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Abstract
One challenge in spoken language translation001
is that plenty of spoken content is long-form,002
but short units are necessary for obtaining003
high-quality translations. To address this mis-004
match, we adapt large language models (LLM)005
to split long ASR transcripts into segments that006
can be independently translated so as to max-007
imize the overall translation quality. To com-008
bat the tendency of hallucination by LLMs, we009
incorporate finite-state constraints during de-010
coding to eliminate invalid outputs. We dis-011
cover that LLMs are adaptable to transcripts012
containing ASR errors through prompt-tuning013
or fine-tuning. In comparison to a state-of-the-014
art automatic punctuation baseline, our best015
LLM improves the average BLEU for English-016
German, English-Spanish, and English-Arabic017
TED talk translation in 9 test sets by 2.9 points,018
just by improving segmentation.019

1 Introduction020

With the proliferation of long-form audiovisual021

content online, its translation and captioning be-022

comes paramount for accessibility. Cascade mod-023

els remain the dominant approach for speech024

translation (Arivazhagan et al., 2020; Li et al.,025

2021), decomposing the problem into automatic026

speech recognition (ASR), post-processing of the027

transcript, and machine translation (MT).028

The cascade’s MT component typically oper-029

ates on sentence-like units, with each sentence030

translated independently of the others. When031

asked to translate long passages, models regu-032

larly fail or degenerate (Cho et al., 2014; Pouget-033

Abadie et al., 2014; Koehn and Knowles, 2017).034

This differs considerably from the expectations035

for automatic speech recognition models (e.g.036

Graves, 2012) that can process inputs of un-037

bounded lengths. MT models must either be able038

to cope with potentially long, multi-sentence in-039

puts or, alternatively, they must be able to deter-040

mine cutpoints at which the transcript can be seg-041

mented into compact, independently translatable 042

units. This work introduces a new, effective ap- 043

proach for the latter. 044

While numerous text segmentation techniques 045

have been proposed to improve spoken language 046

translation (Section 6), the problem remains hard 047

and unsolved. Indeed, Li et al. (Li et al., 2021) 048

demonstrate that poor sentence segmentation de- 049

grades performance almost twice as much as tran- 050

script lexical errors. 051

We cast sentence segmentation as a sequence- 052

to-sequence task, rather than a traditional struc- 053

tured prediction task that tags sentence-final to- 054

kens. While this lets us leverage large lan- 055

guage models, such models’ outputs can be ill- 056

formed. Even by using additional data for fine- 057

tuning, residual adapters (Tomanek et al., 2021; 058

Chronopoulou et al., 2022), or future discrimi- 059

nators (Yang and Klein, 2021), simple syntactic 060

constraints can be difficult to enforce. Moreover, 061

all three require modifying the model or storing 062

additional learned parameters. In light of these 063

concerns, we introduce a simple, flexible, and 064

modular approach to generating well-formed task- 065

specific strings at inference time without any addi- 066

tional training. We compactly express constraints 067

on the output format as finite-state machines, then 068

efficiently enforce these via composition. While 069

the approach is simple, it remains unexplored for 070

large language models, and it yields automatic 071

gains on downstream performance, advancing the 072

state of the art for speech translation and thereby 073

applicable to existing systems. Moreover, the ap- 074

proach is sufficiently general that it can be applied 075

to other domains in a plug-and-play manner. 076

We benchmark our approach as a component 077

in a speech translation cascade. Experiments in 078

three language pairs indicate that our approach 079

outperforms a baseline cascade system that pre- 080

dicts punctuation marks before inferring sentence 081

boundaries, and a strong neural structured predic- 082
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tion model. Overall, we improve the BLEU score083

on the IWSLT test sets by 2.9 points, closing 3/4084

of the gap between the previous best and the oracle085

system. Our contributions are three-fold:086

• We propose a novel LLM-based approach for087

long-form speech translation, which can be088

applied to any ASR-MT speech translation089

cascade system and yield a significant in-090

crease in translation quality.091

• To the best of our knowledge, we are the first092

to investigate the use of finite state decoding093

constraints in combination with LLMs to pro-094

duce consistent improvements.095

• We report additional small but consistent im-096

provements by prompt-tuning or fine-tuning097

LLMs on ASR transcripts containing lexical098

and grammatical errors.099

2 Windowing Approach100

One major challenge in modeling and inference of101

long-form transcript segmentation is that the input102

sequences can be very long. For example, a TED103

talk can contain more than one thousand words104

(Li et al., 2021). We take a divide-and-conquer105

approach that operationalizes two straightforward106

principles in modeling. First, words on the left107

and right are both useful for deciding if a sen-108

tence delimiter should be present at the current109

word position. Second, distant words are less use-110

ful than nearby words. From these two principles,111

we design a top-level sliding window algorithm to112

balance the need for bidirectional modeling and113

efficiency of computation. We divide the pas-114

sage into windows at both training and test time,115

with a small context window on each side to in-116

form decisions at window edges (Figure 1). With117

this top-level inference algorithm, the sequence-118

to-sequence machine learning problem is now re-119

duced to the window-level. The problem is now120

to predict a sequence of segmentation decisions121

y = y1, . . . , yw for each text window of size at122

most w tokens: x = x1, . . . , xw.123

3 Modeling Approaches124

A classic approach to discriminative sequence125

modeling is the conditional random field (CRF)126

(Lafferty et al., 2001; Liu et al., 2005). This condi-127

tional graphical model allows incorporating arbi-128

trary features of the transcript, including linguistic129

variables and word embeddings.130

3.1 Structured Prediction Baseline: 131

Bidirectional RNN Model 132

The limitation of the CRF is in the Markov as- 133

sumption it makes, considering only the imme- 134

diately previous word’s segmentation decision. 135

Even higher-order CRFs can only consider a fixed- 136

size history within y. Instead, we introduce a 137

neural autoregressive segmenter. It is an encoder- 138

decoder neural network with monotonic hard at- 139

tention to the bidirectionally encoded input at the 140

current word position, admitting the same rich fea- 141

turization of x as the CRF; its likelihood is 142

pθ(y | x) =
∏w

t=1 pθ(yt | y<t,x)

:=
∏w

t=1 pθ(yt | y<t,BiRNN(x)t)
143

where pθ is parameterized by a recurrent neural 144

network followed by a linear projection layer and a 145

softmax layer to obtain a locally normalized distri- 146

bution. Exact inference here is intractable (unlike 147

a CRF); we approximate it with beam search. This 148

model as well as a QRNN (Bradbury et al., 2017) 149

based automatic punctuation model will serve as 150

baseline models. 151

3.2 Large Language Models for 152

Segmentation 153

More recently, the paradigm of pre-training fol- 154

lowed by fine-tuning or few-shot learning has 155

achieved great successes across many NLP tasks. 156

The pre-training task is typically a variant of a 157

language model (Brown et al., 2020; Chowdh- 158

ery et al., 2022) or an autoencoder (Raffel et al., 159

2020) where a corrupted version of a sentence is 160

mapped to its uncorrupted counterpart. We can 161

encode segmentation as such a task: reproduc- 162

ing the input with inserted sentence delimiters. 163

Concretely, we encode y as z1, . . . , zw where 164

zt = Concat(dt, xt) and dt ∈ {ϵ,■}. For exam- 165

ple, we feed i am hungry i am sleepy to 166

the model, and it produces the sentence-delimited 167

string i am hungry ■ i am sleepy. We 168

use the publicly available T5 (Text-to-Text Trans- 169

fer Transformer) model (Raffel et al., 2020) and 170

the GPT-style (Brown et al., 2020) PaLM model 171

(Chowdhery et al., 2022) as the foundation for our 172

text-based segmenters. 173

3.2.1 Prompting and Fine-tuning 174

Training examples for this task look like the in- 175

put output pairs in Figure 2. In fine-tuning, we 176
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[t0, . . . , tw−b, . . . , tw−r, . . . , tw−1]
[ tw−b, . . . , tw−r, . . . , tw−1, . . . , t2w−2b, . . . , t2w−b−r, . . . , t2w−b−1]

[ t2w−2b, . . . , t2w−b−r, . . . , t2w−b−1, . . . , t3w−3b, . . . , t3w−2b−r, . . . , t3w−2b−1]
...

[. . . , · . . . , tn−1]

t0, . . . , tn−1

Figure 1: Processing overlapping windows instead of entire transcript passages. w is the window size used in
both training and inference. b is the total context window size. r (≤ b) is the right context window size. The
underlines below the windows indicate which local segmentation decisions are taken as global decisions. Portions
not underlined (i.e., the context window) are still provided to the segmentation model to inform segmentation of
underlined portions.

>>> Segment a sequence of words into sentences separated by the
delimiter <SENT>

Input: well first of all thank you so much that is a beautiful
compliment i do think he is the best interviewer alive
Segmented Output: well first of all thank you so much <SENT> that is
a beautiful compliment <SENT> i do think he is the best interviewer alive

Input: i remember when my dad had to leave our home in scran-
ton pennsylvania to find work i grew up in a family where if the price of
food went up you felt it that’s why one of the first things i did as president
was fight to pass the american rescue plan
Segmented Output: i remember when my dad had to leave our home
in scranton pennsylvania to find work <SENT> i grew up in a family
where if the price of food went up you felt it <SENT> that’s why one of
the first things i did as president was fight to pass the american rescue plan

Input: we’re done talking about infrastructure weeks we’re going
to have an infrastructure decade
Segmented Output: we’re done talking about infrastructure weeks
<SENT> we’re going to have an infrastructure decade

Input: it is going to rain today remember to bring an umbrella
Segmented Output:

Figure 2: Prompting PaLM to segment a text window
(red) based on three examples.

update the full set of parameters for a given model177

on such examples to minimize the cross entropy on178

the output. For T5 models, the input sequence will179

be fed to the encoder, and the output sequence will180

be fed to the decoder through teacher forcing. For181

PaLM models, the input sequence and the output182

sequence are concatenated and fed to the decoder183

with an optional prompt as the prefix. For decoder-184

only PaLM models, a text prompt like the one in185

Figure 2 or a fine-tuned soft prompt (Lester et al.,186

2021) in the embedding space prompts the decoder187

to enter the state for the segmentation task. When188

we fine-tune PaLM, the entire model is updated189

for this task so that no prompting is necessary.190

3.2.2 Decoding Constraints191

A deficiency of generation with LLM is that the192

output might not only fail to correctly segment the193

passage; it might not even contain the same tokens194

as the passage. We shall say that an output is well-195

formed if it contains the same token sequence as 196

the input, with zero or one sentence delimiters be- 197

fore each token. While the rich parameterization 198

of such large Transformer models may learn the 199

inherent structure of the output, we provide two 200

solutions to enforce well-formedness. 201

Levenshtein Alignment for Post-processing 202

The generation models’ ability to produce arbi- 203

trary outputs may be seen as a strength: the model 204

could correct transcription errors and remove dis- 205

fluencies, if so trained. Therefore, we can let the 206

model generate freely without enforcing structural 207

constraints, then enforce well-formedness post- 208

hoc. Kumar and Byrne (Kumar and Byrne, 2002) 209

describe a WFST for Levenshtein alignment be- 210

tween two strings. We use it to align the generated 211

string with x. We then project segment boundaries 212

across alignment links from the generated string 213

onto x to determine y. In this way, annotations can 214

be salvaged when LLM does not precisely recreate 215

the input. 216

Finite State Constraints in Decoding A natu- 217

ral strategy to force well-formed outputs is con- 218

strained decoding (e.g. Zhang et al., 2019). In it, 219

we compose the input FSA x and a special FST T 220

encoding all possible segmentation decisions, then 221

project the FST to the output tape to obtain a deter- 222

minized FSA for the output space. The FST x ◦ T 223

is shown in Figure 3. 224

4 Experiments 225

We evaluate our proposed method for using large 226

language models for long-form speech transla- 227

tion with three sets of experiments: (1) analysis 228

of hyperparameters, (2) comparison to compet- 229

ing methods, and (3) robustness to speech recog- 230

nition errors. In each case, we are concerned 231

with translation quality as measured by BLEU. We 232
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conqueredε:■ ε:■

Figure 3: FST representing all possible segmentations for the transcript “i came i saw i conquered”.

also assess the LLM output directly by qualitative233

analysis, well-formedness percentage, and (for234

diagnostic purposes, following Goldwater et al.,235

2009) segmentation F1 score against the sentence-236

segmented reference.237

Our experiments are carried out on the IWSLT238

spoken language translation data sets, subjected to239

the same pre-processing as described in Li et al.,240

2021. We use the 2014 data for dev and 2015 and241

2018 for test. The fourteen reference transcripts242

in our dev set range from 861 to 1234 words; by243

contrast, the median length of a sentence in writ-244

ten English is close to 17 words (Kučera and Fran-245

cis, 1970). We use the publicly available Speech-246

to-Text Google API1 to generate ASR transcripts.247

We remove the automatically predicted punctua-248

tion and lowercase the ASR transcripts and use249

English-{German,Spanish,Arabic} machine trans-250

lation models trained with the same preprocessing251

on the source side as Li et al., 2021. The MT252

model is a Transformer with a model dimension253

of 1024, hidden size of 8192, 16 attention heads,254

6 encoder layers, and 8 decoder layers. We de-255

code with a beam size of 4. In our experiments,256

the three MT model instances and the ASR model257

(and thereby its transcripts) are fixed while we258

vary the sentence segmentation policies.259

4.1 Context Window Size260

In Section 2, we introduced the top-level sliding261

window inference algorithm above all modeling262

choices. To compare different models fairly, we263

fix the hyperparameters (w, b, r) = (40, 10, 5) for264

the algorithm throughout the experiments. This265

choice is guided by a linear search over the win-266

dow lengths w in the range of [20, 100]. The over-267

lapping buffer size for both ends is set to 5 heuris-268

tically. According to Figure 4, translation quality269

degrades slightly as window size approaches 20.270

But very large windows do not appear to be bene-271

ficial. The observation validates our guiding prin-272

ciples of the sliding window algorithm.273
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Figure 4: BLEU for English-German as context win-
dow size for segmentation increases. Each dot repre-
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window size for inference time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10  15  20  25  30  35  40

S
e

g
m

e
n

ta
tio

n
 F

1

Prompt size

PaLM-62B-tuned
PaLM-62B-manual
PaLM-540B-tuned
PaLM-540B-manual

Figure 5: Segmentation F1 on the dev set as prompt
size varies.

4.2 Choice of Prompt 274

The manual prompt in Figure 2 is the one we 275

selected from a few variants for the decoder- 276

only PaLM models. Instead of exploring the un- 277

bounded space of prompts, we resorted to the more 278

principled method of prompt tuning (Lester et al., 279

2021) to optimize the prompt in the embedding 280

space for the segmentation task. For prompt tun- 281

ing, the only hyperparameter is the length of the 282

embedding prompt (the embedding size is tied to 283

the corresponding model). In Figure 5, we show 284

that for the PaLM models of 62B and 540B, an 285

embedded prompt as short as 10 can achieve much 286

higher F1 than our hand-written prompt. But it is 287

also notable that the gap between prompt tuning 288

1https://cloud.google.com/
speech-to-text
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and manual prompting shrank from 25 percent to289

10 percent as the model size increased from 62B290

to 540B, indicating the increasingly stronger gen-291

eralization capability of extremely large language292

models. Based on Figure 5 we select 30 as the size293

for soft prompts in the main results.294

4.3 Effect of Finite State Constraints295

We make a contrast between greedy search and296

beam search, with either the segmentation FST297

constraint Section 3.2.2 inside the decoder or post-298

hoc Levenshtein alignment Section 3.2.2 for re-299

pairing invalid output. We also vary the model300

types and model sizes to analyze the impact of301

constrained decoding in different situations. Ta-302

ble 1 shows that constraints are crucial for smaller303

models in prompt-tuned scenarios. For example,304

the rate of output being well-formed is only 14.5%305

using greedy search for the PaLM 8B model. Even306

when the model size is increased to 62B, the well-307

formedness rate is till below 90%. The Leven-308

shtein post-alignment algorithm is effective. But309

the more general finite state constraint is even310

more effective. For the 8B model, the improve-311

ment in F1 is 1-2% absolute. For the 62B model,312

the improvement is nearly 3% absolute. On the313

other hand, if the cost of fine-tuning is acceptable,314

LLMs can adapt to this task very well. The fine-315

tuned T5 base model has a wellformedness rate316

of 99.4% (the rate is even higher for the T5 11B317

model: 99.8%). But we shall point out that for the318

results to be useful to downstream applications, ei-319

ther of the two types of constraints is necessary to320

completely eliminate hallucinations from LLMs.321

And the FST constraints are more general and322

more effective as they affect beam search by re-323

jecting non-wellformed hypotheses during search.324

4.4 Main Results: LLMs against Structured325

Prediction Models326

Using the IWSLT TED datasets as preprocessed327

by Li et al. (2021), we compare LLM models328

against their approach, two strong custom struc-329

tured prediction baselines. We also report the per-330

formance of an oracle segmenter.331

• FIXEDLENGTH – Separates the transcript332

into disjoint segments with the same num-333

ber of tokens. While this requires no external334

segmentation model, the resulting segments335

are non-sentential (Tsiamas et al., 2022).336

MODEL CONSTRAINT SEARCH WELLFORMED F1

T5 BASE

UNCONSTRAINED GREEDY 99.4% –

FINE TUNED

BEAM=4 99.4% –

LEVENSHTEIN GREEDY 100.0% 0.786
BEAM=4 100.0% 0.788

FST GREEDY 100.0% 0.786
BEAM=4 100.0% 0.788

PALM 8B

UNCONSTRAINED GREEDY 14.5% –

PROMPT TUNED

BEAM=4 52.7% –

LEVENSHTEIN GREEDY 100.0% 0.715
BEAM=4 100.0% 0.689

FST GREEDY 100.0% 0.717
BEAM=4 100.0% 0.727

PALM 62B

UNCONSTRAINED GREEDY 85.9% –

PROMPT TUNED

BEAM=4 89.0% –

LEVENSHTEIN GREEDY 100.0% 0.735
BEAM=4 100.0% 0.737

FST GREEDY 100.0% 0.761
BEAM=4 100.0% 0.764

Table 1: Effect of finite state decoding constraints and
Levenshtein post alignment on segmentation F1.

• ORACLE – Uses punctuation from the ref- 337

erence transcripts to segment. The segmen- 338

tation is projected onto Levenshtein-aligned 339

words in the noisy ASR transcripts (Sec- 340

tion 3.2.2).2 341

• PUNCTUATE – An interpretable two-pass 342

segmentation that first infers punctuation 343

(Soboleva et al., 2021), then uses a fixed set 344

of inference rules to differentiate sentence- 345

terminal punctuation marks from sentence- 346

internal ones as in “St. John” and “The end.” 347

• BIGRU F.T. – On the IWSTL data, fine-tunes 348

a shallow biGRU model (Section 3.1) trained 349

on the C4 data set (Raffel et al., 2020) using 350

the same rules in PUNCTUATE to derive sen- 351

tence boundaries as supervision. The model 352

has 1 left-to-right GRU layer, 1 right-to-left 353

GRU layer, and 1 GRU layer in the decoder. 354

It uses embeddings of character n-gram pro- 355

jections (Zhang et al., 2019). 356

• T5-{BASE,11B} – Fine-tunes the base or 357

11B (xxl) T5 model (Raffel et al., 2020) on 358

the IWSLT data. 359

• T5-11B-ASR – Fine-tunes the 11B T5 360

model on the ASR output of IWSLT train and 361

dev set. The sentence boundaries are pro- 362

jected from reference transcripts in the same 363

way as ORACLE. 364

• PALM-PROMPTTUNED-{62B,540B}{,- 365

ASR} – Prompt-tunes the PaLM model 366

2A true oracle would optimize corpus-level BLEU over
all 2n segmentations, but this is intractable.

5



F1 EN-DE EN-ES EN-AR

Policy TED 2014 2014 2015 2018 2014 2015 2018 2014 2015 2018 Avg

Baselines and Oracle:
ORACLE 1.000 26.66 30.24 25.21 40.38 41.72 41.84 15.66 18.18 17.59 29.62
FIXEDLENGTH 0.041 20.82 23.45 19.66 32.76 34.03 34.01 12.64 14.79 13.92 23.66
LI ET AL. (2021) – – 27.00 22.00 – – – – – – –

Small Structured Prediction Models:
PUNCTUATE – 22.80 26.30 21.60 35.70 36.90 36.70 13.70 15.80 15.40 25.81
BIGRU F.T. 0.697 24.55 28.10 23.14 37.31 39.08 38.64 14.41 16.77 16.19 27.39

LLMs:
T5-BASE 0.788 25.28 29.14 24.05 38.75 40.23 39.96 14.94 17.32 16.57 28.33
T5-11B 0.821 25.63 29.63 24.27 39.16 40.64 40.05 15.31 17.60 16.48 28.66
T5-11B-ASR 0.836 25.71 29.28 24.22 39.11 40.47 40.02 15.24 17.58 16.66 28.59
PALM-PROMPTTUNED-62B 0.764 25.10 28.69 23.92 38.52 40.01 39.22 15.03 17.13 16.58 28.08
PALM-PROMPTTUNED-62B-ASR 0.781 25.15 29.09 23.71 38.69 40.07 39.31 15.13 17.21 16.76 28.17
PALM-FINETUNED-62B 0.820 25.71 29.19 23.97 38.96 40.56 39.74 15.07 17.66 16.90 28.51
PALM-FINETUNED-62B-ASR 0.832 25.84 29.37 24.13 39.02 40.46 39.89 15.17 17.80 16.65 28.61
PALM-PROMPTTUNED-540B 0.816 25.44 29.29 24.23 38.95 40.70 39.74 15.03 17.61 16.86 28.49
PALM-PROMPTTUNED-540B-ASR 0.835 25.52 29.37 24.15 39.08 40.67 39.98 15.11 17.64 16.61 28.56

Table 2: Segmentation F1 scores on dev set and BLEU scores on dev and test sets, translating into German,
Spanish, and Arabic.

(Chowdhery et al., 2022) on the IWSLT data.367

• PALM-FINETUNED-62B{,-ASR} – Fine-368

tunes the 62B PaLM model.369

The current peer-reviewed state of the art for370

long-form speech translation is Li et al. (2021) on371

the IWSLT data set for EN-DE. Compared to OR-372

ACLE, there is still a large gap of 3 BLEU points373

which can be closed by improving segmentation374

alone.375

Table 2 lists the complete set of results. BIGRU376

F.T. already beats Li et al. (2021) by more than 1377

BLEU point for EN-DE, proving itself as a strong378

structured prediction baseline. T5 and PaLM mod-379

els improve the results furthermore. Within the T5380

group, T5-11B improves over T5-BASE by 3%381

in segmentation F1 which translates to consistent382

BLEU score improvement in almost all data sets.383

Within the PaLM group, the prompt-tuned 540B384

model is about 5% more accurate than the 62B385

counterpart. Given the large number of parame-386

ters, fine-tuning PaLM models is very expensive.387

For the completeness of comparison, we include388

the fine-tune result for PaLM 62B. Its result is on-389

par with the T5 11B model. This fact indicates390

that T5’s encoder-decoder architecture has an in-391

duction bias advantage over the PaLM model’s de-392

coder only architecture for this task, from a param-393

eter efficiency point of view. But the strength the394

the PaLM family lies in its largest member. The395

540B model can achieve a result as good as the396

fully fine-tuned T5 11B or PaLM 62B with a tiny397

tuned prompt. 398

4.5 Robustness to Speech Recognition Errors 399

 60
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prompt-tune-10 prompt-tune-30 fine-tune

PaLM 62B on gold

69.62

76.97

81.98

PaLM 62B on ASR

75.68
78.13

83.23

Figure 6: Contrast of segmentation F1 on the dev set
between models trained on gold and ASR transcripts.

One key difference between cascade speech 400

translation and typical document-level translation 401

is that transcription errors can be introduced, 402

which propagate into the translation. When the 403

input to segmentation models contains speech 404

recognition errors, can such models still predict 405

sentence boundaries accurately? The answer is 406

yes, to a certain extent. What we do is switch- 407

ing the tuning data from ground-truth transcripts 408

with punctuation-derived sentence boundaries to 409

ASR transcripts with sentence boundaries pro- 410

jected from their parallel ground-truth transcript 411

counterparts. For example, we will tune the mod- 412

els to predict the segmentation for the passage: 413

this train leaves at for <SENT> the next train will 414
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arrive in ten minutes, even though there is a lexical415

error (for versus four).416

Table 2 shows that training on the ASR tran-417

scripts is indeed beneficial. On top of the strong418

results of the T5 11B model trained on ground-419

truth transcripts, the ASR version obtains another420

1% F1 improvement. The same is true for the421

PaLM 62B prompt-tuned and fine-tuned models.422

Figure 6 shows the relative improvement is consis-423

tent across different prompt sizes and fine-tuning424

methods. But the segmentation accuracy improve-425

ment seems to be too small to translate into signif-426

icant BLEU score improvements.427

5 Error Analysis428

5.1 Segment Length Histogram Analysis429
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Figure 7: Histograms of segment lengths for ORACLE,
BIGRU, PALM PROMPTTUNED 540B ASR, and T5
11B ASR.

To understand the improvements and the re-430

maining errors, we first compare the length dis-431

tribution of the ORACLE, the small model BI-432

GRU, T5-11B, and PALM-540B. Figure 7 indi-433

cates that the more very long (≥ 50) segments a434

model has, the lower its F1 and BLEU scores tend435

to be. Both LLM models were able to reduce the436

number of very long segments, bringing it closer437

to the oracle.438

5.2 Qualitative Analysis439

Table 3 shows examples where the T5-11B-ASR440

model outperforms competing models. In the first441

two examples, the LLM model is able to cap-442

ture the larger context and therefore make the443

correct prediction. The third example typifies444

the cases where T5-11B, which is fine-tuned on445

ground-truth transcripts without ASR errors, tends446

to make more wrong predictions when the input447

text is not fluent.448

Table 4 lists typical errors the T5-11B-ASR 449

model makes. In the first two, ASR errors make 450

the input difficult to parse. The third one is linguis- 451

tically ambiguous. In the last one, the model’s pre- 452

diction is actually closer to the ground-truth seg- 453

mentation than the Levenshein-(mis)aligned ASR 454

transcript. 455

Overall, LLMs such as T5-11B-ASR made 456

real progress in predictions requiring longer con- 457

text. However, overcoming ASR errors remains 458

challenging even though fine-tuning on ASR tran- 459

scripts improved robustness of the models in face 460

of disfluent input. 461

6 Related Work 462

Speech translation. While end-to-end systems 463

for spoken language translation have exceeded 464

the performance of cascade models on short se- 465

quences (Weiss et al., 2017) even on public data 466

(McCarthy et al., 2020), long-form audio is typi- 467

cally translated with cascades. Previous work uses 468

tagging approaches to separate text into indepen- 469

dently translatable units. Segmenting long texts 470

into units suitable for translation has been a recur- 471

ring topic in MT research (Li et al., 2021; Tien 472

and Thi Minh, 2019; Pouget-Abadie et al., 2014; 473

Doi and Sumita, 2003; Goh and Sumita, 2011). To 474

bridge the gap between ASR and MT, (Li et al., 475

2021) address long-form spoken language transla- 476

tion. Claiming that segmentation is the bottleneck, 477

they adapt their MT model to work with automatic 478

segmentations, however inaccurate they may be. 479

We are training our models to minimize the loss 480

of source sentence segmentation. The ultimate ob- 481

jective is improving the downstream translation 482

quality. It is interesting to explore reinforcement 483

learning for segmentation (Srinivasan and Dyer, 484

2021), but the state space is vast for the long-form 485

segmentation problem compared to prior work on 486

RL-based segmentation. 487

Finally, one may consider additional sources of 488

data or training examples to improve modeling. 489

Using prosodic features when they are available 490

is viable (Tsiamas et al., 2022); however, we show 491

that LLMs close most of the accuracy gap with- 492

out these. As a contrasting approach, Kumar and 493

Byrne (2002) focus on segmenting an ASR lattice, 494

rather than the decoded transcript. Finally, data 495

augmentation (Li et al., 2021; McCarthy et al., 496

2020) can complement our approach. 497

Text normalization and segmentation. Mans- 498

7



Reference: this great renaissance for ancient egyptian art architecture and religion<SENT>egyptologists have always known the site
ASR: this great renaissance for ancient egyptian art architecture and religion<SENT>egyptologists have always known the site
BIGRU: this great renaissance for ancient egyptian art architecture and religion egyptologists have always known the site
T5-11B-ASR:this great renaissance for ancient egyptian art architecture and religion<SENT>egyptologists have always known the site

Reference: looking for layers of human occupation<SENT>and five meters down underneath a thick layer of mud we found a dense layer of pottery
ASR: looking for layers of human occupation<SENT>and five meters down underneath a thick layer of mud we found a dense layer of pottery
BIGRU: looking for layers of human occupation and five meters down underneath a thick layer of mud<SENT>we found a dense layer of pottery
T5-11B-ASR: looking for layers of human occupation<SENT>and five meters down underneath a thick layer of mud we found a dense layer of pottery

Reference:actually started in 1984 bc at a not-lost-for-long city found from above
ASR: how actually actually started in 1984 bc at a not lost for long city found from above
T5-11B: how<SENT>actually actually started in 1984 bc at a not lost for long city found from above
T5-11B-ASR: how actually actually started in 1984 bc at a not lost for long city found from above

Table 3: Cases where the T5-11B-ASR model is more accurate.

Reference: designers can materialize their ideas directly in 3d and surgeons can practice on virtual organs underneath the screen
ASR: designers can materialize their ideas directly in 3d sturgeons can practice a virtual audience underneath the screen
T5-11B-ASR: designers can materialize their idesas directly in 3d<SENT>sturgeons can practice a virtual audience underneath the screen.

Reference: But our two hands still remain outside the screen <SENT> how can you reach inside and interact with the digital information
ASR: what are two hands still we made outside the screen that <SENT> how can you reach inside and interact with the digital information
T5-11B-ASR: what are two hands still we made outside the screen that how can you reach inside and interact with the digital information

Reference: this is really what brought me to using satellite imagery<SENT>for trying to map the past i knew that i had to see differently
ASR: this is really what brought me to using satellite imagery<SENT>for trying to map the past i knew that i had to see differently
T5-11B-ASR: this is really what brought me to using satellite imagery for trying to map the past<SENT>i knew that i had to see differently

Reference: the equivalent of locating a needle in a haystack blindfolded wearing baseball mitts<SENT>so what we did i
ASR: the equivalent of locating a needle in a haystack blindfolded wearing baseball<SENT>minutes so what
T5-11B-ASR: the equivalent of locating a needle in a haystack blindfolded wearing baseball minutes<SENT>so what we did is

Table 4: Cases where the T5-11B-ASR model’s prediction is wrong.

field et al. (2019) model text normalization as499

a sequence-to-sequence problem, using <self>500

tags to bias toward copying, but they place501

no search constraints to ensure well-formedness.502

Zhang et al. (2019) is another study that uses finite503

automata intersected with a neurally generated lat-504

tice during decoding.505

Wicks and Post (2021) provide a unified so-506

lution for segmenting punctuated text in many507

languages. But ground-truth punctuation is not508

present in speech recognition output.509

Structured prediction as sequence-to-sequence.510

Vinyals et al. (2015) show that attention-enhanced511

sequence-to-sequence models can be trained for512

complex structured prediction tasks such as513

syntatic parsing. Raffel et al. (2020) takes a step514

further to model all text-based language problems515

into a text-to-text format. Paolini et al. (2021)516

framed many NLP tasks as translation between517

augmented natural languages.518

Constrained decoding. Hokamp and Liu519

(2017) and Post and Vilar (2018) introduced lexi-520

cal constraints in neural machine translation beam521

search. Anderson et al. (2017) formulated lexical522

constraints as finite state machines. Deutsch et al.523

(2019) used an active set method to efficiently524

compose many automata with beam search. 525

7 Conclusion 526

We have presented new methods for long-form 527

speech translation by coupling source-side large 528

language models with finite state decoding con- 529

straints, allowing large language models to be used 530

for structured prediction with a guarantee for well- 531

formedness in the output space. Finite-state con- 532

straints are especially effective when the model 533

is decoder-only, relatively small, or has not been 534

completely fine-tuned (only prompt-tuned, or few- 535

shot-learned) for the structured prediction task. 536

We also observe that even though complete fine- 537

tuning and enlarging model size can reduced the 538

rate of invalid output, models alone are not capa- 539

ble of completely eliminate invalid output. 540

Fine-tuning on in-domain ASR transcripts con- 541

taining recognition errors and disfluency outper- 542

forms training on clean transcripts in terms of 543

segmentation accuracy. Our qualitative analysis 544

shows the largest category of remaining errors 545

is ASR errors which make transcripts difficult to 546

parse and segment. The fact that LLMs are ca- 547

pable of adapting to ASR errors to some extent 548

points to future research directions of ASR error 549

recovery within context. 550
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