Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

TOWARDS COMPREHENSIVE PREFERENCE DATA COLLEC-
TION FOR REWARD MODELING

Yulan Hu''2, Qingyang Li?, Sheng Ouyang!, Ge Chen?, Jinman Zhao*, Yong Liu'*
LGaoling School of Atrtificial Intelligence, Renmin University of China 2Kuaishou Technology
3University of Chinese Academy of Sciences 4UC University of Toronto
huyulan@ruc.edu.cn, ligingyang@kuaishou.com

ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of large lan-
guage models with human preferences. A critical component of RLHF is the reward model,
which is trained on preference data and outputs a scalar reward for given text. However, the
collection of high-quality preference data still lacks thorough investigation. Recent studies
indicate that preference data is collected either by Al or humans, where chosen and rejected in-
stances are identified between pairwise responses. We question whether this process effectively
filters out noise and ensures sufficient diversity in the collected data. To address these concerns,
we propose a comprehensive framework for preference data collection, decomposing the pro-
cess into four incremental steps: Prompt Collection, Response Generation, Response Filtering,
and Human Labeling. This framework ensures the collection of high-quality preferences while
reducing reliance on human labor. We conducted comprehensive experiments using the data
collected at different stages, demonstrating the effectiveness of the proposed framework.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) [Ziegler et al.| (2019) has demonstrated significant po-
tential in aligning Large Language Models (LLMs) with human preferences|Ouyang et al.|(2022); Touvron et al.
(2023)); Rafailov et al.| (2024). In RLHF, a reward model (RM) is typically used to output rewards for a given
prompt and response, further guiding the reinforcement learning process. The RM generally relies on collected
preference data for training, enabling it to distinguish between chosen and rejected responses|Wang et al.|(2024al).

Recent years have seen increasing discussions on constructing and improving RMs. Several attempts involving
the design of model architectures or learning criteria have been developed |Artetxe et al| (2022); Zhang et al.
(2024); Wang et al.|(2024b)), while studies on how to construct high-quality data have been relatively overlooked.
As revealed in/Wang et al.|(2024a), the preference data used for RM training—whether off-the-shelf or collected
by Al or humans—often contains noise and may not be suitable for RM training. To obtain preference data
suitable for RM training, it is important to investigate how to properly construct the preference data procedure.

In this paper, we present the first comprehensive study on collecting high-quality preference data for RM training.
Specifically, we decompose the preference data collection process into four sub-steps: Prompt Collection, which
collects challenging prompts that the base model struggles to handle; Response Generation, which produces di-
verse responses to enhance the model’s generalization; Response Filtering, which removes noisy response pairs;
and Human Labeling, which further review the preference among the pairs. Finally, the RM is trained on the
data reviewed by human labelers. The proposed framework represents a preliminary attempt to thoroughly inves-
tigate preference data collection for RMs. Compared to relying solely on Al or human annotation, this framework
effectively aligns the collected data with human preferences while significantly reducing the amount of human
labor required. We conducted experiments on preference data collected at different stages, demonstrating that
performance improves as the quality of the preference data increases.

2 METHODOLOGY

We present the proposed framework in this section. As illustrated in Figure[I(a)| the framework comprises five
hierarchical steps, with the first four dedicated to preference data collection. Our main contributions focus on
the first three steps, while the fourth is primarily carried out by human labelers. In the following sections, we
introduce the proposed framework step by step.

*Corresponding author, liuyonggsai @ruc.edu.cn.
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(a) The overview of the proposed framework. (b) Step 1: the collection of challenging prompts.

Figure 1: The overview of the proposed framework and the collection strategy of prompts.

2.1 THE PROPOSED FRAMEWORK

We present the details of the first three steps in this subsection.

Step 1: Prompt Collection. This step aims to collect a sufficient number of challenging prompts, which will be
used to generate responses for RM training. The model trained after the RLHF stage should preserve the overall
capabilities of the SFT model while also being capable of handling prompts that are difficult for the SFT model.
To achieve this, two critical principles should be upheld. First, the prompts should exhibit diversity to avoid the
barrel effect, i.e., where the RM scores accurately in one domain while being less precise in another. Second, the
prompts should be difficult for the SFT model to handle.

Following the two principles, we develop a comprehensive strategy illustrated in Figure We randomly
sample a sufficient number of prompts from different categories to form the prompt pool X = {z¢,21,..., 2N},
thereby fulfilling the first requirement. For the latter requirement, our core premise is that if the quality of the
response inferred by the SFT model is close to that of strong LLM models, e.g., GPT-4, for the same prompt, it
indicates that the SFT model can effectively resolve this prompt, eliminating the need for further fine-tuning in
RLHF stage. We achieve this with the assistance of an off-the-shelf proxy RM, r*. Specifically, we first let the
SFT model and the GPT-4 model generate two responses for each prompt in X, resulting in < and 3°. Then,
we use r* to score the (prompt, response) pairs as follows:
T*(I,yG) 77"*(56’:1,/5) < €, dI'OpIL'
A(yc %) T * el * S o
r*(z,y”) —r*(z,y°) > €, keepx
e denotes the preset threshold difference between y< and 3°. Equationindicates that we only keep the prompts
if the corresponding response generated by the SFT model significantly lags behind those of well-performing
models. We denote the refined prompt set as X *.

Step 2: Response Generation. RM training accepts a prompt z and two preference responses (y ™,y ™) as input.
Analogous to Step 1, the quality and diversity of the responses need to be ensured. We tackle the two requirements
by employing several strong LLMs, e.g., the open-source Qwen 2.5 |Yang et al.|(2024) and the Llama 3.1 Dubey
et al.| (2024)) series models, as well as the GPT-4 API, to generate responses for each prompt x. Assuming we
obtain k responses using different LLMs, these responses form the candidates pool, Y, = {y1, y2, - . ., yr }- Then,
we use the proxy RM r* to score each response and obtain the score for each response. After that, we select
two samples from Y, with a certain degree of difference as a preference pair. In this way, we have preliminarily
completed the construction of the preference training data, obtaining the training candidate set D.

Step 3: Response Filtering. The training instance collected in Step 2 is formed as a triad (x, y™,y ™). Ideally,
yT should exhibit a certain degree of superiority over y~, meaning that (z,y™,y™) should not be too easy or
too hard for learning. However, such a condition cannot always be fulfilled. The proxy RM r* is fine-tuned on
fixed preference data, which inevitably exhibits a data distribution shift compared to the constructed preference
dataset D, causing bias in scoring |Skalse et al.|(2022).

Therefore, we further refine D by prompting GPT-4 to help filter out disqualified samples. Specifically, we first
design different scoring criteria for prompts belonging to different categories. Within each criterion, each sample
is evaluated on five levels, where 1 represents the worst and 5 represents the best. Then, we employ GPT-4 to
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score each sample in D, obtaining the score pairs as (z,y*,r") and (z,y~,77). Based on these scores, we
consider that two kinds of samples should be discarded, as shown in Table First, responses with identical
scores, as such pairs cannot provide any discriminative knowledge during RM training. Second, responses that
exhibit extreme distinctness, for example, pairs where v is scored 5 and v~ is scored 1. We consider that the
RM possesses the ability to distinguish samples with significant divergence, thus eliminating the need for further
assessment by the annotators. We denote the preference data after Step 3 as D.
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Figure 2: The data funnel illustrates the loss rate at
each step. The ultimate data retention is roughly 18%.

Table 1: The filtering matrix. The scoring pairs high-
lighted in green are preserved, while those in are
discarded.

2.2 DATA FUNNEL

In Step 4, we let the annotators further review D obtained from Step 3. For each training sample (z,y%,y7),
the annotators evaluate the preference between y+ and y~ given x. The samples that do not align with the
preference order in Step 3 will be discarded. We denote the ultimate dataset after Step 4 as D*, which will be
used for RM training. The proposed framework progressively filters out the disqualified samples in a hierarchical
manner. Figure [2]illustrates the data filtering funnel according to the practical collection process. Assuming that
the number of prompt pools is NV, Step 1 filters out 10% of easy prompts, with 90% of the prompts reserved. In
Step 3, the filtering rate is comparatively large, with only 36% reserved. Finally, after human labeling, around
18% of samples are kept for RM training.

3 EXPERIMENT

3.1 SETUPS

We employ two SFT models built upon Llama2-13B and Llama2-70B for RM training. The preliminary prompts
are collected from two sources: available open-source preference data (mainly collected from|Dong et al.[(2024))
and self-constructed prompts by Al or humans, each accounting for about 300,000 samples. We sample roughly
150,000 prompts from the above 600,000 samples as the initial prompt pool, then proceed with the proposed
preference data collection procedure. Specifically, we train two RMs based on the data collected in Step 3 and
Step 4, respectively. Approximately 54,000 preference data are collected in Step 3, and around 30,000 preference
data are used in Step 4.

We save the checkpoint of the last iteration for evaluation. The RMs are evaluated from two aspects: accuracy on
preference benchmarks and the BoN results. The preference benchmarks are twofold. On one hand, we evaluate
the RMs on benchmarks used in [Touvron et al.| (2023); |Bai et al.| (2023), including Anthropic Helpfulness Bai
et al.| (2022), OpenAl Summarize [Stiennon et al|(2020), OpenAl WebGPT [Nakano et al.| (2021}, and Stanford
SHP [Ethayarajh et al.| (2022). On the other hand, we evaluate the RMs on RewardBench |[Lambert et al.| (2024),
which contains 4 categories.

3.2 RESULTS

Results on preference benchmarks. We report the results on preference benchmarks in Table[2] The results for
both the 13B-size and 70B-size RMs validate the improvement from step 3 to step 4, indicating that refinement
of preference data can indeed boost performance. Despite the scale of preference data used in step 3 being almost
twice that used in step 4, we observe that the refinement of data quality is beneficial.

Results of BoN experiments. In addition, we evaluate the RMs with the BoN policy. BoN is an inference-time
sampling strategy that aims to select the answer with the highest reward from n candidates. The Nprompts are
from AlignBench [Liu et al,| (2023). The gains obtained by BoN are approximated by log(N) — T’l Beirami
et al.|(2024). For each prompt in AlignBench, we use Llama2-13B SFT model to generate n answers and choose
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Table 2: The results on preference benchmarks.

RMs \ Open Preference Datasets \ RewardBench \ Ave
Anthropic  OpenAl  Stanford Chat .
Helpful Summ. SHP WebGPT | Chat Hard Reasoning  Safety
13B Step3 68.7 68.2 67.2 65.9 89.7 612 75.8 88.2 | 73.1
Step4 69.6 68.6 68.1 66.7 89.1 68.2 91.8 79.9 | 753
70B Step3 69.9 68.7 71.5 71.4 869 632 87.5 79.1 | 74.8
Step4 71.4 71.4 72.1 70.8 88.8 65.6 87.7 76.8 | 75.6

the best answer from the answer set based on the RM score. The value of n is chosen from {5, 10, 20, 50}. We
then calculate the win rate for the RM trained on preference data collected in Step 3 against Step 4, and plot the
results in Figure[3] The results validate that the RMs consistently help select better answers than the SFT model
for both the 13B and 70B models, further verifying the enhancement in performance with the refinement of data.
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Figure 3: The win rates of the RM trained with preference data in Step 4 against Step 3.

4 CONCLUSION

In this work, we propose a systematic framework for preference data collection tailored to RM training. By de-
composing the collection pipeline into distinct sub-steps, our approach facilitates the acquisition of high-quality
preference data while minimizing human annotation effort. We empirically validate the framework through eval-
uations on preference data benchmarks and downstream policy learning tasks, showing notable improvements in
data quality. As an initial exploration, we believe this framework addresses critical gaps in existing practices and
contributes a solution to the broader LLM community.

REFERENCES

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei
Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui Chen, Halil Akin, Mandeep
Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona
Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient large scale language modeling with mixtures of experts,
2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqgi Tan, Sinan Tan, Jianhong Tu,
Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang,
Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang
Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report,
2023.



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav
Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning
from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag Nagpal,
and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy. arXiv preprint
arXiv:2401.01879, 2024.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. RIlhf workflow: From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with V-usable infor-
mation. In International Conference on Machine Learning, pp. 5988-6008. PMLR, 2022.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha
Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi. Rewardbench: Evalu-
ating reward models for language modeling, 2024.

Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Zhuoer Feng, Bosi Wen, Jiale Cheng, Pei Ke, Yifan Xu,
Weng Lam Tam, et al. Alignbench: Benchmarking chinese alignment of large language models. arXiv preprint
arXiv:2311.18743, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shan-
tanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering with human
feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730-27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct
preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing reward
gaming. Advances in Neural Information Processing Systems, 35:9460-9471, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in Neural Information
Processing Systems, 33:3008-3021, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu
Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling. arXiv preprint
arXiv:2401.06080, 2024a.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via multi-
objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845, 2024b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. Qwen?2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Shun Zhang, Zhenfang Chen, Sunli Chen, Yikang Shen, Zhiqing Sun, and Chuang Gan. Improving reinforcement
learning from human feedback with efficient reward model ensemble. arXiv preprint arXiv:2401.16635, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593,
2019.



	Introduction
	Methodology
	The proposed framework
	Data Funnel

	Experiment
	Setups
	Results

	Conclusion

