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ABSTRACT

The straightforward fine-tuning of the pre-trained model for the target task, bears
the risk of under-utilizing the foundational knowledge accrued by the pre-trained
model, resulting in the sub-optimal utilization of transferable knowledge, conse-
quently impeding peak performance on the target task. To address this, we intro-
duce Divide and Conform, aimed at augmenting the transferability of pre-trained
convolutional neural networks (ConvNets), in the absence of base data. This strat-
egy exploits the mathematical equivalence of the convolution operation, concep-
tualizing it as a two-step process involving spatial-only convolution and channel
combination. To achieve this, we decompose (Divide) the filters of pre-trained
ConvNets into spatial filter atoms (responsible for spatial-only convolution) and
their corresponding atom-coefficients (responsible for channel combination). Our
observations reveal that solely fine-tuning (Conform-ing) the spatial filter atoms,
comprising of only a few hundred parameters, renders the transferability of the
model efficient, without compromising on the predictive performance. Simulta-
neously, the static atom-coefficients serve to retain the base (foundational) knowl-
edge from the pre-trained model. We rigorously assess this dual-faceted approach
within the demanding and practical framework of cross-domain few-shot learning,
showcasing the approach’s substantial capability of transferring the knowledge in
a parameter-efficient manner.

1 INTRODUCTION

In the wake of the transformative impact of language models (Devlin et al., 2019; Raffel et al.,
2020; Touvron et al., 2023; Brown et al., 2020), the field of image processing is experiencing a
parallel evolution. Language models, often pre-trained on internet text, contrast starkly with vision
models pre-trained on internet images, which are typically not representative of specialized domains
like medical or satellite imagery. This discrepancy in image types leads to under-performance when
employing vision models pre-trained on generic images to specialized domains. Vision transformers
(Dosovitskiy et al., 2021; Touvron et al., 2021) have marked a significant shift in vision models, yet
recent findings (Smith et al., 2023; Liu et al., 2022; Woo et al., 2023) suggest that ConvNets can rival
or even outperform transformers at scale. Despite this, the generalization capabilities of ConvNets,
especially in the face of significant task discrepancies, remain a concern (Zhou et al., 2021; Bai
et al., 2021).

Recent studies (Phoo & Hariharan, 2021; Oh et al., 2022; Li et al., 2021; Islam et al., 2021;
Zhou et al., 2023; Fu et al., 2023; Li et al., 2022; Guo et al., 2020; Jiang et al., 2022)
have highlighted a significant gap in the performance of pre-trained ConvNets when applied
to target tasks that are markedly different, especially in situations where no labeled samples
are available for the target task. In these scenarios, the effectiveness of pre-trained models
falls short compared to their supervised counterparts. This observation underscores the ne-
cessity for further investigation into enhancing the transferability of pre-trained models, par-
ticularly in contexts where the domain gap is substantial and the availability of labeled data
is non-trivial. This challenge, known as cross-domain few-shot learning (CD-FSL), prompted
works by Phoo & Hariharan (2021), along with Islam et al. (2021), to utilize a small por-
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tion of unlabeled samples from the target domain—merely a few thousand examples—to bet-
ter align the pre-trained model with the target task, thereby enhancing its downstream utility.

Knowledge 
Transfer

Atom 
Fine-Tuning

Base Pre-trained Filter Target Adapted Filter

Figure 1: The figure illustrates the de-
composition of pre-trained filters, ini-
tially trained on a base dataset, into
two distinct components: spatial atoms
and their associated spatially-invariant
atom-coefficients. While the spatial
atoms are subjected to selective fine-
tuning, the atom-coefficients are pre-
served as-is. This approach effectively
transfers the foundational knowledge,
which is invariant to spatial discrepan-
cies, to the target task at hand.

These studies (Phoo & Hariharan, 2021; Islam et al.,
2021) emphasize the concurrent use of the large pre-
training (base) and target data to either capitalize on or
prevent the loss of essential, foundational knowledge con-
tained within the pre-trained model. However, the practi-
cality of simultaneous access to both datasets is often un-
realistic in real-world settings, such as in a client-vendor
setup (Kundu et al., 2021; 2020b;a), and it is prohibitively
costly to reutilize the base dataset and the target dataset to
fully recalibrate the model for the target task.

Therefore, in response to these identified challenges—1)
the prevalent lack of the base dataset during target adap-
tation in practical applications, 2) the parametric and
computational cost associated with comprehensive fine-
tuning, which can be prohibitively costly, and 3) the
scarcity of labeled target data, especially in domains ne-
cessitating expert annotation—we introduce our method,
Divide and Conform. This approach is designed to en-
hance the adaptability of pre-trained models to specific
target tasks, while assuming only a limited amount of
unlabeled data is available for the target task and no ac-
cess to the extensive base dataset, achieving all this in
a parameter-efficient manner. Our methodology is struc-
tured around two principal components: the Divide phase
and the Conform phase.

During the Divide phase, informed by the previous works of Zhang et al. (2015) and Qiu et al.
(2018) showing that a convolution filter can be accurately represented as a linear combinations of a
predefined set of spatial filter bases1 (atoms), we exploit the inherent mathematical representation of
the convolution operation as a sequence of spatial-only convolution and channel combination. This
insight enables us to decompose the pre-trained filters into a set of spatial filter atoms (responsible
for spatial-only convolution) and their associated atom-coefficients (responsible for channel com-
bination). Note that the channel combination is conducted as a 1 × 1 convolution operation using
the atom-coefficients, hence, the atom-coefficients could be said to capture the spatially-invariant
knowledge.

Following this decomposition, the Conform phase aims to align the pre-trained knowledge towards
the target task. The base pre-trained model is recalibrated by selectively fine-tuning the spatial
atoms while keeping the atom-coefficients static. We hypothesize that the primary constituent of
the variations between the base and the target task data can essentially be construed as spatial dis-
crepancies in the images. Thus, by exclusively adapting the spatial atoms with a few unlabeled
target samples, while keeping the atom-coefficients untouched, we seek to efficaciously recalibrate
the pre-trained model for the target task, positing that this selective learning mechanism for the
spatial atoms should suffice in aligning the pre-trained model to the target task’s characteristics.
This selective adaptation is conceptually similar to LoRA-style methods used in language models
(Hu et al., 2021), where only a small, additionally targeted subset of parameters is fine-tuned while
preserving the majority of the model’s parameters. By focusing on adapting spatial atoms (akin
to LoRA’s low-rank updates), we reduce the number of trainable parameters, achieving parameter
efficiency without sacrificing transferability. Moreover, this approach retains the spatially-invariant,
parameter-expensive atom-coefficients, which capture the channel mixing (combination) knowledge
inherited from the pre-trained model. In doing so, we ensure that the foundational knowledge from
the base data is preserved for the target task, enhancing model transferability in constrained settings
where comprehensive fine-tuning would be computationally prohibitive.

1We adopt the term atoms from dictionary learning literature to refer to subspace elements, noting that we
do not impose orthogonality between them.
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Finally, to demonstrate the efficiency and effectiveness of the transferability, we evaluate it in the
challenging and practical CD-FSL setting (Guo et al., 2020; Phoo & Hariharan, 2021; Islam et al.,
2021; Oh et al., 2022) due to its stringent evaluation protocol. In summary, the contributions of this
work are as follows:

• We introduce a selective update approach that enhances the adaptability of a base pre-
trained model to target tasks, without the necessity of accessing the base data.

• We align the pre-trained model towards target tasks by fine-tuning the decomposed spa-
tial filter atoms using unlabeled target data samples, thereby addressing task discrepancies
through spatial atom updates in an unsupervised manner.

• We aim to retain the essential channel-mixing knowledge, in the form of atom-coefficients,
from the pre-trained filters, which aids in transferring foundational knowledge to the target
task.

2 RELATED WORKS

Cross-Domain Few-Shot Learning (CD-FSL). CD-FSL addresses the challenge of transferring
knowledge from a source to significantly different target domains (Guo et al., 2020; Tseng et al.,
2020; Oh et al., 2022), where domain discrepancies hinder the direct application of learned knowl-
edge (Song et al., 2023; Neyshabur et al., 2020). Recent progress emphasizes fine-tuning (tranfer-
learning), outperforming traditional meta-learning based few-shot methods (Guo et al., 2020; Sung
et al., 2018; Snell et al., 2017; Vinyals et al., 2016; Garcia & Bruna, 2018; Tseng et al., 2020; Sun
et al., 2021; Wang & Deng, 2021; Hu & Ma, 2022). Notably, the prominent tranfer-learning based
ideas, STARTUP (Phoo & Hariharan, 2021) and Dynamic Distillation (Islam et al., 2021) leverage
small-scale unlabeled target data during pre-training to improve adaptability. Both methods train a
teacher network on labeled base data, but STARTUP also trains a student network with unsupervised
losses on target data, using distillation loss (Hinton et al., 2015) and SimCLR (Chen et al., 2020),
while Dynamic Distillation employs a KL divergence loss (Sohn et al., 2020). TUP (Li et al., 2021)
investigates pre-trained networks’ clustering properties, recommending a few unlabeled target sam-
ples for better clustering. However, these methods necessitate access to the base data in addition to
some unlabeled target samples during pre-training. Diverging from this, ConFeSS (Das et al., 2022)
proposes a base-free adaptation strategy by learning a masking module that filters target-specific
features, enhancing the model’s relevance to the target task, however, they use labeled target data to
align their base pre-trained model. Nonetheless, we use the CD-FSL setting as test-bed evaluating
representation transferability (cf . Appendix A).

Spatial Filter Decomposition. Several studies have advanced the concept of approximating filters
through parameter-efficient representations (Qiu et al., 2018; Li et al., 2019; Denton et al., 2014;
Jaderberg et al., 2014; Zhang et al., 2015; Wang et al., 2017a). Among these, the contributions of
Zhang et al. (2015) and Qiu et al. (2018) are particularly noteworthy for their proposal to repre-
sent filters as combinations of spatial bases (atoms). Building upon this decomposition framework,
subsequent research has explored various applications, including, network compression (Li et al.,
2019), domain adaptation (Wang et al., 2020), continual learning (Miao et al., 2021), and image
generation (Wang et al., 2019; Zhai et al., 2021).

3 METHODOLOGY

3.1 PROBLEM SETTING & MOTIVATION

Our goal is to utilize a backbone f , pre-trained on a base dataset DB that is not accessible, to extract
useful representations from target task data DT. The significant disparity in sample characteristics
between DB and DT can hinder the direct application of f , leading to inferior performance. To
address this, we align the model with the target task using a subset of unlabeled target data DU
(DU ⊂ DT), following (Phoo & Hariharan, 2021; Oh et al., 2022), to improve model adaptability in
an unsupervised manner. For the purpose of evaluation the representation transferability, we adopt
the CD-FSL framework (Oh et al., 2022), constructing episodic few-shot learning scenarios with
support DS and query DQ sets from the labeled DL (DL ⊂ DT, DL ∩ DU = ∅). Each episode
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Figure 2: The figure illustrates the proposed methodology’s workflow. A. depicts the model’s
pre-training on a large foundational dataset. In B., the convolutional filters are decomposed into
spatial filter atoms and atom-coefficients—our Divide step. C. shows that after decomposition,
atom-coefficients are fixed while spatial atoms are fine-tuned with an unsupervised objective using
unlabeled target task data—our Conform step. D. demonstrates the evaluation phase where the fine-
tuned model, with the spatial atoms adjusted, is assessed in a few-shot scenario with labeled target
data, after freezing the backbone and attaching a linear classifier.

features c classes and selects k instances per class for DS and kq instances (usually 15) for DQ,
ensuring no overlap. We train a linear classifier g on DS using features from frozen f , and test g ◦f
on DQ. Our setup uses c = 5 and k ∈ {1, 5}, averaging accuracy over 600 episodes as per previous
studies (Guo et al., 2020; Phoo & Hariharan, 2021; Oh et al., 2022).

A critical consideration in this process is the potential risk of naively fine-tuning the entire network
f with DU, which could inadvertently overwrite the model’s intrinsic, foundational knowledge, ac-
quired from the now inaccessible DB. Such an approach not only risks diluting the pre-learned
knowledge but also incurs a high parameter update cost. To mitigate these concerns, we propose a
strategy termed Divide and Conform. The initial phase, Divide, entails the decomposition of convo-
lution filters into spatial filter atoms and their respective atom-coefficients (Qiu et al., 2018; Li et al.,
2019; Zhang et al., 2015). Subsequently, the Conform phase involves the selective fine-tuning of
these spatial atoms, whilst maintaining the atom-coefficients unchanged, using unsupervised learn-
ing objectives (Chen et al., 2020; Grill et al., 2020). The key idea behind keeping the spatially-
invariant atom-coefficients static is to retain the foundational knowledge embedded within f , and
advance the model’s adaptation in a parameter-efficient manner, as the fine-tuning parameters (spa-
tial filter atoms) account for only a few hundred parameters. This nuanced approach ensures the
retention of f ’s foundational strengths while facilitating its tailored application to samples in DT,
thereby striking a favorable balance between performance and efficiency. In Figure 2, we visually
describe the overall pipeline of the problem setup and our methodology. In the upcoming sections
we discuss the Divide and the Conform steps in detail.

3.2 THE Divide STEP

In a typcial convolution, with a single stride. For the input feature map I ∈ Rc×h×w, with dimen-
sions height h, width w, and channels c, and a convolutional kernel K ∈ Rn×c×l×l where l is the
kernel size and n the number of kernels, the convolution output O ∈ Rn×h×w is obtained by ap-
plying K to I (with suitable padding to preserve spatial dimensions). The operation is defined as:

O[j, y, x] =

c∑
i=1

δ∑
u=−δ

δ∑
v=−δ

K[j, i, u, v] · I[i, y − u, x− v], (1)

where δ = ⌊l/2⌋, ensuring 1 ≤ y ≤ h, 1 ≤ x ≤ w, and 1 ≤ j ≤ n.

Zhang et al. (2015) initially posited, and subsequently Qiu et al. (2018) and Li et al. (2019) fur-
ther substantiated, the concept that a convolutional filter can be accurately represented as a linear
combination of a pre-defined set of spatial filter bases. Building upon this foundational work, we
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incorporate a similar methodology for filter decomposition, as depicted in Figure 2B. Here, a con-
volutional filter is represented as a linear combination of m spatial atoms D ∈ Rm×l×l, where
the relationship K = AD is established, and A ∈ Rn×c×m denotes the coefficients of composi-
tion. This decomposition allows the convolution operation to be reinterpreted as a two-step process.
The initial step involves executing spatial convolutions individually with each of the m filter atoms,
delineated as follows:

O′[k, i, y, x] =

δ∑
u=−δ

δ∑
v=−δ

D[k, u, v] · I[i, y − u, x− v]︸ ︷︷ ︸
Spatial-only Atom Convolution

. (2)

O′ ∈ Rm×c×l×l signifies the interim output post the convolution with D, for 1 ≤ k ≤ m. Then,
the final output O is obtained by linearly combining the intermediate features of O′ using A, as
illustrated below:

O[j, y, x] =

c∑
i=1

m∑
k=1

A[j, i, k] ·O′[k, i, y, x]︸ ︷︷ ︸
Channel Combination

. (3)

Spatial 
Atom 

Convolution

Channel 
Combination

Input Features Interim Output 
Features Output Features

Figure 3: The figure depicts a convolution op-
eration executed in two phases, utilizing spatial
atoms (D) and their associated atom-coefficients
(A). This sequential convolution is functionally
equivalent to a direct convolution using the com-
posite filter (K = AD).

Practically, this subsequent step is executed
through a 1 × 1 convolution, leveraging A
as a spatially invariant linear transformation.
Moreover, given the linear nature of all in-
volved operations, this two-step approach pre-
cisely equals the effect of convolving with the
fully reconstructed filter. The two-step convo-
lution described in (2) and (3) is demonstrated
in Figure 3.

Hence, to decompose the dense, pre-trained fil-
ters, we formulate the filter decomposition ob-
jective as a dictionary learning problem (Mairal
et al., 2009; Chen et al., 1998), minimiz-
ing the least-squares objective. The involved

tensors are reshaped accordingly: K
reshape−−−−→

K ∈ R(n·c)×l2 , D
reshape−−−−→ D ∈ Rm×l2 , and

A
reshape−−−−→ A ∈ R(n·c)×m. Furthermore, to prevent D from becoming arbitrarily large, which would

result in correspondingly small values of A, as a customary step (Mairal et al., 2009), we constrain
the columns of D to have an ℓ2 norm of at most one. The convex set of matrices satisfying this
constraint, denoted by C, is defined as:

C ≜ {D ∈ Rm×l2) | s.t. diag(D⊤D) ≤ 1}. (4)

Finally, the objective function for decomposing K, with a sparsity regularization on A, is formulated
as:

min
D∈C,A∈R(n·c)×m

1

n · c

n·c∑
i=1

(
1

2
∥K[i]−A[i] ·D∥22 + λ∥A[i]∥1

)
. (5)

The above objective is solved by altering the optimization between the two variables (D and A),
minimizing over one while keeping the other one fixed, as proposed by Lee et al. (2006). Note that
we adopt an iterative strategy as opposed to a closed-form solution to allow for overparametrization
i.e. m ≥ l2 atoms. In Appendix Table 13, we analyze the decomposition residual error that we
observed for different number of filter atoms, and observe a notable reduction in the decomposi-
tion error for filter atoms 9 and beyond and therefore we limit our analysis to 9 and 12 atoms. In
Appendix E.3 we analyze the downstream performance for different λ values.
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Table 1: 5-way 1-shot and 5-shot accuracy (%) with 95% confidence using ResNet-18 and
ImageNet-1K, detailing unlabeled data use (first column) and parameters fine-tuned (last column).
Best and second-best results are highlighted in maroon and navy. Our method outperforms Sim-
CLR Chen et al. (2020) and LoRA Hu et al. (2021) on majority of the datasets, while fine-tuning
less than 2% of the total number parameters in the vanilla backbone.

Dataset% Unlabeled Data Method ChestX ISIC EuroSAT Crop CUB Cars Places Plantae # of Params.

5-way 1-shot
SimCLR (Chen et al., 2020) 22.20±0.41 32.19±0.58 70.76±0.90 82.56±0.86 44.22±0.85 32.71±0.67 59.85±0.91 41.48±0.82 11,176.51K
LoRA-3 (Hu et al., 2021) 22.38±0.42 31.65±0.54 69.96±0.89 83.36±0.84 44.41±0.85 32.60±0.65 59.07±0.92 40.71±0.78 218.75K
DC-9 (Ours) 22.87±0.48 33.73±0.59 69.10±0.85 82.35±0.79 50.61±0.88 34.42±0.67 59.50±0.86 42.92±0.77 192.34K (98.28%↓)1%

DC-12 (Ours) 22.62±0.42 34.34±0.59 68.88±0.83 83.28±0.81 49.19±0.86 33.61±0.66 59.98±0.88 43.31±0.81 192.77K (98.28%↓)

SimCLR (Chen et al., 2020) 21.86±0.41 34.59±0.60 81.92±0.77 89.66±0.76 42.13±0.86 35.11±0.73 64.76±0.91 45.20±0.85 11,176.51K
LoRA-3 (Hu et al., 2021) 21.86±0.41 35.20±0.64 81.90±0.76 91.68±0.69 41.84±0.84 34.38±0.70 65.26±0.92 45.16±0.84 218.75K
DC-9 (Ours) 22.45±0.42 37.20±0.65 77.24±0.80 88.47±0.70 46.34±0.84 35.91±0.70 64.07±0.86 46.29±0.82 192.34K (98.28%↓)5%

DC-12 (Ours) 22.48±0.42 35.73±0.61 77.88±0.76 88.60±0.70 49.48±0.86 36.06±0.70 64.27±0.84 46.02±0.82 192.77K (98.28%↓)

5-way 5-shot
SimCLR (Chen et al., 2020) 25.01±0.42 42.14±0.55 84.62±0.54 92.96±0.48 63.27±0.81 47.50±0.76 76.34±0.62 58.19±0.79 11,176.51K
LoRA-3 (Hu et al., 2021) 24.79±0.43 41.93±0.57 84.76±0.54 93.33±0.46 63.13±0.81 47.46±0.75 75.92±0.64 57.27±0.77 218.75K
DC-9 (Ours) 26.63±0.43 45.65±0.60 86.65±0.48 94.42±0.39 73.74±0.76 52.28±0.75 80.09±0.58 61.23±0.76 192.34K (98.28%↓)1%

DC-12 (Ours) 26.47±0.46 46.35±0.57 86.34±0.49 94.64±0.41 71.89±0.78 51.25±0.75 80.46±0.58 61.92±0.75 192.77K (98.28%↓)

SimCLR (Chen et al., 2020) 25.01±0.42 46.71±0.57 92.51±0.38 96.72±0.36 58.48±0.81 48.60±0.81 80.17±0.58 61.90±0.76 11,176.51K
LoRA-3 (Hu et al., 2021) 24.92±0.42 46.15±0.56 92.36±0.37 97.37±0.31 58.99±0.80 48.22±0.80 80.40±0.57 61.64±0.78 218.75K
DC-9 (Ours) 26.70±0.45 49.96±0.57 91.75±0.38 97.32±0.29 70.25±0.76 54.21±0.78 81.87±0.55 64.63±0.80 192.34K (98.28%↓)5%

DC-12 (Ours) 26.67±0.44 48.95±0.57 91.92±0.38 97.37±0.28 70.12±0.76 53.71±0.79 82.10±0.56 64.62±0.79 192.77K (98.28%↓)

3.3 THE Conform STEP

The Conform step is executed to align the pre-trained backbone f with the target task by leverag-
ing unlabeled target samples. This alignment is informed by seminal contributions from the self-
supervised learning (SSL) literature (Chen et al., 2020; He et al., 2020; Chen & He, 2021; Grill
et al., 2020). In particular, we utilize the SimCLR (Chen et al., 2020) framework that employs DU
for fine-tuning f , as the baseline, cf . Appendix B for further details on the finetuning objective.

Table 2: Parameter count
comparison for ResNet-50
variants.

DC Variant # of Params.
Vanilla 23,508.03K
LoDC-9 437.07K (98.14%↓)
LoDC-12 561.92K (97.61%↓)
DC-9 12,192.08K (48.14%↓)
DC-12 12,192.51K (48.13%↓)

Moving forward, the observations from (2), (3), and Figure 3
demonstrate that, within the discussed filter decomposition frame-
work, the convolution operation is disentangled into spatial-only
atom convolution and channel combination operations. Based on
this observation, we argue that exclusively fine-tuning the atoms
with the unlabeled target data should suffice in aligning the model
to the target task. This hypothesis is supported empirically (cf . Sec-
tion 4.1) and by the following analysis:

Consider KB and KT as the convolutional filters for the base and target, respectively, decomposed
under common composition coefficients A. These filters can be expressed as:

KB(I) = A ·DB(I), KT(I) = A ·DT(I). (6)

It can be demonstrated that transformations on the entire filter can be achieved by manipulating the
spatial atoms:

1. Insight 1: Consider a linear transformation Θ : R 7→ R that captures the atom transforma-
tion DB 7→ DT = Θ(DB), then it can be shown that KB 7→ KT = Θ(KB):

Θ(KB) ⇔ Θ(A ·DB) ⇔ A ·Θ(DB) ⇔ A ·DT ⇔ KT. (7)

2. Insight 2: For a given spatial transformation π, say translation, characterized by
Γπ

o (K(I)) = K(Γπ
i (I)), where Γπ

i and Γπ
o denote π’s representation in the input and

output (post-convolution with K) space, respectively, ensuring equality. Then, it can be
inferred that the transformation’s effect on the output of the filter is mediated through the
spatial atoms. Hence, if there exists DB(I) 7→ DT(I) = Γπ

o (DB(I)) then it can be shown
that KB(I) 7→ KT(I) = Γπ

o (KB(I)), akin to (7).

Hence, In the Conform step we only update the spatial atoms (D) using the SimCLR objective
(delineated in (8) and (9) in the Appendix), while keeping the atom-coefficients (A) static.

Furthermore, the insights developed above can, in principle, be generalized to linear layers and, by
extension, applied to architectures such as the Vision Transformer (ViT) (Dosovitskiy et al., 2021).
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Table 3: 5-way 1-shot and 5-shot accuracy (%) with 95% confidence using ResNet-50 and
ImageNet-1K, detailing unlabeled data use (first column) and parameters fine-tuned (last column).
Best and second-best results are highlighted in maroon and navy. Again, our method outperforms
SimCLR (Chen et al., 2020) and LoRA (Hu et al., 2021) on majority of the datasets, while fine-
tuning less than 2%-4% of the total number parameters in the vanilla backbone.

Dataset% Unlabeled Data Method ChestX ISIC EuroSAT Crop CUB Cars Places Plantae # of Params.

5-way 1-shot
SimCLR (Chen et al., 2020) 22.14±0.40 30.47±0.52 72.56±0.88 84.32±0.86 39.59±0.80 30.49±0.64 58.22±0.93 43.21±0.84 23,508.03K
LoRA-4 (Hu et al., 2021) 22.41±0.42 31.17±0.57 71.49±0.86 84.66±0.83 45.06±0.86 28.77±0.61 60.03±0.94 42.10±0.81 504.01K
LoDC-9 (Ours) 22.56±0.44 34.42±0.60 71.61±0.83 84.04±0.80 52.44±0.85 32.90±0.66 63.54±0.88 44.39±0.81 437.07K (98.14%↓)1%

LoDC-12 (Ours) 22.61±0.43 33.40±0.59 71.64±0.81 84.09±0.81 53.33±0.87 34.97±0.68 63.67±0.88 44.28±0.80 561.92K (97.61%↓)

SimCLR (Chen et al., 2020) 21.81±0.41 35.62±0.65 85.53±0.74 91.59±0.69 41.52±0.85 34.55±0.72 68.01±0.91 46.16±0.88 23,508.03K
LoRA-4 (Hu et al., 2021) 21.91±0.40 34.42±0.60 83.61±0.73 91.33±0.71 40.63±0.83 35.61±0.73 67.70±0.92 47.21±0.88 504.01K
LoDC-9 (Ours) 21.95±0.42 35.05±0.61 79.57±0.73 88.84±0.71 50.48±0.89 35.20±0.70 68.06±0.84 48.13±0.85 437.07K (98.14%↓)5%

LoDC-12 (Ours) 22.22±0.43 35.37±0.61 80.53±0.76 88.09±0.71 51.14±0.90 34.84±0.73 67.78±0.82 48.07±0.86 561.92K (97.61%↓)

5-way 5-shot
SimCLR (Chen et al., 2020) 24.55±0.41 40.17±0.54 86.04±0.51 93.64±0.46 54.95±0.81 42.74±0.71 75.56±0.63 60.13±0.79 23,508.03K
LoRA-4 (Hu et al., 2021) 24.86±0.43 40.97±0.59 85.96±0.48 93.78±0.44 63.36±0.79 38.62±0.68 76.56±0.65 59.18±0.77 504.01K
LoDC-9 (Ours) 25.60±0.43 46.40±0.57 87.46±0.48 94.62±0.42 74.72±0.77 48.16±0.76 82.02±0.57 63.00±0.77 437.07K (98.14%↓)1%

LoDC-12 (Ours) 25.47±0.44 45.63±0.57 87.63±0.47 94.47±0.42 75.98±0.76 52.36±0.77 82.20±0.58 62.95±0.78 561.92K (97.61%↓)

SimCLR (Chen et al., 2020) 25.04±0.42 46.50±0.59 93.04±0.36 97.59±0.31 57.65±0.81 47.04±0.77 82.38±0.55 63.12±0.80 23,508.03K
LoRA-4 (Hu et al., 2021) 24.94±0.42 46.20±0.59 93.18±0.35 97.34±0.32 55.76±0.82 48.83±0.79 81.83±0.55 64.23±0.79 504.01K
LoDC-9 (Ours) 25.68±0.44 48.00±0.58 92.34±0.37 97.31±0.29 71.20±0.78 50.69±0.76 85.05±0.51 67.00±0.77 437.07K (98.14%↓)5%

LoDC-12 (Ours) 25.89±0.42 48.57±0.60 92.72±0.37 97.08±0.30 71.98±0.76 50.43±0.78 85.03±0.50 66.78±0.79 561.92K (97.61%↓)

Specifically, one could decompose the weight matrices of linear layers into analogous components,
potentially enabling similar manipulations. However, unlike ConvNets, where convolutional filters
possess an inherent spatial structure that allows for a clear separation between spatial atoms and
channel combination coefficients, linear layers lack such intrinsic spatial interpretability. The de-
composed components in linear layers do not correspond to distinct functional units related to spatial
or channel-wise operations, rendering the interpretability of such decomposition less evident.

Moreover, when decomposing convolutional filters into spatial atoms and atom-coefficients within
ConvNets, we observe a pronounced imbalance in parameter distribution: the spatial atoms consti-
tute a significantly smaller subset of the total parameters compared to the atom-coefficients. This im-
balance is advantageous for our Conform step, as it permits fine-tuning of only the spatial atoms—a
relatively small number of parameters, cf . Section 3.4.

3.4 PARAMETER EFFICIENCY ANALYSIS

Furthermore, decomposing convolutional filters into spatial atoms D ∈ Rm×l×l and atom-
coefficients A ∈ Rn×c×m reveals a significant disparity in parameter counts between these com-
ponents. The spatial atoms consist of ml2 parameters, while the atom-coefficients comprise mnc
parameters. Typically, the product nc vastly exceeds l2 (i.e., nc ≫ l2), indicating that the spatial
atoms represent a relatively small fraction of the total parameters in the filter decomposition. To
illustrate this imbalance, consider a convolutional layer with filters of dimensions 64× 64× 3× 3,
corresponding to 64 output channels, 64 input channels, and a kernel size of 3×3. The total number
of parameters in this layer is 64 × 64 × 3 × 3 = 36, 864. When decomposed into m = 9 spatial
atoms of size 3× 3, the spatial atoms account for only 9× 3× 3 = 81 parameters. In contrast, the
atom-coefficients retain 64× 64× 9 = 36, 864 parameters, matching the original filter’s parameter
count. This pronounced parameter imbalance is strategically leveraged in our Conform step. By
fine-tuning only the spatial atoms D-while keeping the atom-coefficients A fixed—we drastically
reduce the number of parameters that need updating during adaptation to the target task. Specifically,
we adjust a mere 81 parameters instead of the full 36, 864 parameters required when fine-tuning the
entire filter. This selective fine-tuning not only enhances computational efficiency but also mitigates
the risk of overfitting, as fewer parameters are susceptible to noise from the unlabeled data.

4 EXPERIMENTS AND ANALYSIS

4.1 RESULTS AND OBSERVATIONS

Analysis with Few Unlabeled Samples. In Table 1, we conduct a comparative analysis of the
traditional fine-tuning method using the SimCLR objective, which updates all parameters, against
Divide and Conform (DC), on the ResNet-18 backbone. We detail the performance of two DC vari-
ants, DC-9 and DC-12, which utilize 9 and 12 spatial filter atoms, respectively. Our method stands
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Table 4: 5-way 1-shot and 5-shot accuracy (%) with 95% confidence using ResNet-18 and
ImageNet-1K in the standard CD-FSL setting (Oh et al., 2022; Phoo & Hariharan, 2021). The
second column (BF-Base Free) indicates the absence of base data during target fine-tuning. The
last column indicates the number of parameters fine-tuned. Best and second-best results, among BF
methods, are highlighted in maroon and navy. Our method outperforms the BF methods on ma-
jority of the datasets, while fine-tuning less than 1-2% of the total number parameters in the vanilla
backbone.

DatasetMethod BF ChestX ISIC EuroSAT Crop CUB Cars Places Plantae # of Params.

5-way 1-shot
STARTUP (Phoo & Hariharan, 2021) ✗ 23.03±0.42 31.69±0.59 73.83±0.77 85.10±0.74 72.58±0.93 45.75±0.84 66.02±0.87 49.78±0.93 11,176.51K
DynDistill (Islam et al., 2021) ✗ 24.02±1.59 34.55±1.82 77.24±1.06 87.53±1.01 63.80±1.32 46.55±1.21 60.84±1.08 49.90±1.22 11,176.51K

SimCLR (Chen et al., 2020) ✓ 21.52±0.41 35.35±0.67 85.59±0.71 92.16±0.74 41.77±0.87 35.98±0.76 70.08±0.94 48.48±0.93 11,176.51K
LoRA-12 (Hu et al., 2021) ✓ 21.58±0.42 35.29±0.68 86.43±0.70 91.85±0.76 42.03±0.89 36.13±0.77 69.69±094 48.42±0.90 846.18K
LoRA-9 (Hu et al., 2021) ✓ 21.64±0.42 35.26±0.68 85.71±0.71 92.20±0.76 41.95±0.87 36.43±0.79 70.17±0.93 48.46±0.90 637.03K
LoRA-3 (Hu et al., 2021) ✓ 21.62±0.41 35.27±0.66 85.80±0.70 92.11±0.75 41.81±0.87 36.65±0.78 69.89±0.94 48.68±0.91 218.75K
LoDC-9 (Ours) ✓ 22.36±0.42 33.61±0.61 77.64±0.78 85.37±0.74 48.07±0.86 35.98±0.68 65.47±0.89 46.41±0.81 32.40K (99.71%↓)
LoDC-12 (Ours) ✓ 22.47±0.41 33.95±0.60 77.25±0.79 85.41±0.74 48.38±0.86 36.28±0.71 66.34±0.88 46.75±0.83 36.86K (99.67%↓)
DC-9 (Ours) ✓ 22.16±0.42 36.03±0.65 81.35±0.73 89.98±0.69 47.89±0.85 36.99±0.72 66.61±0.91 49.22±0.86 192.34K (98.28%↓)
DC-12 (Ours) ✓ 22.12±0.42 36.48±0.65 81.42±0.74 89.72±0.69 48.05±0.86 36.86±0.75 66.90±0.90 49.02±0.87 192.77K (98.28%↓)

5-way 5-shot
STARTUP (Phoo & Hariharan, 2021) ✗ 27.40±0.46 46.02±0.59 89.70±0.41 96.06±0.33 89.60±0.55 68.43±0.82 85.00±0.52 69.40±0.84 11,176.51K
DynDistill (Islam et al., 2021) ✗ 29.65±0.67 50.06±0.86 92.28±0.46 97.60±0.35 86.54±1.88 69.45±1.12 82.22±0.81 71.49±1.06 11,176.51K

SimCLR (Chen et al., 2020) ✓ 24.45±0.44 47.61±0.61 95.11±0.28 97.54±0.37 55.54±0.87 48.32±0.84 84.40±0.53 65.85±0.83 11,176.51K
LoRA-12 (Hu et al., 2021) ✓ 24.43±0.41 47.75±0.61 95.46±0.26 97.47±0.37 56.06±0.88 48.94±0.83 84.56±0.54 65.77±0.83 846.18K
LoRA-9 (Hu et al., 2021) ✓ 24.51±0.42 47.32±0.57 95.25±0.27 97.47±0.37 55.94±0.87 48.87±0.84 84.85±0.50 65.57±0.85 637.03K
LoRA-3 (Hu et al., 2021) ✓ 24.46±0.43 47.74±0.60 95.33±0.27 97.45±0.37 56.06±0.87 48.82±0.83 84.48±0.54 65.90±0.83 218.75K
LoDC-9 (Ours) ✓ 26.65±0.44 46.20±0.60 91.55±0.39 96.54±0.33 70.58±0.78 55.10±0.77 82.76±0.55 64.36±0.79 32.40K (99.71%↓)
LoDC-12 (Ours) ✓ 26.60±0.45 46.82±0.60 91.54±0.38 96.49±0.34 70.68±0.76 54.96±0.76 82.31±0.56 64.63±0.81 36.86K (99.67%↓)
DC-9 (Ours) ✓ 26.50±0.45 49.02±0.62 93.81±0.30 97.60±0.30 70.05±0.80 54.86±0.77 83.44±0.55 67.74±0.79 192.34K (98.28%↓)
DC-12 (Ours) ✓ 26.40±0.46 50.14±0.64 93.90±0.31 97.61±0.30 70.65±0.78 55.34±0.78 83.60±0.55 67.41±0.81 192.77K (98.28%↓)

Table 5: 5-way 1-shot and 5-shot CD-FSL performance (%) with 95% confidence intervals using
ResNet-10 with miniImageNet in the standard setting (Oh et al., 2022; Phoo & Hariharan, 2021).
The last column indicates the number of parameters fine-tuned. The best and the second-best re-
sults are highlighted in maroon and navy, respectively. For Transfer-Learning-based methods, ✗

denotes access to base dataset and * denotes access to labeled target data. Parameter counts for
Meta-Learning-based methods are not provided due to their varied learning strategies; however, all
reported results utilize the ResNet-10 backbone.

DatasetMethod ChestX ISIC EuroSAT Crop CUB Cars Places Plantae # of Params.

5-way-1-shot
FT (Guo et al., 2020) 22.88±0.42 29.91±0.54 65.03±0.88 72.82±0.87 40.56±0.78 30.20±0.54 52.45±0.78 36.72±0.67 -
RelationNet (Sung et al., 2018) - - - - 42.44±0.77 29.11±0.60 48.64±0.85 33.17±0.64 -
ProtoNet (Snell et al., 2017) 21.32±0.37 29.58±0.57 55.32±0.88 52.94±0.81 - - - - -
MatchingNet (Vinyals et al., 2016) 20.65±0.29 27.37±0.51 54.88±0.90 46.86±0.88 35.89±0.51 30.77±0.47 49.86±0.79 32.70±0.60 -
GNN (Garcia & Bruna, 2018) 22.00±0.46 32.02±0.66 63.69±1.03 64.48±1.08 45.69±0.68 31.79±0.51 53.10±0.80 35.60±0.56 -
FWT (Tseng et al., 2020) 22.04±0.44 31.58±0.67 62.36±1.05 66.36±1.04 47.47±0.75 31.67±0.53 53.17±0.79 35.95±0.58 -
LRP (Sun et al., 2021) 22.11±0.10 30.94±0.30 54.99±0.50 59.23±0.50 48.29±0.51 32.78±0.39 54.83±0.56 37.49±0.43 -
ATA (Wang & Deng, 2021) 22.10±0.20 33.21±0.40 61.35±0.50 67.47±0.50 45.00±0.50 33.61±0.40 53.47±0.50 36.42±0.40 -

M
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AFA (Hu & Ma, 2022) 22.92±0.20 33.21±0.30 63.12±0.50 67.61±0.50 46.86±0.50 34.05±0.60 54.04±0.60 36.76±0.40 -

STARTUP✗ (Phoo & Hariharan, 2021) 23.09±0.43 32.66±0.60 75.93±0.80 63.88±0.84 48.87±0.81 38.01±0.73 31.79±0.61 41.24±0.75 4905.79K
DynDistill✗ (Islam et al., 2021) 23.38±0.43 34.66±0.58 82.14±0.78 73.14±0.84 49.28±1.11 40.60±1.15 34.77±0.98 42.51±1.11 4905.79K
ConFeSS* (Das et al., 2022) 23.67 33.46 65.51 76.49 - - - - 4905.79K
LoDC-9 (Ours) 22.47±0.41 32.08±0.58 71.04±0.91 80.16± 0.81 38.48±0.78 30.74±0.75 55.99±0.88 38.87±0.74 27.91K (99.43%↓)
LoDC-12 (Ours) 22.34±0.42 32.28±0.57 71.58±0.88 79.70±0.82 38.32±0.77 30.80±0.59 55.87±0.87 38.59±0.72 32.16K (99.34%↓)
DC-9 (Ours) 22.34±0.41 33.03±0.60 76.55±0.82 83.60±0.79 39.49±0.78 32.13±0.63 57.42±0.88 41.72±0.80 187.85K (96.17%↓)
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DC-12 (Ours) 22.47±0.41 32.83±0.60 75.87±0.83 83.34±0.79 39.72±0.77 32.04±0.64 57.45±0.88 41.65±0.79 188.06K (96.17%↓)

5-way-5-shot
FT (Guo et al., 2020) 27.01±0.44 27.01±0.44 80.84±0.56 84.00±0.56 58.10±0.78 44.39±0.66 72.92±0.66 53.26±0.56 -
RelationNet (Sung et al., 2018) - - - - 57.77±0.69 37.33 ± 0.68 63.32±0.76 44.00±0.60 -
ProtoNet (Snell et al., 2017) 24.72±0.43 24.72±0.43 42.49±0.58 76.92±0.67 - - - - -
MatchingNet (Vinyals et al., 2016) 22.62±0.36 22.62±0.36 33.96±0.54 68.00±0.68 63.16±0.77 38.99±0.64 63.16±0.77 46.53±0.68 -
GNN (Garcia & Bruna, 2018) 25.27±0.46 43.94±0.67 83.64±0.77 87.96±0.67 62.25±0.65 44.28±0.63 70.84±0.65 52.53±0.59 -
FWT (Tseng et al., 2020) 25.18±0.45 43.17±0.70 83.01±0.79 87.11±0.67 66.98±0.68 44.90±0.64 73.94±0.67 53.85±0.62 -
LRP (Sun et al., 2021) 24.53±0.30 44.14±0.40 77.14±0.40 86.15±0.40 64.44±0.48 46.20±0.46 74.45±0.47 54.46±0.46 -
ATA (Wang & Deng, 2021) 24.32±0.40 44.91±0.40 83.75±0.40 90.59±0.30 66.22±0.50 49.14±0.40 75.48±0.40 52.69±0.40 -
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AFA (Hu & Ma, 2022) 25.02±0.20 46.01±0.40 85.58±0.40 88.06±0.30 68.25±0.50 49.28±0.50 76.21±0.50 54.26±0.40 -

STARTUP✗ (Phoo & Hariharan, 2021) 26.94±0.44 47.22±0.61 82.29±0.60 93.02±0.45 60.00±0.78 46.73±0.73 69.56±0.66 55.40±0.78 4905.79K
DynDistill✗ (Islam et al., 2021) 28.31±0.46 49.36±0.59 89.08±0.47 95.54±0.38 62.86±1.06 51.98±1.18 70.98±0.94 58.63±1.14 4905.79K
ConFeSS* (Das et al., 2022) 27.09±0.24 48.85±0.29 84.65±0.38 88.88±0.51 - - - - 4905.79K
LoDC-9 (Ours) 25.89±0.44 43.96±0.58 87.22±0.52 94.40±0.40 52.79±0.80 45.07±0.68 74.50±0.66 55.21±0.74 27.91K (99.43%↓)
LoDC-12 (Ours) 26.28±0.45 43.76±0.57 87.44±0.53 94.18±0.41 52.52±0.81 44.45±0.68 74.42±0.66 55.05±0.74 32.16K (99.34%↓)
DC-9 (Ours) 25.85±0.85 45.42±0.56 90.46±0.42 95.44±0.40 54.16±0.81 46.08±0.71 76.48±0.65 58.34±0.78 187.85K (96.17%↓)
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DC-12 (Ours) 26.83±0.43 45.24±0.58 90.82±0.41 95.37±0.39 53.93±0.83 46.15±0.72 76.28±0.65 58.40±0.77 188.06K (96.17%↓)

out as it optimizes all parameters except for the atom-coefficients, positioning it as a potentially
more efficient fine-tuning strategy in terms of parameter updates.

Remarkably, by learning less than approximately 2% of the total parameters in the vanilla backbone,
both DC-9 and DC-12 exceed the performance. This observation led us to question whether our
method’s superiority stemmed from its reduced parameter complexity, which may be more suited to
the limited amount of unlabeled samples available for fine-tuning. To investigate this, we indepen-
dently explore Low-Rank Adaptation (LoRA) (Hu et al., 2021), commonly employed for fine-tuning
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Table 6: 5-way 1-shot and 5-shot accuracies (%) on ResNet-18 (ImageNet-1K) fine-tuned with
20% of target unlabeled samples. Highlighted rows show performance when the atom-coefficients
are fine-tuned while the spatial atoms are frozen, noting the higher parameter count when solely
finetuning the coefficients.

DatasetMethod ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae # of Params.

5-way 1-shot
DC-9 22.16±0.42 36.03±0.65 81.35±0.73 89.98±0.69 47.89±0.85 36.99±0.72 66.61±0.91 49.22±0.86 192.34K
DC-9-Coeff 21.64±0.41 35.33±0.68 85.98±0.70 92.50±0.74 42.15±0.86 36.04±0.76 69.68±0.97 48.26±0.90 11,176.51K
DC-12 22.12±0.42 36.48±0.65 81.42±0.74 89.72±0.69 48.05±0.86 36.86±0.75 66.90±0.90 49.02±0.87 192.77K
DC-12-Coeff 21.60±0.42 35.70±0.69 85.78±0.73 92.44±0.72 41.63±0.85 36.26±0.78 69.79±0.95 47.79±0.90 14,838.34K

5-way 5-shot
DC-9 26.50±0.45 49.02±0.62 93.81±0.30 97.60±0.30 70.05±0.80 54.86±0.77 83.44±0.55 67.74±0.79 192.34K
DC-9-Coeff 24.52±0.42 47.68±0.60 95.32±0.27 97.62±0.37 56.26±0.87 48.78±0.84 84.76±0.53 65.52±0.84 11,176.51K
DC-12 26.40±0.46 50.14±0.64 93.90±0.31 97.61±0.30 70.65±0.78 55.34±0.78 83.60±0.55 67.41±0.81 192.77K
DC-12-Coeff 24.61±0.43 47.90±0.60 95.12±0.28 97.55±0.35 55.40±0.88 48.93±0.82 84.54±0.52 65.12±0.84 14,838.34K

large language models, and adapt it to fine-tune convolutional filters within our framework. With
LoRA, updates to a pre-trained weight matrix W ∈ Rdout×din are constrained to a low-rank represen-
tation W +∆W = W +B ·C, where B ∈ Rdout×r, C ∈ Rr×din , and r ≪ min(dout, din). During
training, W is fixed and does not receive gradient updates, while C and B are adjusted as trainable
parameters. To adapt LoRA to convolutional filters, we interpret K ∈ Rn×c×l×l as Rn·l×c·l, en-
abling the learning of a low-rank update ∆K, thus inherently reducing the parameter complexity.
We conduct the LoRA experiments at rank 3, which approximately matches the parameter complex-
ity of our variants. The resulting superiority of our method compared to LoRA dispels our doubts
about parameter complexity and underscores the effectiveness of selectively fine-tuning the spatial
atoms while preserving the atom-coefficients, thus supporting our hypothesis. Moreover, this hints
that, atom-coefficient preservation aids in maintaining the foundational knowledge encapsulated in
them, an aspect where conventional fine-tuning and LoRA do not measure up. Additionally, in Ap-
pendix D, we draw parallels on how our proposition of finetuning the spatial atoms is similar to or
different from LoRA-style adaptation methods.

Furthermore, in Table 3, we perform a similar analysis using a ResNet-50 backbone. However,
unlike the analysis with ResNet-18 (Table 1), which only involved decomposition of the 3 × 3
filters, in ResNet-50 we apply LoRA to existing 1× 1 convolution filters. We designate this variant
as LoDC. This modification was prompted by our observation that decomposing only the 3×3 filters
resulted in a mere reduction of only ≈ 48% in the number of trainable parameters, due to the ResNet-
50 architecture’s predominance of 1 × 1 convolutional filters, cf . Table 2. For a particular LoDC
variant we use the same rank for the LoRA as the number of decomposed atoms. By extending LoRA
to the 1×1 filters, we were able to further decrease the parameter complexity by ≈ 98%. Moreover,
this inculcation also demonstrates our method’s compatibility with LoRA. For the stand-alone LoRA
comparison we use the rank of 4 to match the parameter complexity of our methods (LoDC-9 and
LoDC-12). The extended analysis with different LoRA ranks for the number reported in Table 1
and 3 are conducted in Appendix E.2. Further comparisons with other LoRA-style PEFT methods
and ablations on the number of different filter atoms are provided in Appendix E.4. Moreover,
our current analysis on the ResNet family of architecture is based on the previous study by Oh
et al. (2022). Nonetheless, we also experiment with ConvNext (Liu et al., 2022) architecture in
Appendix E.5

Comparisons with Related Methods. Moreover, we further analyze our method in the standard
setting (Phoo & Hariharan, 2021; Oh et al., 2022), which uses 20% of the total target dataset DT
in DU, still less compared to what is generally used in SSL pre-training, on a ResNet-18 back-
bone pre-trained on ImageNet-1K. We draw comparisons with previously established works such as
STARTUP (Phoo & Hariharan, 2021) and DynDistill (Islam et al., 2021). Although these methods
assume access to the base dataset and optimize the entire backbone, which leads to their superior
performance, we still provide a comparative perspective. In Table 4, we delineate the comparisons
of methods LoDC, as done for the ResNet-50 backbone, and DC with 9 and 12 filter atoms against
straightforward fine-tuning using SimCLR, as well as against LoRA at ranks 12, 9, and 3. We chose
ranks 12 and 9 to correspond with the number of spatial filter atoms, and rank 3 was selected to
match the parameter complexity of the DC variants (DC-9 and DC-12). From the comparisons,
we observe performance that is comparable to or better than previous methods, specifically on the
ChestX, ISIC, EuroSAT, and Crop datasets, despite their substantial task differences from the base
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dataset (ImageNet-1K) (Oh et al., 2022). This is notable considering we fine-tune only a very small
fraction of the parameters and do not assume access to the base dataset. Furthermore, in Table 5,
We offer comparative analysis against other CD-FSL benchmarks within Meta-Learning (ML) and
Transfer-Learning (TL) frameworks, utilizing a ResNet-10 backbone pre-trained on miniImageNet
for TL approaches. It is important to note that direct comparison between ML and TL methods is not
feasible due to their distinct training strategies. However, we include these comparisons to provide
a comprehensive overview of the performance standings across all methods. Once again, our meth-
ods either outperform prior (TL-based) methods or are at least comparable, while only fine-tuning a
very minimal fraction of the parameters, i.e., the spatial atoms. At the same time, we do not assume
access to the base data during fine-tuning.

Fine-tuning Atom-Coefficients? In Section 3.3, we hypothesized that selectively fine-tuning spa-
tial filter atoms should suffice for model adaptation to the target task, prompting the question of
the impact of also fine-tuning atom-coefficients. Therefore, in Table 6 we consider finetuning only
the atom coefficients and observe better accuracy and parameter efficiency trade-off for the case
when tuning only the spatial atoms. Moreover, we also conduct ablations with finetuning the atom-
coefficients together with the spatial-atoms. Considering atom-coefficients function as linear trans-
formations, implemented as 1× 1 convolutions (as detailed in (3) and Figure 3), we employ LoRA
on the atom-coefficients, dubbing it as LoCo (LoRA-Coefficients), with the rank set to same as
the number of atoms, on both ResNet-18 and ResNet-10 backbones. Our ablation studies, which in-
volve fine-tuning the spatial atoms and fine-tuning the atom-coefficients using LoRA are provided in
Appendix Table 9 and 10, indicating that additionally fine-tuning atom-coefficients does not signifi-
cantly improve performance compared to just fine-tuning spatial atoms. This observation reinforces
the idea that spatial atoms alone are able to efficiently learn the task-specific knowledge, supporting
our hypothesis about the effectiveness of selective spatial atom fine-tuning.

Ablation on Self-Supervised Methods.
Table 7: Comparison of BYOL (Grill et al., 2020)
against SimCLR (Chen et al., 2020) performance
on 5-way 1-shot and 5-way 5-shot evaluations in
the standard setup.

Method Dataset
CUB Cars Places Plantae

5-way 1-shot

SimCLR (Chen et al., 2020) DC-9 47.89±0.85 36.99±0.72 66.61±0.91 49.22±0.86
DC-12 48.05±0.86 36.86±0.75 66.90±0.90 49.02±0.87

BYOL (Grill et al., 2020) DC-9 52.91±0.87 36.07±0.62 48.17±0.83 38.36±0.66
DC-12 53.70±0.90 36.29±0.62 47.75±0.84 37.78±0.70

5-way 5-shot

SimCLR (Chen et al., 2020) DC-9 70.58±0.78 55.10±0.77 82.76±0.55 64.36±0.79
DC-12 70.68±0.76 54.96±0.76 82.31±0.56 64.63±0.81

BYOL (Grill et al., 2020) DC-9 83.22±0.66 62.35±0.75 77.77±0.64 60.77±0.78
DC-12 83.45±0.67 62.82±0.76 77.75±0.59 60.19±0.80

We use the constrastive SimCLR objective in
the Conform phase due to its simplicity and the-
oretical backing (10). Nonetheless, we also ex-
periment with a non-constrastive SSL method,
BYOL (Grill et al., 2020). In Table 7, we com-
pare BYOL with SimCLR on 5-way 1-shot and
5-way 5-shot evaluations, in the standard setup.
From the table we observe better performance
of BYOL on CUB and Cars and sub-optimal
performance on Places and Plantae. Nonethe-
less, it is important to note that our method is
agnostic to the choice of SSL objective, as it
primarily serves to guide the model’s alignment to the target domain. Although we primarily use
SimCLR for evaluation, other SSL objectives can be employed within our framework.

5 CONCLUSION

In conclusion, our work introduces Divide and Conform a novel, efficient method for adapting pre-
trained models to specialized target tasks under the constraints of limited unlabeled target data,
without relying on extensive base datasets. By decomposing convolution filters into spatial filter
atoms and their atom-coefficients, we recalibrate the pre-trained model to align with the target task
through selective fine-tuning of spatial atoms. This approach allows adaptation to task-specific spa-
tial variances while preserving channel combination knowledge in the atom-coefficients, addressing
model transferability and generalization challenges, especially in scenarios with no labeled data and
significant domain discrepancy. Our method’s empirical evaluations in CD-FSL setting highlight
its effectiveness and efficiency, offering notable improvements over existing approaches with a lean
parameter update mechanism.
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A CD-FSL AS A TEST-BET TO EVALUATE REPRESENTATION
TRANSFERABILITY.

We use CDFSL as a test-bed to assess model transferability that addresses substantial domain dis-
crepancies between source and target in both input (diverse images domains) and label spaces (non-
overlapping labels), presenting a more complex challenge than typical domain adaptation where the
label space is shared or FSL with meta-datasets containing images from similar domains. CD-FSL
ssumes scarcity of high-quality samples, underscoring the evaluation in the few-shot setting. In the
typical self-supervised pre-training, linear probing—applying a linear classifier to a frozen back-
bone—is commonly used to evaluate representation quality. CD-FSL makes this setting stringent by
linear-probing on a limited number of examples across 600 episodes over 8 existing, highly diverse,
standard benchmark datasets offering a more rigorous assessment of the representation transferred
from the base dataset. Therefore, we select CD-FSL as our test-bed for its comprehensive and
stringent evaluation protocol.

B SIMCLR MOTVATION

The principal motivation for adopting SimCLR for fine-tuning is twofold.

Firstly, SimCLR stands out as one of the most straightforward yet effective SSL methods. The
fundamental concept involves positioning semantically similar examples closer together in the rep-
resentational space, while ensuring that dissimilar examples are kept apart. Formally, each in-
stance in the current batch {Ii}Bi=1 of size B undergoes augmentation to create an enhanced batch
{Ĩ2i−1, Ĩ2i}Bi=1, in which Ĩ2i−1 and Ĩ2i represent distinct augmentations derived from the same in-
put Ii. Subsequently, the transformed representations {z2i−1 = h ◦ f(Ĩ2i−1), z2i = h ◦ f(Ĩ2i)}Bi=1
are extracted from the backbone network f equipped with projection layers h. Utilizing these rep-
resentations, SimCLR conducts contrastive learning to minimize the contrastive loss given by:

LSimCLR =
1

2B

B∑
i=1

[ℓ(2i− 1, 2i) + ℓ(2i, 2i− 1)] , (8)

where

ℓ(i, j) = − log

(
exp(sim(zi, zj)/τ)∑2B

n=1 1[n ̸=i] exp(sim(zi, zn)/τ)

)
. (9)

Here, 1 is an indicator function, τ is a temperature hyperparameter, and sim(u,v) = u⊤v
∥u∥·∥v∥ mea-

sures cosine similarity between two vectors u and v. The objective (9) is also know as NT-Xent loss
(normalized temperature-scaled cross-entropy loss) (Chen et al., 2020).

Secondly, Cao et al. (2021) established the following bound:

Lsup ≤ γ0L−
U + γ1s(fk). (10)

Within this bound, Lsup signifies the metric for assessing supervised learning representations. The
metric L−

U evaluates unsupervised contrastive samples, specifically those that are true negatives.
The function s(fk) quantifies the variation within classes as interpreted by the principal encoder
fk (He et al., 2020). The constants γ0 and γ1 vary in accordance with class distribution. The
term Lsup can represent the training loss for supervised few-shot meta-learning techniques that are
adaptable to new classes. Given that L−

U sets the upper boundary for Lsup, any minimization on L−
U

naturally lowers Lsup. It is also noteworthy that L−
U can be minimized without constraints since it

is assessed solely through true negative samples, rendering contrastive methods advantageous for
learning representations conducive to efficient few-shot learning.

C DATASET DESCRIPTION

Our analysis utilizes two base datasets: miniImageNet (Vinyals et al., 2016) (a subset of ImageNet-
1K (Deng et al., 2009)) and the complete ImageNet-1K, along with eight target datasets from CD-
FSL benchmarks from BSCD-FSL (Guo et al., 2020) and FWT (Tseng et al., 2020). BSCD-FSL
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Table 8: Dataset Summary: Indicating the number of classes, total number of samples, and the
number of samples for the 1%, 5%, and 20% (standard) splits used for unsupervised fine-tuning.
Datasets ChestX ISIC EuroSAT Crop CUB Cars Places Plantae
# of classes 7 7 10 38 200 196 16 69
# of samples 25,848 10,015 27,000 43,456 11,788 16,185 27,440 26,650
1% of samples 258 100 270 434 117 161 274 266
5% of samples 1,292 500 1,350 2,172 589 809 1,372 1,332
20% of samples
(standard setup Oh et al. (2022)) 5,169 2,003 5,400 8,691 2,357 3,237 5,488 5,330

encompasses specialized datasets such as CropDisease (Crop) (Mohanty et al., 2016), which features
imagery of plant diseases; EuroSAT (Helber et al., 2019), providing satellite imagery of various land-
scapes; ISIC (Codella et al., 2018), with dermatoscopic images of skin lesions; and ChestX Wang
et al. (2017b), containing X-ray images of the human thoracic region. It is crucial to acknowledge
the significant task and domain disparities between these datasets and the base datasets. Addition-
ally, we incorporate four more datasets prominently utilized in CD-FSL literature, from FWT, for
more fine-grained analysis: Places (Zhou et al., 2018), Plantae (Van Horn et al., 2018), Cars (Krause
et al., 2013), and CUB (Wah et al., 2011). All datasets follow the standard splitting proposed by Oh
et al. (2022). For all our experiments we resize the images to 224 × 224 to be consistent across all
the datasets for base pre-training and target fine-tuning.

The datasets are summarized as follows:

• CropDisease (Crop) (Mohanty et al., 2016): Features images of plant diseases.

• EuroSAT (Helber et al., 2019): A collection of satellite images depicting various land-
scapes.

• ISIC (Codella et al., 2018): Consists of dermatoscopic images of skin lesions.

• ChestX (Wang et al., 2017b): Comprises X-ray images of the chest area.

For the datasets Places, Plantae, Cars, and CUB, due the lack of a standardized approach for dividing
training and evaluation sets, we adopt the sampling strategy adopted by Oh et al. Oh et al. (2022),
aiming to make the datasets more manageable for FSL applications while ensuring they remain
representative:

• Places (Zhou et al., 2018): Contains scene recognition images, with a subset of 16 out of
365 classes sampled.

• Plantae (Van Horn et al., 2018): Features images of plants, with the top 69 classes selected
from 2,917 due to class imbalance.

• Cars (Krause et al., 2013): Includes images of 196 car models, from the train, test and val
split.

• CUB (Wah et al., 2011): Contains images of 200 bird species, from the train, test and val
split.

Table 8 provides an overall statistics of the target datasets.

D DC VS. LORA

Our method focuses solely on fine-tuning spatial atoms. Unlike LoRA-style adaptation (Hu et al.,
2021), which learns a residual component ∆K across the entire filter (Kt = Kb + ∆K), our
method fine-tunes from Kb = ADb to Kt = ADt, expressed as Kt = A(Db + ∆D) where
∆D = Dt−Db. However, we avoid LoRA’s residual-style fine-tuning of atoms (D), which requires
maintaining both Db and ∆D in memory, opting instead for a direct transition from Db to Dt to
reduce memory usage. This is how our method relates/differs from LoRA.
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E ADDITIONAL EXPERIMENTS

E.1 EXTENDED RESULTS ON ATOM-COEFFICIENT FINE-TUNING

Table 9: 5-way 1-shot CD-FSL performance (%) comparisons with 95% confidence intervals using
ResNet-10 (miniImageNet) and ResNet-18 (ImageNet-1K) backbones across different DC vari-
ants. The last column indicates the number of parameters fine-tuned for each variant. Here we
compare our methods by also fine-tuning the atom-coefficients using LoRA (LoCO).

Method Dataset # of Params.ChestX ISIC EuroSAT Crop CUB Cars Places Plantae
ResNet-10

LoDC-9 22.47±0.41 32.08±0.58 71.04±0.91 80.16± 0.81 38.48±0.78 30.74±0.75 55.99±0.88 38.87±0.74 27.91K
LoDC-12 22.34±0.42 32.28±0.57 71.58±0.88 79.70±0.82 38.32±0.77 30.80±0.59 55.87±0.87 38.59±0.72 32.16K
DC-9 22.34±0.41 33.03±0.60 76.55±0.82 83.60±0.79 39.49±0.78 32.13±0.63 57.42±0.88 41.72±0.80 187.85K
DC-12 22.47±0.41 32.83±0.60 75.87.0.83 83.34±0.79 39.72±0.77 32.04±0.64 57.45±0.88 41.65±0.79 188.06K
LoDC-9 w/ LoCo 22.32±0.41 32.34±0.58 71.34±0.89 79.89±0.81 38.61±0.77 30.80±0.60 55.89±0.86 38.94±0.73 164.42K
LoDC-12 w/ LoCo 22.46±0.41 32.33±0.58 71.60±0.88 79.80±0.80 38.46±0.46 30.77±0.59 56.13±0.87 38.80±0.73 267.17K
DC-9 w/ LoCo 22.55±0.41 33.49±0.61 76.12±0.82 83.48±0.79 39.37±0.76 32.23±0.63 57.16±0.86 42.00±0.79 324.36K
DC-12 w/ LoCo 22.38±0.40 33.03±0.60 76.33±0.83 83.45±0.79 38.28±0.75 31.97±0.64 57.25±0.88 41.94±0.79 423.07K

ResNet-18
LoDC-9 22.36±0.42 33.61±0.61 77.64±0.78 85.37±0.74 48.07±0.86 35.98±0.68 65.47±0.89 46.41±0.81 32.40K
LoDC-12 22.47±0.41 33.95±0.60 77.25±0.79 85.41±0.74 48.38±0.86 36.28±0.71 66.34±0.88 46.75±0.83 36.86K
DC-9 22.16±0.42 36.03±0.65 81.35±0.73 89.98±0.69 47.89±0.85 36.99±0.72 66.61±0.91 49.22±0.86 192.34K
DC-12 22.12±0.42 36.48±0.65 81.42±0.74 89.72±0.69 48.05±0.86 36.86±0.75 66.90±0.90 49.02±0.87 192.77K
LoDC-9 w/ LoCo 22.26±0.42 34.00±0.60 76.64±0.80 85.54±0.73 48.03±0.86 36.08±0.71 65.53±0.89 46.56±0.83 341.71K
LoDC-12 w/ LoCo 22.44±0.42 33.91±0.60 78.06±0.76 84.83±0.74 48.11±0.85 35.89±0.71 65.68±0.89 46.25±0.81 571.39K
DC-9 w/ LoCo 22.27±0.42 36.04±0.65 81.40±0.74 90.00±0.68 48.04±0.83 37.32±0.73 66.86±0.89 48.89±0.85 501.65K
DC-12 w/ LoCo 21.99±0.40 36.13±0.66 80.83±0.74 89.71±0.69 48.08±0.84 37.24±0.73 67.18±0.92 48.86±0.86 727.30K

In Table 9, we additionally provide the results for 5-way 1-shot experiments on all our DC vari-
ants, both with and without atom-coefficient fine-tuning. Furthermore, we offer a comprehensive
summary of all our variants.

• LoDC-X: This variant employs LoRA (Hu et al., 2021) with a rank of X on the 1 ×
1 filters and our proposed decomposition on the 3 × 3 convolution filters into X spatial
atoms and their corresponding atom-coefficients. The remainder of the convolution filters
and parameters are left unchanged. In this variant, only the atom-coefficients are kept static.

• DC-X: This variant decomposes the 3 × 3 convolution filters into X spatial atoms and
their corresponding atom-coefficients. Similar to the LoDC-X variant, and only the atom-
coefficients are kept static.

As discussed in the main manuscript regarding fine-tuning the atom-coefficients, we created addi-
tional variants that also fine-tune the atom-coefficients. It is important to note that operating the
atom-coefficients as 1 × 1 convolutions and fine-tuning the entire atom-coefficients along with the
spatial atoms would be equivalent to fully fine-tuning the model. Therefore, to maintain parameter
efficiency, we apply LoRA to the atom coefficients.

• LoDC-X w/ LoCo: This variant is similar to the LoDC-X variant mentioned above, but
with the addition of fine-tuning the atom-coefficients using LoRA with a rank of X .

• DC-X w/ LoCo: This variant is similar to the DC-X variant mentioned above, but with
the addition of fine-tuning the atom-coefficients using LoRA with a rank of X .

E.2 EXTENDED ANALYSIS WITH FEW UNLABELED SAMPLES

Considering the parameter efficiency of our proposed methods (DC-9 and DC-12), we investigate
whether their superiority stems from reduced parameter complexity, potentially better suited for the
limited amount of unlabeled samples available for fine-tuning. To further analyze this, we extend
the results from Tables 1 and 3 in the main manuscript by conducting additional experiments using
LoRA at lower parameter complexities. We incorporate LoRA performances at rank 2 for ResNet-
18 (cf . Table 11) and at ranks 3 and 5 for ResNet-50 (cf . Table 12). Our observations indicate that
merely reducing the parameter complexity does not enhance the few-shot performance.
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Table 10: 5-way 5-shot CD-FSL performance (%) comparisons with 95% confidence intervals us-
ing ResNet-10 (miniImageNet) and ResNet-18 (ImageNet-1K) backbones across different DC
variants. The last column indicates the number of parameters fine-tuned for each variant. Here we
compare our methods by also fine-tuning the atom-coefficients using LoRA (LoCO).

Method Dataset # of Params.ChestX ISIC EuroSAT Crop CUB Cars Places Plantae
ResNet-10

LoDC-9 25.89±0.44 43.96±0.58 87.22±0.52 94.40±0.40 52.79±0.80 45.07±0.68 74.50±0.66 55.21±0.74 27.91K
LoDC-12 26.28±0.45 43.76±0.57 87.44±0.53 94.18±0.41 52.52±0.81 44.45±0.68 74.42±0.66 55.05±0.74 32.16K
DC-9 25.85±0.85 45.42±0.56 90.46±0.42 95.44±0.40 54.16±0.81 46.08±0.71 76.48±0.65 58.34±0.78 187.85K
DC-12 26.83±0.43 45.24±0.58 90.82±0.41 95.37±0.39 53.93±0.83 46.15±0.72 76.28±0.65 58.40±0.77 188.06K
LoDC-9 w/ LoCo 25.80±0.43 44.34±0.58 87.26±0.52 94.23±0.42 52.93±0.80 45.08±0.68 74.06±0.67 55.09±0.73 164.42K
LoDC-12 w/ LoCo 26.49±0.44 44.09±0.58 87.50±0.52 94.19±0.42 52.72±0.80 44.22±0.68 74.55±0.67 55.15±0.74 267.17K
DC-9 w/ LoCo 26.04±0.45 46.13±0.59 90.76±0.42 95.38±0.40 54.06±0.81 46.16±0.71 76.35±0.64 58.52±0.79 324.36K
DC-12 w/ LoCo 26.71±0.45 45.37±0.58 90.81±0.42 95.48±0.39 54.08±0.81 46.37±0.70 76.47±0.64 58.48±0.77 423.07K

ResNet-18
LoDC-9 26.65±0.44 46.20±0.60 91.55±0.39 96.54±0.33 70.58±0.78 55.10±0.77 82.76±0.55 64.36±0.79 32.40K
LoDC-12 26.60±0.45 46.82±0.60 91.54±0.38 96.49±0.34 70.68±0.76 54.96±0.76 82.31±0.56 64.63±0.81 36.86K
DC-9 26.50±0.45 49.02±0.62 93.81±0.30 97.60±0.30 70.05±0.80 54.86±0.77 83.44±0.55 67.74±0.79 192.34K
DC-12 26.40±0.46 50.14±0.64 93.90±0.31 97.61±0.30 70.65±0.78 55.34±0.78 83.60±0.55 67.41±0.81 192.77K
LoDC-9 w/ LoCo 26.91±0.45 46.47±0.61 91.53±0.35 96.48±0.33 69.98±0.78 55.08±0.76 82.78±0.55 64.51±0.80 341.71K
LoDC-12 w/ LoCo 26.77±0.45 46.70±0.62 91.91±0.37 96.38±0.34 70.24±0.78 55.32±0.77 82.80±0.58 64.34±0.79 571.39K
DC-9 w/ LoCo 26.32±0.44 49.95±0.63 94.14±0.31 97.64±0.29 70.00±0.82 55.21±0.80 83.49±0.55 67.51±0.80 501.65K
DC-12 w/ LoCo 26.53±0.46 49.70±0.62 93.93±0.32 97.63±0.30 70.67±0.80 54.87±0.79 83.64±0.55 67.51±0.80 727.30K

Table 11: Extended results on 5-way 1-shot and 5-shot accuracy (%) with 95% confidence using
ResNet-18 (ImageNet-1K), detailing unlabeled data use (first column) and parameters fine-tuned
(last column). Best and second-best results are highlighted in maroon and navy.

Dataset% Unlabeled Data Method ChestX ISIC EuroSAT Crop CUB Cars Places Plantae # of Params.

5-way 1-shot
SimCLR (Chen et al., 2020) 22.20±0.41 32.19±0.58 70.76±0.90 82.56±0.86 44.22±0.85 32.71±0.67 59.85±0.91 41.48±0.82 11,176.51K
LoRA-3 (Hu et al., 2021) 22.38±0.42 31.65±0.54 69.96±0.89 83.36±0.84 44.41±0.85 32.60±0.65 59.07±0.92 40.71±0.78 218.75K
LoRA-2 (Hu et al., 2021) 22.15±0.41 31.45±0.53 69.17±0.89 83.38±0.85 43.43±0.85 32.42±0.66 59.24±0.94 40.87±0.81 149.03K
DC-9 (Ours) 22.87±0.48 33.73±0.59 69.10±0.85 82.35±0.79 50.61±0.88 34.42±0.67 59.50±0.86 42.92±0.77 192.34K

1%

DC-12 (Ours) 22.62±0.42 34.34±0.59 68.88±0.83 83.28±0.81 49.19±0.86 33.61±0.66 59.98±0.88 43.31±0.81 192.77K
SimCLR (Chen et al., 2020) 21.86±0.41 34.59±0.60 81.92±0.77 89.66±0.76 42.13±0.86 35.11±0.73 64.76±0.91 45.20±0.85 11,176.51K
LoRA-3 (Hu et al., 2021) 21.86±0.41 35.20±0.64 81.90±0.76 91.68±0.69 41.84±0.84 34.38±0.70 65.26±0.92 45.16±0.84 218.75K
LoRA-2 (Hu et al., 2021) 21.85±0.41 34.87±0.62 81.83±0.79 90.45±0.72 42.25±0.82 34.71±0.71 65.08±0.93 45.43±0.85 149.03K
DC-9 (Ours) 22.45±0.42 37.20±0.65 77.24±0.80 88.47±0.70 46.34±0.84 35.91±0.70 64.07±0.86 46.29±0.82 192.34K

5%

DC-12 (Ours) 22.48±0.42 35.73±0.61 77.88±0.76 88.60±0.70 49.48±0.86 36.06±0.70 64.27±0.84 46.02±0.82 192.77K
5-way 5-shot

SimCLR Chen et al. (2020) 25.01±0.42 42.14±0.55 84.62±0.54 92.96±0.48 63.27±0.81 47.50±0.76 76.34±0.62 58.19±0.79 11,176.51K
LoRA-3 (Hu et al., 2021) 24.79±0.43 41.93±0.57 84.76±0.54 93.33±0.46 63.13±0.81 47.46±0.75 75.92±0.64 57.27±0.77 218.75K
LoRA-2 (Hu et al., 2021) 24.84±0.43 41.40±0.54 84.94±0.55 93.24±0.47 61.97±0.81 47.17±0.78 76.46±0.63 57.37±0.76 149.03K
DC-9 (Ours) 26.63±0.43 45.65±0.60 86.65±0.48 94.42±0.39 73.74±0.76 52.28±0.75 80.09±0.58 61.23±0.76 192.34K

1%

DC-12 (Ours) 26.47±0.46 46.35±0.57 86.34±0.49 94.64±0.41 71.89±0.78 51.25±0.75 80.46±0.58 61.92±0.75 192.77K
SimCLR Chen et al. (2020) 25.01±0.42 46.71±0.57 92.51±0.38 96.72±0.36 58.48±0.81 48.60±0.81 80.17±0.58 61.90±0.76 11,176.51K
LoRA-3 (Hu et al., 2021) 24.92±0.42 46.15±0.56 92.36±0.37 97.37±0.31 58.99±0.80 48.22±0.80 80.40±0.57 61.64±0.78 218.75K
LoRA-2 (Hu et al., 2021) 24.89±0.43 46.59±0.59 92.40±0.39 97.01±0.34 58.68±0.81 47.91±0.77 79.86±0.59 61.91±0.77 149.03K
DC-9 (Ours) 26.70±0.45 49.96±0.57 91.75±0.38 97.32±0.29 70.25±0.76 54.21±0.78 81.87±0.55 64.63±0.80 192.34K

5%

DC-12 (Ours) 26.67±0.44 48.95±0.57 91.92±0.38 97.37±0.28 70.12±0.76 53.71±0.79 82.10±0.56 64.62±0.79 192.77K

E.3 SENSITIVITY TO THE CHOICE OF SPARSITY COEFFICIENT (λ)

We conduct ablation studies to assess the impact of different value of sparsity coefficient, λ, applied
to A during the Divide step for decomposing K. In Table 14, we present the 5-way 1-shot and 5-shot
performances for our proposed variants, DC-9 and DC-12, with λ values set to {10−4, 10−6, 10−8}.
The results indicate that the few-shot performance target is robust across different λ values for a
given variant, exhibiting minimal variance. This robustness might stem from the compensation
provided by the spatial atoms to the atom coefficients during the time of unsupervised fine-tuning.

E.4 ABLATION STUDY ON DIFFERENT NUMBER OF FILTER ATOMS, AND PEFT METHODS

In Table 15, we conduct the ablation study on the number of decomposed filter atoms and observe
minute variabilities in the downstream few-shot accuracies.

In Table 13, we provided the decomposition residual error that we observed for different number
of filter atoms, we observed a notable reduction in the decomposition error for filter atoms 9 and
beyond andthere fore we limited our analysis to 9 and 12.
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Table 12: Extended results on 5-way 1-shot and 5-shot accuracy (%) with 95% confidence using
ResNet-50 (ImageNet-1K), detailing unlabeled data use (first column) and parameters fine-tuned
(last column). Best and second-best results are highlighted in maroon and navy.

Dataset% Unlabeled Data Method ChestX ISIC EuroSAT Crop CUB Cars Places Plantae # of Params.

5-way 1-shot
SimCLR (Chen et al., 2020) 22.14±0.40 30.47±0.52 72.56±0.88 84.32±0.86 39.59±0.80 30.49±0.64 58.22±0.93 43.21±0.84 23,508.03K
LoRA-3 (Hu et al., 2021) 21.81±0.42 31.42±0.59 72.28±0.88 83.95±0.87 46.01±0.85 32.60±0.65 59.87±0.92 41.40±0.83 391.29K
LoRA-4 (Hu et al., 2021) 22.41±0.42 31.17±0.57 71.49±0.86 84.66±0.83 45.06±0.86 28.77±0.61 60.03±0.94 42.10±0.81 504.01K
LoRA-5 (Hu et al., 2021) 22.41±0.43 31.21±0.58 72.55±0.87 84.38±0.84 40.18±0.82 32.09±0.63 59.69±0.96 41.22±0.81 616.74K
LoDC-9 (Ours) 22.56±0.44 34.42±0.60 71.61±0.83 84.04±0.80 52.44±0.85 32.90±0.66 63.54±0.88 44.39±0.81 437.07K

1%

LoDC-12 (Ours) 22.61±0.43 33.40±0.59 71.64±0.81 84.09±0.81 53.33±0.87 34.97±0.68 63.67±0.88 44.28±0.80 561.92K
SimCLR (Chen et al., 2020) 21.81±0.41 35.62±0.65 85.53±0.74 91.59±0.69 41.52±0.85 34.55±0.72 68.01±0.91 46.16±0.88 23,508.03K
LoRA-3 (Hu et al., 2021) 22.00±0.41 35.18±0.65 83.10±0.77 91.68±0.69 36.04±0.77 32.62±0.71 67.86±0.89 46.10±0.87 391.29K
LoRA-4 (Hu et al., 2021) 21.91±0.40 34.42±0.60 83.61±0.73 91.33±0.71 40.63±0.83 35.61±0.73 67.70±0.92 47.21±0.88 504.01K
LoRA-5 (Hu et al., 2021) 21.98±0.41 34.57±0.61 83.87±0.74 91.97±0.70 39.93±0.82 34.64±0.73 67.36±0.91 47.15±0.89 616.74K
LoDC-9 (Ours) 21.95±0.42 35.05±0.61 79.57±0.73 88.84±0.71 50.48±0.89 35.20±0.70 68.06±0.84 48.13±0.85 437.07K

5%

LoDC-12 (Ours) 22.22±0.43 35.37±0.61 80.53±0.76 88.09±0.71 51.14±0.90 34.84±0.73 67.78±0.82 48.07±0.86 561.92K
5-way 5-shot

SimCLR (Chen et al., 2020) 24.55±0.41 40.17±0.54 86.04±0.51 93.64±0.46 54.95±0.81 42.74±0.71 75.56±0.63 60.13±0.79 23,508.03K
LoRA-3 (Hu et al., 2021) 23.86±0.42 41.18±0.57 86.02±0.50 93.13±0.59 64.45±0.77 46.99±0.71 76.82±0.62 57.69±0.78 391.29K
LoRA-4 (Hu et al., 2021) 24.86±0.43 40.97±0.59 85.96±0.48 93.78±0.44 63.36±0.79 38.62±0.68 76.56±0.65 59.18±0.77 504.01K
LoRA-5 (Hu et al., 2021) 25.03±0.43 39.73±0.54 86.47±0.48 93.60±0.45 56.38±0.81 45.30±0.72 76.71±0.62 57.35±0.78 616.74K
LoDC-9 (Ours) 25.60±0.43 46.40±0.57 87.46±0.48 94.62±0.42 74.72±0.77 48.16±0.76 82.02±0.57 63.00±0.77 437.07K

1%

LoDC-12 (Ours) 25.47±0.44 45.63±0.57 87.63±0.47 94.47±0.42 75.98±0.76 52.36±0.77 82.20±0.58 62.95±0.78 561.92K
SimCLR (Chen et al., 2020) 25.04±0.42 46.50±0.59 93.04±0.36 97.59±0.31 57.65±0.81 47.04±0.77 82.38±0.55 63.12±0.80 23,508.03K
LoRA-3 (Hu et al., 2021) 24.82±0.41 47.24±0.61 92.79±0.37 97.60±0.31 48.20±0.79 43.08±0.76 82.29±0.56 62.46±0.79 391.29K
LoRA-4 (Hu et al., 2021) 24.94±0.42 46.20±0.59 93.18±0.35 97.34±0.32 55.76±0.82 48.83±0.79 81.83±0.55 64.23±0.79 504.01K
LoRA-5 (Hu et al., 2021) 25.08±0.43 45.15±0.61 93.35±0.34 97.51±0.31 54.50±0.83 47.24±0.81 81.86±0.57 63.47±0.78 616.74K
LoDC-9 (Ours) 25.68±0.44 48.00±0.58 92.34±0.37 97.31±0.29 71.20±0.78 50.69±0.76 85.05±0.51 67.00±0.77 437.07K

5%

LoDC-12 (Ours) 25.89±0.42 48.57±0.60 92.72±0.37 97.08±0.30 71.98±0.76 50.43±0.78 85.03±0.50 66.78±0.79 561.92K

Table 13: AD decomposition error of the ResNet-18 (ImageNet-1K) base model’s pretrained filter.
Method DC-6 DC-9 DC-12 DC-15

AD Error 2.0341e-07 5.2200e-09 4.6879e-09 4.9798e-09

In Table 16, we compare additional PEFT methods, LoHA (Low-rank Hadamard Adaptation) and
LoKrA (Low-rank Kronecker Adaptation) (Yeh et al., 2024) under similar parameter-complexity.

E.5 ANALYSIS WITH CONVNEXT

In Table 17, we applied our decomposition strategy to the ConvNext architecture (Liu et al., 2022).
However, given the consistently lower performance across baselines compared to ResNet-18, we
limited our further evaluations to the ResNet family. Despite this, our method still demonstrates a
superior trade-off between accuracy and parameter efficiency when compared to both the baseline
and LoRA fine-tuning.

F IMPLEMENTATION/TRAINING DETAILS

F.1 IMPLEMENTATION DETAILS

Base Pre-training. Building on prior work (Oh et al., 2022), our analysis employs ResNet architec-
tures (ResNet-10 (Guo et al., 2020), ResNet-18, and ResNet-50 (He et al., 2016)) for fair comparison
and thorough evaluation. For ResNet-10, we perform supervised pre-training on miniImageNet us-
ing Stochastic Gradient Descent (SGD) with a learning rate of 0.1, momentum 0.9, and weight
decay 10−4. For ResNet-18 and ResNet-50, we use ImageNet-1K pre-trained models available in
the PyTorch library (Paszke et al., 2019).

Filter Decomposition. In our method (Section 3.2), we target only the 3 × 3 filters for decomposi-
tion, given their dominance, while keeping 7 × 7 and 1 × 1 filters unchanged. The decomposition,
optimized using a least squares objective (5) via coordinate descent (Li & Osher, 2009) over 200
iterations with a sparsity coefficient of λ = 10−6, is efficiently executed on a GPU (Feinman, 2021),
completing within 20 seconds. We decompose the filters into m ∈ {9, 12} spatial filter atoms, where
m = 9 meets a predefined residual threshold, and m = 12 tests overparameterization, suggesting
the potential for further decompositions subject to computational resources.
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Table 14: 5-way 1-shot and 5-shot accuracy (%) with 95% confidence with different sparsity coef-
ficient (λ) used at during the Divide step, on ResNet-18 and ImageNet-1K, detailing unlabeled data
use (first column) and parameters fine-tuned (last column).

% Unlabeled
Data Method Sparsity

Coefficeint
Dataset # of Params.ChestX ISIC EuroSAT Crop CUB Cars Places Plantae

5-way 1-shot

1%

DC-9
10−4 22.76±0.42 32.99±0.58 69.16±0.84 83.02±0.82 50.50±0.88 34.54±0.67 60.75±0.86 42.13±0.77

192.34K10−6 22.87±0.48 33.73±0.59 69.10±0.85 82.35±0.79 50.61±0.88 34.42±0.67 59.50±0.86 42.92±0.77
10−8 22.61±0.43 33.26±0.55 71.15±0.81 83.29±0.82 49.49±0.86 33.66±0.67 60.04±0.85 42.68±0.79

DC-12
10−4 22.72±0.41 33.41±0.57 69.96±0.84 82.91±0.83 49.10±0.86 33.90±0.65 60.04±0.86 42.87±0.81

192.77K10−6 22.62±0.42 34.34±0.59 68.88±0.83 83.28±0.81 49.19±0.86 33.61±0.66 59.98±0.88 43.31±0.81
10−8 22.71±0.41 33.95±0.62 69.29±0.84 82.59±0.83 50.05±0.88 33.13±0.63 59.34±0.88 42.81±0.80

5%

DC-9
10−4 22.60±0.42 35.71±0.63 77.23±0.78 88.23±0.72 49.06±0.87 36.58±0.70 63.87±0.88 46.50±0.84

192.34K10−6 22.45±0.42 37.20±0.65 77.24±0.80 88.47±0.70 46.34±0.84 35.91±0.70 64.07±0.86 46.29±0.82
10−8 22.44±0.42 36.58±0.61 77.34±0.80 88.62±0.70 48.32±0.86 35.89±0.69 63.82±0.86 46.34±0.85

DC-12
10−4 22.60±0.42 35.71±0.63 77.23±0.78 88.23±0.72 49.06±0.87 36.58±0.70 63.87±0.88 46.50±0.84

192.77K10−6 22.48±0.42 35.73±0.61 77.88±0.76 88.60±0.70 49.48±0.86 36.06±0.70 64.27±0.84 46.02±0.82
10−8 22.44±0.42 36.58±0.61 77.34±0.80 88.62±0.70 48.32±0.86 35.89±0.69 63.82±0.88 46.34±0.85

5-way 5-shot

1%

DC-9
10−4 26.60±0.45 45.56±0.57 86.54±0.48 94.69±0.39 74.08±0.75 52.81±0.76 80.82±0.58 61.14±0.76

192.34K10−6 26.63±0.43 45.65±0.60 86.65±0.48 94.42±0.39 73.74±0.76 52.28±0.75 80.09±0.58 61.23±0.76
10−8 26.39±0.45 45.56±0.55 87.66±0.46 94.69±0.40 72.63±0.77 52.08±0.76 80.16±0.58 60.94±0.78

DC-12
10−4 26.38±0.45 45.74±0.58 87.14±0.47 94.52±0.41 72.30±0.76 51.97±0.76 80.53±0.57 61.40±0.78

192.77K10−6 26.47±0.46 46.35±0.57 86.34±0.49 94.64±0.41 71.89±0.78 51.25±0.75 80.46±0.58 61.92±0.75
10−8 25.85±0.43 46.75±0.60 87.05±0.48 94.46±0.41 73.03±0.78 50.78±0.76 80.07±0.58 61.12±0.78

5%

DC-9
10−4 26.46±0.46 48.36±0.62 91.64±0.39 97.13±0.30 70.50±0.77 54.77±0.78 82.04±0.55 64.85±0.79

192.34K10−6 26.70±0.45 49.96±0.57 91.75±0.38 97.32±0.29 70.25±0.76 54.21±0.78 81.87±0.55 64.63±0.80
10−8 26.36±0.43 50.00±0.59 91.66±0.39 97.22±0.29 69.28±0.78 53.52±0.77 81.95±0.55 64.66±0.79

DC-12
10−4 26.48±0.44 48.56±0.60 91.59±0.39 97.10±0.30 70.17±0.75 53.36±0.78 81.79±0.56 64.61±0.79

192.77K10−6 26.67±0.44 48.95±0.57 91.92±0.38 97.37±0.28 70.12±0.76 53.71±0.79 82.10±0.56 64.62±0.79
10−8 26.52±0.44 48.56±0.59 91.93±0.38 97.04±0.30 69.80±0.77 54.09±0.78 81.86±0.56 64.33±0.77

Table 15: 5-way 1-shot and 5-shot accuracies (%) on finetuned ResNet-18 (ImageNet-1K) using
1% of target unlabeled samples, our method with different numbers of filter atoms.

Method Dataset # of Params.ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae
5-way 1-shot

DC-6 22.73±0.44 34.20±0.61 68.57±0.87 82.57±0.81 48.56±0.80 33.87±0.66 59.18±0.87 41.86±0.86 191.90K
DC-9 22.87±0.48 33.73±0.59 69.10±0.85 82.35±0.79 50.61±0.88 34.42±0.67 59.50±0.86 42.92±0.77 192.34K
DC-12 22.62±0.42 34.34±0.59 68.88±0.83 83.28±0.81 49.19±0.86 33.61±0.66 59.98±0.88 43.31±0.81 192.77K
DC-15 22.78±0.42 34.20±0.60 70.14±0.86 82.73±0.82 49.68±0.84 34.17±0.64 59.86±0.88 42.26±0.80 193.20K

5-way 5-shot
DC-6 26.44±0.45 46.62±0.58 85.92±0.53 94.44±0.41 71.28±0.77 51.44±0.75 79.21±0.62 60.67±0.74 191.90K
DC-9 26.63±0.43 45.65±0.60 86.65±0.48 94.42±0.39 73.74±0.76 52.28±0.75 80.09±0.58 61.23±0.76 192.34K
DC-12 26.47±0.46 46.35±0.57 86.34±0.49 94.64±0.41 71.89±0.78 51.25±0.75 80.46±0.58 61.92±0.75 192.77K
DC-15 26.39±0.44 46.98±0.58 87.49±0.46 94.39±0.42 72.69±0.76 52.34±0.74 80.52±0.58 60.92±0.75 193.20K

Unsupervised Finetuning. In our unsupervised fine-tuning, we employ an SGD optimizer with
momentum 0.9 and weight decay 10−4, over 1000 epochs and a batch size of 64. The learning
rate starts at 0.1, reducing to 0 via cosine annealing. A two-layer projection head h (Linear-ReLU-
Linear) is appended to the extractor f , with dimensions of 512 (hidden) and 128 (output). The
NT-Xent loss temperature is set at 1.0. For comparisons in the standard setting, we use 20% of DT
as unlabeled data DU (Phoo & Hariharan, 2021; Oh et al., 2022). Augmentation details are in the
supplemental material.

Few-Shot Evaluation. During the few-shot evaluation, we attach a linear classifier g to the frozen
f as detailed in Section 3.1. We train g using SGD, with settings: batch size 4, learning rate 10−2,
momentum 0.9, and weight decay 10−2. The evaluation employs labeled target samples DL, distinct
from the unlabeled set DU, from DT.

F.2 BYOL HYPERPARAMETERS

For BYOL (Grill et al., 2020), we use the Adam optimizer (Kingma & Ba, 2014), with a set initial
learning rate of 3 × 10−5, and decayed to 0 via cosine annealing for 1000 epochs. Both the on-
line and target projectors utilize a multilayer perceptron (MLP) architecture comprising two layers,
structured as Linear-BatchNorm1D-ReLU-Linear, and featuring a hidden layer dimensionality of
4,096 and a projection layer dimensionality of 256. We maintain the target network’s moving aver-
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Table 16: 5-way 1-shot and 5-shot accuracies (%) on finetuned ResNet-18 (ImageNet-1K) using
1% of target unlabeled samples, comparing various parameter-efficient methods w.r.t. the number
of parameters fine-tuned (last column). Best and second-best results are highlighted in maroon and
navy, respectively.

DatasetMethod ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae # of Params.

5-way 1-shot
LoRA-3 (Hu et al., 2021) 22.38±0.42 31.65±0.54 69.96±0.89 83.36±0.84 44.41±0.85 32.60±0.65 59.07±0.92 40.71±0.78 218.75K
LoHA-1-3 (Yeh et al., 2024) 22.25±0.40 31.28±0.54 67.68±0.85 81.60±0.83 47.51±0.84 32.70±0.67 59.45±0.91 41.37±0.82 218.75K
LoKrA-32 (Yeh et al., 2024) 22.68±0.44 32.11±0.61 70.57±0.84 82.32±0.81 48.72±0.84 33.69±0.68 59.23±0.88 42.34±0.80 213.95K
DC-6 (Ours) 22.73±0.44 34.20±0.61 68.57±0.87 82.57±0.81 48.56±0.80 33.87±0.66 59.18±0.87 41.86±0.86 191.90K
DC-9 (Ours) 22.87±0.48 33.73±0.59 69.10±0.85 82.35±0.79 50.61±0.88 34.42±0.67 59.50±0.86 42.92±0.77 192.34K
DC-12 (Ours) 22.62±0.42 34.34±0.59 68.88±0.83 83.28±0.81 49.19±0.86 33.61±0.66 59.98±0.88 43.31±0.81 192.77K
DC-15 (Ours) 22.78±0.42 34.20±0.60 70.14±0.86 82.73±0.82 49.68±0.84 34.17±0.64 59.86±0.88 42.26±0.80 193.20K

5-way 5-shot
LoRA-3 (Hu et al., 2021) 24.79±0.43 41.93±0.57 84.76±0.54 93.33±0.46 63.13±0.81 47.46±0.75 75.92±0.64 57.27±0.77 218.75K
LoHA-1-3 (Yeh et al., 2024) 25.28±0.43 44.26±0.54 86.32±0.52 93.48±0.45 69.16±0.81 47.26±0.73 77.01±0.62 58.05±0.78 218.75K
LoKrA-32 (Yeh et al., 2024) 26.45±0.44 43.44±0.57 86.32±0.47 94.52±0.39 72.50±0.76 49.32±0.75 79.85±0.57 61.00±0.78 213.95K
DC-6 (Ours) 26.44±0.45 46.62±0.58 85.92±0.53 94.44±0.41 71.28±0.77 51.44±0.75 79.21±0.62 60.67±0.74 191.90K
DC-9 (Ours) 26.63±0.43 45.65±0.60 86.65±0.48 94.42±0.39 73.74±0.76 52.28±0.75 80.09±0.58 61.23±0.76 192.34K
DC-12 (Ours) 26.47±0.46 46.35±0.57 86.34±0.49 94.64±0.41 71.89±0.78 51.25±0.75 80.46±0.58 61.92±0.75 192.77K
DC-15 (Ours) 26.39±0.44 46.98±0.58 87.49±0.46 94.39±0.42 72.69±0.76 52.34±0.74 80.52±0.58 60.92±0.75 193.20K

Table 17: 5-way 1-shot and 5-shot accuracies (%) on a ConvNext-Tiny (ImageNet-1K) (Liu et al.,
2022) finetuned using 1% of unlabeled target samples. Best and second-best results are highlighted
in maroon and navy, respectively.

DatasetMethod ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae # of Params.

5-way 1-shot
SimCLR (Chen et al., 2020) 21.71±0.40 23.08±0.48 43.18±0.11 52.90±0.93 28.85±0.62 24.53±0.58 28.00±0.013 26.82±0.57 27820.13K
LoRA-3 (Hu et al., 2021) 20.56±0.36 22.53±0.45 39.82±0.86 44.34±0.88 27.18±0.58 23.09±0.47 29.81±0.63 24.82±0.53 1838.26K
DC-9 (Ours) 21.62±0.40 24.83±0.51 42.03±0.38 55.94±0.92 27.31±0.60 24.01±0.51 26.45±0.53 25.90±0.57 1823.68K
DC-12 (Ours) 21.55±0.38 24.90±0.54 45.42±0.91 51.84±0.90 28.25±0.60 24.77±0.53 33.79±0.65 27.56±0.59 1826.33K

5-way 5-shot
SimCLR (Chen et al., 2020) 23.67±0.40 29.62±0.48 56.43±0.27 73.26±0.77 35.04±0.59 27.24±0.62 37.02±0.58 34.62±0.59 27820.13K
LoRA-3 (Hu et al., 2021) 21.54±0.35 26.02±0.47 50.48±0.76 59.46±0.84 31.56±0.55 26.82±0.50 38.86±0.64 30.64±0.54 1838.26K
DC-9 (Ours) 24.00±0.42 32.04±0.53 55.98±0.50 77.25±0.71 33.58±0.59 28.84±0.53 33.58±0.55 33.38±0.59 1823.68K
DC-12 (Ours) 23.82±0.42 33.71±0.52 60.73±0.74 72.87±0.75 34.48±0.58 29.79±0.55 45.04±0.66 35.03±0.61 1826.33K
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age coefficient at 0.99. Subsequent to the online projector, the predictor also adopts a two-layer MLP
design, with a hidden layer dimensionality of 4,096 and an output dimensionality for prediction set
at 256.

F.3 AUGMENTATIONS USED FOR SIMCLR AND BYOL

• RandomResizedCrop: Randomly crop a portion of an image and then resize it to 224×
224.

• RandomColorJitter: Randomly change the brightness, contrast, and saturation, with
a probability of 1.0.

• RandomHorizontalFlip: Randomly flip an image on a vertical axis, with a probabil-
ity of 0.5.

• RandomGrayscale: Randomly convert image into grayscale, with a probability of 0.1.
• RandomGaussianBlur: Randomly blur an image with Gaussian blur of kernel size
5× 5, with a probability of 0.3.
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