

000 001 002 003 004 005 ROBUST DIRECT PREFERENCE OPTIMIZATION VIA 006 VARIATIONAL FORM F-DIVERGENCE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Direct Preference Optimization is commonly deployed to align Large Language Models (LLMs) with human preferences, while such a technique also suffers from noisily annotated human preference. Existing robust approaches often require the knowledge of transition between clean and noisy human preferences, or leverage additional architecture/models to perform noisy human preference correction. In this work, we investigate when f -divergence is immune to the imperfect human preference annotations, by maximizing the f -divergence between noisy preferred and unpreferred data distributions. Theoretically, we show that when the noise ratio is known, the Total Variation formulation can serve as a surrogate for the clean dataset. In contrast, the Jensen–Shannon formulation is invariant to noise, yielding identical results under both noisy and clean preferences, even without knowledge of the noise rate. Empirically, the variational form of the Jensen–Shannon divergence enhances the model’s ability to generate preferred responses under noisy conditions, while simultaneously improving the factual accuracy of its outputs.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) has been established as a simple yet effective alternative to Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) for aligning Large Language Models (LLMs) (Achiam et al., 2023) with human preferences (Christiano et al., 2017). In contrast to RLHF, which relies on training a reward model with reinforcement learning methods including Proximal Policy Optimization (PPO) (Schulman et al., 2017), DPO learns a policy directly from human preference data, instead of employing explicit reward modeling. While DPO efficiently captures preference information from pairwise data via a binary cross-entropy loss (Shannon, 1948), noisy annotations can cause the policy to learn misleading or suboptimal patterns.

To mitigate the influence of noisy preference data, the authors of DPO account for known label-flipped probabilities and leverage a binary cross-entropy objective to estimate a conservative target distribution, thereby stabilizing model updates under uncertainty (Mitchell, 2023). However, overly conservative gradient updates constrain the model close to the reference policy, limiting its learning capability, and resulting in substantial performance gaps compared to the original DPO. To overcome these limitations, robust DPO (Chowdhury et al., 2024) was proposed in place of conservative DPO, providing an unbiased estimate of DPO. By introducing a multiplicative factor to counteract the effects of noisy preferences and employing dynamic gradient updates, Robust DPO enhances learning stability and model performance. Although it partially reduces the suboptimality gap relative to the optimal policy, it undeniably remains highly dependent on knowledge of the transition between clean and noisy human preferences.

Among approaches that do not require knowledge of the noise rate, two methods have shown particularly strong performance. Identity Preference Optimization (IPO) (Azar et al., 2024), while not specifically developed for robustness, leverages an identity mapping trick that stabilizes the training objective and, as a result, exhibits notable robustness in practice. However, there is no rigorous theoretical guarantee explaining how IPO functions under noisy data, and its effectiveness diminishes substantially as the noise level increases. Another method tailored for pairwise noise, Dr.DPO (Wu et al., 2024), transfers the Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2021) framework to DPO, reweighting the gradients to account for noise and improve robustness.

054 While Dr.DPO exhibits notable efficacy on both clean and noisy data, it primarily serves as a general
 055 framework for enhancing policy learning and lacks rigorous theoretical justification regarding
 056 its robustness to noise.

057 To maintain robustness and avoid reliance on noise rate estimation, we propose a Direct Preference
 058 Optimization method via f -divergence (f -DPO), which is inherently robust to noise. In particular,
 059 we leverage f -divergence to measure the preferred and unpreferred distributions in DPO, recasting
 060 reward maximization as maximizing the corresponding f -divergence. We then employ its variational
 061 form to modify the loss function, assigning optimal importance to noisy data. Our main
 062 contributions are highlighted below.

063

- 064 • We demonstrate how, given knowledge of the noise rate, the variational form of Total Variation
 065 under noisy conditions can be transformed into its corresponding variational form under the clean
 066 distribution.
- 067 • For a more general class of settings, we prove that the variational form of Jensen–Shannon di-
 068 vergence remains invariant under noisily annotated preferences, thereby eliminating the need to
 069 estimate label flipping rates.
- 070 • Extensive experiments conducted on the HH-RLHF and UltraFeedback datasets, as well as the
 071 MT-Bench and TruthfulQA benchmarks, validate the robustness of the Jensen–Shannon formu-
 072 lation against preference noise, while also enhancing policy reasoning and factual accuracy of
 073 model outputs.

074 2 RELATED WORKS

075 2.1 f -DIVERGENCE WORKS

076 f -divergences have been widely adopted in deep learning, owing to their versatile and valuable
 077 properties. Early f -GANs (Nowozin et al., 2016) employed f -divergences as the training objective
 078 for generative adversarial networks(GANs), and were later adapted in DPO to characterize the dis-
 079 crepancy between the recent policy and the reference policy (Wang et al., 2023). In contrast, our
 080 method of introducing f -divergences is designed to maximize the distinction between the distribu-
 081 tions of preferred and unpreferred responses.

082 The earliest connection between f -divergences and robust training was established in the context of
 083 classification tasks (Wei & Liu, 2020; Novello & Tonello, 2024). Subsequently, f divergence was
 084 incorporated as a means to enhance Weak-to-Strong Generalization for large language models (Yao
 085 et al., 2025).

086 2.2 ROBUST DPO WORKS

087 Initially, cDPO (Mitchell, 2023) addresses the bias induced by label flipping by employing label
 088 smoothing. Subsequently, rDPO (Chowdhury et al., 2024) is designed as an unbiased loss func-
 089 tion, by explicitly modeling the stochastic flip rate of preference labels. Additionally, the GRPO
 090 (Ramesh et al., 2024) method, built upon the reward-free direct preference optimization framework,
 091 utilizes alternating optimization and mirror descent to iteratively update population weights and the
 092 policy, aiming to minimize the worst-case loss. Later, the Dr.DPO (Wu et al., 2024) framework
 093 was formulated to strengthen robustness by optimizing preference pairs under worst-case scenar-
 094 ios via Distributionally Robust Optimization. Building on the DRO paradigm, a recent framework
 095 (Xu et al., 2025) introduces a min–max loss formulation to robustly optimize against the worst-case
 096 distribution within the defined uncertainty set.

097 To the best of our knowledge, ours is the first work to investigate how the properties of f -divergence
 098 can enhance the robustness of Direct Preference Optimization.

100 3 PRELIMINARIES

101 In this section, we present the preliminary formulation of f -DPO. Our exposition proceeds in two
 102 stages: we first define the notation and derivation for DPO, and then provide the relevant background
 103 on f -divergence.

108 3.1 DIRECT PREFERENCE OPTIMIZATION
109110 **Preference Data.** In DPO, preference dataset typically consists of human-annotated pairwise re-
111 sponses, denoted as $\mathcal{P} = \{(x, y_w, y_\ell)\}$, where x is the input prompt, y_w the preferred (chosen)
112 response, and y_ℓ the unpreferred (rejected) response.113 **Supervised Fine-Tuning.** As a preliminary stage for DPO, supervised fine-tuning (SFT) adjusts the
114 model parameters by maximizing the likelihood of the target responses y_w , producing the reference
115 model that serves as the foundation for subsequent DPO optimization,

116
$$\mathcal{L}_{SFT, \beta} = -\log \pi_\theta(y | x).$$

117

118 **Direct Preference Optimization.** Given a preference pair (x, y) , the reward in DPO is computed
119 as the log-difference between the current policy π_θ and the SFT policy π_{ref} , augmented with a
120 normalization term $Z(x)$. Formally,

121
$$Z(x) = \sum_y \pi_{ref}(y | x) \exp(\beta r(x, y)),$$

122
123

124 which serves as a partition function to guarantee that the induced probability distribution remains
125 properly normalized. The complete reward function is defined as:

126
$$r(x, y) = \beta \log \frac{\pi_\theta(y|x)}{\pi_{ref}(y|x)} + \beta \log Z(x).$$

127

128 Based on the Bradley-Terry (Bradley & Terry, 1952) model for the probability of the preferred
129 response being selected, the DPO loss function is formulated as:
130

131
$$\mathcal{L}_{DPO, \beta}(\theta) = -\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{ref}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{ref}(y_l|x)} \right),$$

132

133 where $\sigma(\cdot)$ is the sigmoid function, and the temperature parameter β governs the degree of exploration
134 in the policy, effectively controlling the confidence of the model in distinguishing preferred from
135 less-preferred responses.137 3.2 f -DIVERGENCE
138139 Our method is built upon the formulation of f -divergence, leveraging its properties to design a robust
140 preference optimization framework. f -divergence is a broad class of measures for quantifying the
141 discrepancy between probability distributions, generalizing the concept of KL divergence. Formally,
142 for two probability distributions P and Q :

143
$$D_f(P\|Q) = \int Q(x) f\left(\frac{P(x)}{Q(x)}\right) dx,$$

144

145 where $f(\cdot)$ is a convex function satisfying $f(1) = 0$. As illustrative examples, we place particular
146 emphasis on JS divergence, which corresponds to $f(u) = \frac{1}{2} [u \log u - (u + 1) \log \frac{1+u}{2}]$, and TV
147 divergence, defined by $f(u) = \frac{1}{2}|u - 1|$. Leveraging Fenchel's convex duality, f -divergence admits
148 the following variational formulation:
149

150
$$D_f(P\|Q) = \sup_{g: \mathcal{Z} \rightarrow \text{dom } f^*} \mathbb{E}_{\mathcal{Z}_p \sim P}[g(\mathcal{Z}_p)] - \mathbb{E}_{\mathcal{Z}_q \sim Q}[f^*(g(\mathcal{Z}_q))],$$

151

152 where f^* denotes the Fenchel conjugate of $f(\cdot)$, defined as $f^*(u) = \sup_v \{uv - f(u)\}$, while
153 $\text{dom } f^*$ indicates the domain of f^* . To ensure that the expectations and variances in the theoretical
154 derivations are bounded, the ratio between the two probability density functions $\mathcal{Z}_p/\mathcal{Z}_q$ is required
155 to remain within a controlled range, implying that both distributions share the same support without
156 extreme deviations (Suzuki et al., 2008).157 The optimal function g^* associated with $D_f(P\|Q)$ can be obtained directly from the ratio of the
158 probability densities in the integral definition of the f -divergence. Table 1 summarizes the explicit
159 forms of the different divergence measures.

160
$$g^* = \arg \sup_g \{D_f(P\|Q)\} = f'\left(\frac{P(x)}{Q(x)}\right). \quad (1)$$

161

162 By substituting the optimal function associated with each f -divergence, D_f can be expressed in the
 163 following form:

$$164 \quad D_f(P\|Q) = \mathbb{E}_{Z_p \sim P}[g^*(Z_p)] - \mathbb{E}_{Z_q \sim Q}[f^*(g^*(Z_q))],$$

166 which serves as the foundation for developing our robust objectives in preference optimization.
 167

168 4 f -DPO: ROBUST WITH PREFERENCE NOISE

171 In this section, we introduce f -divergence to reformulate the DPO loss function, leveraging its
 172 variational form to align the model with preferred responses and away from unpreferred responses.
 173 To derive our method, we first express the optimization objective as the f -divergence between two
 174 distributions, and then introduce variational form to replace direct maximization of the f -divergence.
 175 In section § 4.2, we explore the mechanisms by which robustness is preserved under scenarios with
 176 both known and unknown noise ratios.

177 4.1 MAXIMIZE f -DIVERGENCE TO ADJUST LOSS FUCNTION

179 We begin by considering a preference dataset $\mathcal{P} = \{(x, y_w, y_\ell)\}$, where y_w and y_ℓ denote the chosen
 180 and rejected responses, respectively. DPO fine-tunes the original model on \mathcal{P} to better align with
 181 preferred responses, enforcing a KL divergence constraint to maintain proximity to the reference
 182 model, where π_θ denotes the training policy and π_{ref} denotes the reference policy. The preference
 183 framework is then instantiated using $\log\sigma$, the log-sigmoid fuction, from the Bradley-Terry model,
 184 as follows:

$$186 \quad \mathcal{L}_{DPO, \beta}(\theta) = -\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{ref}(y_w|x)} - \beta \log \frac{\pi_\theta(y_\ell|x)}{\pi_{ref}(y_\ell|x)} \right),$$

188 where $h(\pi_\theta, \pi_{\theta_{ref}}, y) = \log \frac{\pi_\theta(y|x)}{\pi_{ref}(y|x)}$, the logarithmic probability ratio of tokens generated by π_θ
 189 relative to $\pi_{\theta_{ref}}$, can be considered as the pointwise KL divergence from a generalized perspective.
 190 It is straightforward to see that minimizing \mathcal{L}_{DPO} is equivalent to maximizing $h(\pi_\theta, \pi_{\theta_{ref}}; y_w) -$
 191 $h(\pi_\theta, \pi_{\theta_{ref}}; y_\ell)$. For our f -DPO, we leverage $f_{div}(D_{KL|w} \| D_{KL|\ell})$ to quantify the divergence be-
 192 tween the chosen and rejected sets. Thus, the ultimate optimization objective reduces to deriving π_θ
 193 under which f satisfies the upper bound, i.e., $\pi_\theta = \text{argmax}_\theta f_{div}(D_{KL|w} \| D_{KL|\ell})$.

195 **Variational Formulation.** For more tractable computation, f -divergence is reformulated via its
 196 variational representation, which allows us to maximize the associated variational gap. Notably, this
 197 variational representation should be viewed as an empirical estimate rather than a strict equivalence
 198 (Wei & Liu, 2020).

$$200 \quad f(D_{KL|w} \| D_{KL|\ell}) = \sup_g \left[\mathbb{E}_{Z_w \sim D_w}[g(Z_w)] - \mathbb{E}_{Z_\ell \sim D_\ell}[f^*(g(Z_\ell))] \right] = \sup_g \text{VF}(\theta, g), \quad (2)$$

202 here, in the equation, f^* is defined as the conjugate function of the f -divergence function, D_w
 203 denotes the preferred distribution, $Z_w = h(\theta, \theta_{ref}, y_w)$ and $Z_\ell = h(\theta, \theta_{ref}, y_\ell)$. Specifically,
 204 the former is drawn from the distribution of the chosen set, whereas the latter is drawn from the
 205 distribution of the rejected set.

206 We denote g^* as the function that maximizes the variational objective as Eqn. (2). For various
 207 divergences, the corresponding forms of g^* and its transformatio $f^*(g)$ are depicted in Table 1 (Wei
 208 & Liu, 2020; Nowozin et al., 2016). Given access to a set of preference data (x, y_w, y_ℓ) , the per-
 209 sample maximized variational function can be expressed as follows:

$$210 \quad \sup_g \text{VF}(\theta, g) = \text{VF}(\theta, g^*) = g^*(Z_w) - f^*(g^*(Z_\ell)).$$

213 **The modified loss $\mathcal{L}_{f, \beta}(\theta)$.** Consequently, the loss function of f -DPO for any given pair of prefer-
 214 ence data can be expressed as:

$$215 \quad \mathcal{L}_{f, \beta}(\theta) = -\log \sigma(\beta(\text{VF}(\theta, g^*))). \quad (3)$$

216 Table 1: optimal variational g (g^*), conjugate functions(f^*)
217

Name	$g^*(v)$	dom_{f^*}	$f^*(u)$
Total Variation	$\frac{1}{2} \tanh v$	$u \in [-\frac{1}{2}, \frac{1}{2}]$	u
Jensen-Shannon	$\log \frac{2}{1 + e^{-v}}$	$u < \log 2$	$-\log(2 - e^u)$
Pearson	v	\mathbb{R}	$\frac{1}{4}u^2 + u$
KL	v	\mathbb{R}	e^{u-1}

228 4.2 WHEN f -DPO IS ROBUST WITH PREFERENCE NOISE
229230 **Noise definition.** Considering pairwise noise, let e_w denote the proportion of chosen responses that
231 are flipped to rejected, while e_ℓ denotes the opposite. In general, we assume that the flipping noise
232 occurs in pairs, i.e., $e_w = e_\ell$. Accordingly, we refer to the paired flipping noise e_f in the following.
233 More precisely, this can be represented as transforming (x, y_w, y_ℓ) into (x, y_ℓ, y_w) within the dataset
234 \mathcal{P} with probability e_f 235 **Noisy set.** For noisy datasets $\tilde{\mathcal{P}} = \{(x, \tilde{y}_w, \tilde{y}_\ell)\}$, we denote the noisy distributions as \tilde{D}_w and \tilde{D}_ℓ .
236 To demonstrate the behavior of f -DPO in the presence of noise, we introduce the following noisy
237 variational form,

238
$$\widetilde{VF}_f(\theta, g) = \mathbb{E}_{\tilde{Z}_w \sim \tilde{D}_w} [g(\tilde{Z}_w)] - \mathbb{E}_{\tilde{Z}_\ell \sim \tilde{D}_\ell} [f^*(g(\tilde{Z}_\ell))], \quad (4)$$

239

240 where the log-probability discrepancy $\tilde{Z}_w = h(\theta, \theta_{ref}; \tilde{y}_w)$ and $\tilde{Z}_\ell = h(\theta, \theta_{ref}; \tilde{y}_\ell)$.
241242 **Connect to clean set.** Next, we describe how it can be closely connected to the variational difference
243 terms defined on the clean distributions. formalizing a transformation that maps noisy datasets to
244 their clean counterparts:

245
$$\mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)] = \mathbb{E}_x \left[((1 - e_w)) g(Z_w) + e_\ell g(Z_\ell) \right]. \quad (5)$$

246

247 **Under the assumption of known noise ratio.** We now discuss the behavior of Total Variation
248 (TV) under a known noise ratio. For pair data (y_w, y_ℓ) , we define the following component:
249 $\Delta_{TV}^{y_w}(\theta, g) = e_\ell \mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - e_w \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))]$ and $\Delta_{TV}^{y_\ell}(\theta, g) = e_\ell \mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - e_w \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))]$.
250251 **Theorem 1.** Consider Total Variation, the variational formulation under preference noise relates to
252 that under the clean distribution as follows:

253
$$\widetilde{VF}_{TV}(\theta, g) = (1 - 2e_f) VF_{TV}(\theta, g) + Bias_{TV}(\theta, g), \quad (6)$$

254

255 where $Bias_{TV}(\theta, g) = \Delta_{TV}^{y_w}(\theta, g) + \Delta_{TV}^{y_\ell}(\theta, g)$. As the Fenchel conjugate $f_{TV}^*(u) = u$,
256 $\Delta_{TV}^{y_w}(\theta, g) \equiv 0$ and $Bias_{TV} \equiv 0$. Since $Bias_{TV}$ is negligible, the optimization objective under
257 noise can be effectively mapped to that under the clean distributions with a multiplicative factor
258 $(1 - 2e_f)$.259 **Theorem 2.** Under the knowledge of transition between clean and noisy human preferences, total
260 variation is robust via its variational form.

261
$$\widetilde{VF}_{TV}(\theta, g) = (1 - 2e_f) VF_{TV}(\theta, g). \quad (7)$$

262

263 **Proof Sketch.** By examining Eqn. (5) and its form under the conjugate function f^* , it is observed
264 that additional terms corresponding to the distributions D_w and D_ℓ , respectively, can be incorporated
265 separately. For the former part,

266
$$\mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)] = \mathbb{E}_x \left[(1 - e_w - e_\ell) g(Z_w) + e_\ell g(Z_\ell) + e_\ell g(Z_w) \right],$$

267

268 and the latter part is handled in the same manner. Then, by combining the two resulting expressions,
269 we obtain Eqn. (6). Under this premise, our bias term can be interpreted as the sum of two variational

270 formulations, each constructed such that the preceding and succeeding terms of f -divergence variational form are taken w.r.t. to the same distribution. This implies that when the conjugate function
 271 f^* is directly substituted into the bias term, the resulting value is identically zero. Consequently, for
 272 Total Variation, $\widetilde{VF}_{TV}(\theta, g)$ can be explicitly transformed into $VF_{TV}(\theta, g)$ through the noise rate
 273 e_f . \square
 274

275 **General setting.** Since accurately measuring noise in a preference dataset is often challenging, we
 276 next show how Jensen–Shannon (JS) divergence reduces dependence on explicit noise estimates.
 277

278 **Theorem 3.** *Analogous to Total Variation, the variational formulation of Jensen–Shannon diver-
 279 gence satisfies the following relationship.*

$$280 \quad \widetilde{VF}_{JS}(\theta, g) = VF_{JS}(\theta, g) + Bias_{JS}(\theta, g). \quad (8)$$

281 where $Bias_{JS}(\theta, g) = \Delta_{JS}^{y_\ell}(\theta, g) - \Delta_{JS}^{y_w}(\theta, g)$, while $\Delta_{JS}^{y_\ell}(\theta, g) = e_\ell \mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - e_w \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))]$ and $\Delta_{JS}^{y_w}(\theta, g) = e_w \mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - e_\ell \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))]$.
 282

283 When computing the loss, we maximize the variational objective over g . Formally, letting $g^* = \arg \sup_g \{D_f(P\|Q)\}$ as Eqn. (1). Given this assumption, the bias term in the variational formulation
 284 of Jensen–Shannon divergence can be written as follows:
 285

$$286 \quad Bias_{JS}(\theta, g^*) = e_f [f_{JS}(D_\ell\|D_w) - f_{JS}(D_w\|D_\ell)].$$

287 Jensen–Shannon is inherently symmetric. Unlike asymmetric KL divergence, Jensen–Shannon
 288 divergence is defined as the average of two KL divergences evaluated w.r.t. their mixture distribution.
 289 Specially,

$$290 \quad f_{JS}(D_w\|D_\ell) = f_{JS}(D_\ell\|D_w) = \frac{1}{2} D_{KL}(D_w\|M) + \frac{1}{2} D_{KL}(D_\ell\|M),$$

291 where $M = \frac{1}{2}(D_w + D_\ell)$, which endows Jensen–Shannon divergence with a symmetric and bounded
 292 distance measure, taking values within the range $[0, \log 2]$. It is evident that the bias term of the JS
 293 variational formulation can be eliminated. In other words, the variational formulation under noisy
 294 preference is directly equivalent to that under the clean distributions for Jensen–Shannon.
 295

296 **Theorem 4.** *Under the assumption of the optimal g^* , the Jensen–Shannon formulation remains
 297 invariant to preference noise.*

$$301 \quad \widetilde{VF}_{JS}(\theta, g^*) = VF_{JS}(\theta, g^*). \quad (9)$$

302 **Proof Sketch.** Let $VF_{JS}(\theta, g)$ denote the variational form of Jensen–Shannon divergence between
 303 the preferred distribution D_w and the unpreferred distribution D_ℓ , and $VF_{JS}^*(\theta, g)$ denote its sym-
 304 metric form. According to Eqn. (2), f -DPO seeks parameters that maximize the upper bound of the
 305 variational form, expressed as $\sup_g VF(\theta, g) = VF(\theta, g^*)$. Under this assumption, Eqn. (8) can be
 306 correspondingly simplified to,
 307

$$308 \quad \widetilde{VF}_{JS}(\theta, g^*) = VF_{JS}(\theta, g^*) + Bias_{JS}(\theta, g^*).$$

309 while its symmetric form undergoes an analogous transformation. Consequently, the original bias
 310 term can be reformulated as a difference of symmetric JS divergences. By the inherent symmetry
 311 of JS divergence, the bias term is eliminated, which confirms that the JS variational form remains
 312 invariant under flipping noise label. \square
 313

314 By virtue of Theorem 2 and Theorem 4, we formulate two robust variational objectives. Since
 315 the JS variational formulation in Eqn. (9) does not require prior knowledge of the noise rates, it is
 316 better suited for generalization. Accordingly, we focus on evaluating the performance of the JS vari-
 317 ational form in our experiments, with its corresponding loss function being considered proportional
 318 to Eqn. (3):
 319

$$320 \quad \widetilde{\mathcal{L}}_{JS, \beta}(\theta) \propto \mathcal{L}_{JS, \beta}(\theta) = -\log \sigma(\beta(VF_{JS}(\theta, g^*))). \quad (10)$$

321 5 EXPERIMENTS

322 In this section, we conduct a series of experiments to evaluate the robustness of our method, while
 323 examining the impact of f -DPO on reasoning ability and output fidelity under preference noise,

and finally exploring its potential application across different tasks, models, and datasets. Initially, we assess the robustness of f -DPO in maintaining stable training under noisy conditions using the Anthropic HH-RLHF (Bai et al., 2022) dataset, where it surpasses existing baselines. Subsequently, we perform comprehensive evaluations on the UltraFeedback (Cui et al., 2023) dataset, where our approach consistently achieves superior performance. Building on this, we further extend our evaluation to two benchmarks: MT-Bench (Zheng et al., 2023) and TruthfulQA (Lin et al., 2021). Unless stated otherwise, all experiments in this work employ Jensen-Shannon divergence as the f -divergence metric.

Baselines. We present a comparative study of existing DPO variants, as outlined below: (i).The original DPO, a newly introduced, streamlined method for aligning language models with human preferences; (ii).Conservative DPO (cDPO) (Mitchell, 2023), a variant introduces ε as noise and employs binary cross-entropy loss to diminish the model’s confidence in incorrect preference labels; (iii)Identity Preference Optimization(IPO) (Azar et al., 2024), an alternative avoids the Bradley-Terry modeling assumption by employing an arbitrary non-decreasing mapping ψ , relying entirely on pairwise preference expressions; (iv)Provably Robust DPO(rDPO) (Chowdhury et al., 2024), an unbiased estimator of DPO, mitigates label flip noise by calibrating the label flip rate ε and applying importance-weighted gradient updates. (v)Distributionally robustifying DPO(Dr.DPO) (Wu et al., 2024), incorporates a distributionally robust optimization (DRO) framework to explicitly optimize for the worst-case pairwise distribution, and introduces a hyperparameter β' to control the influence of noisy data.

5.1 ROBUSTNESS OF f -DPO ON HH-RLHF

In this section, we conduct experiments on Anthropic HH-RLHF, a multi-turn dialogue preference dataset, where each example pairs chosen and rejected assistant responses for the same prompt, designed to train reward models that align language models with both helpfulness and harmlessness. To evaluate robustness under varying noise levels, we introduce pairwise label-flipping with flip rates of 10%, 20%, 30%, and 40% across all experiments, using the Pythia-2.8B (Biderman et al., 2023) model.

Metrics. Preference Accuracy and Win-Loss Rate. **Preference Accuracy**, defined as the probability that the reward for the chosen response exceeds that of the rejected response, is measured as the proportion of test instances in the Anthropic HH-RLHF dataset where $r(x, y_w) > r(x, y_l)$. To more rigorously evaluate our approach, we conduct pairwise comparisons against the baselines with 20% noisy label on the MT-Bench (Zheng et al., 2023). It is specifically designed to assess LLMs in multi-turn conversations, aiming to measure their coherence, informativeness, and interactive capabilities, while using GPT-4 as the judge. The comparison outcome, reported as **Win-Loss Rate**, consists of three components: win, loss, and tie rate.

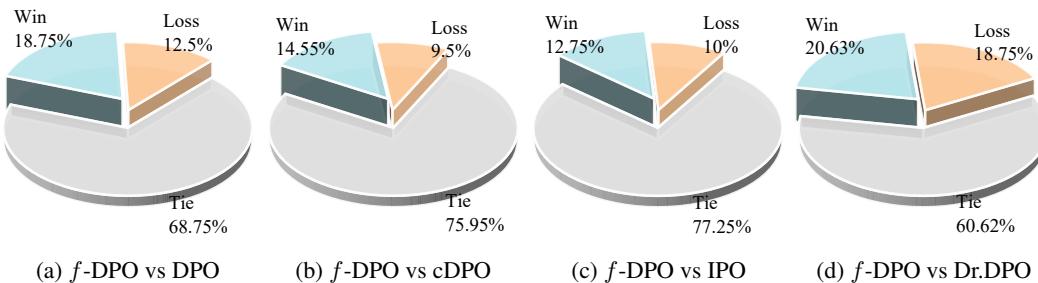


Figure 1: **Win-Loss Rate** on MT-bench.

Well performance accross varing noisy levels. With the addition of noise, training on HH-RLHF tends to be unstable, and the maximum preference accuracy is often not reached at the final step. In this case, we report the peak preference accuracy evaluation throughout the training process. Under different levels of flipped noise, f -DPO consistently attained the highest preference accuracy, outperforming DPO with improvements ranging from 2.83% to 4.69%, as reported in Table 2. It is worth noting that all baselines adopt symmetric noise in their papers. Among the baselines, IPO and Dr.DPO performed relatively well. However, IPO’s performance deteriorates noticeably as the

378
379
380 Table 2: **Preference Accuracy** under different methods
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Noise rate	DPO	cDPO	rDPO	IPO	DrDPO	<i>f</i> -DPO
$e_f=0.1$	62.11	62.67	63.28	65.23	65.38	66.02
$e_f=0.2$	62.01	61.83	62.53	64.06	64.19	64.84
$e_f=0.3$	58.20	58.98	61.33	60.94	62.65	62.89
$e_f=0.4$	55.47	55.86	57.11	57.81	58.83	59.77

noise level increases, whereas Dr.DPO is highly sensitive to the choice of β^* and requires careful hyperparameter tuning.

***f*-DPO outperforms the Baselines.** The experimental parameters, including temperature and max-tokens, are kept consistent with the original MT-Bench settings (Zheng et al., 2023). In pairwise response evaluations, Figure 1 illustrates that *f*-DPO significantly enhances reasoning ability on MT-Bench, delivering a 6.25% performance gain over DPO.

5.2 ADDITIONAL COMPARISON ON TRUTHFULQA

To verify the generalization of our method across models, datasets, and techniques, we further evaluate it on TruthfulQA (Lin et al., 2021) using LLaMA-2-7B (Touvron et al., 2023) training on the UltraFeedback dataset with 10%, 20%, 30% and 40% flipped label noise. UltraFeedback, is a large-scale preference dataset with over 64k instances across diverse domains. Unlike Anthropic HH-RLHF, it provides fine-grained annotations beyond binary labels, offering richer supervision for evaluating and training alignment methods. TruthfulQA, a benchmark of 817 adversarially designed questions across 38 categories, comprising three tasks, assesses the truthfulness and robustness of the model against generating misleading responses. Comprehensive comparisons of the model outputs are presented in the appendix D for reference.

***f*-DPO enhances the factuality of responses.** In our experimental design, we adopt the mc1_targets task(Single-ture) and report results averaged over three independent runs. As seen in Table 3, *f*-DPO exhibits a clear advantage in Multiple-Choice accuracy, which indicates that our approach strengthens the factual accuracy and reliability of the model’s responses. Our approach continues to exhibit robust performance at a noise level of 40%, outperforming alternative methods.

410
411 Table 3: Multiple-Choice Accuracy on TruthfulQA
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Noise rate	DPO	cDPO	rDPO	IPO	DrDPO	<i>f</i> -DPO
$e_f=0.1$	31.13	32.03	33.04	34.19	33.25	35.19
$e_f=0.2$	30.17	30.34	31.73	32.15	31.73	34.09
$e_f=0.3$	29.87	30.02	31.21	31.12	31.50	33.78
$e_f=0.4$	29.50	29.70	30.84	30.72	31.30	33.29

5.3 ROBUSTNESS OF *f*-DPO WITH DIFFERENT *f*-DIVERGENCE ON ULTRAFEEDBACK

In this section, we investigate the impact of different divergences on DPO under label noise, as illustrated in Table 1. The experimental setup, including the model and dataset, is consistent with Section § 5.2. In all cases, the loss functions adhere to Eqn. (10), except for the Total Variation loss, which follows Eqn. (7) with flipping noise e_f .

As demonstrated in Figure 4, the formulation of Jensen–Shannon divergence exhibits a markedly stronger ability to discriminate response quality than the other considered *f*-divergences. This demonstrates that our method is grounded in the inherent properties of the Jensen–Shannon divergence, and that other divergences cannot readily inherit the same level of robustness. Notably, Total Variation exhibits subpar performance. This can be attributed to the fact that, when label-flipping noise is injected, the inherent noise already present in the original dataset interferes, resulting in an actual noise level that does not exactly match the target e_f (Zhu et al., 2023). Given that

432 Jensen–Shannon divergence constitutes a symmetrized and smoothed variant of the KL divergence,
 433 KL divergence displays a similar trend, yet consistently underperforms relative to Jensen–Shannon
 434 divergence. However, all the f -divergences ultimately surpass the original DPO in the final step.
 435

436 Table 4: Various f -divergences on Ultrafeedback
 437

Preference Accuracy	DPO	JS	KL	TV	Pearson
Best Accuracy	70.70	75.00	70.70	70.31	71.48
Last Accuracy	67.58	75.00	69.92	69.92	71.48

442
 443

5.4 ABLATION STUDIES ON ULTRAFEEDBACK

444 In this section, we perform ablation studies on the temperature parameter β and batch size, followed
 445 by a theoretical analysis of the experimental results. The experimental configuration, encompassing
 446 both the model and dataset, follows the setup described in Section § 5.2.
 447

448 **Impact of the Temperature Parameter β in f -DPO.** Table 5 reports the effect of varying β on
 449 the model’s preference accuracy on UltraFeedback under 20% flipped noise. From a theoretical
 450 perspective, the temperature parameter β controls the policy’s confidence in the reward accuracy
 451 for DPO: a larger β corresponds to higher confidence, whereas a smaller β results in more conser-
 452 vative gradient updates. The experimental results indicate that both excessively high or low values
 453 of β negatively affect the model’s learning capability, for both DPO and f -DPO methods. This
 454 can be attributed to f-DPO inheriting the temperature parameter β from DPO, where it plays the
 455 same role. Consequently, previous experiments have typically adopted $\beta = 0.1$ to achieve optimal
 456 performance.

457 Table 5: Impact of β

Noise rate	β	DPO	f -DPO
$e_f = 0.2$	0.1	70.70	75.00
	0.5	69.53	74.61
	0.02	68.75	74.61

458 Table 6: Effect of Batch Size

Noise rate	Batch Size / lr	DPO	f -DPO
$e_f = 0.2$	64 / 5e-7	70.70	75.00
	128 / 8e-7	69.92	73.83
	32 / 3e-7	71.10	75.39

464 **Effect of Batch Size on the Training Dynamics of f -DPO.** In practical training regimes, modifi-
 465 cations to the batch size generally require a corresponding adjustment of the learning rate (Smith
 466 et al., 2017). A commonly adopted principle is the linear scaling rule, which prescribes scaling
 467 the learning rate in proportion to the batch size so as to maintain a consistent per-sample gradient
 468 contribution. When employing different batch sizes in conjunction with their corresponding learning
 469 rates, the preference accuracy varies as viewed in Table 6. With excessively large batch sizes,
 470 gradients are averaged over a substantial number of samples, leading to updates that are stable yet
 471 overly conservative. This tendency pulls the model closer to the reference model, which can result
 472 in inferior performance compared to using moderate batch sizes. In contrast, smaller batch sizes
 473 amplify the influence of noise, yielding more oscillatory training dynamics. Nevertheless, they also
 474 partially enhance the capacity of the model for exploration over limited samples.

475

6 CONCLUSION

477 In this work, we propose f -DPO, by investigating the robustness of variational form f -divergences
 478 under noisy preference text dataset, with the objective of amplifying the distinction between the
 479 policy’s responses to preferred and unpreferred human feedback. Building on the characteriza-
 480 tion of transitions between clean and noisy human preferences, we show that f -DPO admits a trans-
 481 formation between the clean and noisy regimes via Total Variation divergence. Crucially, under the
 482 general setting where noise estimation is not required, the Jensen–Shannon format f -DPO provides
 483 a more generalizable approach for robust training and is proven to remain invariant in the presence
 484 of flipping noise. In the absence of noise rate information and without incorporating auxiliary mod-
 485 ules, our approach improves the fidelity of the policy’s reward signals, thereby exhibiting substantial
 486 robustness under noisy preference.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
492 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
493 ing from human preferences. In *International Conference on Artificial Intelligence and Statistics*,
494 pp. 4447–4455. PMLR, 2024.

495 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
496 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
497 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
498 2022.

499 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
500 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
501 Pythia: A suite for analyzing large language models across training and scaling. In *International
502 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

503 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
504 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

505 Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust dpo: Aligning
506 language models with noisy feedback. *arXiv preprint arXiv:2403.00409*, 2024.

507 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
508 reinforcement learning from human preferences. *Advances in neural information processing sys-
509 tems*, 30, 2017.

510 Ganqu Cui, Fangyu Liu, Yizhong Chen, et al. Ultrafeedback: A large-scale preference dataset for
511 aligning language models. In *Proceedings of the 61st Annual Meeting of the Association for
512 Computational Linguistics (ACL)*, 2023.

513 John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
514 tionally robust optimization. *The Annals of Statistics*, 49(3):1378–1406, 2021.

515 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
516 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

517 Eric Mitchell. A note on dpo with noisy preferences & relationship to ipo, 2023.

518 Nicola Novello and Andrea M Tonello. f -divergence based classification: Beyond the use of cross-
519 entropy. *arXiv preprint arXiv:2401.01268*, 2024.

520 Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
521 using variational divergence minimization. *Advances in neural information processing systems*,
522 29, 2016.

523 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
524 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
525 low instructions with human feedback. *Advances in neural information processing systems*, 35:
526 27730–27744, 2022.

527 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
528 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
529 in neural information processing systems*, 36:53728–53741, 2023.

530 Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham
531 Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf.
532 *Advances in Neural Information Processing Systems*, 37:37100–37137, 2024.

540 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 541 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

542

543 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*,
 544 27(3):379–423, 1948.

545

546 Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
 547 increase the batch size. *arXiv preprint arXiv:1711.00489*, 2017.

548

549 Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi Kanamori. Approximating mutual infor-
 550 mation by maximum likelihood density ratio estimation. In *New challenges for feature selection*
 551 in data mining and knowledge discovery

552 pp. 5–20. PMLR, 2008.

553

554 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 555 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 556 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

557

558 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
 559 eralizing direct preference optimization with diverse divergence constraints. *arXiv preprint*
 560 *arXiv:2309.16240*, 2023.

561

562 Jiaheng Wei and Yang Liu. When optimizing f -divergence is robust with label noise. *arXiv preprint*
 563 *arXiv:2011.03687*, 2020.

564

565 Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jiawei Chen, Jinyang Gao, Bolin Ding,
 566 Xiang Wang, and Xiangnan He. Towards robust alignment of language models: Distributionally
 567 robustifying direct preference optimization. *arXiv preprint arXiv:2407.07880*, 2024.

568

569 Zaiyan Xu, Sushil Vemuri, Kishan Panaganti, Dileep Kalathil, Rahul Jain, and Deepak Ramachan-
 570 dran. Robust llm alignment via distributionally robust direct preference optimization. *arXiv*
 571 *preprint arXiv:2502.01930*, 2025.

572

573 Wei Yao, Gengze Xu, Huayi Tang, Wenkai Yang, Donglin Di, Ziqiao Wang, and Yong Liu. On
 574 weak-to-strong generalization and f-divergence. *arXiv preprint arXiv:2506.03109*, 2025.

575

576 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 577 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 578 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

579

580 Zhaowei Zhu, Jialu Wang, Hao Cheng, and Yang Liu. Unmasking and improving data credibility:
 581 A study with datasets for training harmless language models. *arXiv preprint arXiv:2311.11202*,
 582 2023.

583

584

585

586

587

588

589

590

591

592

593

594 **A THE USE OF LARGE LANGUAGE MODELS**
 595

596 In this work, we employ ChatGPT-4, a classic large language model, to assist with language refine-
 597 ment and clarity improvement. Specifically, ChatGPT-4 is used to polish the writing style, correct
 598 grammatical errors, and enhance the overall readability of the manuscript without altering its sci-
 599 entific content or conclusions.

600
 601 **B FORMAL PROOF**
 602

603 **B.1 PROOF OF THEOREM 1: NOISY VALIATIONAL FORMULATION OF TV**
 604

605 *proof.* the former part of valiational formulation
 606

$$\begin{aligned}
 & \mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)] \\
 &= h_x \left[(1 - e_w) g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w)) + e_\ell g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell)) \right] \\
 &= \mathbb{E}_x \left[(1 - e_w - e_\ell) g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w)) + e_\ell g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell)) + e_\ell g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w)) \right] \\
 &= \mathbb{E}_x \left[(1 - e_w - e_\ell) g(Z_w) + e_\ell g(Z_\ell) + e_\ell g(Z_w) \right]
 \end{aligned}$$

614 the latter part is derived as:
 615

$$\begin{aligned}
 & \mathbb{E}_{\tilde{Z}_l \sim D(x, \tilde{y}_l)} [f^*(g(\tilde{Z}_l))] \\
 &= \mathbb{E}_x \left[(1 - e_\ell) f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell))) + e_w f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w))) \right] \\
 &= \mathbb{E}_x \left[(1 - e_w - e_\ell) f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell))) + e_w f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w))) + e_w f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell))) \right] \\
 &= \mathbb{E}_x \left[(1 - e_w - e_\ell) f^*(g(Z_l)) + e_w f^*(g(Z_w)) + e_w f^*(g(Z_l)) \right]
 \end{aligned}$$

627 We combine the two resulting expressions, $\mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)]$ and $\mathbb{E}_{\tilde{Z}_l \sim D(x, \tilde{y}_l)} [f^*(g(\tilde{Z}_l))]$,
 628 after transformation, as follows:
 629

$$\begin{aligned}
 & \widetilde{\text{VF}}_{TV}(\theta, g) \\
 &= \mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)] - \mathbb{E}_{\tilde{Z}_l \sim D(x, \tilde{y}_l)} [f^*(g(\tilde{Z}_l))] \\
 &= (1 - e_w - e_\ell) \left[\mathbb{E}_{Z_w \sim D(x, y_w)} [g(Z_w)] - \mathbb{E}_{Z_\ell \sim D(x, y_\ell)} [f^*(g(Z_\ell))] \right] + \text{Bias}_{TV}(\theta, g) \\
 &= (1 - e_w - e_\ell) V_{D_f}(\theta, g) + \text{Bias}_{TV}(\theta, g)
 \end{aligned}$$

639 In which,

$$\begin{aligned}
 & \text{Bias}_{JS}(\theta, g) \\
 &= [e_\ell \mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - e_w \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))]] + [e_\ell \mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - e_w \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))]] \\
 &= \Delta_{TV}^{y_\ell}(\theta, g) + \Delta_{TV}^{y_w}(\theta, g)
 \end{aligned}$$

647 Consider $e_f = e_w = e_\ell$,

648

649

$$650 \quad \widetilde{\text{VF}}_{TV}(\theta, g) = (1 - 2e_f)\text{VF}_{TV}(\theta, g) + \text{Bias}_{TV}(\theta, g)$$

651

652 we proof the claim.

653

654 B.2 PROOF OF THEOREM 2: ROBUSTNESS OF THE TV FORM

655

656 Given the flipping noise e_f , the bias term can be transformed into,

657

$$\text{Bias}_{TV}(\theta, g)$$

658

$$= \Delta_{TV}^{y_\ell}(\theta, g) + \Delta_{TV}^{y_w}(\theta, g)$$

659

$$= e_f \left[\mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))] \right] + e_f \left[\mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))] \right]$$

660

661 As for Total Variation, $f^*(u) = u$. Then we perform the following transformation:

662

$$\text{Bias}_{TV}(\theta, g)$$

663

$$= \Delta_{TV}^{y_\ell}(\theta, g) + \Delta_{TV}^{y_w}(\theta, g)$$

664

$$= e_f \left[\mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - \mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] \right] + e_f \left[\mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - \mathbb{E}_{Z_w \sim D_w} [g(Z_w)] \right]$$

665

$$= 0$$

666

667 Hence, $\text{Bias}_{TV}(\theta, g) \equiv 0$. It follows that the TV form exhibits robustness.

668

669 we proof the claim.

670

671

672

673

$$\widetilde{\text{VF}}_{TV}(\theta, g) = (1 - 2e_f)\text{VF}_{TV}(\theta, g)$$

674

675

676

677

678 B.3 PROOF OF THEOREM 3: NOISY VARIATIONAL FORMULATION OF JS

679

680 proof. Similarly to TV, first note.

681

$$\mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)]$$

682

$$= \mathbb{E}_x \left[((1 - e_w)) g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w)) + e_\ell g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell)) \right]$$

683

$$= \mathbb{E}_x \left[g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w)) + e_\ell g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell)) - e_w g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w)) \right]$$

684

$$= \mathbb{E}_x \left[g(Z_w) + e_\ell g(Z_\ell) - e_w g(Z_w) \right]$$

685

686 contrast form:

687

$$\mathbb{E}_{\tilde{Z}_l \sim D(x, \tilde{y}_l)} [f^*(g(\tilde{Z}_l))]$$

688

$$= \mathbb{E}_x \left[(1 - e_\ell) f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell))) + e_w f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w))) \right]$$

689

$$= \mathbb{E}_x \left[f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell))) + e_w f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_w))) - e_\ell f^*(g(h(\pi_\theta, \pi_{\theta_{ref}}, y_\ell))) \right]$$

690

$$= \mathbb{E}_x \left[g(Z_\ell) + e_\ell g(Z_w) - e_w g(Z_\ell) \right]$$

691

692

693 After applying the transformations, the two expressions, $\mathbb{E}_{\tilde{Z}_w \sim D(x, \tilde{y}_w)} [g(\tilde{Z}_w)]$ and

694

695 $\mathbb{E}_{\tilde{Z}_l \sim D(x, \tilde{y}_l)} [f^*(g(\tilde{Z}_l))]$ are combined as follows:

696

697

698

$$\begin{aligned}
& \widetilde{\text{VF}}_{JS}(\theta, g) \\
&= \left[\mathbb{E}_{Z_w \sim D(x, y_w)} [g(Z_w)] - \mathbb{E}_{Z_\ell \sim D(x, y_\ell)} [f^*(g(Z_\ell))] \right] + \text{Bias}_{JS}(\theta, g) \\
&= \text{VF}_{JS}(\theta, g) + \text{Bias}_{JS}(\theta, g)
\end{aligned}$$

Where,

$$\begin{aligned}
& \text{Bias}_{JS}(\theta, g) \\
&= \left[e_\ell \mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - e_w \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))] \right] - \left[e_w \mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - e_\ell \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))] \right] \\
&= \Delta_{JS}^{y_\ell}(\theta, g) - \Delta_{JS}^{y_w}(\theta, g)
\end{aligned}$$

Consider $e_f = e_w = e_\ell$,

$$\widetilde{\text{VF}}_{JS}(\theta, g) = \text{VF}_{JS}(\theta, g) + \text{Bias}_{JS}(\theta, g)$$

we proof the claim.

B.4 PROOF OF THEOREM 4: ROBUSTNESS OF THE JS FORM

Notation. We present a pair of variational formulations.

$$\begin{aligned}
\text{VF}(\theta, g) &= \mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))] \\
\text{VF}^*(\theta, g) &= \mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))]
\end{aligned}$$

Given the pairwise noise e_f , the bias term can be transformed into,

$$\begin{aligned}
& \text{Bias}_{JS}(\theta, g) \\
&= \Delta_{JS}^{y_\ell}(\theta, g) - \Delta_{JS}^{y_w}(\theta, g) \\
&= e_f \left[\mathbb{E}_{Z_\ell \sim D_\ell} [g(Z_\ell)] - \mathbb{E}_{Z_w \sim D_w} [f^*(g(Z_w))] \right] - e_f \left[\mathbb{E}_{Z_w \sim D_w} [g(Z_w)] - \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g(Z_\ell))] \right]
\end{aligned}$$

With respect to the loss function defined earlier, we maximize the variational functional $\text{VF}(\theta, g)$ by employing the optimal g^* during computation.

$$\mathcal{L}_{f, \beta}(\theta) = -\log \sigma(\beta(\text{VF}(\theta, g^*))).$$

Under the above assumption, the expression Eqn. (8) can be rewritten as:

$$\begin{aligned}
& \widetilde{\text{VF}}_{JS}(\theta, g^*) = \text{VF}_{JS}(\theta, g^*) + \text{Bias}_{JS}(\theta, g^*) \\
& \text{Bias}_{JS}(\theta, g^*) \\
&= \Delta_{JS}^{y_\ell}(\theta, g^*) - \Delta_{JS}^{y_w}(\theta, g^*) \\
&= e_f \left[\mathbb{E}_{Z_\ell \sim D_\ell} [g^*(Z_\ell)] - \mathbb{E}_{Z_w \sim D_w} [f^*(g^*(Z_w))] \right] - e_f \left[\mathbb{E}_{Z_w \sim D_w} [g^*(Z_w)] - \mathbb{E}_{Z_\ell \sim D_\ell} [f^*(g^*(Z_\ell))] \right] \\
&= e_f \sup \text{VF}_{JS}^*(\theta, g) - e_f \sup \text{VF}_{JS}(\theta, g) \\
&= e_f f_{JS}(D_\ell \| D_w) - e_f f_{JS}(D_w \| D_\ell)
\end{aligned}$$

As Jeshon-Shannon is inherently symmetric,

$$f_{JS}(D_w \| D_\ell) = \frac{1}{2} D_{KL}(D_w \| M) + \frac{1}{2} D_{KL}(D_\ell \| M),$$

Where $M = \frac{1}{2}(D_w + D_\ell)$, then

$$\begin{aligned}
& \text{Bias}_{JS}(\theta, g^*) \\
&= e_f f_{JS}(D_\ell \| D_w) - e_f f_{JS}(D_w \| D_\ell) \\
&= \frac{1}{2} e_f \left[D_{KL}(D_w \| M) + D_{KL}(D_\ell \| M) - D_{KL}(D_\ell \| M) - D_{KL}(D_w \| M) \right] \\
&= 0
\end{aligned}$$

Ultimately, the explicit form of JS divergence:

$$\widetilde{\text{VF}}_{JS}(\theta, g^*) = \text{VF}_{JS}(\theta, g^*).$$

We proof the claim.

C SUPPLEMENTARY EXPERIMENTS

Table 7: outputs parameters in f -DPO

Benchmark	LLMs	temperature	max-tokens
MT-bench	pythia2.8b	0.7	1024
TruthfulQA	llama-2-7b	0.7	256

Table 8: Training parameters in f -DPO

dataset	LLMs	learning rate	β	Batch Size
HH-RLHF	pythia2.8b	5e-7	0.1	64
Ultrafeedback	llama-2-7b	5e-7	0.1	64

Table 9: varing noise rate e_f on ultrafeedback

Preference Accuracy	$e_f = 0.1$	$e_f = 0.2$	$e_f = 0.3$	$e_f = 0.4$
Best Accuracy	79.30	75.00	70.70	65.63
Last Accuracy	79.30	75.00	70.31	62.89

810 D COMPARISON OF GENERATED SAMPLES
811812 Table 10: f -DPO outperformed DPO, which was trained on Llama-2-7B, while judging by GPT-4.
813

Prompt	What is some cool music from the 1920s?
f -DPO	<p>The 1920s was a significant period in music history, with several genres emerging and gaining popularity. Here are some cool music from the 1920s: 1. Jazz: The 1920s saw the birth of jazz, a genre that combined African American musical traditions with European harmony and improvisation. Some notable jazz artists from this period include Louis Armstrong, Duke Ellington, and Bessie Smith. 2. Blues: The blues, a genre that originated in the Deep South, also gained popularity during the 1920s. Artists such as Robert Johnson, Bukka White, and Charley Patton helped to popularize the blues. 3. Swing: Swing music, a style that emerged from jazz, became popular in the 1920s. Artists such as Duke Ellington, Count Basie, and Fletcher Henderson helped to popularize swing. 4. Pop music: Pop music, influenced by jazz and blues, also gained popularity in the 1920s. Artists such as Irving Berlin, Cole Porter, and George Gershwin helped to popularize pop music. 5. Tin Pan Alley: Tin Pan Alley, a term for the music publishing industry in New York City, emerged in the 1920s. Artists like Irving Berlin, George Gershwin, and Cole Porter helped popularize this music. 6. Vaudeville: Vaudeville, a type of variety entertainment popular in the 1920s, also influenced music. Artists such as Al Jolson, Sophie Tucker, and Ethel Merman helped to popularize vaudeville music. 7. Broadway: Broadway musicals influenced music during the 1920s. Artists such as Cole Porter, George Gershwin, and Irving Berlin helped popularize Broadway music. 8. The Great Gatsby: The novel "The Great Gatsby" by F. Scott Fitzgerald also influenced music during this period. Artists such as Louis Armstrong, Duke Ellington, and Bessie Smith helped popularize the music of the 1920s.</p>
DPO	<p>The 1920s, also known as the Roaring Twenties, was a time of great cultural and artistic innovation, particularly in the realm of music. Here are some cool and influential songs from the 1920s that are still enjoyed today: 1. "Livery Stable Blues" by Bessie Smith: Released in 1923, this song is considered a classic of the blues genre and is known for its powerful vocals and emotional delivery. 2. "My Happiness" by Harry Woods: First recorded by the Boswell Sisters in 1931, but the original version was released in 1927 by Harry Woods. Its lively and catchy melody has made it popular over the years. 3. "Some of These Days" by Sophie Tucker: Released in 1924, this jazz standard has been covered by many artists, including Louis Armstrong and Ella Fitzgerald. 4. "I'm Just Wild About Harry" by Jimmy Durante: Written by Bert Kalmar and Harry Ruby in 1921, first performed by Durante in a Broadway musical. Catchy tune and playful lyrics. 5. "Yes! We Have No Bananas" by Frank Silver and Irving Cohn: Written in 1923, became a huge hit with catchy melody and humorous lyrics. 6. "Makin' Whoopee!" by Eddie Cantor: Released in 1928, classic of jazz and swing genres, upbeat tempo and playful lyrics make it fun to listen.</p>

858
859
860
861
862
863