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ABSTRACT

Scientific discourse depends on argumentative reasoning: identifying claims, eval-
uating evidence, and constructing coherent responses. While recent advances in
reasoning-capable language models have demonstrated strong performance on
mathematical and logical benchmarks, their ability to engage in scientific argu-
mentation remains unclear. We present the first systematic evaluation of language
models across eight tasks spanning argument mining, rebuttal generation, and
discourse-level reasoning using research papers, peer reviews, and grant propos-
als. Our study reveals that even frontier models with strong general reasoning
skills struggle with domain-specific argumentative tasks, highlighting a funda-
mental capability gap. To address this, we introduce a training framework that
explicitly scaffolds the argumentative reasoning process in language models, sub-
stantially improving their competence in scientific discourse. The resulting com-
pact models approach or exceed the performance of much larger proprietary sys-
tems and generalize to unseen conversational settings, demonstrating reasoning
transfer beyond task-specific supervision. These findings underscore that effec-
tive scientific argumentation is not an emergent property of scale, but requires
explicit reasoning-aware training, and they point toward practical pathways for
building Al systems that can contribute meaningfully to scientific discourse.

1 INTRODUCTION

Scientific progress fundamentally depends on evidence-based argumentation, as researchers advance
claims, marshal evidence, critique methodologies, and synthesize competing perspectives into co-
herent theories (Toulmin, 1958; [Kuhnl, |1997; [Teutel & Moens| [1999; |Driver et al., 2000). This
process demands precise reasoning skills, including the ability to trace logical connections between
hypotheses and data, evaluate the strength of empirical support, and construct rebuttals that address
both methodological and theoretical concerns (Teufel et al., {1999} |de Waard & Pander Maat, 2012).
As large language models (LLMs) increasingly assist in research tasks, from literature review to
manuscript drafting (OpenAll 2025a; [Lu et al., [2024} [Yamada et al., [2025} |Gottweis et al., 2025;
Schmidgall et al., 2025)), a critical question emerges: can these systems engage in the rigorous
argumentative reasoning that defines scientific discourse?

Recent reasoning-focused models achieve impressive results on mathematical and logical bench-
marks (OpenAlL[2025b; (Guo et al.; 2025; |Abdin et al.| [2025), yet scientific argumentation poses dis-
tinct challenges. Unlike proofs or puzzles, it requires domain-specific methodological knowledge,
careful evaluation of evidence, and the ability to navigate uncertainty and conflicting interpretations.
Existing evaluations largely target mathematics, code, or general logic (Chollet, [2019; Chollet et al.,
2025} |Balunovi¢ et al.;2025)), leaving the argumentative demands of science unexplored.

The challenge is particularly acute because scientific discourse differs fundamentally from general
argumentation and existing computational argumentation research has largely focused on news ar-
ticles, social media, or debate transcripts (Slonim et al.| 2021} |Chen et al., [2019; Roush & Balaji,
2020). While valuable, these domains do not capture the specialized reasoning patterns that char-
acterize scholarly communication. Where social media debates or news commentary may rely on
rhetorical persuasion, scientific arguments must satisfy stringent evidential standards. Moreover,
scientific reasoning often spans multiple discourse levels, from sentence-level claim detection to
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Figure 1: The figure shows eight tasks across argument mining, generation, and discourse-level
reasoning, with examples ranging from claim detection in research papers to rebuttal generation
addressing reviewer concerns. Our reasoning-aware training approach scaffolds argumentative ca-
pabilities through structured supervision across these diverse scientific discourse tasks.

document-level evidence synthesis, requiring models to maintain coherent logical threads across
extended contexts.

We address this gap with a comprehensive investigation of scientific argumentation in LLMs. Our
contributions are fourfold: (1) we introduce a systematic evaluation framework spanning eight tasks
across research papers, peer reviews, and grant proposals; (2) we provide the first capability audit
showing that strong general reasoning does not transfer to scientific argumentation; (3) we propose a
training methodology that explicitly scaffolds the argumentative reasoning process through distilled
chain-of-thought (CoT) supervision and reinforcement learning, yielding substantial improvements;
and (4) we release evaluation protocols, reasoning traces, and trained models to support future re-
search.

2 Do LLMS UNDERSTAND SCHOLARLY ARGUMENTATION?

2.1 TASK FORMULATION

Our evaluation spans three task families covering the full spectrum of scientific argumentation in-
cluding argument mining and generation, and discourse-level argumentation as shown in Figure[T]

Argument Mining. We evaluate four core tasks that assess models’ ability to identify and classify
argumentative structures in scientific text.

(1) Claim detection identifies verifiable scientific claims within NSF grant abstracts using NSF-
SciFy (Rao et al.| 2025). Given numbered sentences from grant abstracts, models must identify
which contain empirically testable claims (e.g., “This approach will reduce computational com-
plexity by 40%”) versus background statements or methodology descriptions. The task uses binary
classification with claim indices as targets (e.g., ”’0,2,5” or “none”).

(2) Evidence detection determines whether sentences can serve as evidence for scientific claims
using SciFact (Wadden et al., [2020). Models classify sentence-claim pairs into three categories:
SUPPORT (sentence provides evidence supporting the claim), CONTRADICT (sentence provides evi-
dence refuting the claim), or NEI (sentence is irrelevant or insufficient). This dataset is significantly
imbalanced towards NEI samples (95% of the labels). Hence, we report F1 score along with accu-
racy.

(3) Evidence classification assigns support relationships using SciFact (Wadden et al.,2020). Given
claim-evidence pairs where relevance is established (i.e. no NEI sentences), models classify the
relationship as SUPPORTS or REFUTES.
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Claim Detection Evidence Detection Evidence Classification Stance Detection

Model

Acc F1 Acc Fq Acc F1 Acc Fi
Llama3.2 1B 6.5 7.5 12.5 7.4 19.5 25.3 16.0 19.1
Llama3.2 3B 24.5 41.1 60.0 25.0 56.0 58.6 42.5 31.2
Llama3.1 8B 72.5 82.8 82.5 33.6 76.0 76.1 40.0 33.5
OpenAl 03 96.0 92.0 99.0 49.8 86.0 86.5 49.5 53.3
Gemini 2.5 Flash 93.5 91.0 94.5 43.5 86.5 87.0 32.5 38.9

Table 1: Zero-shot performance on argument mining tasks. Despite strong general reasoning capa-
bilities, even frontier models (OpenAl 03) struggle with nuanced tasks like stance detection. The
gap between accuracy and F1 reveals failures in handling class imbalance, particularly in evidence
detection where models default to majority class predictions.

(4) Stance detection analyzes peer review discourse using DISAPERE (Kennard et al., [2022)) where
the dataset contains reviews from computer science venues. Models classify author rebuttal sen-
tences relative to reviewer comments into three stances: CONCUR (author agrees with or acknowl-
edges the reviewer’s point), DISPUTE (author challenges or refutes the reviewer’s concern), or NON-
ARG (sentence contains social pleasantries or non-argumentative content).

Argument Generation. We assess two generation capabilities requiring coherent argumentative
discourse.

(1) Rebuttal generation using ARIES (D’ Arcy et al.| [2024) evaluates models’ ability to compose
scholarly rebuttals addressing reviewer concerns. Given reviewer comments and paper excerpts,
models must generate point-by-point responses that acknowledge valid concerns, clarify misun-
derstandings, and defend methodological choices. The dataset contains reviewer-rebuttal pairs
from major Al conferences. Responses are evaluated using ROUGE-L (Lin, 2004), METEOR
(Denkowski & Lavie, 2011), and BERTScore (Zhang et al.|[2020) against human-authored rebuttals.

(2) Meta-review summarization using PRRCA (Wu et al.| 2022)) requires synthesizing multiple peer
reviews into coherent meta-reviews that identify consensus points, highlight disagreements, and
provide acceptance recommendations. Models process individual reviews plus author rebuttals to
generate meta-reviews that capture reviewer sentiment. The dataset contains review sets from com-
puter science conferences with corresponding meta-reviews averaging 150-200 words.

Discourse-Level Argumentation. We evaluate answer composition task that require coherence and
evidence integration for discourse-level argumentation.

Systematic answer composition using QASA (Lee et al., [2023) evaluates evidence-grounded ques-
tion answering in scientific contexts. Given research questions and multiple evidence passages,
models must synthesize information to produce comprehensive answers that cite supporting evi-
dence and acknowledge limitations. The dataset contains questions from computer science and
biomedical literature with gold answers averaging 80-120 words. Questions require multi-hop rea-
soning across evidence passages, such as “How do attention mechanisms in transformers compare
to memory-augmented networks for long-sequence modeling?”’. We evaluate generated answers by
using ROUGE-L, METEOR, and BERTScore against human-written answers.

Each task family represents increasing complexity: argument mining tests recognition of existing
argumentative structures, argument generation requires producing coherent argumentative text, and
discourse-level tasks demand sustained reasoning across multiple turns or evidence sources while
maintaining argumentative coherence and factual grounding.

2.2 BASELINES

Systematic failures across model scales. Tables[I|and[2]reveal that current LLMs, regardless of size
or reasoning capabilities, struggle fundamentally with scientific argumentation. The performance
gap between general capabilities and domain-specific tasks is substantial, as models achieving near-
perfect mathematical reasoning barely exceed random chance on stance detection. This pattern holds
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Task Dataset Method BERTScore ROUGE-L METEOR
ARIES Llama3.2 1B 0.41 0.04 0.02
Generation Llama3.2 3B 12.69 1.81 1.29
Llama3.1 8B 33.60 3.96 2.75
OpenAl 03 84.29 9.90 5.55
Gemini 2.5 Flash 55.65 12.12 13.89
PRRCA Llama3.2 1B 0.84 0.12 0.08
Llama3.2 3B 79.81 12.89 13.32
Summarization Llama3.1 8B 84.34 14.56 14.53
OpenAl 03 83.89 14.01 21.08
Gemini 2.5 Flash 78.23 13.49 17.00
QASA Llama3.2 1B 7.63 0.35 0.17
Llama3.2 3B 24.56 2.47 1.26
Discourse Llama3.1 8B 81.14 11.63 6.10
OpenAl 03 78.23 13.02 9.18
Gemini 2.5 Flash 82.25 9.89 8.14

Table 2: Zero-shot performance on generation and discourse tasks evaluated semantically and lex-
ically. The stark performance drop from summarization to generation tasks indicates models can
reorganize but not construct arguments. High BERTScore with low ROUGE-L in discourse tasks
suggests grammatical coherence without argumentative substance.

across all task families, suggesting that scientific argumentation requires capabilities beyond what
current training objectives provide.

Class imbalance exposes shallow pattern matching. The divergence between accuracy and F1
scores, particularly evident in evidence detection tasks where the distribution is significantly skewed
towards non-relevant information, indicates models default to majority class predictions rather than
understanding evidential relationships. High accuracy with low F1 reveals an inability to distinguish
genuine evidence from irrelevant text, which is a critical failure for scientific discourse.

Generation quality inversely correlates with task complexity. While models achieve reason-
able performance on meta-review summarization (a consolidation task), they fail catastrophically
at rebuttal generation (requiring novel argumentation). This gradient suggests models can reorga-
nize existing arguments but cannot construct new ones, as they mimic form without understanding
function.

These baseline results demonstrate that scientific argumentation represents a fundamental capability
gap in current models, motivating specialized training approaches that explicitly teach argumentative
reasoning rather than relying on emergent capabilities from scale.

3 TEACHING LLMS SCIENTIFIC ARGUMENTATION

The cognitive progression of human argumentative skill development involves recognizing patterns,
producing structured arguments, and generalizing through feedback. Our approach mirrors this
natural progression with a three-stage training pipeline that progressively builds argumentative ca-
pabilities through reasoning-aware knowledge distillation, multi-task supervised learning, and rein-
forcement learning with composite rewards.

3.1 REASONING-AWARE KNOWLEDGE DISTILLATION

Scientific argumentation demands capabilities that extend beyond surface-level pattern matching.
We hypothesize that the reasoning capabilities emerging in recent LLMs can be channeled toward
argumentation through explicit supervision of intermediate reasoning steps.

We employ Gemini 2.5 Flash (Teaml [2025)) as a teacher model to generate structured reasoning traces
for our training corpus. The distillation process covers 3,000 examples balanced across tasks, with
500 examples per task category except for SciFact variants, where we limit collection to 250 exam-
ples each to prevent dataset skew toward fact-verification patterns. We adopt a reverse-engineering
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paradigm where the teacher receives gold labels and constructs post-hoc reasoning chains that jus-
tify these answers. This supervised approach ensures high-quality reasoning grounded in correct
outcomes, avoiding the generation of plausible but ultimately incorrect logical paths that plague
unsupervised reasoning generation. The distillation process produces structured outputs combining
explicit reasoning with final answers:

output = (reasoning)R(/reasoning){answer).A(/answer) (1)

where R represents 2—4 sentences of grounded analysis and A contains the target response.

We enforce three critical constraints to ensure reasoning quality. First, reasoning traces must avoid
explicit mention of classification labels to encourage semantic understanding over lexical pattern
matching. Second, all reasoning must reference the provided context, preventing hallucination and
ensuring grounding. Third, we limit reasoning length to maintain focus and prevent the introduction
of noise through verbose explanations. These constraints are enforced through explicit instructions
in the teacher prompt and validated through post-processing checks.

For long-document tasks such as rebuttal generation and meta-review summarization, we augment
the distillation process with BM25-based passage retrieval. Given a document D and query ¢, we
identify relevant spans using standard BM25 scoring with parameters k1 = 1.5 and b = 0.75,
selecting top-k passages with overlap suppression. This teaches models to work with condensed
context which is a critical skill for real-world scientific discourse where documents often exceed
model context windows.

3.2 MULTI-TASK SUPERVISED FINE-TUNING

The supervised fine-tuning (SFT) phase transforms distilled reasoning traces into learned argumen-
tative capabilities. We fine-tune Llama 3.2 models (Team, 2024)) in both 1B and 3B configurations
using full parameter updates. The training employs cross-entropy loss over the complete output se-
quences including reasoning traces, with loss masking applied to system and user tokens to focus
learning on model-generated content.

Training proceeds as a multi-task learning problem where models simultaneously acquire argumen-
tative patterns across diverse scientific contexts. We keep the number of samples balanced in this
stage to ensure balanced gradient contributions across tasks. This prevents larger datasets from
dominating the learning dynamics as we experienced in our early experiments, and ensures compre-
hensive skill acquisition across all argumentative capabilities.

The supervised phase establishes two critical foundations: structured output generation with consis-
tent XML-style tags enabling clean reasoning extraction, and learned correlations between reasoning
patterns and correct answers. However, models trained solely through supervised learning exhibit
two fundamental limitations. (1) Performance remains bounded by teacher model quality, creating
an artificial ceiling on capability improvement. (2) Supervised learning tends to produce reasoning
mimicry which results with syntactically correct but semantically shallow reasoning chains that fail
to generalize. These limitations motivate our subsequent reinforcement learning phase, which we
analyze through systematic ablations in Section .1}

3.3 REINFORCEMENT LEARNING WITH COMPOSITE REWARDS

The final training stage employs reinforcement learning to refine argumentative capabilities beyond
teacher-bounded performance. We adopt Group Relative Policy Optimization (GRPO) (Shao et al.,
2024])), generating multiple responses per prompt and optimizing based on relative quality within
each group. This approach naturally handles the multi-objective nature of scientific argumentation,
where responses must balance correctness, logical coherence, and evidential grounding.

Our reward design explicitly targets the requirements of scientific discourse through four com-
plementary components. Answer correctness 7,,s employs task-appropriate metrics: exact match
for classification tasks, F1 for multi-label problems, and ROUGE-L for generation tasks. Logical
faithfulness rg;, measures consistency across the reasoning chain using natural language inference
scores, with weights prioritizing answer grounding (0.5) over intermediate consistency (0.3) and
reasoning-answer alignment (0.2). Evidence attribution r,, quantifies the proportion of reasoning
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Figure 2: Performance progression across training stages for argument mining tasks. Error bars
show standard deviation across three random seeds. The progression from base model to RL demon-
strates systematic improvements, with the most substantial gains occurring during the SFT stage.
Notably, our trained 3B model surpasses commercial baselines on several tasks despite being orders
of magnitude smaller.

tokens traceable to source context, encouraging explicit citation practices essential to scientific writ-
ing. Format compliance 7y, ensures structural validity while penalizing tag spillover that would
compromise downstream parsing.

The composite reward incorporates a multiplicative gating mechanism that enforces minimum rea-
soning standards:

r(@,y,9) = [ Y we-re(,y,9) | - gate(y, z) )
ceC

where the gate function combines sigmoid-transformed measures of reasoning length and context
coverage:

gate(y,z) = o (- (|Ry| — 7)) - 0 (B - coverage(R,, z)) 3)

This multiplicative structure ensures models cannot achieve high rewards through correct answers
alone, and they must demonstrate adequate reasoning depth and maintain substantial overlap with
source material. The parameters o = 0.2 and = 8.0 were determined through preliminary experi-
ments to balance reasoning quality with generation diversity.

Training incorporates several design decisions critical for generalization. We include 50% held-out
prompts unseen during supervised fine-tuning to prevent overfitting to specific reasoning patterns.
Discourse-level tasks remain entirely excluded from reinforcement learning, reserved for zero-shot
evaluation of emergent capabilities. Adaptive KL penalties prevent reward hacking while maintain-
ing generation diversity, with 5 scheduling responding dynamically to divergence measurements.
More details of the training setup explained in [C] The impact of each reward component is sys-
tematically analyzed through ablation studies in Section [4.1.1] revealing the critical role of answer
correctness while highlighting surprising interactions between faithfulness constraints and metric
gaming.

4 RESULTS & FINDINGS

We evaluate our approach across three independent training runs, with results presented in Figures 2]
and[3

The primacy of supervised reasoning. The most notable pattern across all tasks is the transfor-
mative impact of supervised fine-tuning with reasoning traces. While baseline models struggle with
fundamental tasks, such as achieving near-random performance on claim detection, the introduction
of explicit reasoning supervision yields improvements of 150-400% across argument mining tasks
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Figure 3: Performance progression across training stages for argument generation and discourse-
level tasks. Line colors and error bars follow the same convention as Figure 1. Purple-shaded axes
distinguish discourse-level tasks from standard generation tasks. The substantial improvements in
BERTScore across all tasks indicate enhanced semantic coherence.

(Figure[2). This dramatic shift suggests that scientific argumentation is not an emergent property of
scale but rather a capability that must be explicitly taught through structured reasoning patterns.

The subsequent reinforcement learning stage provides meaningful but more modest gains, typically
10-20% additional improvement. This diminishing return curve indicates that once models acquire
the fundamental reasoning framework through supervision, further optimization primarily refines
execution rather than introducing new capabilities. Notably, our 3B model after full training sur-
passes OpenAl 03 on stance detection (63% vs 59.3% accuracy) and approaches its performance on
evidence detection, despite being orders of magnitude smaller.

Task complexity reveals capability boundaries. Performance patterns across tasks reveal a clear
hierarchy of difficulty that illuminates the nature of scientific argumentation. Binary classification
tasks (claim detection, evidence classification) show the strongest improvements, with F1 scores
reaching 0.92-0.97 after training. Multi-class tasks with nuanced distinctions, particularly stance
detection where models must differentiate agreement, disagreement, and non-argumentative content,
prove substantially more challenging, with even our best models achieving only 62.4% F1.

Generation tasks (Figure [3) expose an interesting dichotomy. Rebuttal generation shows dramatic
improvement (BERTScore: 0.126 — 0.850), approaching commercial model performance. How-
ever, meta-review summarization plateaus at lower absolute performance, suggesting that synthesiz-
ing multiple perspectives into coherent summaries requires capabilities beyond what current training
approaches provide. This gap between generating novel arguments and consolidating existing ones
highlights a fundamental limitation in how models understand multi-party scientific discourse.

Generalization beyond training distribution. The purple-shaded region in Figure [3] highlights
the performance on discourse task and provides critical evidence for capability transfer. While
QASA is included in supervised training, it is entirely excluded from reinforcement learning yet
shows substantial improvements during the RL stage. The large increase in QASA scores during RL
training, despite no direct supervision, indicates our approach develops transferable argumentative
reasoning rather than task-specific optimizations.

4.1 ABLATIONS

To understand the mechanisms underlying our approach’s effectiveness, we conduct ablations of
both reward components and chain-of-thought supervision. These studies provide crucial insights
into which components drive performance gains and under what conditions. We share our findings
on ablations in this section, defer detailed tabular results to[A]due to spacing constraints.
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4.1.1 REWARD COMPONENT ABLATIONS

To ablate the impact of each reward component on the performance of the model, we train the Llama
3.2 1B model for 1.5 epochs with all reward components and then remove one at a time. Table
[3 and Table [ present our reward component ablation results across classification and generation
tasks respectively. The analysis reveals distinct component importance patterns that illuminate the
mechanisms of reasoning-aware training.

Answer accuracy reward (rans) serves as the fundamental optimization signal. The answer ac-
curacy component (r,,5) proves indispensable, with removal causing catastrophic failure across all
tasks. This dominance suggests that while reasoning traces improve performance, they function pri-
marily as scaffolding for correct answers rather than independent logical structures. Attribution and
format rewards show task-dependent importance, with attribution particularly critical for generation
tasks where hallucination poses greater risks.

Faithfulness reward (rpin) exhibits counterintuitive effects that reveal evaluation limitations.
Table [3| reveals a counterintuitive result: removing faithfulness constraints frequently improves au-
tomatic evaluation metrics. For instance, claim detection accuracy increases from 84.75% to 99%
in the absence of faithfulness rewards, with evidence detection showing comparable improvements.
This paradox highlights a fundamental evaluation challenge: when unconstrained by consistency
requirements, models may exploit weaknesses in metrics rather than develop genuine reasoning
capabilities. Nevertheless, following prior work (Chen et al.l 2025), we maintain faithfulness as
a component of the reward signal, since doing so helps reduce logical errors and better align the
model’s reasoning with its outputs, thereby mitigating potential failure modes.

4.1.2 CHAIN-OF-THOUGHT SUPERVISION ABLATIONS

Tables [5] and [6] reveal that chain-of-thought supervision exhibits strong task-dependency. Com-
plex reasoning tasks show severe degradation without CoT as claim detection drops from 93.5%
to 48.25% accuracy, while QASA BERTScore plummets from 86.85 to 43.43. These tasks require
explicit logical scaffolding to maintain coherence across multiple inferential steps.

Conversely, tasks with strong surface patterns show minimal CoT dependence. Evidence classifica-
tion and rebuttal generation perform similarly with or without explicit reasoning, suggesting these
tasks rely more on learned templates than multi-step inference. Interestingly, reinforcement learning
partially compensates for missing CoT supervision in some tasks, indicating that reward signals can
discover reasoning patterns through trial and error, though less efficiently than explicit teaching.

The interaction between training stages reveals complementary mechanisms: supervised learning
with CoT establishes reasoning frameworks, while reinforcement learning optimizes their applica-
tion. Models receiving both achieve consistently superior performance, validating our three-stage
approach.

5 RELATED WORK

5.1 LLMS FOR RESEARCH ASSISTANCE

Domain-tuned language models such as SciBERT (Beltagy et al., 2019) established early gains for
scholarly text. More recent systems extend beyond embeddings toward research assistance: the
Al Scientist series automates ideation and paper drafting (Lu et al., 2024} [Yamada et al.| [2025),
Google’s AI Co-Scientist coordinates Gemini-based agents for experimental design (Gottweis et al.}
2025), and OpenAl’s deep research agent enables multi-step literature reviews (OpenAll 2025a).
These efforts highlight the utility of LLMs for research workflows, but they focus on productivity
and coverage rather than the argumentative structure that underpins scientific reasoning.

5.2 ARGUMENTATION IN SCHOLARLY DISCOURSE

Work on discourse in science has emphasized rhetorical structure and argument mining. Argumenta-
tive zoning mapped rhetorical roles in articles (Teufel & Moens, |1999; Teufel et al.,|1999), and tools
such as ArguminSci extracted claims and evidence (Lauscher et al.,|2018)). More recently, dialogue-
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oriented datasets have been introduced, including ArgSciChat for expert discussions (Ruggeri et al.,
2023) and PaperPersiChat for chatbot-guided dialogue (Chernyavskiy et al., [2023)). Outside schol-
arly domains, corpora such as IBM Debater (Slonim et al.| 2021), Perspectrum (Chen et al., |2019)),
and DebateSum (Roush & Balaji, [2020) target news or social media. While these resources pro-
vide valuable foundations, they do not capture the methodological critique, evidential standards, or
multi-level coherence that define scientific argumentation.

5.3 REASONING FOR SCHOLARLY TASKS

Recent work has shown that large models struggle with scientific verification and critique. On SCI-
FACT, smaller domain-tuned models outperform frontier LLMs (Wadden et al., [2020); failures also
appear in causal verification (CHECKWHY, Si et al.|2024) and peer review analysis (Du et al.}[2024).
Explicit reasoning supervision has been effective in other domains: chain-of-thought improves math-
ematical and multimodal science QA (Wei et al., 2022; |Lu et al.,[2022); synthetic rationales benefit
smaller models (Magister et al., 2023} /Wang et al., 2024)); and structured reasoning approaches such
as MULTIVERS (Wadden et al., 2022) and STRIVE (Gong et al., 2025) outperform flat pipelines.
Interactive approaches like critique (Du et al., 2023)) and debate (Hegazy & Wedel, [2024) further
highlight the value of reasoning scaffolds. However, these techniques have been evaluated mostly
on mathematics, logic, or short fact verification, leaving open whether they extend to the discourse-
level demands of scientific argumentation.

6 CONCLUSION & FUTURE WORK

This work presents the first systematic evaluation of language model capabilities on scientific argu-
mentation, revealing substantial gaps despite strong general reasoning abilities. Our key insight is
that effective scientific argumentation requires training approaches that explicitly scaffold reason-
ing processes within domain-specific argumentative conventions, not general reasoning alone. The
substantial performance gains across all tasks and competitive performance with 03-class systems
provide strong evidence for this claim.

Our findings have immediate implications for Al-assisted research. The demonstrated abilities to
identify claims, evaluate evidence, and generate coherent rebuttals, combined with out-of-domain
generalization to conversational setting, suggest specialized reasoning training can produce models
capable of meaningful participation in scientific discourse beyond task-specific pattern matching.

Several limitations constrain generalizability: evaluation occurs only within scientific domains, fo-
cuses on computational tasks that may not capture authentic discourse complexity, and relies on au-
tomatic metrics that may miss subtle argument quality aspects important to human evaluators. Future
work should extend evaluation to additional argumentative domains, incorporate human evaluation
studies, and investigate integration with broader research workflows.

7 REPRODUCIBILITY STATEMENT

We release all evaluation protocols, reasoning traces, and trained model checkpoints to support fu-
ture research. We share used hyperparameters and seeds in training in[C] As Al systems increasingly
assist in scientific research, ensuring their capacity for rigorous argumentative reasoning becomes
essential for maintaining scientific integrity and advancement.
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A ABLATION RESULTS

A.1 REWARD FUNCTION ABLATIONS

Claim Detection Evidence Detection Evidence Classification Stance Detection

Model

Acc F1 Acc F1 Acc Fi Acc F1
All 8475 8248 71.00 43.23 68.75 71.06 53.25 54.88
w/oans 61.50 66.67 51.50 22.66 7.50 12.20 34.00 16.92
w/oattr  59.00 83.41 99.50 33.25 43.00 44.19 55.50 50.72
w/ofmt 75.50 85.27 94.50 32.39 58.50 56.77 59.00 57.31
w/o faith 99.00 9543 99.50 33.25 62.50 49.66 58.00 5543

Table 3: Reward component ablation for argument mining tasks. “All” uses all reward compo-
nents; subsequent rows remove individual components: ans (answer accuracy 7,ps), attr (attribution
Tawr), fmt (format compliance 7gy¢), and faith (faithfulness rfm). Green/red underlines indicate
improvements/degradations relative to “All”. Removing faithfulness constraints paradoxically im-
proves some metrics, revealing models exploit evaluation artifacts rather than develop genuine rea-
soning. Highest scores bolded.

A.2 COT ABLATION RESULTS
B DATA COLLECTION

System Persona Variants. We rotate between three teacher personas: ”You are a strict scientific
teacher who writes short, grounded rationales”, ”You are a meticulous scientific grader focusing on
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Model ARIES PRRCA QASA-FF
ROUGE-L METEOR BERT ROUGE-L METEOR BERT ROUGE-L METEOR BERT
All 14.75 13.65 83.47 14.21 18.01  84.06 16.95 1532 8247
w/0 ans 7.65 4.53 79.65 10.94 9.32 78.61 16.10 21.66  75.63
w/o attr 19.54 19.58  85.11 16.29 17.15 84.38 13.22 23.41 79.86
w/o fmt 19.68 19.29  84.76 17.92 17.88  83.81 14.46 2522 71.68
w/o faith  20.68 20.01 84.84 17.17 16.51 85.17 22.88 2642  84.85

Table 4: Reward component ablation for generation tasks. Table formatting follows the same rules
in Table

concise, text-grounded reasoning”, and "You are a careful science coach who values precise, well-
grounded explanations”. Each persona encourages different reasoning styles while maintaining
scientific rigor.

Instruction Template Variants. Task instructions vary deterministically across alternative phras-
ings. For stance detection, we alternate between “Task: Determine the stance of the rebuttal sen-
tence toward the review excerpt” and ”Question: What is the rebuttal’s stance with respect to the
review?” Rule specifications also vary, including different formulations of format requirements and
reasoning constraints.

B.1 EXAMPLE PROMPTS

B.1.1 REBUTTAL GENERATION

System:
You are a meticulous scientific grader focusing on concise,
text-grounded reasoning.

Prompt

Task: Write a rebuttal to the reviewer using ONLY the snippets. In
reasoning, briefly plan your stance (agree/clarify/counter), cite
snippet NUMBERS (e.g., #1, #3), and outline 2{3 actions. Do NOT copy
long text; cite numbers.

Reviewer comment:"The problem and motivation for the paper is weak.
The introduction does not provide any reason as to why this is an
important problem or approach that needs to be considered important
by the NLP research community."

Snippets:
Model Claim Detection  Evidence Detection  Evidence Classification  Stance Detection
Acc F1 Acc F1 Acc F1 Acc F1
Base (1B) 12.00 52.07 19.50 10.88 28.50 32.68 21.50 23.23
SFT+CoT  93.50 97.61 95.00 32.48 65.00 60.72 19.50 24.86
SFT-CoT  48.25 51.89 97.50 3291 59.75 60.21 19.50 25.91
RL+CoT 95.50 98.22 99.50 33.25 47.00 43.16 51.50 46.71
RL-CoT 41.50 48.06 74.50 28.46 47.00 57.32 20.00 28.24

Table 5: Chain-of-thought ablation for argument mining tasks. Base represents the untrained model.
We compare training with (+CoT) and without (-CoT) chain-of-thought reasoning across both SFT
and RL stages. Green/red underlines indicate better/worse performance without CoT. Acc denotes
accuracy. Values represent means across test sets with highest scores bolded.
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#1. 1. ——— PAPER BODY (truncated) —-—-—- (INTRODUCTION) Recent years
have seen a revolution in Natural Language Processing (NLP) thanks

to the advances in machine learning. 2. Finally, we offer detailed
analysis and discussion, which should be useful for researchers aiming
to explore the utility of contrastive loss in NLP. —--- PAPER BODY
(truncated) —--- (INTRODUCTION) Recent years have seen a revolution in
Natural Language Processing (NLP) thanks to the advances in machine
learning. 3. Example-based shuffling finds a data order similar to
the initial one, and the quality does not degrade much. (CQA-B) The
results for CQA-B are shown in Table 2 . Again, we did not use the
question position, which is a critically important feature for the
best systems. 4. Our experimental results show sizable improvements
on a number of datasets and pairwise sentence scoring tasks including
classification, ranking, and regression. Finally, we offer detailed
analysis and discussion, which should be useful for researchers aiming

to explore the utility of contrastive loss in NLP. --- PAPER BODY
(truncated) —--- (INTRODUCTION) Recent years have seen a revolution in
Natural Language Processing (NLP) thanks to the advances in machine
learning.

Respond with <reasoning> then <answer>.

<reasoning>

Gold answer: Thank you for your feedback. We understand that the
introduction needs to more clearly articulate the problem being
addressed and the motivation for our approach. The paragraph you’ve
highlighted is a summary of one of our contributions and does not
contain the problem statement or motivation you requested. We will
revise the introduction to include a dedicated section or paragraphs
that explain the importance of learning better task-specific sentence
embeddings for pairwise tasks and why exploring contrastive loss,
particularly in the ways we propose, is a significant direction for
NLP research.

Teacher answer

Thank you for your feedback. We understand that the introduction

needs to more clearly articulate the problem being addressed and

the motivation for our approach. The paragraph you’ve highlighted

is a summary of one of our contributions and does not contain the
problem statement or motivation you requested. We will revise the
introduction to include a dedicated section or paragraphs that explain
the importance of learning better task-specific sentence embeddings for
pairwise tasks and why exploring contrastive loss, particularly in the
ways we propose, 1s a significant direction for NLP research.

Model ARIES PRRCA QASA-FF

BERT ROUGE-L METEOR BERT ROUGE-L METEOR BERT ROUGE-L METEOR
Base (1B) 41.00 4.00 2.00 84.00  12.00 8.00 86.17 18.79 19.16
SFT+CoT 8549  20.54 22.34 8553 1840 19.54 86.85 19.62 21.50
SFT w/o CoT 85.47  20.36 21.67 85.49 18.17 19.28 4343 10.08 10.69

RL+CoT 84.85  20.24 19.66  84.53 18.05 17.69  85.49 19.35 21.39
RL w/o CoT 85.57  22.24 20.61  84.83 17.03 1532  78.28 13.58 24.44

Table 6: CoT ablation for generation tasks. Table formatting follows the same rules in Table[3}
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Student prompt
Task: Write a rebuttal to the reviewer using ONLY the snippets. In
reasoning, briefly plan your stance (agree/clarify/counter), cite

snippet NUMBERS (e.g., #1, #3), and outline 2{3 actions. Do NOT copy
long text; cite numbers.

Reviewer comment:"The problem and motivation for the paper is weak.
The introduction does not provide any reason as to why this is an
important problem or approach that needs to be considered important

by the NLP research community."

Snippets:

#1. 1. —-—-—- PAPER BODY (truncated) —--- (INTRODUCTION) Recent years
have seen a revolution in Natural Language Processing (NLP) thanks

to the advances in machine learning. 2. Finally, we offer detailed
analysis and discussion, which should be useful for researchers aiming
to explore the utility of contrastive loss in NLP. --- PAPER BODY
(truncated) —--- (INTRODUCTION) Recent years have seen a revolution in
Natural Language Processing (NLP) thanks to the advances in machine
learning. 3. Example-based shuffling finds a data order similar to
the initial one, and the quality does not degrade much. (CQA-B) The
results for CQA-B are shown in Table 2 . Again, we did not use the
question position, which is a critically important feature for the
best systems. 4. Our experimental results show sizable improvements
on a number of datasets and pairwise sentence scoring tasks including
classification, ranking, and regression. Finally, we offer detailed
analysis and discussion, which should be useful for researchers aiming

to explore the utility of contrastive loss in NLP. --- PAPER BODY
(truncated) —--- (INTRODUCTION) Recent years have seen a revolution in
Natural Language Processing (NLP) thanks to the advances in machine
learning.

Respond with <reasoning> then <answer>.

<reasoning>

B.1.2 STANCE DETECTION

System
You are a careful science coach who values precise, well-grounded
explanations.

Prompt

Instruction: Classify the rebuttal sentence’s stance relative to the
review excerpt.

Choose exactly one of: Concur, Dispute, Non-arg.

Review excerpt:

- in section 4.3, there is no guarantee that the intersection between
the training set and test set is empty. - in section 4.3 how is the
reconstruction built (Figure 3b)?

Rebuttal sentence:
In other words, every valid output is still valid with rotation,
scaling and translation.

Format rules:
— Output ONLY two XML tags: <reasoning> ... </reasoning> then
<answer> ... </answer>.
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- <reasoning>: 2-4 sentences, paraphrased and grounded in the text.
No long quotes, no label words.
- <answer>: EXACTLY the gold label/answer, nothing else.

Format:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

Gold label: CONCUR

Teacher answer
CONCUR

Student prompt

Instruction: Classify the rebuttal sentence’s stance relative to the
review excerpt.

Choose exactly one of: Concur, Dispute, Non-arg.

Review excerpt:

- in section 4.3, there is no guarantee that the intersection between
the training set and test set is empty. - in section 4.3 how is the
reconstruction built (Figure 3b)?

Rebuttal sentence:
In other words, every valid output is still valid with rotation,

scaling and translation.

Format rules:

- Output ONLY two XML tags: <reasoning> ... </reasoning> then
<answer> ... </answer>.
- <reasoning>: 2-4 sentences, paraphrased and grounded in the text.

No long quotes, no label words.
- <answer>: EXACTLY the gold label/answer, nothing else.

Format:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

B.1.3 CLAIM DETECTION

System
You are a meticulous scientific grader focusing on concise,
text-grounded reasoning.
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Prompt
Task: Identify which numbered sentences contain verifiable scientific
claims.

Abstract (numbered) :

Research in two-dimensional atomic crystals has recently focused on
their heterostructures, and the advancements in this emerging field has
already led to fascinating discoveries such as superconductivity and

magnetism. [1] However, thousands of different 2D layered materials
and their permutations amount to almost infinite heterostructure
combinations. [2] This research will develop a novel ML-guided

DFT framework, in conjunction with physically motivated atomistic
descriptors, which applies data science in the search for designer
heterostructures with targeted properties. [3] As a proof-of-concept,
we will demonstrate heterostructures with perfect light absorption
through optimizing the band nesting between the filled and empty

bands as well as giant piezoelectricity through engineering the
electronegativity dipole moments. [4] These heterostructures
identified with the targeted properties will be grown with ultra-clean
state-of-the-art MBE approaches, and their absorption and piezoelectric
coefficients characterized. [5] Corroboration between experiments and
theory will then instruct on possible improvements to the proposed ML
and DFT models and overall strategy. [6] The successful demonstration
of these new designer 2D heterostructures would usher in a new era of
efficient and purposeful materials design methodology.

Output policy:

- Produce two blocks only (<reasoning>, <answer>).

- Keep <reasoning> concise (2-4 sentences), grounded, paraphrased, and
free of label terms.

- <answer> must match the gold label/answer exactly.

Notes for <reasoning>:

— Give a one-line definition of a verifiable claim.

- Explain criteria briefly (e.g., testable mechanism, measurable
effect) .

Gold answer (comma-separated IDs or ‘none’): 0,1

Gold answer: 0,1
Return exactly:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

Teacher answer
0,1

Student prompt
Task: Identify which numbered sentences contain verifiable scientific
claims.
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Abstract (numbered) :

Research in two-dimensional atomic crystals has recently focused on
their heterostructures, and the advancements in this emerging field has
already led to fascinating discoveries such as superconductivity and

magnetism. [1] However, thousands of different 2D layered materials
and their permutations amount to almost infinite heterostructure
combinations. [2] This research will develop a novel ML-guided

DFT framework, in conjunction with physically motivated atomistic
descriptors, which applies data science in the search for designer
heterostructures with targeted properties. [3] As a proof-of-concept,
we will demonstrate heterostructures with perfect light absorption
through optimizing the band nesting between the filled and empty

bands as well as giant piezoelectricity through engineering the
electronegativity dipole moments. [4] These heterostructures
identified with the targeted properties will be grown with ultra-clean
state-of-the—-art MBE approaches, and their absorption and piezoelectric
coefficients characterized. [5] Corroboration between experiments and
theory will then instruct on possible improvements to the proposed ML
and DFT models and overall strategy. [6] The successful demonstration
of these new designer 2D heterostructures would usher in a new era of
efficient and purposeful materials design methodology.

Output policy:

- Produce two blocks only (<reasoning>, <answer>).

- Keep <reasoning> concise (2-4 sentences), grounded, paraphrased, and
free of label terms.

- <answer> must match the gold label/answer exactly.

Notes for <reasoning>:

- Give a one-line definition of a verifiable claim.

— Explain criteria briefly (e.g., testable mechanism, measurable
effect) .

Gold answer (comma-separated IDs or ‘none’): 0,1

Return exactly:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

B.1.4 META-REVIEW GENERATION

System
You are a meticulous scientific grader focusing on concise,
text-grounded reasoning.

Prompt

Task: Write a concise meta-review using ONLY the snippets.

In reasoning, list 2-4 key claims as Cl:/C2: with who
supports/contradicts, citing snippet NUMBERS (e.g., #2, #4-#5); end
with a one-line recommendation rationale. Do NOT copy long text; cite
numbers.
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Paper title: Learning what you can do before doing anything

Snippets:

#1. 1. Learning what you can do before doing anything The authors
propose a way to learn models that predict what will happen next in
scenarios where action-labels are not available in abundance. 2. It
only becomes clear in the technical and experimental section what
problem is addressed in this paper. 3. It only becomes clear in the
technical and experimental section what problem is addressed in this
paper. Rebuttal: 4. The abstract and introduction are too vague
and general. It only becomes clear in the technical and experimental
section what problem is addressed in this paper.

Respond with <reasoning> then <answer>.

<reasoning>

Gold answer: The reviewers had some concerns regarding clarity and
evaluation but in general liked various aspects of the paper. The
authors did a good job of addressing the reviewers’ concerns so
acceptance is recommended.

Teacher answer

The reviewers had some concerns regarding clarity and evaluation but in
general liked various aspects of the paper. The authors did a good Jjob
of addressing the reviewers’ concerns so acceptance is recommended.

Student prompt

Task: Write a concise meta-review using ONLY the snippets.

In reasoning, list 2-4 key claims as Cl:/C2: with who
supports/contradicts, citing snippet NUMBERS (e.g., #2, #4-#5); end
with a one-line recommendation rationale. Do NOT copy long text; cite
numbers.

Paper title: Learning what you can do before doing anything

Snippets:

#1. 1. Learning what you can do before doing anything The authors
propose a way to learn models that predict what will happen next in
scenarios where action-labels are not available in abundance. 2. It
only becomes clear in the technical and experimental section what
problem is addressed in this paper. 3. It only becomes clear in the
technical and experimental section what problem is addressed in this
paper. Rebuttal: 4. The abstract and introduction are too vague
and general. It only becomes clear in the technical and experimental
section what problem is addressed in this paper.

Respond with <reasoning> then <answer>.

<reasoning>

B.1.5 SYSTEMATIC ANSWER COMPOSITION

System
You are a strict scientific teacher who writes short, grounded
rationales.

Prompt
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You are a scientific QA teacher. Read the passage and answer
concisely.

In <reasoning> (3{5 sentences), Jjustify the answer with key details
from the passage. Ground your explanation; avoid long verbatim
copying.

Gold answer: Metrics used for comparison are AP , multi-scale
train/test, horizontal flip test, and online hard example mining
(OHEM) .

In <answer>, output EXACTLY the provided gold answer string.

Passage:
We perform a thorough comparison of Mask R-CNN to the state of the art
along with comprehensive ablations on the COCO dataset [28]. We report

the standard COCO metrics including AP (averaged over IoU thresholds),
ap{} {50}, ap{}{75}, and ar{}.{s}, ap{}{M}, aP{}_{L} (AP at different
scales). Unless noted, AP is evaluating using mask IoU. As in previous
work [5, 27], we train using the union of 80k train images and a

35k subset of val images (trainval35k), and report ablations on the
remaining 5k val images (minival). We also report results on test-dev
[28].

We compare Mask R-CNN to the state-of-the-art methods in instance
segmentation in Table 1. All instantiations of our model outperform
baseline variants of previous state-of-the-art models. This includes
MNC [10] and FCIS [26], the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and whistles,
Mask R-CNN with ResNet-101-FPN backbone outperforms FCIS+++ [26], which
includes multi-scale train/test, horizontal flip test, and online hard
example mining (OHEM) [38]. While outside the scope of this work, we
expect many such improvements to be applicable to ours.

Question:
What metrics should be used for comparison of Mask R-CNN to the state
of the art on the COCO dataset ?

Rules:
- Return EXACTLY two XML blocks: <reasoning> then <answer>.
- In <reasoning>: 3{5 sentences, grounded in the provided text; it’s

fine to use key terms or short phrases, but avoid long verbatim copying
or listing options.

- In <answer>: output EXACTLY the provided gold label/answer. No
extra text.

Output:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

Teacher answer
Metrics used for comparison are AP , multi-scale train/test, horizontal
flip test, and online hard example mining (OHEM) .
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Student prompt

You are a scientific QA teacher. Read the passage and answer
concisely.

In <reasoning> (3{5 sentences), justify the answer with key details
from the passage. Ground your explanation; avoid long verbatim
copying.

In <answer>, output EXACTLY the provided gold answer string.

Passage:
We perform a thorough comparison of Mask R-CNN to the state of the art
along with comprehensive ablations on the COCO dataset [28]. We report

the standard COCO metrics including AP (averaged over IoU thresholds),
ap{}.{50}, ap{}{75}, and ap{}_{s}, ap{}_{M}, apP{} {L} (AP at different
scales). Unless noted, AP is evaluating using mask IoU. As in previous
work [5, 27], we train using the union of 80k train images and a

35k subset of val images (trainval35k), and report ablations on the
remaining 5k val images (minival). We also report results on test-dev
[28].

We compare Mask R-CNN to the state-of-the-art methods in instance
segmentation in Table 1. All instantiations of our model outperform
baseline variants of previous state-of-the-art models. This includes
MNC [10] and FCIS [26], the winners of the COCO 2015 and 2016
segmentation challenges, respectively. Without bells and whistles,
Mask R-CNN with ResNet-101-FPN backbone outperforms FCIS+++ [26], which
includes multi-scale train/test, horizontal flip test, and online hard
example mining (OHEM) [38]. While outside the scope of this work, we
expect many such improvements to be applicable to ours.

Question:
What metrics should be used for comparison of Mask R-CNN to the state
of the art on the COCO dataset ?

Rules:
- Return EXACTLY two XML blocks: <reasoning> then <answer>.
— In <reasoning>: 3{5 sentences, grounded in the provided text; it’s

fine to use key terms or short phrases, but avoid long verbatim copying
or listing options.

— In <answer>: output EXACTLY the provided gold label/answer. No
extra text.

Output:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>
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B.1.6 EVIDENCE CLASSIFICATION

System
You are a meticulous scientific grader focusing on concise,
text-grounded reasoning.

Prompt
Question: Does the evidence SUPPORT or REFUTE the claim?

Claim:
General exercise therapy is more effective than scapular stabilizer
exercises in reducing pain and improving function of the shoulder.

Evidence:

CONCLUSION A specific exercise strategy, focusing on strengthening
eccentric exercises for the rotator cuff and concentric/eccentric
exercises for the scapula stabilisers, is effective in reducing pain
and improving shoulder function in patients with persistent subacromial
impingement syndrome.

Choose one of: REFUTES, SUPPORTS.

Rules:
— Return EXACTLY the two XML blocks.
- In <reasoning>: 2-4 sentences, paraphrased, grounded ONLY in

provided text; DO NOT copy long spans; DO NOT include label words
(SUPPORTS, REFUTES, SUPPORT, CONTRADICT, NEI, Concur, Dispute, Non-arg,
NON-ARG, REFUTE, CONTRADICTS) .

Gold label: REFUTES

- In <answer>: output EXACTLY the provided gold label/answer. No
extra text.

Your output must be exactly:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

Teacher answer
REFUTES

Student prompt
Question: Does the evidence SUPPORT or REFUTE the claim?

Claim:
General exercise therapy is more effective than scapular stabilizer
exercises in reducing pain and improving function of the shoulder.

Evidence:
CONCLUSION A specific exercise strategy, focusing on strengthening
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eccentric exercises for the rotator cuff and concentric/eccentric
exercises for the scapula stabilisers, is effective in reducing pain
and improving shoulder function in patients with persistent subacromial
impingement syndrome.

Choose one of: REFUTES, SUPPORTS.

Rules:
— Return EXACTLY the two XML blocks.
- In <reasoning>: 2-4 sentences, paraphrased, grounded ONLY in

provided text; DO NOT copy long spans; DO NOT include label words
(SUPPORTS, REFUTES, SUPPORT, CONTRADICT, NEI, Concur, Dispute, Non-arg,
NON-ARG, REFUTE, CONTRADICTS) .

- In <answer>: output EXACTLY the provided gold label/answer. No
extra text.

Your output must be exactly:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

B.1.7 EVIDENCE DETECTION

System
You are a careful science coach who values precise, well-grounded
explanations.

Prompt
Task: Decide if the sentence can support or contradict the claim, or
if it’s NEI. Choose one of: NEI, CONTRADICT, SUPPORT.

Claim:
Cytochrome ¢ is released from the mitochondrial intermembrane space to
cytosol during apoptosis.

Sentence:

BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell
(GEC) apoptosis is a complex process that includes activation of the
tumor suppressor p53.

Rules:
- Return EXACTLY the two XML blocks.
- In <reasoning>: 2-4 sentences, paraphrased, grounded ONLY in

provided text; DO NOT copy long spans; DO NOT include label words
(SUPPORTS, REFUTES, SUPPORT, CONTRADICT, NEI, Concur, Dispute, Non-arg,
NON-ARG, REFUTE, CONTRADICTS) .

Gold label: NEI

- In <answer>: output EXACTLY the provided gold label/answer. No
extra text.

Output:
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<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

Teacher answer

NETI
Student prompt
Task: Decide if the sentence can support or contradict the claim, or

if it’s NEI. Choose one of: NEI, CONTRADICT, SUPPORT.

Claim:
Cytochrome c is released from the mitochondrial intermembrane space to

cytosol during apoptosis.

Sentence:
BACKGROUND & AIMS Helicobacter pylori-induced gastric epithelial cell
(GEC) apoptosis is a complex process that includes activation of the

tumor suppressor p53.

Rules:
— Return EXACTLY the two XML blocks.
- In <reasoning>: 2-4 sentences, paraphrased, grounded ONLY in

provided text; DO NOT copy long spans; DO NOT include label words
(SUPPORTS, REFUTES, SUPPORT, CONTRADICT, NEI, Concur, Dispute, Non-arg,
NON-ARG, REFUTE, CONTRADICTS) .

- In <answer>: output EXACTLY the provided gold label/answer. No
extra text.

Output:
<reasoning>

</reasoning>

<answer>

GOLD_LABEL

</answer>

Respond with <reasoning> then <answer>.
<reasoning>

Table 7: Label distribution for di sapere (Train/Dev/Test)

Label Train Count Train Percent Test Count Test Percent
Dispute 175 35.00% 69 34.50%
Concur 165 33.00% 63 31.50%
Non-arg 160 32.00% 68 34.00%
Total 500 100.00% 200 100.00%
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Table 8: Label distribution for scifact_cls (Train/Dev/Test)

Label Train Count Train Percent Test Count Test Percent
SUPPORTS 150 60.00% 126 63.00%
REFUTES 100 40.00% 74 37.00%
Total 250 100.00% 200 100.00%

Table 9: Label distribution for scifact_evdet (Train/Dev/Test)

Label Train Count Train Percent Test Count Test Percent
NEI 246 98.40% 196 98.00%
SUPPORT 3 1.20% 2 1.00%
CONTRADICT 1 0.40% 2 1.00%
Total 250 100.00% 200 100.00%

C TRAINING SETUP

C.1 SUPERVISED FINE-TUNING CONFIGURATION

We fine-tune Llama 3.2 models using the following configuration across training seeds 42, 156, 248:

Hyperparameter SFT RL

Learning rate 3e-5 (linear warmup) le-6 (cosine annealing)
Training steps 3,000 1,000

Context length 3,072 1,024

Batch size 32 (8 per device x 4 accumulation)
Optimizer AdamW (51 = 0.9, 52 = 0.999, wd=0.01)
Mixed precision FP16

Group size - 8 generations per prompt
KL penalty - Adaptive /3 scheduling
Reward normalization - Per-batch standardization
GRPO rollouts - 512

Table 10: Training hyperparameters for supervised fine-tuning (SFT) and reinforcement learning

(RL) stages.

Adaptive KL Constraint. We implement adaptive 5 scheduling:

min(B; - 1.5, Bmax) if KLy > (1 4+ €) - KLtarget
ﬂt+1 = max(ﬁt/1~5a Bmin) if KL; < (1 - E) . KLlarget
B otherwise

with KLigrger = 0.03, € = 0.2, Brpin = 0.02, and Sy = 0.15.
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