Korean word "Ej %" is to-
kenized into subword units (“\Oxed”, ..., “\0x91”)
using the pre-trained vocabulary, we initialize the
Korean LM head of "Ej2F" by taking the mean
of the corresponding subword embeddings of the
multilingual LM head. This process ensures that
the initialized embeddings of Target Monolingual
head represent the original word in the multilingual
context.

Fine-tuning We only train the Target Monolin-
gual LM head gpono With the translated ShareGPT
and Alpaca datasets (Chen et al., 2023c) in Korean,
and Japanese. The training is done with 1500 steps
with one batch consisting of 128 examples. We use
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer with a learning rate of 0.001, weight decay
of 0.01, and 150 steps of warm-up.

Evaluation We choose two representative gen-
eration tasks: summarization and translation. For
summarization, we use 500 examples from XL.-
Sum (Hasan et al., 2021), and for translation, we
use 500 examples from the FLoRes-200 (Goyal
et al., 2022) dataset. We translate English sentences
to each target language sentence.

For each task, we report 0-shot results for sum-
marization, and 3-shot results for translation. We
set the maximum sequence length as 512. We uti-
lize flash-attention 2 (Dao, 2023) and bfloatl6
types for text generation.

Metrics In the summarization task, we gauge the
reliability of the generated content by calculating
the ROUGE-2 and ROUGE-L (Lin, 2004) scores,
averaging the results across 5 different generated
summaries. Likewise, for the translation task, we
measure the quality of the translations by comput-
ing the BLEU (Papineni et al., 2002) score, again
averaging over 5 translation results.> We report
Tokens/sec to measure the inference speed of the
models.

*We utilize SacreBLEU scores with the signature BLEU

Inrefs:1 Icase:mixed leff:no Itok:ko,ja-mecablsmooth:exp |ver-
sion:2.2.0.


https://huggingface.co/meta-llama/Llama-2-13b-chat
https://huggingface.co/EleutherAI/polyglot-ko-12.8b
https://huggingface.co/rinna/japanese-gpt-neox-3.6b

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up | BLEU Tokens/sec Speed Up
Vanilla Decoding 20.7 36.1 28.9 1.00x 212 29.8 1.00x
Spec. (w/o Rejection) 18.7 33.5 35.2 1.21x 18.6 36.5 1.22x
Ko Spec. 20.3 352 27.5 0.95x 21.5 29.2 0.98x
Shortlisting 20.5 36.3 30.6 1.06x 19.5 32.7 1.03x
MuMo (Ours) 20.3 359 55.3 1.92x 21.7 50.9 1.70x
Vanilla Decoding 11.3 26.6 29.3 1.00x 26.3 334 1.00x
Spec. (w/o Rejection) 10.8 24.2 354 1.21x 22.7 399 1.21x
JA Spec. 11.6 26.5 28.5 0.97x 26.0 29.7 1.03x
Shortlisting 11.4 26.3 30.3 1.03x 252 34.9 1.04x
MuMo (Ours) 11.6 26.3 59.2 2.02x 243 58.3 1.75x

Table 3: Comparative study of Language Model (LM) inference speed. The column labeled “Speed Up”
represents the relative performance improvement in inference speed compared to the vanilla decoding method. The
highest performance in each category is highlighted in Boldface, and the second highest score is underlined. All
models use sampling-based decoding. MuMo outperforms the compared baselines in the inference speed. Detailed
information about the generation hyperparameters, including those used for sampling-based decoding, can be found

in Appendix E.

4.2 Baselines

We consider the following several baselines for the
comparison with the proposed method.

Vanilla Decoding The autoregressive generation
is to sequentially sample the subsequent word
based on the probability distribution over the pre-
trained vocabulary. This approach serves as the
standard against which improvements are mea-
sured. Accounting for the nature of task, all the
baselines and our framework utilizes sampling-
based decoding strategy with temperature as 0.1, k
as 10 for top-k sampling (Fan et al., 2018) and p as
0.7 for nucleus sampling (Holtzman et al., 2020).

Speculative Decoding Speculative decoding ap-
proach (Chen et al., 2023a; Leviathan et al., 2023)
employs a preliminary "draft" model to rapidly
generate a set of token candidates at each decod-
ing step. Subsequently, these candidates undergo a
validation process by the original language model
to ascertain their likelihood as plausible continua-
tions of the text. We implement two variants of this
method: one with the capability to reject unsuitable
candidates (Spec.) and another without its rejection
module (Spec. w/o Rejection). For the draft model,
we utilize Llama-2 7B (Touvron et al., 2023b). Fol-
lowing the implementation of Chen et al. (2023a),
we generate 5 draft tokens at each iteration.

Lexical Shortlisting Lexical Shortlisting (Short-
listing) (Abdaoui et al., 2020; Ushio et al., 2023),
or vocabulary selection, is the approach that opti-
mizes the decoding process by allowing it to gen-
erate a word within a set of tokens during the in-
ference stage (Ushio et al., 2023). We implement

to filter out tokens that are not present within the
corresponding target language subset of the mC4
corpus (Xue et al., 2021), as Ushio et al. (2023).

4.3 Results

Table 3 shows the generation results in both summa-
rization and translation tasks. For the summariza-
tion task in Korean, MuMo outperforms all base-
lines in terms of speed, achieving a 1.92x speed-
up over the Vanilla Decoding while maintaining
competitive ROUGE scores. In translation, MuMo
again demonstrates superior efficiency with a 1.70x
speed-up and even shows an improvement in BLEU
score compared to Vanilla Decoding.

In the case of Japanese, the results are similar,
with MuMo achieving a 2.02x speed-up in summa-
rization and a 1.75x speed-up in translation. The
ROUGE and BLEU scores for MuMo are on par
with or slightly below Vanilla Decoding, indicat-
ing that the increase in speed does not significantly
compromise the quality of the output.

Shortlisting shows only marginal gains in speed
across both languages and every tasks, while pre-
serving the generation capability. This is likely be-
cause the relative computational cost of processing
the embedding matrix is reduced in larger models,
making vocabulary reduction less impactful (Be-
rard et al., 2021; Ushio et al., 2023). On the other
hand, the Spec. heavily relies on the capacity of
the draft model, as shown as the comparison with
(Spec. w/o Rejection). If the draft model lacks of
sufficient multilingual capacity, it may not generate
high-quality candidates, leading to a lower accep-
tance rate by the original model and thus reduced
efficiency.



<

ization (0-shot) Translation (3-shot)

ROUGE-2 ROUGE-L

Method Update Param. | Dataset size (Tokens) Morphemes/sec Speed Up | BLEU Morphemes/sec Speed Up
Vanilla Fine-tuning 13.0B 44M 21.0 36.0 9.8 1.00x 214 10.1 1.00x
Vocabulary Expansion 13.1B 44M 13.7 23.1 17.1 1.92x 123 20.2 2.00x
Vocabulary Expansion® 13.1B 60B + 44M 20.3 37.3 20.5 2.12x 20.3 23.1 2.29x
MuMo (Ours) 70M 44M 20.5 36.3 15.3 1.73x 21.7 17.2 1.71x

Table 4: Comparsion with the fine-tuning strategies. The column labeled “Speed Up” represents the relative
performance improvement in inference speed compared to Vanilla Fine-tuning. Vocabulary Expansiont was pre-
trained on over 60B tokens, comprised of both Korean and English text corpora. Other methods are only trained
with the instruction dataset (44M tokens) (Chen et al., 2023c), ShareGPT and Alpaca translated in Korean. The
Boldface signifies the superior performances, and the second highest score is underlined.

The superior performance of MuMo in terms of
inference speed can be primarily attributed to its ca-
pability to predict larger linguistic units compared
to those in the pre-trained vocabulary. We found
that the target language tokens in Viono are typi-
cally tokenized into 3-4 separate tokens in Vi,
suggesting that the decoding step could potentially
be reduced by 3-4 times. It is hypothesized that
the inference speed is significantly influenced by
the disparity between the pre-trained multilingual
vocabulary and the target language.

5 Further Analysis

5.1 Comparative Analysis of Fine-Tuning
Strategies

In the section, we provide a comparative analysis
of three distinct fine-tuning strategies for multilin-
gual models. This analysis aims to highlight the
advantages and disadvantages of each strategy, par-
ticularly in terms of dataset requirements. and the
number of parameters to train.

5.1.1 Setup

The two strategies compared in the analysis are:

1. Vanilla Fine-tuning: This strategy, which
serves as a baseline, involves fine-tuning a stan-
dard multilingual model on a target monolingual
instruction dataset (40M tokens) without any modi-
fications to the pre-trained vocabulary.

2. Vocabulary Expansion: Inspired by prior
work (Chau et al., 2020; Cui et al., 2023), this
strategy involves expanding the vocabulary of the
pre-trained multilingual model and fine-tuning on
the instruction dataset. This method, unlike MuMo,
expands not only the LM head but also the token
embedding in the input layer. Two implementations
of this strategy are considered. The first involves
pre-training on large-scale text corpora (60B to-
kens)? before fine-tuning on the instruction dataset.

3We use the off-the-shelf checkpoint from beomi/llama-2-
koen-13b

This strategy is marked with a dagger in Table 4.
The second only undergoes the fine-tuning phase
on the instruction dataset.

To account for the variability of token unit be-
tween the different strategies, we report the infer-
ence speed with the morphemes per second (Mor-
phemes/sec), providing a standardized measure-
ment.* We only compare the baselines in Korean,
because of the availability of model.

5.1.2 Discussion

Table 4 reveals a consistent trend across both sum-
marization and translation tasks. The vocabulary
expansion strategies, which expand the dimension
of both the token embeddings and LM head, ex-
hibit significant increases in inference speed, but
this is accompanied by a substantial decrease in the
quality of the generated output when not trained on
large-scale text corpora. This indicates that merely
fine-tuning with an expanded vocabulary on a lim-
ited downstream dataset may not suffice to main-
tain high-quality text generation, as suggested by
(Conneau et al., 2020). Furthermore, while vocabu-
lary expansion with pre-training achieves notable
speed improvements, it does not exhibit significant
enhancements in generation quality.

In contrast, our proposed method exhibits a mod-
est increase in speed while also slightly improving
BLEU scores relative to vanilla fine-tuning. The
principal advantage of our method lies in its ca-
pacity to attain these results without necessitating
vast monolingual text corpora. This approach not
only reduces the number of parameters that need to
be fine-tuned, making it more parameter-efficient
but also lessens the dependency on large-scale data
for pre-training, making it a more data-efficient
solution.

4python-mecab-ko


https://huggingface.co/beomi/llama-2-koen-13b
https://huggingface.co/beomi/llama-2-koen-13b
https://pypi.org/project/python-mecab-ko/

Summarization (0-shot) | Translation (3-shot)
LM HEAD INITIALIZATION | ROUGE-2 | ROUGE-L BLEU
MONO-INIT 20.7 36.2 21.5
RANDOM-INIT 19.2 35.5 17.2
MULTI-INIT 20.3 36.3 21.7

Table 5: Comparative analysis for the initialization strategy. MONO-INIT signifies to leverage the pre-existing
embedding representation. We use the language model head of the monolingual model from EleutherAl/polyglot-
ko-12.8b. In the case of RANDOM-INIT, we randomly initialize with Gaussian distribution. MULTI-INIT indicates
to leverage multilingual model representation by averaging its subword embedding as the main experiment. The

Boldface signifies the superior performances.

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 | ROUGE-L | Tokens/sec BLEU Tokens/sec
Ko MuMo 20.3 35.9 55.3 21.7 50.9
w/o Verification | 11.0(-9.3) | 26.4(-9.5) 60.8(+5.5) | 16.3(-5.4) | 62.3(+11.4)
I MuMo 11.6 26.3 59.2 24.3 58.3
w/o Verification | 6.7(-4.9) 20.4(-5.9) 69.1(+9.9) | 10.8(-13.5) | 73.6(+15.3)

Table 6: Ablation Study. While the exclusion of the verification accelerates approximately 1.2 times in inference
speed, it significantly compromises the quality of the generation.

5.2 Initialization of Target Monolingual LM
Head

We investigate the impact of three different initial-
ization strategies on the target monolingual LM
head gmono in the Target Monolingual LM head.
The first strategy involves leveraging embeddings
that correspond to the pre-trained representation
of a targeted monolingual LM head, termed as
MONO-INIT. The second strategy is initializing
the parameters with random value using Gaussian
distribution (RANDOM-INIT). Lastly, we utilize
the embeddings from the pre-trained multilingual
LM head (MULTI-INIT), as the main experiment.
This is achieved by averaging the output embed-
dings of the multilingual model.

Table 5 shows that MULTI-INIT achieves a
ROUGE-L score of 36.3 and a BLEU score of 21.7,
which are close to the 36.2 ROUGE-L and 20.9
BLEU scores of MONO-INIT. On the other hand,
RANDOM-INIT shows a decrease in performance,
with a ROUGE-L score of 35.5 and a BLEU score
of 17.2.

The result demonstrates that the MULTI-INIT
approach is almost equally effective with MONO-
INIT. This suggests that our framework can be uti-
lized even without a pre-existing target monolin-
gual model, making it applicable to low-resource
languages.

5.3 Effectiveness of Verification Step

We design an ablation study to investigate the role
of the verification step in the inference process (
Sec. 3.3.2). To assess the impact of the verification
step, we generated sequences without employing
the verification step.

From the results in Table 6, conducted in both
Korean and Japanese, we notice that the overall
generation speed is approximately 1.2 times faster
when the verification is excluded. However, it is
crucial to highlight that the exclusion of the veri-
fication step in the inference phase leads to a sig-
nificant reduction in the generation quality. This is
evident in the decrease in ROUGE-2, ROUGE-L,
and BLEU scores for both languages when the ver-
ification module is not used, as shown in the table.
This suggests that while the verification step may
slightly slow down the generation process, it plays
a vital role in preserving the model’s generation
capability.

6 Conclusion

Our study has successfully tackled the challenges
in generating text for non-alphabet languages, par-
ticularly those associated with excessive fragmen-
tation issues. The approach not only speeds up text
generation but also paves the way for more effi-
cient multilingual language applications. Our fu-
ture work will broaden our experimental scope to
languages that were not sufficiently represented in
the pre-trained multilingual language model.



Limitations

Our proposed framework has not been evaluated
with languages that exhibit excessive fragmentation
issues, such as Tamil, Hebrew, and Arabic (Ahia
et al., 2023; Petrov et al., 2023). These languages
were not included in the pre-training corpus of
Llama-2 (Touvron et al., 2023b) Furthermore, there
is a lack of available instruction data or off-the-
shelf tokenizers for these languages. The language
models evaluated in the study are restricted to a
maximum size of 13B. Larger models, such as
Llama-2 30B or 70B, were not implemented due to
constraints on available computational resources.
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Appendix
A Details of LM

Lang. Percent Lang. Percent
en 89.70% | uk 0.07%
unknown 8.38% | ko 0.06%
de 0.17% | ca 0.04%
fr 0.16% | sr 0.04%
sV 0.15% | 1d 0.03%
zh 0.13% | cs 0.03%
es 0.13% | fi 0.03%
ru 0.13% | hu 0.03%
nl 0.12% | no 0.03%
it 0.11% | ro 0.03%
ja 0.10% | bg 0.02%
pl 0.09% | da 0.02%
pt 0.09% | sl 0.01%
vi 0.08% | hr 0.01%

Table 7: Language distribution in the pre-training
corpora of Llama-2. The statistic was reported in Tou-
vron et al. (2023b). Most data is in the European lan-
guage.

Llama-2 (Touvron et al., 2023b) has been trained
on English-centric corpora with some in European
languages, as shown as Table 7. The 13B version
of the model is employed in our experiments.

B Dataset Details

Training Data Our study employed a mul-
tilingual instruction dataset from Chen et al.
(2023c), encompassing Korean and Japanese,
for multilingual instruction tuning. Specifically,
we utilized ShareGPT and Alpaca-GPT4 for
each respective language. For English, we use
a dataset from https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered.
The dataset comprises 56k, 55k, and 168k
examples for Korean, Japanese and English
respectively.

To train MuMo LM head, we use ShareGPT and
Alpaca-GPT4 (Chen et al., 2023c) in Korean and
Japanese for each language.

Evaluation Data In summarization task, we use
validation and test split of XLSum (Hasan et al.,
2021), which consist of 1100 examples. We found
that more than half of the samples within the valida-
tion and test split surpassed the maximum sequence

length of Llama-2. Consequently, we filtered out
examples exceeding 1536 tokens. From the remain-
ing examples, we randomly selected 300 for our
experiments.

Regarding translation task, the dev-test set of
FLoRes-200 (Goyal et al., 2022) is employed, con-
sisting of 1012 parallel examples across both lan-
guages. We randomly use 3 examples as 3-shot
prompts from training set for individual run.

C Additional Results

Experiment on other Language Model Ta-
ble 12 presents the comparative study in Llama-1
13B (Touvron et al., 2023a).>

Generation Results Table 14 and Table 15
present generated texts in summarization and trans-
lation tasks.

D Environment Details

All experiments are implemented using an A100-
40GB GPU. The library versions utilized across all
experiments include Python 3.9.10, Pytorch 2.1.0,
and Transformers 4.34.0.

E Hpyperparameter Details

Hyperparameter Value
Learning rate 2e-5
Epoch 3
Dropout 0.1
Tensor Type bfloat16
Batch size 128
Optimizer AdamW
Weight decay 0.01
Warmup ratio 0.04
Maximum sequence length 2048
Learning rate scheduler cosine

Table 8: Hyperparameters settings for multilingual in-
struction tuning. We follow the script from FastChat
Library.

SWe have also conducted experiments with bloomz-MT
7B (Muennighoff et al., 2022). However we found that the
underlying capability of the model for Korean and Japanese is
significantly limited.

12



Hyperparameter Value
Learning rate le-3
Epoch 3
Dropout 0.1
Tensor Type bfloat16
Batch size 128
optimizer 1.05
Weight decay AdamW
Warmup ratio 0.04
Maximum sequence length 2048
Learning rate scheduler cosine
difn 1280
non-linearity function q SwiGLU

Table 9: Hyperparameters settings for training MuMo

framework.

Hyperparameter Value
temperature 0.1
sampling True

p for top-p sampling 0.7
repetition penalty 1.05
exponential decay length penalty | (256, 1.03)
max sequence length 512

k for top-k sampling 20

Table 10: Hyperparameter settings for inference.
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Task Evaluation Prompt

Summarization A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s questions.
# Document
{{sourceDocument} }
## HUMAN: Summarize the document into a { {targetLang}} sentence.
## ASSISTANT:

Translation A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful,

detailed, and polite answers to the human’s questions.
Translate the following text into { {targetLang}}.
## HUMAN: {{sourceStringl}}
## ASSISTANT: {{targetStringl}}
## HUMAN: {{sourceString2}}
## ASSISTANT: {{targetString2} }
## HUMAN: {{sourceString3}}
## ASSISTANT: {{targetString3}}
## HUMAN: {{sourceString}}
## ASSISTANT:

Table 11: The evaluation prompt for the main experiment (Sec. 4). We report on 0-shot results on summarization
task, and 3-shot results on translation task respectively.

Summarization (0-shot) Translation (3-shot)
Lang Method ROUGE-2 ROUGE-L Tokens/sec Speed Up | BLEU Tokens/sec Speed Up
Ko Vanilla Decoding 14.7 31.2 29.0 1.00x 18.6 29.7 1.00x
MuMo (Ours) 12.8 30.7 45.0 1.51x 18.1 43.0 1.49x
Ia Vanilla Decoding 10.4 21.0 28.6 1.00x 20.7 32.6 1.00x
MuMo (Ours) 9.6 20.2 54.3 1.89x 20.0 53.8 1.64x

Table 12: Comparative study of the inference speed in Llama-1 13B (Touvron et al., 2023a). The column labeled
“Speed Up” represents the relative performance improvement in inference speed compared to the vanilla decoding
method.
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Table 13: Generated texts on summarization task in Korean. The sample is extracted from the validation set of
XLSum (Hasan et al., 2021). GT indicates the ground truth summary of the example.

15



Texts (ja) Tokens/sec ROUGE-L

Document RKD=Z vy 7 AFI6FE D FICHF VIR T2 LodFO+—n
THCAFRIOHPSITHEI SR G ) ZECESRE L L
100 A EZRIC Y5 TV VA=V XS R - HH T
DA HEZTHTUFEFICHEWAA R A —B I 5 ADEEZ KD
<y 7 ZAHEW 16T 5 EF N R TV A5 N TV
% o=y 7 2% HEEEMICAER LA L o
PAIC—IcWwa0% FEMMIAEICERLE: A—m5bs
ADOHEE LAY - =) — - 2y h3IAIT BELSH2S o
NEGATT F—u b e AWM UEZE: ESPABCICEEL 1
FREFTIWWZEIT E T EETEEY DL K2 HHIC
MPr->TET F—mIDETAN—EHBICHN T T-> TN,
FFIC LB [WEPISEEZTTIMEL) F—m 350 AITRD
Ty 7 AEHEHOTICHEEL TWkwy CEREHOMIC T
Ty A BOEMREICK S E BT RKIEEAMED DL
NRIFICERTZ2EW) 74 —2 XS5 RESE|T vy 7 ADIT
=iz EEEEROMNZYS 27 T3mo TS weT
YHMiro/272259 L ¥ TRFELS TR REFEDIR- W=
BPIPT TOTILLHEP-7=1229 L LS s0R3
9 HAEWHKRTE o2 87 L A7 =) =ZEOLELL = oY
499 =TI KEY w9 7 2ARIFIODHEEY BLH2%-LK3IAH
FTUELWEEZAAR LTS 2RI LTy 7 AT 5
EAXA—BILELADZIXZTHN T SOOI O>VWT ¥ R=—
FDOR—IL - 7 ) = =FIR@EPATEI) I SR E AN
Bl ZREBICTLEDT LOTOHEIERSRML =072
29 EET TH LLoOFHmnWTWn S RITTCAM T 247
Z X SRV & 7 ) —E —FURIIBBCICEE L TR
TFOZFIZICT > VT X2 THIFE0H I kY KERITH
o739
GT FI74—2A5 > ROBEZEIT21HF ) BEFICE W E TIT AAH
IS S I3 R RA L ERET B EHIC FHED1TRRICE S
BFR DD FICHINOREEZE D > T Wiz s BHS iz L= -
Vanila Decoding 7 4 —> X5 > RN ¥y Z2FE/ NS Gl +—no 29.2 27.8
Ty FHECLER L LHV100 A HHEIC Y7 5 Ty =t t6RFR G
ICATHANHIC R 5 72
MuMo T—ARSNVTDOI A =25 2 RN =2 T 2 THIR AT 573 31.9
FRIFICE 5 =T HZ RO =2 b 5 ) 7TEEOLELERAK
ICK > 2RO RTY 7 AMax) ICOWTHY vy —FLitH e &
HIZ A=A T TEROGELERZRICE STREVWOIHNETYT -

Table 14: Generated texts on summarization task in Japanese. The sample is extracted from the validation set of
XLSum (Hasan et al., 2021). GT indicates the ground truth summary of the example.
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Texts (en—ko) Tokens/sec BLEU
Source Since moving to the Catalan-capital, Vidal had played 49 games for the club.
GT AR U o[ 451 T A FAS a1 497712 FB T
Vanila Decoding HI2AZ U= o] A5t o] 2 H[HF2 o] ZHoA 4973 7[of] EH ST 272 22.8
MuMo  ml=AE e ol Aad Hge FaolA % 93712 ZAFE . 5T 269
Texts (en—ko) Tokens/sec BLEU
Source Just after 11:00, protesters blocked traffic on the northbound carriage in White-
hall.
GT TTAT7T O A %7, ASTE SolESe] I BZ0 % Jels aiAs9|
WES Topet
Vanila Decoding 9] SF SFO[EZof[A] @ 7 TTAT 1587, A[9IAFE 0] B& ZHA-2 2Fdote] a 27.6 5.1
5.2 gt
MuMo W SPO|=E oA 95 114 ol ASF 5% A AFE AFqET 43 73
t}.
Texts (en—ja) Tokens/sec BLEU
Source Since moving to the Catalan-capital, Vidal had played 49 games for the club.
GT ATV —=5 ORI TLIK v 7L1d 7 5 7T GIc s L
FL
Vanila Decoding /YL B FICHEIL ThS VL IARTAGAEG T L —L T X 27.5 6.8
‘a- °
MuMo S eaFICHEIL TS ETLIARTGRETTL LT X 522 6.8
—a— o
Texts (en—ja) Tokens/sec BLEU
Source Just after 11:00, protesters blocked traffic on the northbound carriage in White-
hall.
GT T EDS x5 CIChERE 251387 A A — L o JU T & Hiljo 2Kl
ZUMILEL
Vanila Decoding llﬁ\ﬁ§ll R7 AR A= LU ETChigcEaCwmzhiEL L 283 26.7
MuMo 50.3 25.0

?Fll/ullﬁ WE TERIIART A bR — Lo ) o AdE z
7~

Table 15: Generated texts on translation task. The samples are extracted from the dev-test set of FLoRes-200 (Goyal
et al., 2022). GT indicates the ground truth sentence of the example.
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