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ABSTRACT

Direct Preference Optimization is commonly deployed to align Large Language
Models (LLMs) with human preferences, while such a technique also suffers from
noisily annotated human preference. Existing robust approaches often require the
knowledge of transition between clean and noisy human preferences, or leverage
additional architecture/models to perform noisy human preference correction. In
this work, we investigate when f -divergence is immune to the imperfect human
preference annotations, by maximizing the f -divergence between noisy preferred
and unpreferred data distributions. Theoretically, we show that when the noise ra-
tio is known, the Total Variation formulation can serve as a surrogate for the clean
dataset. In contrast, the Jensen–Shannon formulation is invariant to noise, yielding
identical results under both noisy and clean preferences, even without knowledge
of the noise rate. Empirically, the variational form of the Jensen–Shannon diver-
gence enhances the model’s ability to generate preferred responses under noisy
conditions, while simultaneously improving the factual accuracy of its outputs.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) has been established as a simple yet
effective alternative to Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022) for aligning Large Language Models (LLMs) (Achiam et al., 2023) with human preferences
(Christiano et al., 2017). In contrast to RLHF, which relies on training a reward model with re-
inforcement learning methods including Proximal Policy Optimization (PPO) (Schulman et al.,
2017), DPO learns a policy directly from human preference data, instead of employing explicit re-
ward modeling. While DPO efficiently captures preference information from pairwise data via a
binary cross-entropy loss (Shannon, 1948), noisy annotations can cause the policy to learn mislead-
ing or suboptimal patterns.

To mitigate the influence of noisy preference data, the authors of DPO account for known label-
flipped probabilities and leverage a binary cross-entropy objective to estimate a conservative target
distribution, thereby stabilizing model updates under uncertainty (Mitchell, 2023). However, overly
conservative gradient updates constrain the model close to the reference policy, limiting its learning
capability, and resulting in substantial performance gaps compared to the original DPO. To over-
come these limitations, robust DPO (Chowdhury et al., 2024) was proposed in place of conservative
DPO, providing an unbiased estimate of DPO. By introducing a multiplicative factor to counteract
the effects of noisy preferences and employing dynamic gradient updates, Robust DPO enhances
learning stability and model performance. Although it partially reduces the suboptimality gap rel-
ative to the optimal policy, it undeniably remains highly dependent on knowledge of the transition
between clean and noisy human preferences.

Among approaches that do not require knowledge of the noise rate, two methods have shown par-
ticularly strong performance. Identity Preference Optimization (IPO) (Azar et al., 2024), while not
specifically developed for robustness, leverages an identity mapping trick that stabilizes the training
objective and, as a result, exhibits notable robustness in practice. However, there is no rigorous
theoretical guarantee explaining how IPO functions under noisy data, and its effectiveness dimin-
ishes substantially as the noise level increases. Another method tailored for pairwise noise, Dr.DPO
(Wu et al., 2024), transfers the Distributionally Robust Optimization (DRO) (Duchi & Namkoong,
2021) framework to DPO, reweighting the gradients to account for noise and improve robustness.
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While Dr.DPO exhibits notable efficacy on both clean and noisy data, it primarily serves as a gen-
eral framework for enhancing policy learning and lacks rigorous theoretical justification regarding
its robustness to noise.

To maintain robustness and avoid reliance on noise rate estimation, we propose a Direct Preference
Optimization method via f -divergence (f -DPO), which is inherently robust to noise. In particular,
we leverage f -divergence to measure the preferred and unpreferred distributions in DPO, recasting
reward maximization as maximizing the corresponding f -divergence. We then employ its varia-
tional form to modify the loss function, assigning optimal importance to noisy data. Our main
contributions are highlighted below.

• We demonstrate how, given knowledge of the noise rate, the variational form of Total Variation
under noisy conditions can be transformed into its corresponding variational form under the clean
distribution.

• For a more general class of settings, we prove that the variational form of Jensen–Shannon di-
vergence remains invariant under noisily annotated preferences, thereby eliminating the need to
estimate label flipping rates.

• Extensive experiments conducted on the HH-RLHF and UltraFeedback datasets, as well as the
MT-Bench and TruthfulQA benchmarks, validate the robustness of the Jensen–Shannon formu-
lation against preference noise, while also enhancing policy reasoning and factual accuracy of
model outputs.

2 RELATED WORKS

2.1 f -DIVERGENCE WORKS

f -divergences have been widely adopted in deep learning, owing to their versatile and valuable
properties. Early f -GANs (Nowozin et al., 2016) employed f-divergences as the training objective
for generative adversarial networks(GANs), and were later adapted in DPO to characterize the dis-
crepancy between the recent policy and the reference policy (Wang et al., 2023). In contrast, our
method of introducing f-divergences is designed to maximize the distinction between the distribu-
tions of preferred and unpreferred responses.

The earliest connection between f -divergences and robust training was established in the context of
classification tasks (Wei & Liu, 2020; Novello & Tonello, 2024). Subsequently, f divergence was
incorporated as a means to enhance Weak-to-Strong Generalization for large language models (Yao
et al., 2025).

2.2 ROBUST DPO WORKS

Initially, cDPO (Mitchell, 2023) addresses the bias induced by label flipping by employing label
smoothing. Subsequently, rDPO (Chowdhury et al., 2024) is designed as an unbiased loss func-
tion, by explicitly modeling the stochastic flip rate of preference labels. Additionally, the GRPO
(Ramesh et al., 2024) method, built upon the reward-free direct preference optimization framework,
utilizes alternating optimization and mirror descent to iteratively update population weights and the
policy, aiming to minimize the worst-case loss. Later, the Dr.DPO (Wu et al., 2024) framework
was formulated to strengthen robustness by optimizing preference pairs under worst-case scenar-
ios via Distributionally Robust Optimization. Building on the DRO paradigm, a recent framework
(Xu et al., 2025) introduces a min–max loss formulation to robustly optimize against the worst-case
distribution within the defined uncertainty set.

To the best of our knowledge, ours is the first work to investigate how the properties of f -divergence
can enhance the robustness of Direct Preference Optimization.

3 PRELIMINARIES

In this section, we present the preliminary formulation of f -DPO. Our exposition proceeds in two
stages: we first define the notation and derivation for DPO, and then provide the relevant background
on f -divergence.
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3.1 DIRECT PREFERENCE OPTIMIZATION

Preference Data. In DPO, preference dataset typically consists of human-annotated pairwise re-
sponses, denoted as P = {(x, yw, yℓ)}, where x is the input prompt, yw the preferred (chosen)
response, and yℓ the unpreferred (rejected) response.

Supervised Fine-Tuning. As a preliminary stage for DPO, supervised fine-tuning (SFT) adjusts the
model parameters by maximizing the likelihood of the target responses yw, producing the reference
model that serves as the foundation for subsequent DPO optimization,

LSFT,β = − log πθ(y | x).
Direct Preference Optimization. Given a preference pair (x, y), the reward in DPO is computed
as the log-difference between the current policy πθ and the SFT policy πref , augmented with a
normalization term Z(x). Formally,

Z(x) =
∑
y

πref(y | x) exp
(
β r(x, y)

)
,

which serves as a partition function to guarantee that the induced probability distribution remains
properly normalized. The complete reward function is defined as:

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ β logZ(x).

Based on the Bradley-Terry (Bradley & Terry, 1952) model for the probability of the preferred
response being selected, the DPO loss function is formulated as:

LDPO,β(θ) = − log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)
,

where σ(·) is the sigmoid fuction, and the temperature parameter β governs the degree of exploration
in the policy, effectively controlling the confidence of the model in distinguishing preferred from
less-preferred responses.

3.2 f -DIVERGENCE

Our method is built upon the formulation of f -divergence, leveraging its properties to design a robust
preference optimization framework. f -divergence is a broad class of measures for quantifying the
discrepancy between probability distributions, generalizing the concept of KL divergence. Formally,
for two probability distributions P and Q:

Df (P∥Q) =

∫
Q(x) f

(P (x)
Q(x)

)
dx,

where f(·) is a convex function satisfying f(1) = 0. As illustrative examples, we place particular
emphasis on JS divergence, which corresponds to f(u) = 1

2

[
u log u− (u+ 1) log 1+u

2

]
, and TV

divergence, defined by f(u) = 1
2 |u− 1|. Leveraging Fenchel’s convex duality, f -divergence admits

the following variational formulation:

Df (P∥Q) = sup
g:Z→domf∗

EZp∼P [g(Zp)]− EZq∼Q[f
∗(g(Zq)],

where f∗ denotes the Fenchel conjugate of f(·), defined as f∗(u) = supv {uv − f(u)}, while
domf∗ indicates the domain of f∗. To ensure that the expectations and variances in the theoretical
derivations are bounded, the ratio between the two probability density functions Zp/Zq is required
to remain within a controlled range, implying that both distributions share the same support without
extreme deviations (Suzuki et al., 2008).

The optimal function g∗ associated with Df (P∥Q) can be obtained directly from the ratio of the
probability densities in the integral definition of the f -divergence. Table 1 summarizes the explicit
forms of the different divergence measures.

g∗ = arg sup
g
{Df (P∥Q)} = f ′

(P (x)
Q(x)

)
. (1)
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By substituting the optimal function associated with each f -divergence, Df can be expressed in the
following form:

Df (P∥Q) = EZp∼P [g
∗(Zp)]− EZq∼Q[f

∗(g∗(Zq)],

which serves as the foundation for developing our robust objectives in preference optimization.

4 f -DPO: ROBUST WITH PREFERENCE NOISE

In this section, we introduce f -divergence to reformulate the DPO loss function, leveraging its
variational form to align the model with preferred responses and away from unpreferred responses.
To derive our method, we first express the optimization objective as the f -divergence between two
distributions, and then introduce variational form to replace direct maximization of the f -divergence.
In section § 4.2, we explore the mechanisms by which robustness is preserved under scenarios with
both known and unknown noise ratios.

4.1 MAXIMIZE f -DIVERGENCE TO ADJUST LOSS FUCTION

We begin by considering a preference dataset P = {(x, yw, yℓ)}, where yw and yl denote the chosen
and rejected responses, respectively. DPO fine-tunes the original model on P to better align with
preferred responses, enforcing a KL divergence constraint to maintain proximity to the reference
model, where πθ denotes the training policy and πref denotes the reference policy. The preference
framework is then instantiated using logσ, the log-sigmoid fuction, from the Bradley-Terry model,
as follows:

LDPO,β(θ) = − log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)
,

where h(πθ, πθref , y) = log πθ(y|x)
πref (y|x) , the logarithmic probability ratio of tokens generated by πθ

relative to πθref , can be considered as the pointwise KL divergence from a generalized perspective.
It is straightforward to see that minimizing LDPO is equivalent to maximizing h(πθ, πθref ; yw) −
h(πθ, πθref ; yℓ). For our f -DPO, we leverage fdiv(DKL|w∥DKL|ℓ) to quantify the divergence be-
tween the chosen and rejected sets. Thus, the ultimate optimization objective reduces to deriving πθ
under which f satisfies the upper bound, i.e., πθ = argmaxθfdiv(DKL|w∥DKL|ℓ).

Variational Formulation. For more tractable computation, f -divergence is reformulated via its
variational representation, which allows us to maximize the associated variational gap. Notably, this
variational representation should be viewed as an empirical estimate rather than a strict equivalence
(Wei & Liu, 2020).

f(DKL|w|DKL|ℓ) = sup
g

[
EZw∼Dw

[g(Zw)]− EZℓ∼Dℓ
[f∗(g(Zℓ))]

]
= sup

g
VF(θ, g), (2)

here, in the equation, f∗ is defined as the conjugate function of the f -divergence function, Dw

denotes the preferred distribution, Zw = h(θ, θref , yw) and Zℓ = h(θ, θref , yℓ). Specifically,
the former is drawn from the distribution of the chosen set, whereas the latter is drawn from the
distribution of the rejected set.

We denote g∗ as the function that maximizes the variational objective as Eqn. (2). For various
divergences, the corresponding forms of g∗ and its transformatio f∗(g) are depicted in Table 1 (Wei
& Liu, 2020; Nowozin et al., 2016). Given access to a set of preference data (x, yw, yℓ), the per-
sample maximized variational function can be expressed as follows:

sup
g

VF(θ, g) = VF(θ, g∗) = g∗(Zw)− f∗(g∗(Zℓ)).

The modified loss Lf,β(θ). Consequently, the loss function of f -DPO for any given pair of prefer-
ence data can be expressed as:

Lf,β(θ) = − log σ
(
β(VF(θ, g∗))

)
. (3)
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Table 1: optimal variational g (g∗), conjugate functions(f∗)

Name g∗(v) domf∗ f∗(u)

Total Variation
1

2
tanh v u ∈

[
− 1

2 ,
1
2

]
u

Jensen-Shannon log
2

1 + e−v
u < log 2 − log(2− eu)

Pearson v R
1

4
u2 + u

KL v R eu−1

4.2 WHEN f -DPO IS ROBUST WITH PREFERENCE NOISE

Noise defination. Considering pairwise noise, let ew denote the proportion of chosen responses that
are flipped to rejected, while eℓ denotes the opposite. In general, we assume that the flipping noise
occurs in pairs, i.e., ew = eℓ. Accordingly, we refer to the paired flipping noise ef in the following.
More precisely, this can be represented as transforming (x, yw, yℓ) into (x, yℓ, yw) within the dataset
P with probability ef

Noisy set. For noisy datasets P̃ = {(x, ỹw, ỹℓ)}, we denote the noisy distributions as D̃w and D̃ℓ.
To demonstrate the behavior of f -DPO in the presence of noise, we introduce the following noisy
variational form,

ṼFf (θ, g) = EZ̃w∼D̃w
[g(Z̃w)]− EZ̃ℓ∼D̃ℓ

[f∗(g(Z̃ℓ))], (4)

where the log-probability discrepancy Z̃w = h(θ, θref ; ỹw) and Z̃ℓ = h(θ, θref ; ỹℓ).

Connect to clean set. Next, we describe how it can be closely connected to the variational difference
terms defined on the clean distributions. formalizing a transformation that maps noisy datasets to
their clean counterparts:

EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
= Ex

[
((1− ew)) g (Zw) + eℓg (Zℓ)

]
. (5)

Under the assumption of known noise ratio. We now discuss the behavior of Total Varia-
tion(TV) under a known noise ratio. For pair data (yw, yl), we define the following component:
△yw

TV (θ, g) = eℓEZw∼Dw
[g(Zw)]− ewEZw∼Dw

[f∗(g(Zw)] and △yl

TV (θ, g) = eℓEZℓ∼Dℓ
[g(Zℓ)]−

ewEZℓ∼Dℓ
[f∗(g(Zℓ)].

Theorem 1. Consider Total Variation, the variational formulation under preference noise relates to
that under the clean distribution as follows:

ṼFTV (θ, g) = (1− 2ef )VFTV (θ, g) + BiasTV (θ, g), (6)

where BiasTV (θ, g) = △yw

TV (θ, g) + △yl

TV (θ, g). As the Fenchel conjugate f∗TV (u) = u ,
△yw

TV (θ, g) ≡ 0 and BiasTV ≡ 0. Since BiasTV is negligible, the optimization objective under
noise can be effectively mapped to that under the clean distributions with a multiplicative factor
(1− 2ef ).
Theorem 2. Under the knowledge of transition between clean and noisy human preferences, total
variation is robust via its variational form.

ṼFTV (θ, g) = (1− 2ef )VFTV (θ, g). (7)

Proof Sketch. By examining Eqn. (5) and its form under the conjugate function f∗, it is observed
that additional terms corresponding to the distributionsDw andDℓ, respectively, can be incorporated
separately. For the former part,

EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
= Ex

[
(1− ew − eℓ) g (Zw) + eℓg (Zl) + eℓg (Zw)

]
,

and the latter part is handled in the same manner. Then, by combining the two resulting expressions,
we obtain Eqn. (6). Under this premise, our bias term can be interpreted as the sum of two variational
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formulations, each constructed such that the preceding and succeeding terms of f -divergence varia-
tional form are taken w.r.t. to the same distribution. This implies that when the conjugate function
f∗ is directly substituted into the bias term, the resulting value is identically zero. Consequently, for
Total Variation, ṼFTV (θ, g) can be explicitly transformed into VFTV (θ, g) through the noise rate
ef .

General setting. Since accurately measuring noise in a preference dataset is often challenging, we
next show how Jensen–Shannon (JS) divergence reduces dependence on explicit noise estimates.
Theorem 3. Analogous to Total Variation, the variational formulation of Jensen–Shannon diver-
gence satisfies the following relationship.

ṼFJS(θ, g) = VFJS(θ, g) + BiasJS(θ, g). (8)

where BiasJS(θ, g) = △yℓ

JS(θ, g) − △yw

JS(θ, g), while △yℓ

JS(θ, g) = eℓEZℓ∼Dℓ
[g(Zℓ)] −

ewEZw∼Dw [f
∗(g(Zw)] and △yw

JS(θ, g) = ewEZw∼Dw [g(Zw)]− eℓEZl∼Dℓ
[f∗(g(Zℓ)].

When computing the loss, we maximize the variational objective over g. Formally, letting g∗ =
arg supg{Df (P∥Q)} as Eqn. (1). Given this assumption, the bias term in the variational formulation
of Jensen–Shannon divergence can be written as follows:

BiasJS(θ, g∗) = ef [fJS(Dℓ||Dw)− fJS(Dw||Dℓ)].

Jenshon-Shannon is inherently symmetric. Unlike asymmetric KL divergence, Jensen–Shannon
divergence is defined as the average of two KL divergences evaluated w.r.t. their mixture distribution.
Specially,

fJS(Dw||Dℓ) = fJS(Dℓ||Dw) =
1

2
DKL(Dw||M) +

1

2
DKL(Dl||M),

whereM = 1
2 (Dw+Dℓ), which endows Jensen–Shannon divergence with a symmetric and bounded

distance measure, taking values within the range [0, log2]. It is evident that the bias term of the JS
variational formulation can be eliminated. In other words, the variational formulation under noisy
preference is directly equivalent to that under the clean distributions for Jenshon-Shannon.
Theorem 4. Under the assumption of the optimal g∗, the Jensen–Shannon formulation remains
invariant to preference noise.

ṼFJS(θ, g
∗) = VFJS(θ, g

∗). (9)

Proof Sketch. Let VFJS(θ, g) denote the variational form of Jensen–Shannon divergence between
the preferred distribution Dw and the unpreferred distribution Dℓ, and VF∗

JS(θ, g) denote its sym-
metric form. According to Eqn. (2), f -DPO seeks parameters that maximize the upper bound of the
variational form, expressed as supg V F (θ, g) = V F (θ, g∗). Under this assumption, Eqn. (8) can be
correspondingly simplified to,

ṼFJS(θ, g
∗) = VFJS(θ, g

∗) + BiasJS(θ, g∗).

while its symmetric form undergoes an analogous transformation. Consequently, the original bias
term can be reformulated as a difference of symmetric JS divergences. By the inherent symmetry
of JS divergence, the bias term is eliminated, which confirms that the JS variational form remains
invariant under flipping noise label.

By virtue of Theorem 2 and Theorem 4, we formulate two robust variational objectives. Since
the JS variational formulation in Eqn. (9) does not require prior knowledge of the noise rates, it is
better suited for generalization. Accordingly, we focus on evaluating the performance of the JS vari-
ational form in our experiments, with its corresponding loss function being considered proportional
to Eqn. (3):

L̃JS,β(θ) ∝ LJS,β(θ) = − log σ
(
β(VFJS(θ, g

∗))
)
. (10)

5 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the robustness of our method, while
examining the impact of f -DPO on reasoning ability and output fidelity under preference noise,
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and finally exploring its potential application across different tasks, models, and datasets. Initially,
we assess the robustness of f -DPO in maintaining stable training under noisy conditions using
the Anthropic HH-RLHF (Bai et al., 2022) dataset, where it surpasses existing baselines. Subse-
quently, we perform comprehensive evaluations on the UltraFeedback (Cui et al., 2023) dataset,
where our approach consistently achieves superior performance. Building on this, we further ex-
tend our evaluation to two benchmarks: MT-Bench (Zheng et al., 2023) and TruthfulQA (Lin et al.,
2021). Unless stated otherwise, all experiments in this work employ Jensen-Shannon divergence as
the f -divergence metric.

Baselines. We present a comparative study of existing DPO variants, as outlined below: (i).The
original DPO, a newly introduced, streamlined method for aligning language models with human
preferences; (ii).Conservative DPO (cDPO) (Mitchell, 2023), a variant introduces ε as noise and
employs binary cross-entropy loss to diminish the model’s confidence in incorrect preference labels;
(iii)Identity Preference Optimization(IPO) (Azar et al., 2024), an alternative avoids the Bradley-
Terry modeling assumption by employing an arbitrary non-decreasing mapping ψ, relying entirely
on pairwise preference expressions; (iv)Provably Robust DPO(rDPO) (Chowdhury et al., 2024), an
unbiased estimator of DPO, mitigates label flip noise by calibrating the label flip rate ε and applying
importance-weighted gradient updates. (v)Distributionally robustfying DPO(Dr.DPO) (Wu et al.,
2024), incorporates a distributionally robust optimization (DRO) framework to explicitly optimize
for the worst-case pairwise distribution, and introduces a hyperparameter β

′
to control the influence

of noisy data.

5.1 ROBUSTNESS OF f -DPO ON HH-RLHF

In this section, we conduct experiments on Anthropic HH-RLHF, a multi-turn dialogue preference
dataset, where each example pairs chosen and rejected assistant responses for the same prompt,
designed to train reward models that align language models with both helpfulness and harmlessness.
To evaluate robustness under varying noise levels, we introduce pairwise label-flipping with flip
rates of 10%, 20%, 30%, and 40% across all experiments, using the Pythia-2.8B (Biderman et al.,
2023) model.

Metrics. Preference Accuracy and Win-Loss Rate. Preference Accuracy, defined as the proba-
bility that the reward for the chosen response exceeds that of the rejected response, is measured as
the proportion of test instances in the Anthropic HH-RLHF dataset where r(x, yw) > r(x, yl). To
more rigorously evaluate our approach, we conduct pairwise comparisons against the baselines with
20% noisy label on the MT-Bench (Zheng et al., 2023). It is specifically designed to assess LLMs
in multi-turn conversations, aiming to measure their coherence, informativeness, and interactive ca-
pabilities, while using GPT-4 as the judge. The comparison outcome, reported as Win-Loss Rate,
consists of three components: win, loss, and tie rate.

Tie
68.75%

Loss
12.5%

Win
18.75%

(a) f -DPO vs DPO

Tie
75.95%

Loss
9.5%

Win
14.55%

(b) f -DPO vs cDPO

Tie
77.25%

Loss
10%

Win
12.75%

(c) f -DPO vs IPO

Tie
60.62%

Loss
18.75%

Win
20.63%

(d) f -DPO vs Dr.DPO

Figure 1: Win-Loss Rate on MT-bench.

Well performance accross varing noisy levels. With the addition of noise, training on HH-RLHF
tends to be unstable, and the maximum preference accuracy is often not reached at the final step.
In this case, we report the peak preference accuracy evaluation throughout the training process.
Under different levels of flipped noise, f -DPO consistently attained the highest preference accuracy,
outperforming DPO with improvements ranging from 2.83% to 4.69%, as reported in Table 2. It
is worth noting that all baselines adopt symmetric noise in their papers. Among the baselines, IPO
and Dr.DPO performed relatively well. However, IPO’s performance deteriorates noticeably as the
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Table 2: Preference Accuracy under different methods

Noise rate DPO cDPO rDPO IPO DrDPO f -DPO

ef=0.1 62.11 62.67 63.28 65.23 65.38 66.02
ef=0.2 62.01 61.83 62.53 64.06 64.19 64.84
ef=0.3 58.20 58.98 61.33 60.94 62.65 62.89
ef=0.4 55.47 55.86 57.11 57.81 58.83 59.77

noise level increases, whereas Dr.DPO is highly sensitive to the choice of β∗ and requires careful
hyperparameter tuning.

f -DPO outperforms the Baselines. The experimental parameters, including temperature and max-
tokens, are kept consistent with the original MT-Bench settings (Zheng et al., 2023). In pairwise
response evaluations, Figure 1 illustrates that f -DPO significantly enhances reasoning ability on
MT-Bench, delivering a 6.25% performance gain over DPO.

5.2 ADDITIONAL COMPARISON ON TRUTHFULQA

To verify the generalization of our method across models, datasets, and techniques, we further eval-
uate it on TruthfulQA (Lin et al., 2021) using LLaMA-2-7B (Touvron et al., 2023) training on
the UltraFeedback dataset with 10%, 20%, 30% and 40% flipped label noise. UltraFeedback, is a
large-scale preference dataset with over 64k instances across diverse domains. Unlike Anthropic
HH-RLHF, it provides fine-grained annotations beyond binary labels, offering richer supervision for
evaluating and training alignment methods. TruthfulQA, a benchmark of 817 adversarially designed
questions across 38 categories, comprising three tasks, assesses the truthfulness and robustness of
the model against generating misleading responses. Comprehensive comparisons of the model out-
puts are presented in the appendix D for reference.

f -DPO enhances the factuality of responses. In our experimental design, we adopt the mc1 targets
task(Single-ture) and report results averaged over three independent runs. As seen in Table 3, f -
DPO exhibits a clear advantage in Multiple-Choice accuracy, which indicates that our approach
strengthens the factual accuracy and reliability of the model’s responses. Our approach continues to
exhibit robust performance at a noise level of 40%, outperforming alternative methods.

Table 3: Multiple-Choice Accuracy on TruthfulQA

Noise rate DPO cDPO rDPO IPO DrDPO f -DPO

ef=0.1 31.13 32.03 33.04 34.19 33.25 35.19
ef=0.2 30.17 30.34 31.73 32.15 31.73 34.09
ef=0.3 29.87 30.02 31.21 31.12 31.50 33.78
ef=0.4 29.50 29.70 30.84 30.72 31.30 33.29

5.3 ROBUSTNESS OF f -DPO WITH DIFFERENT f -DIVERGENCE ON ULTRAFEEDBACK

In this section, we investigate the impact of different divergences on DPO under label noise, as
illustrated in Table 1. The experimental setup, including the model and dataset, is consistent with
Section § 5.2. In all cases, the loss functions adhere to Eqn. (10), except for the Total Variation loss,
which follows Eqn. (7) with flipping noise ef .

As demonstrated in Figure 4, the formulation of Jensen–Shannon divergence exhibits a markedly
stronger ability to discriminate response quality than the other considered f -divergences. This
demonstrates that our method is grounded in the inherent properties of the Jensen–Shannon di-
vergence, and that other divergences cannot readily inherit the same level of robustness. Notably,
Total Variation exhibits subpar performance. This can be attributed to the fact that, when label-
flipping noise is injected, the inherent noise already present in the original dataset interferes, result-
ing in an actual noise level that does not exactly match the target ef (Zhu et al., 2023). Given that
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Jensen–Shannon divergence constitutes a symmetrized and smoothed variant of the KL divergence,
KL divergence displays a similar trend, yet consistently underperforms relative to Jensen–Shannon
divergence. However, all the f -divergences ultimately surpass the original DPO in the final step.

Table 4: Various f -divergences on Ultrafeedback

Preference Accuracy DPO JS KL TV Pearson

Best Accuracy 70.70 75.00 70.70 70.31 71.48
Last Accuracy 67.58 75.00 69.92 69.92 71.48

5.4 ABLATION STUDIES ON ULTRAFEEDBACK

In this section, we perform ablation studies on the temperature parameter β and batch size, followed
by a theoretical analysis of the experimental results. The experimental configuration, encompassing
both the model and dataset, follows the setup described in Section § 5.2.

Impact of the Temperature Parameter β in f -DPO. Table 5 reports the effect of varying β on
the model’s preference accuracy on UltraFeedback under 20% flipped noise. From a theoretical
perspective, the temperature parameter β controls the policy’s confidence in the reward accuracy
for DPO: a larger β corresponds to higher confidence, whereas a smaller β results in more conser-
vative gradient updates. The experimental results indicate that both excessively high or low values
of β negatively affect the model’s learning capability, for both DPO and f -DPO methods. This
can be attributed to f-DPO inheriting the temperature parameter β from DPO, where it plays the
same role. Consequently, previous experiments have typically adopted β = 0.1 to achieve optimal
performance.

Table 5: Impact of β

Noise rate β DPO f -DPO

ef = 0.2
0.1 70.70 75.00
0.5 69.53 74.61
0.02 68.75 74.61

Table 6: Effect of Batch Size

Noise rate Batch Size / lr DPO f -DPO

ef = 0.2
64 / 5e-7 70.70 75.00
128 / 8e-7 69.92 73.83
32 / 3e-7 71.10 75.39

Effect of Batch Size on the Training Dynamics of f -DPO. In practical training regimes, modifi-
cations to the batch size generally require a corresponding adjustment of the learning rate (Smith
et al., 2017). A commonly adopted principle is the linear scaling rule, which prescribes scaling
the learning rate in proportion to the batch size so as to maintain a consistent per-sample gradient
contribution. When employing different batch sizes in conjunction with their corresponding learn-
ing rates, the preference accuracy varies as viewed in Table 6. With excessively large batch sizes,
gradients are averaged over a substantial number of samples, leading to updates that are stable yet
overly conservative. This tendency pulls the model closer to the reference model, which can result
in inferior performance compared to using moderate batch sizes. In contrast, smaller batch sizes
amplify the influence of noise, yielding more oscillatory training dynamics. Nevertheless, they also
partially enhance the capacity of the model for exploration over limited samples.

6 CONCLUSION

In this work, we propose f -DPO, by investigating the robustness of variational form f -divergences
under noisy preference text dataset, with the objective of amplifying the distinction between the
policy’s responses to preferred and unpreferred human feedback. Building on the characterization
of transitions between clean and noisy human preferences, we show that f -DPO admits a transfor-
mation between the clean and noisy regimes via Total Variation divergence. Crucially, under the
general setting where noise estimation is not required, the Jensen–Shannon format f -DPO provides
a more generalizable approach for robust training and is proven to remain invariant in the presence
of flipping noise. In the absence of noise rate information and without incorporating auxiliary mod-
ules, our approach improves the fidelity of the policy’s reward signals, thereby exhibiting substantial
robustness under noisy preference.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we employ ChatGPT-4, a classic large language model, to assist with language refine-
ment and clarity improvement. Specifically, ChatGPT-4 is used to polish the writing style, correct
grammatical errors, and enhance the overall readability of the manuscript without altering its scien-
tific content or conclusions.

B FORMAL PROOF

B.1 PROOF OF THEOREM 1: NOISY VALIATIONAL FORMULATION OF TV

proof. the former part of valiational formulation

EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
=hx

[
(1− ew) g

(
h(πθ, πθref , yw)

)
+ eℓg

(
h(πθ, πθref , yℓ)

) ]
=Ex

[
(1− ew − eℓ) g

(
h(πθ, πθref , yw)

)
+ eℓg

(
h(πθ, πθref , yℓ)

)
+ eℓg

(
h(πθ, πθref , yw)

) ]
=Ex

[
(1− ew − eℓ) g (Zw) + eℓg (Zl) + eℓg (Zw)

]
the latter part is derived as:

EZ̃l∼D(x,ỹl)

[
f∗

(
g(Z̃l)

)]
=Ex

[
(1− eℓ)f

∗
(
g
(
h(πθ, πθref , yℓ)

))
+ ewf

∗
(
g
(
h(πθ, πθref , yw)

))]
=Ex

[
(1− ew − eℓ)f

∗
(
g
(
h(πθ, πθref , yℓ)

))
+ ewf

∗
(
g
(
h(πθ, πθref , yw)

))
+ ewf

∗
(
g
(
h(πθ, πθref , yℓ)

))]
=Ex

[
(1− ew − eℓ)f

∗(g(Zl)
)
+ ewf

∗(g(Zw)
)
+ ewf

∗(g(Zl)
)]

We combine the two resulting expressions, EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
and EZ̃l∼D(x,ỹl)

[
f∗

(
g(Z̃l)

)]
,

after transformation, as follows:

ṼFTV (θ, g)

=EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
− EZ̃l∼D(x,ỹl)

[
f∗

(
g(Z̃l)

)]
=(1− ew − eℓ)

[
EZw∼D(x,yw)

[
g (Zw)

]
− EZℓ∼D(x,yℓ)

[
f∗

(
g (Zℓ)

)]]
+BiasTV (θ, g)

=(1− ew − eℓ)VDf
(θ, g) +BiasTV (θ, g)

In which,

BiasJS(θ, g)

=
[
eℓEZℓ∼Dℓ

[g(Zℓ)]− ewEZℓ∼Dℓ
[f∗(g(Zℓ)]

]
+

[
eℓEZw∼Dw

[g(Zw)]− ewEZw∼Dw
[f∗(g(Zw))]

]
=△yℓ

TV (θ, g) +△yw

TV (θ, g)

Consider ef = ew = eℓ,
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ṼFTV (θ, g) = (1− 2ef )VFTV (θ, g) + BiasTV (θ, g)

we proof the claim.

B.2 PROOF OF THEOREM 2: ROBUSTNESS OF THE TV FORM

Given the flipping noise ef , the bias term can be transformed into,

BiasTV (θ, g)

= △yℓ

TV (θ, g) +△yw

TV (θ, g)

= ef

[
EZℓ∼Dℓ

[g(Zℓ)]− EZℓ∼Dℓ
[f∗(g(Zℓ)]

]
+ ef

[
EZw∼Dw

[g(Zw)]− EZw∼Dw
[f∗(g(Zw))]

]
As for Total Variation, f∗(u) = u. Then we perform the following transformation:

BiasTV (θ, g)

= △yℓ

TV (θ, g) +△yw

TV (θ, g)

= ef

[
EZℓ∼Dℓ

[g(Zℓ)]− EZℓ∼Dℓ
[g(Zℓ]

]
+ ef

[
EZw∼Dw

[g(Zw)]− EZw∼Dw
[g(Zw)]

]
= 0

Hence, BiasTV (θ, g) ≡ 0. It follows that the TV form exhibits robustness.

ṼFTV (θ, g) = (1− 2ef )VFTV (θ, g)

we proof the claim.

B.3 PROOF OF THEOREM 3: NOISY VARIATIONAL FORMULATION OF JS

proof. Similarly to TV, first note.

EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
=Ex

[
((1− ew)) g

(
h(πθ, πθref , yw)

)
+ eℓg

(
h(πθ, πθref , yℓ)

) ]
=Ex

[
g
(
h(πθ, πθref , yw)

)
+ eℓg

(
h(πθ, πθref , yℓ)

)
− ewg

(
h(πθ, πθref , yw)

) ]
=Ex

[
g (Zw) + eℓg (Zℓ)− ewg (Zw)

]
contrast form:

EZ̃l∼D(x,ỹl)

[
f∗

(
g(Z̃l)

)]
=Ex

[
(1− eℓ)f

∗
(
g
(
h(πθ, πθref , yℓ)

))
+ ewf

∗
(
g
(
h(πθ, πθref , yw)

))]
=Ex

[
f∗

(
g
(
h(πθ, πθref , yℓ)

))
+ ewf

∗
(
g
(
h(πθ, πθref , yw)

))
− eℓf

∗
(
g
(
h(πθ, πθref , yℓ)

))]
=Ex

[
g (Zℓ) + eℓg (Zw)− ewg (Zℓ)

]
After applying the transformations, the two expressions, EZ̃w∼D(x,ỹw)

[
g(Z̃w)

]
and

EZ̃l∼D(x,ỹl)

[
f∗

(
g(Z̃l)

)]
are combined as follows:
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ṼFJS(θ, g)

=

[
EZw∼D(x,yw)

[
g (Zw)

]
− EZℓ∼D(x,yℓ)

[
f∗

(
g (Zℓ)

)]]
+ BiasJS(θ, g)

=VFJS(θ, g) + BiasJS(θ, g)

Where,

BiasJS(θ, g)

=
[
eℓEZℓ∼Dℓ

[g(Zℓ)]− ewEZw∼Dw
[f∗(g(Zw)]

]
−

[
ewEZw∼Dw

[g(Zw)]− eℓEZℓ∼Dℓ
[f∗(g(Zℓ))]

]
=△yℓ

JS(θ, g)−△yw

JS(θ, g)

Consider ef = ew = eℓ,

ṼFJS(θ, g) = VFJS(θ, g) + BiasJS(θ, g)

we proof the claim.

B.4 PROOF OF THEOREM 4: ROBUSTNESS OF THE JS FORM

Notation.We present a pair of variational formulations.

VF(θ, g) = EZw∼Dw
[g(Zw)]− EZℓ∼Dℓ

[f∗(g(Zℓ))]

VF∗(θ, g) = EZℓ∼Dℓ
[g(Zℓ)]− EZw∼Dw

[f∗(g(Zw))]

Given the pairwise noise ef , the bias term can be transformed into,

BiasJS(θ, g)

= △yℓ

JS(θ, g)−△yw

JS(θ, g)

= ef

[
EZℓ∼Dℓ

[g(Zℓ)]− EZw∼Dw
[f∗(g(Zw)]

]
− ef

[
EZw∼Dw

[g(Zw)]− EZℓ∼Dℓ
[f∗(g(Zℓ))]

]
With respect to the loss function defined earlier, we maximize the variational functional VF(θ, g) by
employing the optimal g∗ during computation.

Lf,β(θ) = − log σ
(
β(VF(θ, g∗))

)
.

Under the above assumption, the expression Eqn. (8) can be rewritten as:

ṼFJS(θ, g
∗) = VFJS(θ, g

∗) + BiasJS(θ, g∗)

BiasJS(θ, g∗)

= △yℓ

JS(θ, g
∗)−△yw

JS(θ, g
∗)

= ef

[
EZℓ∼Dℓ

[g∗(Zℓ)]− EZw∼Dw
[f∗(g∗(Zw)]

]
− ef

[
EZw∼Dw

[g∗(Zw)]− EZℓ∼Dℓ
[f∗(g∗(Zℓ))]

]
= ef supVFJS

∗(θ, g)− ef supVFJS(θ, g)

= effJS(Dℓ∥Dw)− effJS(Dw∥Dℓ)

As Jenshon-Shannon is inherently symmetric,

fJS(Dw||Dℓ) =
1

2
DKL(Dw||M) +

1

2
DKL(Dl||M),

Where M = 1
2 (Dw +Dℓ), then
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BiasJS(θ, g∗)
= effJS(Dℓ∥Dw)− effJS(Dw∥Dℓ)

=
1

2
ef

[
DKL(Dw||M) +DKL(Dl||M)−DKL(Dl||M)−DKL(Dw||M)

]
= 0

Ultimately, the explicit form of JS divergence:

ṼFJS(θ, g
∗) = VFJS(θ, g

∗).

We proof the claim.

C SUPPLEMENTARY EXPERIMENTS

Table 7: outputs parameters in f -DPO

Benchmark LLMs temperature max-tokens

MT-bench pythia2.8b 0.7 1024
TruthfulQA llama-2-7b 0.7 256

Table 8: Training parameters in f -DPO

dataset LLMs learning rate β Batch Size

HH-RLHF pythia2.8b 5e-7 0.1 64
Ultrafeedback llama-2-7b 5e-7 0.1 64

Table 9: varing noise rate ef on ultrafeedback

Preference Accuracy ef = 0.1 ef = 0.2 ef = 0.3 ef = 0.4

Best Accuracy 79.30 75.00 70.70 65.63
Last Accuracy 79.30 75.00 70.31 62.89
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D COMPARISON OF GENERATED SAMPLES

Table 10: f -DPO outperformed DPO, which was trained on Llama-2-7B, while judging by GPT-4.

Prompt What is some cool music from the 1920s?

f -DPO The 1920s was a significant period in music history, with several
genres emerging and gaining popularity. Here are some cool music
from the 1920s: 1. Jazz: The 1920s saw the birth of jazz, a genre that
combined African American musical traditions with European
harmony and improvisation. Some notable jazz artists from this period
include Louis Armstrong, Duke Ellington, and Bessie Smith. 2. Blues:
The blues, a genre that originated in the Deep South, also gained
popularity during the 1920s. Artists such as Robert Johnson, Bukka
White, and Charley Patton helped to popularize the blues. 3. Swing:
Swing music, a style that emerged from jazz, became popular in the
1920s. Artists such as Duke Ellington, Count Basie, and Fletcher
Henderson helped to popularize swing. 4. Pop music: Pop music,
influenced by jazz and blues, also gained popularity in the 1920s.
Artists such as Irving Berlin, Cole Porter, and George Gershwin helped
to popularize pop music. 5. Tin Pan Alley: Tin Pan Alley, a term for
the music publishing industry in New York City, emerged in the 1920s.
Artists like Irving Berlin, George Gershwin, and Cole Porter helped
popularize this music. 6. Vaudeville: Vaudeville, a type of variety
entertainment popular in the 1920s, also influenced music. Artists such
as Al Jolson, Sophie Tucker, and Ethel Merman helped to popularize
vaudeville music. 7. Broadway: Broadway musicals influenced music
during the 1920s. Artists such as Cole Porter, George Gershwin, and
Irving Berlin helped popularize Broadway music. 8. The Great Gatsby:
The novel ”The Great Gatsby” by F. Scott Fitzgerald also influenced
music during this period. Artists such as Louis Armstrong, Duke
Ellington, and Bessie Smith helped popularize the music of the 1920s.

DPO The 1920s, also known as the Roaring Twenties, was a time of great
cultural and artistic innovation, particularly in the realm of music.
Here are some cool and influential songs from the 1920s that are still
enjoyed today: 1. ”Livery Stable Blues” by Bessie Smith: Released in
1923, this song is considered a classic of the blues genre and is known
for its powerful vocals and emotional delivery. 2. ”My Happiness” by
Harry Woods: First recorded by the Boswell Sisters in 1931, but the
original version was released in 1927 by Harry Woods. Its lively and
catchy melody has made it popular over the years. 3. ”Some of These
Days” by Sophie Tucker: Released in 1924, this jazz standard has been
covered by many artists, including Louis Armstrong and Ella
Fitzgerald. 4. ”I’m Just Wild About Harry” by Jimmy Durante:
Written by Bert Kalmar and Harry Ruby in 1921, first performed by
Durante in a Broadway musical. Catchy tune and playful lyrics. 5.
”Yes! We Have No Bananas” by Frank Silver and Irving Cohn:
Written in 1923, became a huge hit with catchy melody and humorous
lyrics. 6. ”Makin’ Whoopee!” by Eddie Cantor: Released in 1928,
classic of jazz and swing genres, upbeat tempo and playful lyrics make
it fun to listen.
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