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ABSTRACT

The widespread usage of generative AI models raises concerns regarding fair-
ness and potential discriminatory outcomes. In this work, we define the bias of
an attribute (e.g., gender or race) as the difference between the probability of its
presence in the observed distribution and its expected proportion in an ideal ref-
erence distribution. Despite efforts to study social biases in these models, the
origin of biases in generation remains unclear. Many components in generative
AI models may contribute to biases. This study focuses on the inductive bias of
unconditional generative models, one of the core components, in image genera-
tion tasks. We propose a standardized bias evaluation framework to study bias
shift between training and generated data distributions. We train unconditional
image generative models on the training set and generate images unconditionally.
To obtain attribute labels for generated images, we train a classifier using ground
truth labels. We compare the bias of given attributes between generation and data
distribution using classifier-predicted labels. This absolute difference is named
bias shift. Our experiments reveal that biases are indeed shifted in image gener-
ative models. Different attributes exhibit varying bias shifts’ sensitivity towards
distribution shifts. We propose a taxonomy categorizing attributes as subjective
(high sensitivity) or non-subjective (low sensitivity), based on whether the clas-
sifier’s decision boundary falls within a high-density region. We demonstrate an
inconsistency between conventional image generation metrics and observed bias
shifts. Finally, we compare diffusion models of different sizes with Generative
Adversarial Networks (GANs), highlighting the superiority of diffusion models in
terms of reduced bias shifts.

1 INTRODUCTION

Generative AI models have achieved realistic generation qualities for various modalities including
text (Touvron et al., 2023; OpenAI, 2023), image (Ramesh et al., 2022; Rombach et al., 2022; Esser
et al., 2024), audio (Kreuk et al., 2023), and video (Ho et al., 2022; Singer et al., 2023). They
are consequently employed for commercial uses and are available to every internet user across the
world. The widespread use of these high-performing models, along with the potential social biases
embedded in their generation, increase the risk of discriminatory outcomes. Taking image genera-
tion as an example, Growcoot (2023) and Tiku et al. (2023) report racial and gender biases in popular
text-to-image (T2I) systems including DALL-E (Ramesh et al., 2021), Stable Diffusion (Rombach
et al., 2022) and Midjourney (https://www.midjourney.com).

We define the bias of an attribute (e.g., gender or race) as the difference between the probability of its
presence in the observed distribution and its expected proportion in an ideal reference distribution.
The ideal reference distribution may be based on social norms or population statistics, etc. A widely
studied problem is gender or racial bias with respect to occupations (Cho et al., 2023; Bianchi et al.,
2023; Luccioni et al., 2023; Friedrich et al., 2024). Depending on the context, previous works
use equality or U.S. labor statistics as the ideal reference distribution. In these cases, the typical
analysis protocol consists of generating facial images based on text prompts containing occupation
information, using pre-trained models to assign gender or racial labels for the generated images,
followed by measuring and assessing the degree of biases in the images given a certain occupation.
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Figure 1: Illustrations depicting bias shift. The plots represent the distributions of samples with
respect to the likelihood of an attribute (solid for training data, dashed for generation). The decision
boundary (brown) binarizes the likelihood into positive and negative classes. In each subfigure, the
generation distribution is translated from the training. Bias shift is the difference between red and
blue areas. When the boundary falls in a low-density region (Figs. 1c and 1d), the bias shifts tend to
be small, and vice versa (Figs. 1a and 1b). Detailed discussion is in Section 4.4 with distributions
obtained from real datasets.

Other studies have compared social biases between generated images and training datasets of gen-
erative AI models, with mixed findings. Friedrich et al. (2024) report that images generated by
Stable Diffusion (Rombach et al., 2022) show cases of bias and even bias amplification compared to
the training data (LAION-5B) (Schuhmann et al., 2022). On the other hand, Seshadri et al. (2023)
conduct similar experiments and discover that bias shift can be mainly attributed to discrepancies
between training captions and model prompts.

Although analyzing biases empirically in publicly available generative AI models is of practical sig-
nificance, identifying the origin of these biases remains a challenge. Modern generative AI systems
are complex and generative biases can stem from various sources, such as biased datasets (Schuh-
mann et al., 2022; Karkkainen & Joo, 2021), the conditioning process (including textual prompts,
and guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022)), pre-trained modules (including
CLIP (Radford et al., 2021) and VAE (Kingma & Welling, 2014)), and inductive bias of the gener-
ative models (e.g., diffusion process (Ho et al., 2020), generative adversarial training (Goodfellow
et al., 2014)). While biases in pre-trained models (Bommasani et al., 2021; Alabdulmohsin et al.,
2024) and datasets (Schuhmann et al., 2022) have been widely studied, the impact of inductive biases
in generative models remains underexplored. Thus, in our experiments, we focus on unconditional
pixel-level image generative models without any guidance during training or inference.

We propose a standardized evaluation framework that employs attribute classifiers to study bias
shifts from training to generated data distributions in unconditional image generative models. Train-
ing the classifiers requires ground-truth labels for the training and validation sets; hence, our frame-
work is applicable to any supervised learning dataset. We train unconditional image generative mod-
els using the training set and unconditionally generate images. We then use the trained classifiers to
predict attribute labels for each generated image. We compare the bias for each attribute between the
training and generated data distributions using classifier-predicted labels. We refer to this absolute
difference as the bias shift. If bias shift is close to zero, there is no systematic bias exhibited in
image generative models. We analyse the bias shifts on two real image datasets, CelebA (Liu et al.,
2015) and DeepFashion (Liu et al., 2016).

Our findings reveal that bias shifts vary in magnitude across different attributes, indicating varying
levels of sensitivity to distribution change between generation and training data. We categorize at-
tributes as subjective (high sensitivity) and non-subjective (low sensitivity) sets, based on the relative
sample density at the classifier’s decision boundary. If the classifier is confident in its predictions —
in other words, the decision boundary lies in a lower-density region (corresponding to non-subjective
attributes), bias shifts tend to be smaller, and vice versa. Fig. 1 shows translation distribution shift
as an example to introduce this idea.

Our bias analysis framework yields the following observations: 1) Biases of attributes shift between
training and generation distributions for unconditional image generative models. The magnitude
of bias shift is correlated with the subjectivity of the attribute. 2) Selecting the checkpoint based
on image generation metrics considering quality, diversity, and novelty (FID (Heusel et al., 2017),
KID (Binkowski et al., 2018), and FLD (Jiralerspong et al., 2023)) does not guarantee the smallest
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bias shifts. Bias should be treated as an independent issue when evaluating generations. 3) BigGAN
models (Brock et al., 2019) have larger bias shifts compared to diffusion models, despite having
similar image generation metrics. 4) Bias shifts in smaller diffusion models tend to increase over
extended training steps, even though image generation metrics remain relatively stable.

2 RELATED WORKS

Bias in Image Generation Previous studies focus on social biases in image generation, often
concluding that these models are unfair (Friedrich et al., 2024; Cho et al., 2023) or fail to reflect
real-world biases as observed in U.S. labor statistics (Luccioni et al., 2023; Bianchi et al., 2023). A
commonly examined bias is gender or race to occupation. However, different studies select various
public models and develop their own evaluation benchmarks. For example, Cho et al. (2023) investi-
gate minDALL-E (Kim et al., 2021), Karlo (Lee et al., 2022), and Stable Diffusion (Rombach et al.,
2022) v1.4, while Luccioni et al. (2023) use Stable Diffusion v.1.4, v.2, and Dall-E 2 (Ramesh et al.,
2022). However, there are different components in T2I models that may contribute to generative
biases. We focus on the unconditional image generative model that directly outputs the generations,
without text conditioning or guidance.

Bias Shift between Train and Generation Few studies attempt to compare bias between the
generation and training distributions. These efforts often rely on publicly available Stable Diffusion
models, comparing generated outputs with the LAION-5B training set (Schuhmann et al., 2022), a
large-scale dataset lacking explicit attribute labels. Given a text prompt, Friedrich et al. (2024) select
a subset of LAION-5B based on pre-trained image-prompt similarity, then compare the bias between
this subset and the images generated using the same prompt. In contrast, Seshadri et al. (2023) select
subsets based on keywords in image captions, which may overlook relevant images. To avoid this
large-scale dataset search and subset comparison, we train generative models using datasets with
labeled attributes, ensuring reliable bias estimation across both the training and generation.

Bias-related Attribute Label Prediction To calculate bias in generation, the generated images
need to be assigned attribute labels, which is non-trivial in the case of unconditional generation.
Some studies (Bianchi et al., 2023) infer the labels in the representation space of self-supervised
learning models, for example, CLIP (Radford et al., 2021). Some methods use pre-trained vision
language models and conduct zero-shot text generation. Cho et al. (2023) use BLIP-2 (Li et al.,
2023) and get the label through visual question answering (VQA). Luccioni et al. (2023) use BLIP
with VQA task and ViT (Dosovitskiy et al., 2021) with image captioning task. However, pre-trained
models introduce their own biases (Bommasani et al., 2021; Alabdulmohsin et al., 2024), rendering
the predicted labels unreliable for accurate bias evaluation. Some approaches (Friedrich et al., 2024)
train an attribute classifier on other available supervised learning datasets. In our case, we train the
classifier on the same dataset used for bias analysis, resulting in more accurate predictions.

3 BIAS EVALUATION METHOD

3.1 BIAS DEFINITION

In this work, bias for an attribute is defined as the difference between the probability of its presence
in the observed distribution and its expected proportion in an ideal reference distribution.

Considering a set of binary attributes1 C for which we want to study bias, each image in the dataset
is annotated for every attribute. Given an attribute C ∈ C, we consider the positive case C = 1 in the
following. We can set an ideal probability P ideal(C = 1) for attribute C as the reference probability,
depending on the context. We denote the probability of this attribute in the data distribution as
P data(C = 1). We can use either P train(C = 1) or P val(C = 1) as an estimation for P data(C = 1)
and compare with the reference probability to determine degree of bias. For example, we define the
bias of the data distribution relative to P ideal(C = 1) as

Bdata(C = 1) = P data(C = 1)− P ideal(C = 1). (1)
1The use of binary attributes can be extended to K-way attributes by binarizing the K-way attributes as K

1-vs-all binary attributes.
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Bias Shifts Detection Pipeline
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Figure 2: Bias evaluation framework. Unconditional generative models are trained on the training
set. The pre-trained classifier is fine-tuned on the training set and validated on the validation set
using ground truth labels and is then used to classify training, validation, and generation sets. The
bias evaluation metrics are calculated based on the classifier-predicted labels.

To get the bias on the generation set, we need to calculate the proportion for this attribute in the
generation set P gen(C = 1). We can then measure the bias in the generation

Bgen(C = 1) = P gen(C = 1)− P ideal(C = 1). (2)

We also define the conditional bias. Given a binary anchor attribute A ∈ C, the bias of attribute C
conditioned on A = 1 is the conditional probability P (C = 1 | A = 1). Similarly, the conditional
bias in the data distribution is P data(C = 1 | A = 1)− P ideal(C = 1 | A = 1). The conditional bias
in the generation distribution is P gen(C = 1 | A = 1)− P ideal(C = 1 | A = 1).

3.2 BIAS EVALUATION FRAMEWORK

Fig. 2 illustrates our proposed bias evaluation framework. We train image generative models for
unconditional image generation using only images from the training set, without feeding ground
truth labels into the models. We generate 10,000 images for each checkpoint during training. To
calculate the proportion for each attribute in the generation distribution, we require attribute labels
for the generated images. We apply a trained classifier, developed using the training and validation
sets with ground truth labels, to the generated images to obtain classifier-predicted attribute labels.

The trained classifier inevitably introduces errors, meaning the predicted labels may not match the
ground truth labels for all images. To ensure consistent bias estimation across different sets, we
use the trained classifier to predict attribute labels for training and validation sets. In addition, we
use P val(C = 1) to estimate the probability of attribute C in the data distribution, as the classifier
may overfit to the training set. By adopting these techniques, we aim to minimize the potential bias
introduced by the classifier in our bias evaluation framework for generative models.

Given a binary attribute C ∈ C, we can therefore define bias shift between generation and training
data as

Bshift(C = 1) = |Bgen(C = 1)−Bdata(C = 1)| = |P gen
cls(C = 1)− P val

cls(C = 1)|. (3)

The subscript cls stands for using classifier-predicted labels. In bias shift, the expected probability
for positive attribute C = 1 in an ideal reference distribution P ideal(C = 1) is canceled out. Bias
shift remains the same regardless which ideal bias reference we select. If bias shift is close to 0, then
the generation distribution and the training distribution exhibit the same level of bias for the given
attribute.

Bias shift evaluates changes in bias between data and generation distribution for each attribute
considered in the study. To provide an overall understanding of the magnitude of bias shift across
all attributes, we propose to use the average of bias shift across attributes. Average bias shift (ABS)
evaluates the overall bias shift magnitude across all attributes considered between the training and
the generated data distributions. This value represents the absolute difference between probabilities
and is expressed as a percentage. We define this metric as

ABS = EC∈CBshift(C = 1). (4)
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Figure 3: Evaluation metrics for image generation throughout training. In 3a and 3b, FID, KID,
and FLD values converge to small values showing the good quality of generated images and good
coverage of modes of the training distribution. In 3c, the positive or slightly negative generalization
gaps indicate that the trained models do not have severe memorization issues.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We apply our proposed bias evaluation framework to two real datasets – CelebA (Liu
et al., 2015) and DeepFashion (Liu et al., 2016). CelebA (Liu et al., 2015) is a large-scale dataset
with 200,000 celebrity facial images, each labeled with 40 binary attributes. It covers a wide range
of facial features, from details (e.g., earrings, pointy nose) to outlines (e.g., hair color, gender, age).
DeepFashion (Liu et al., 2016) is a clothes dataset with over 800,000 diverse fashion images. We
use a subset with 26 fine-grained attribute annotations to train the classifier. We then study the bias
shift over these fine-grained attributes. For both datasets, we follow the training/validation/test set
split from the official release. More details about these datasets are in Appendix A.

Backbone models in the framework We follow the setup from Dhariwal & Nichol (2021) to train
unconditional ablated diffusion models (ADMs)2. We train models of varying sizes by adjusting the
number of channels in the U-Net (Ronneberger et al., 2015) bottleneck layer (32 for tiny, 64 for
small, and 256 for large), with proportional changes in each layer. In the following sections, we
report the results of the large diffusion model if the model is not otherwise specified. We gener-
ate 10,000 images per checkpoint using 100 inference steps across training. We use a ResNext50
(32x4d)3 based image classifier (Xie et al., 2017). We add a linear layer on top as the classification
head and fine-tune the last 6 layers of the ResNext50 model. For comparison with a GAN model,
we train a BigGAN (Brock et al., 2019) model4 using the recommended settings. Implementation
details are in Appendix B.

Evaluation metrics for Image Generation We use some common metrics, e.g., FID (Fréchet
Inception Distance) (Heusel et al., 2017) and KID (Kernel Inception Distance) (Binkowski et al.,
2018), to evaluate the generated images. We use FLD (Feature Likelihood Divergence) and general-
ization gap (Jiralerspong et al., 2023) as two additional metrics to gauge the memorization level of
the generative models. FLD provides a comprehensive evaluation considering not only quality and
diversity, but also novelty (i.e., difference from the training samples) of generated samples. Positive
generalization gap shows no overfitting to the training set. We adopt the implementation5 of Jiraler-
spong et al. (2023) and follow their suggestion of using DINOv2 (Oquab et al., 2024) as the feature
extractor to calculate FID, KID, and FLD. We also use a conventional FID implementation6 to give
a comparable value of how well the trained models are.

2https://github.com/openai/guided-diffusion
3The pre-trained model is from torchvision.
4https://github.com/ajbrock/BigGAN-PyTorch
5https://github.com/marcojira/FLD
6https://github.com/mseitzer/pytorch-fid
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Figure 4: Average bias shift (ABS) for CelebA and DeepFashion. For both datasets, shown in
Figs. 4a and 4b, ABS over subjective attributes show a much larger bias shift than non-subjective
ones. Fig. 4c presents that the error coming from sampling of 10K images is small enough, showing
that the sampling randomness is not the only cause of bias shifts in generations.

Table 1: Attribute categorization of subjective and non-subjective for each dataset.

Dataset subjective attributes non-subjective attributes

CelebA

Rosy Cheeks, Big Nose, No Beard, Narrow Eyes, Arched Eyebrows, 5-o-Clock Shadow, Bangs,
High Cheekbones, Bushy Eyebrows, Black Hair, Receding Hairline, Eyeglasses, Bald, Double Chin,
Brown Hair, Straight Hair, Bags Under Eyes, Pointy Nose, Wearing Hat, Male, Blond Hair,
Big Lips, Mouth Slightly Open, Heavy Makeup, Attractive, Gray Hair, Mustache, Chubby,
Smiling, Wearing Lipstick, Wavy Hair, Young, Oval Face, Pale Skin, Sideburns,Goatee,

DeepFashion

Floral, Graphic, Embroidered, Solid, Long sleeve, Short sleeve, Striped, Pleated,
Sleeveless, Knit, Chiffon, Cotton, Maxi length, Mini length, Leather, Faux,
No dress, Crew neckline,V neckline, No neckline, Square neckline,
Loose, Tight, Conventional Lattice, Denim,

4.2 BACKBONE MODELS PERFORMANCE

Diffusion Models Figure 3 shows the image generation evaluation metrics for CelebA and Deep-
Fashion datasets. In Figs. 3a and 3b, FID and KID converge to small values showing the good
quality of generated images and good coverage of modes of the data distribution. FLD agrees with
conventional metrics, showing no severe memorization issues in the generation. In Fig. 3c, the pos-
itive or slight negative values of generalization gap indicate that no overfitting is detected in the
trained models. More discussions are in Appendix B.1.

Classifier For CelebA and DeepFashion datasets, the classification accuracy on the validation set
for most attributes is over 80%. Overall, the average accuracy across attributes is 91.7% for CelebA
and 90.5% for DeepFashion. Table 4 and Table 5 in Appendix B.2 show in detail the classifier
performance for each attribute.

4.3 AVERAGE BIAS SHIFT EVALUATION

Fig. 4 presents the average bias shift (ABS) throughout training. The overall ABS is still perceiv-
able when image generation metrics are small, indicating non-negligible bias shifts from the training
to generation distributions. Looking closer into bias shift for each attribute (Figs. 8 and 9 in Sec-
tion 4.6), we can categorize all attributes into two categories: subjective and non-subjective.

Taking CelebA as an example, intuitively, non-subjective attributes are those where classifica-
tion judgements are consistent across populations, e.g., eyeglasses, wearing hat, bangs,
goatee, etc., while subjective ones are those where classification judgements differ signifi-
cantly from one person to another, e.g., heavy makeup, arched eyebrows, attractive,
oval face, etc. We present the categorization of attributes in Table 1. In the following section 4.4,
we will talk about the criteria for the attributes categorization.

Average bias shift (ABS) for non-subjective attributes (purple dashed lines in Fig. 4) converges to
small values for both datasets, reaching 0.71% for CelebA and 0.98% for DeepFashion. However,
subjective attributes exhibit significantly larger ABS, achieving minima of 3.25% for CelebA and
4.73% for DeepFashion.
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Figure 5: CelebA classifier’s pre-sigmoid logits distributions of selected subjective and non-
subjective attributes. The decision boundary for subjective attributes (Fig. 5a, 5b, and 5c) always
falls in a high-density region, while for non-subjective attributes (Fig. 5d, 5e, and 5f) it falls in a
low-density region.
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Figure 6: DeepFashion classifier’s pre-sigmoid logits distributions of selected subjective and
non-subjective attribute. The decision boundary for subjective attributes (Fig. 6a, 6b) always falls
in a high-density region, while for non-subjective attribute (Fig. 6c) it falls in a low-density region.

Bias shifts do not consistently follow the image generation metrics, as illustrated by the comparison
between Figs. 3 and 4. This misalignment highlights that models with superior image generation
metrics are not necessarily less biased. Bias should be treated as an independent issue, distinct
from quality and diversity. While diversity metrics typically assess the coverage of modes in the
generated distribution, bias evaluation should focus on the relative proportions of these modes. For
CelebA dataset, the bias evaluation metrics plateau between steps 110K and 210K, while the image
generation metrics continue to improve. Similarly, for DeepFashion dataset, the image generation
metrics continue improving during the whole training, while BSRs for both subjective and non-
subjective attributes are stable with slight increases after about 200K steps.

To demonstrate that sampling 10,000 image generation is sufficient for a reliable statistical estima-
tion, we present ABS between sampled subsets of the validation set and the full validation set on
CelebA dataset in Fig. 4c. Additionally, we plot ABS between the generation set at the final check-
point and the full validation set. The generation set has a much larger ABS compared to the sampled
validation set with 10,000 images, emphasizing that the bias shifts observed in Figs. 4a and 4b ex-
ceed the variance introduced by the sampling process. This also suggests that using 10,000 images
is sufficient to estimate bias shifts with minor errors.
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Figure 7: FLD and ABS of different generative models on CelebA. The small diffusion model has
slightly worse image generation quality but much larger ABS for both subjective and non-subjective
attributes compared to the large diffusion model. BigGAN has a similar FLD as the large diffusion
model but has larger bias shifts.

4.4 BIAS SHIFTS’ SENSITIVITY RELATES TO DECISION BOUNDARY

In this section, we analyze the classifier to explain why some attributes experience greater bias shifts
than others, leading to the attribute taxonomy presented in Table 1.

Figs. 5 and 6 show the trained classifier’s pre-sigmoid logits distribution for some attributes of
CelebA and DeepFashion respectively. The distributions for all attributes are in Appendix B.2.
These plots provide visualizations of how the data points are distributed in a projected uni-
dimensional space. To estimate the empirical distributions, we use all the training images, 10,000
images sampled from the validation set, and all the 10,000 images in the generation set.

The main difference between small bias shift and large bias shift attributes is the density at the
decision boundary. The distribution shifts for different attributes can manifest in various ways,
but the decision boundaries for large bias shift attributes consistently fall in higher density regions
compared to those for small bias shift ones. We thus use the density where the decision boundary
falls in the validation distribution to categorize the attributes. Those with density more than 0.01 are
categorized as subjective, and vice versa.

Bias shifts of subjective attributes are more sensitive to distribution shifts compared to non-
subjective attributes. The distributions for non-subjective attributes still change between training
and generation sets, but their effects on bias shifts are small. Since the decision boundary falls in a
low-density region, it is more difficult to transport the density mass from one side of the boundary to
the other. We find empirically that the distribution shifts between the training and generation distri-
butions generally have low earth mover’s distance (EM distance) (Rubner et al., 1998). Significant
reweighting of well-separated modes would constitute a significant EM distance between training
and generated distributions. For example, the distribution of male (Fig. 5e) shifts from training
to generation, but the shifts are within each side of the decision boundary. This clear classification
margin leads to small ABS for non-subjective attributes.

4.5 BIAS SHIFT IN DIFFERENT GENERATIVE MODELS

In this section, we compare the bias shifts for different sizes of diffusion models by changing the
number of channels in the bottleneck layer of U-Net (32 for tiny, 64 for small, and 256 for large),
and BigGAN model. Fig. 7 shows image generation metrics and bias evaluation metrics for different
generative models. The tiny diffusion model cannot generate realistic images (check Appendix D for
sampled images), making it unsuitable for our bias analysis framework. FLD for the small diffusion
model is worse than the large diffusion model, while BigGAN achieves a similar FLD as the large
diffusion model. However, ABS shows clear differences among generative models (See Figs. 7b, 7c
and 7d).

Diffusion models have matched or even surpassed GAN models regarding image synthesis perfor-
mance (Dhariwal & Nichol, 2021). We evaluate whether diffusion models also perform better than
BigGAN regarding bias shifts. We observe that BigGAN exhibits a considerably larger ABS com-
pared to the large diffusion model, despite having only slightly worse image generation performance
according to FLD. This finding may be because the common understanding that GAN models suffer
from mode collapse issues (Arjovsky et al., 2017).
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Figure 8: Probabilities of selected subjective and non-subjective attributes for 3 different ran-
dom seeds during training. The probabilities of subjective attributes (Fig. 8a, 8b, and 8c) present
a gap between generation and validation data while non-subjective ones (Fig. 8d, 8e, and 8f) do not.
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Figure 9: Probabilities of selected subjective and non-subjective attribute during training. The
probabilities of subjective attributes (Fig. 9a, 9b) present a gap between generation and validation
data while non-subjective one (Fig. 9c) does not.

We train different sizes of diffusion models to study the influence of the model size on bias shifts.
The small diffusion model exhibits larger bias shifts compared to the large diffusion model. For the
small diffusion model, we notice that the average bias shift increases after 300K steps although the
FLD value does not change significantly. While BigGAN has better FLD, the bias shifts are similar
to those of the small diffusion model at the end of the training. We also observe more fluctuations
in bias evaluation metrics for the small diffusion model.

We present image samples generated from different models in Appendix D. The images generated
by BigGAN and the small diffusion model are “more washed out” than those produced by the large
diffusion model, showing fewer variations and less details.

4.6 ADDITIONAL RESULTS

Per-attribute Bias Shift Figs. 8 and 9 show probabilities for selected attributes in the generated
data during training. Plots for other attributes are in Appendix C. Probabilities of subjective at-
tributes generally exhibit values distinct from the classifier-predicted validation probabilities, result-
ing in bias shifts in Fig. 4.

Subjective attributes exhibit more fluctuations throughout training compared to non-subjective ones.
While the probabilities for many attributes converge before 300K steps, young (Fig. 8a) still has
fluctuations. A similar pattern is also witnessed in DeepFashion, where solid (Fig. 9b), as a
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Figure 10: ABS for conditional settings on CelebA. Bias shifts conditioned on subjective attributes
may exhibit different patterns as shown in Fig. 10d.

subjective attribute, also exhibits perceivable fluctuations. This suggests that extra caution is needed
when handling certain subjective attributes using generative models.

We conduct several runs of training using different random seeds on CelebA dataset. There is
randomness across different random seeds as the curves for each random seed vary. However, the
probabilities of each attribute from distinct random seeds generally converge to the same value.
Therefore, we report results for only one seed in other experiments.

Bias Shift Evaluation Conditioned on Anchor Attributes Fig. 10 illustrates the conditional set-
ting of bias shift evaluation. We focus on two demographic attributes, gender and age. According
to our categorization proxy shown in Table 1, gender is non-subjective, while age is subjective in
CelebA. This categorization may seem counterintuitive at first glance.

We acknowledge that it is not appropriate to naively binarize gender and age. However, due to
the constraints of the era when the dataset was created, our analysis is restricted to binary gender
and age attributes. By conducting an empirical analysis based on these binary attributes, we aim
to highlight the importance of recognizing the fluidity of gender and the variability of age. It
is important to note that the subjective and non-subjective categorization applies specifically to the
image-label joint distribution presented in the CelebA dataset and is not universally applicable.

The bias change trends for probabilities conditioned on non-subjective attributes exhibit similarities
to those of unconditioned probabilities (See Figs. 10a and 10b). However, we observe that the
average bias shift for non-subjective attributes become larger when conditioning on Old, which
is categorized as a subjective attribute in CelebA in our study. A possible explanation for this
discrepancy is that the classifier-predicted labels of subjective attributes are not always accurate.
Therefore, when conditioning on subjective attributes, classification errors propagate into the bias
analysis pipeline, resulting in a distinct pattern of bias shifts.

5 CONCLUSION

This study focuses on bias shifts with regard to inductive biases of unconditional image gener-
ative models. We propose a standardized bias analysis framework applicable to any supervised
learning dataset. Our experimental results show that different attributes have varying bias shifts
in response to distribution changes. Attributes for which the classifier’s decision boundary falls in
a low-density area tend to have small bias shifts. We thus categorize all attributes into subjective
and non-subjective sets. Our analysis results in the following observations: 1) Biases shift between
training and generation distributions for unconditional image generative models. 2) Selecting the
checkpoint with the best image generation metrics does not guarantee the smallest bias shifts. 3)
BigGAN models and small diffusion models have larger bias shifts compared to large diffusion
models, despite having similar image generation metric values.

We hope that our analysis for unconditional generative models can serve as a base framework al-
lowing researchers to add other sources of bias such as conditioning (with ground-truth labels, text,
etc.), guidance, pretrained modules, etc. in a gradual manner, and study their effects on bias shift in
a systematic way.
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A DATASETS

CelebA (Liu et al., 2015) is a large-scale face attributes dataset with 200,000 celebrity images, each
with 40 attribute annotations. The dataset includes 10,000 celebrities with 20 images for each.
These attribute annotations cover a wide variety of facial characteristics, ranging from details (e.g.,
earrings, pointy noise, etc.) to outlines (e.g., hair color, gender, age, etc.). We list all 40 attributes
in Table 2. Before feeding the training images to the model, we centre crop the images and re-
size them to 128x128 pixels. Because of the crop, some attributes, e.g., Wearing Necklace,
Wearing Necktie, are not visually grounded in the post-process images. Blurry is also an
attribute that we do not include since we want the image generation quality to be good. We excluded
these attributes in Table 1. We follow the Training/Validation/Test set split in the official release.
Training set includes the images of the first eight thousand identities (with 160 thousand images).
Validation set contains the images of another one thousand identities (with twenty thousand images).
The remaining one thousand identities (with twenty thousand images) go for Test set. In our bias
analysis framework, we only use the Training set and the Validadtion set.

DeepFashion (Liu et al., 2016) is a clothes dataset with over 800,000 diverse fashion images, in-
cluding tops and bottoms. No footwears is in this dataset. Each image is associated with 1000
coarse attribute annotations about texture, fabric, shape, part, and style of the clothes. These at-
tribute annotations are scrapped directly from meta-data of the images. They are thus very noisy
and not reliable. Most of the attributes have less than 1% positive samples, making the classification
problem very imbalanced. This dataset also provides a fine-grained annotation subset, where each
image is associated with 26 find-grained attribute annotations. These attributes are presented in Ta-
ble 2. We train a classifier on this subset and apply this trained classifier to the whole dataset and
get classifier-predicted labels for each image. We follow the Training/Validation/Test set split in the
official release. Unlike CelebA dataset, the split of DeepFashion dataset is random.

Table 2: Labeled attributes in CelebA and DeepFashion datasets. CelebA has 40 attributes and
DeepFashion has 26 attributes.

Dataset Attributes

CelebA

5 o Clock Shadow, Arched Eyebrows, Attractive, Bags Under Eyes,
Bald, Bangs, Big Lips, Big Nose, Black Hair, Blond Hair, Blurry,
Brown Hair,Bushy Eyebrows, Chubby, Double Chin, Eyeglasses, Goatee,
Gray Hair, Heavy Makeup High Cheekbones, Male, Mouth Slightly Open,
Mustache, Narrow Eyes, No Beard, Oval Face, Pale Skin, Pointy Nose,
Receding Hairline, Rosy Cheeks, Sideburns, Smiling, Straight Hair,
Wavy Hair, Wearing Earrings, Wearing Hat, Wearing Lipstick,
Wearing Necklace, Wearing Necktie, Young

DeepFashion

floral, graphic, striped, embroidered, pleated, solid, lattice,
long sleeve, short sleeve, sleeveless
maxi length, mini length, no dress,
crew neckline, v neckline, square neckline, no neckline,
denim, chiffon, cotton, leather, faux, knit,
tight, loose, conventional

B TRAINING DETAILS

B.1 DIFFUSION MODELS

We follow the training setting of Dhariwal & Nichol (2021) to train the ablated diffusion models
(ADMs). Hyperparameters and architecture selections are in Table 3. We train the diffusion using
NVIDIA A100 40GB. The batch size per GPU is set to 16, and we use 8 GPUs to train. During
training, we save checkpoint for EMA models every 10K steps. We use half precision (FP16) for
training and inference.

For each saved checkpoint, we employ 100 steps in inference to generate 10K images from the
Gaussian noise. We compare the two inference methods used in ADM (Dhariwal & Nichol, 2021),
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Table 3: Hyperparameters and architecture selection for diffusion models

lr bsz channel res block dropout diffusion step inference step

1e-4 128 256 2 0.3 1000 ddim100

25 ddim25 50 ddim50 100 ddim100 250 ddim250
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Figure 11: ABS and image generation metrics using different inference methods and inference steps
on CelebA dataset. Images generated by DDIM have less bias shifts compared to those by Improved
Diffusion Sampler. FID and KID also show the superiority of DDIM sampler.

one proposed by improved diffusion model (Nichol & Dhariwal, 2021), and DDIM (Song et al.,
2021). The results on CelebA dataset are in Fig. 11. Images generated by the improved diffusion
sampler exhibit more bias shifts than those from DDIM. Although FLD shows a slight improvement
on improved diffusion sampler, DDIM works better in terms of FID and KID using the same steps
of inference. Since we want to test less biased generations, we use DDIM with 100 steps during
inference in our experiments.

In Fig. 3c, generalization gaps for CelebA and DeepFashion datasets are different. This is because
the split of the dataset is in different ways. In CelebA dataset, the training and validation sets contain
the faces of distinct sets of celebrities. In DeepFashion dataset, the training and validation samples
are split randomly. The distribution difference between training and validation sets of CelebA is
larger than that of DeepFashion.

B.2 RESNET CLASSIFIERS

We employ a pre-trained ResNeXt model as the base model. We add a linear layer to top as the
classification layer. We then fine-tune the last 6 layers of the pre-trained model as well as the classi-
fication layer using CelebA and DeepFashion dataset. We use AdamW optimizer and learning rate
at 0.001. We follow a standard training procedure for the classifier training. We train the classifier
on the train set (with ground truth labels) and choose the best classifier according to the average
performance across all the considered attributes on the valid set (with ground truth labels). We use
data augmentations to make the classifier more robust. The data augmentations include random hor-
izontal flip, scaling and resizing, etc. This can help the classifier become more reliable when applied
to the generation set. Previous work indicates that classifiers can amplify the discriminative biases
in the training set (Zhao et al., 2017; Hall et al., 2022). We use the positive and negative sample
ratio to reweigh the cross entropy loss terms. This acts as an upsampling of the minority samples
and alleviates the label imbalance issue. We don’t see the discriminative biases being amplified for
most attributes according to Figs. 15 and 14 comparing the training ground truth probability and
the validation classifier-predicted probability. The classifiers’ performances for each attribute are
listed in Tables 4 and 5. For both dataset, the accuracy for most attributes is over 80%. Figs. 12 and
13 show the pre-sigmoid logits distributions for each attribute in CelebA and DeepFashion datasets
respectively.
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Figure 12: The pre-sigmoid logits distribution of each attribute in CelebA.
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Figure 13: The pre-sigmoid logits distribution of each attribute in DeepFashion.
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Table 4: Classifier performance on validation set of CelebA.

Attr Accuracy Precision Recall F1 AUPR

Eyeglasses 99.58 97.10 96.82 96.96 94.23
Wearing Hat 98.98 86.31 93.19 89.62 80.75
Bald 98.92 73.33 74.94 74.13 55.47
Male 98.64 98.47 98.32 98.40 97.53
Gray Hair 97.74 78.09 74.46 76.23 59.39
Sideburns 97.12 82.88 73.30 77.80 62.59
Goatee 96.61 76.83 77.25 77.04 61.03
Double Chin 96.51 69.99 50.46 58.64 37.75
Pale Skin 96.41 60.32 48.83 53.97 31.66
Mustache 95.90 60.78 53.14 56.70 34.66
Blurry 95.86 55.59 62.45 58.82 36.49
Wearing Necktie 95.66 71.41 67.15 69.21 50.34
No Beard 95.49 97.87 96.62 97.24 97.34
Chubby 95.35 65.18 51.73 57.68 36.67
Bangs 95.26 82.86 85.39 84.10 72.89
Blond Hair 95.07 82.75 85.86 84.28 73.23
Rosy Cheeks 94.64 64.32 48.45 55.27 34.69
Receding Hairline 94.15 59.84 56.82 58.29 37.11
5-o-Clock Shadow 93.34 77.82 60.90 68.33 52.00
Mouth Slightly Open 92.83 92.97 92.07 92.52 89.42
Wearing Lipstick 92.08 87.96 95.29 91.48 85.92
Smiling 91.50 90.73 91.80 91.26 87.25
Bushy Eyebrows 91.42 72.05 65.03 68.36 51.84
Heavy Makeup 91.19 86.20 92.17 89.08 82.50
Narrow Eyes 90.97 42.41 56.57 48.48 27.25
Wearing Earings 90.62 82.10 65.00 72.56 60.04
Black Hair 89.60 71.52 83.33 76.97 63.07
Wearing Necklace 86.98 43.51 26.71 33.10 20.46
Young 86.42 90.45 91.47 90.96 89.11
High Cheekbones 86.09 83.47 86.10 84.76 78.11
Brown Hair 83.41 66.70 62.42 64.49 50.70
Bags Under Eyes 83.33 64.93 42.73 51.54 39.63
Arched Eyebrows 83.08 72.64 55.40 62.86 51.77
Wavy Hair 83.06 66.23 79.04 72.07 58.15
Straight Hair 81.97 56.09 56.70 56.39 40.71
Big Nose 81.63 69.39 46.81 55.91 45.71
Big Lips 81.28 37.00 31.57 34.07 22.17
Attractive 80.07 78.42 85.09 81.62 74.48
Pointy Nose 72.97 52.86 47.24 49.89 40.00
Oval Face 68.34 44.95 57.86 50.59 37.81

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Classifier performance on validation set of DeepFashion.

Attr Acc Precision Recall F1 AUPR

lattice 99.48 100.00 50.00 66.67 50.52
square neckline 98.97 0.00 0.00 0.00 1.03
faux 98.45 50.00 33.33 40.00 17.70
leather 97.94 0.00 0.00 0.00 1.03
pleated 97.42 40.00 50.00 44.45 21.03
maxi length 96.91 96.00 82.76 88.89 82.03
denim 96.91 87.50 58.33 70.00 53.62
striped 96.39 55.56 62.50 58.82 36.27
loose 94.33 60.00 25.00 35.29 19.64
knit 92.27 52.63 62.50 57.14 35.99
mini length 91.24 75.61 81.58 78.48 65.29
graphic 90.72 69.70 74.19 71.88 55.83
embroidered 90.72 36.36 26.67 30.77 15.37
long sleeve 90.72 82.54 88.14 85.25 76.36
short sleeve 90.21 66.67 73.33 69.84 53.01
no dress 90.21 90.91 94.49 92.66 89.51
solid 88.14 88.89 88.00 88.44 88.41
floral 87.63 61.90 76.47 68.42 51.46
tight 87.63 61.29 61.29 61.29 43.75
chiffon 87.11 57.69 51.72 54.55 37.06
v neckline 86.60 70.83 47.22 56.67 43.24
sleeveless 86.08 86.79 87.62 87.20 82.75
conventional 80.93 86.54 89.40 87.95 85.62
no neckline 75.26 71.26 72.94 72.09 63.84
cotton 75.26 81.34 82.58 81.95 79.03
crew neckline 71.65 59.30 71.83 64.97 52.91
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C BIAS SHIFT ANALYSIS PER ATTRIBUTE

Figs. 15 and 14 show the bias probability for each attribute in CelebA and DeepFashion datasets
respectively.
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(o) V Neckline

0 10 20 30 40
Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

square_neckline
train cls prob
eval cls prob
generation prob

(p) Square Neckline
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(q) No Neckline
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Figure 14: Probabilities of attributes for DeepFashion dataset during training. Please note that it
might seem like some of the subplots are missing the probability lines; they are actually very close
to the x-axis, especially for Square Neckline and Faux.
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(b) Arched Eyebrows
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(d) Bags Under Eyes
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(f) Bangs
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(g) Big Lips
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(h) Big Nose
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(i) Black Hair
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(j) Blond Hair
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(k) Brown Hair
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(l) Bushy Eyebrows
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(m) Chubby
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(n) Double Chin
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(o) Eyeglasses
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(p) Goatee
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(q) Gray Hair
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(r) Heavy Makeup
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(s) High Cheekbones
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(u) Mouth Slightly Open
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(v) Mustache
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(w) Narrow Eyes
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(x) No Beard
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(aa) Pointy Nose
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(ab) Receding Hairline
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Figure 15: The probabilities of attributes in CelebA during training.
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D SAMPLES OF GENERATED IMAGES

For different models and different dataset, we sample 80 images from the generation set and present
them in Figs. 16, 17, 18, 19 and 20.

Figure 16: Image samples from large diffusion model generations on CelebA dataset.
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Figure 17: Image samples from the small diffusion model trained on CelebA dataset.

Figure 18: Image samples from the BigGAN model trained on CelebA dataset.
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Figure 19: Image samples from the tiny diffusion model trained on CelebA dataset.

Figure 20: Image samples from the large diffusion model trained on DeepFashion dataset.
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