FERRET-UI LITE: LESSONS FROM BUILDING SMALL
ON-DEVICE GUI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing autonomous agents that effectively interact with Graphic User Inter-
faces (GUIs) remains a challenging open problem, especially for small on-device
models. In this paper, we present FERRET-UI LITE, a compact, end-to-end GUI
agent that operates across diverse platforms, including mobile, web, and desk-
top. Utilizing techniques optimized for developing small models, we build our 3B
FERRET-UI LITE agent through curating a diverse GUI data mixture from real
and synthetic sources, strengthening inference-time performance through chain-
of-thought reasoning and visual tool-use, and reinforcement learning with de-
signed rewards. FERRET-UI LITE achieves competitive performance with other
small-scale GUI agents. In GUI grounding, FERRET-UI LITE attains scores of
91.6%, 53.3%, and 61.2% on the ScreenSpot-V2, ScreenSpot-Pro, and OSWorld-
G benchmarks, respectively. For GUI navigation, FERRET-UI LITE achieves suc-
cess rates of 28.0% on AndroidWorld and 19.8% on OSWorld. We share our

methods and lessons learned from developing compact, on-device GUI agents.

1 INTRODUCTION

Autonomous agents, which directly
interact with graphic user interfaces
(GUIs) to accomplish human tasks,
are emerging technologies with the
potential of revolutionizing the com-
puter industry and GUI automa-
tion (OpenAl, 2025; Claude, 2024;
Durante et al., 2024; Qin et al.,
2025; Wang et al., 2025a). Imagine
a GUI assistant that instantly helps
you write down a reminder while
you’re driving, or displays your fa-
vorite recipe while your hands are
wet in the kitchen. Many of these
scenarios require low latency, strong
privacy guarantee, and robustness un-
der limited connectivity, necessitat-
ing the development of small, on-
device GUI agents (Li et al., 2025a;
Belcak et al., 2025).

=60 40
§ Ferret-UI Lite, §, P
> * @ —8— MiniCPM-V —— ScaleCUA.
Q Q
g0 SE
3 ~
Q 23
< 40 §
2 O 04 Ferret-UT Lite
- N
= 30)
) —e— UlTars 1.5 —e— SE-GUI = 10
g KIMLVL —e— GULGI %)
1%} —e— Qwen25-VL GUI-OWL o 4
20 —e— GTAl —o— Jedi .
0
2B 3B 7B 32B 72B 2B 3B 7B 32B 72B
Model Size Model Size
(a) GUI Grounding. (b) GUI Navigation.

Figure 1: Comparing FERRET-UI LITE with other end-
to-end GUI agents. Our model achieves strong results
on GUI grounding tasks, surpassing many larger models.
However, its performance on multi-step navigation remains
limited, underscoring the inherent challenges of develop-
ing lightweight, on-device agents capable of robust long-
horizon reasoning.

The majority of existing methods on GUI agents, contrarily, focus on large foundation models.
For example, a traditional multi-agent system design with separate perception, planning, and action
components is built on top of general-purpose large language models (LLMs) (such as GPT (Achiam
et al., 2023) and Gemini (Team et al., 2024)). The strong reasoning and planning capabilities of
large server-side models allow these agentic systems to achieve impressive capabilities in diverse
GUI navigation tasks (Yan et al., 2023). However, the usage of large models and a multi-agent
paradigm increases modeling complexity, compute budget requirements, and inference time (Chen
et al., 2023). End-to-end GUI agents offer an attractive alternative by streamlining the agentic
workflow, directly mapping raw GUI screenshots to actions (Yang et al., 2025a; Wang et al., 2025a;

. User: | love the poster of the party night. Help me find the poster and send it to my mom per mail.

Diverse GUI Platforms Agent

= ; ®
l'l D @ Think Think

~

Looking at the screen, I'm currently The current screen displays the email to my mom, with

Mobile Desktop Web (Dobserve in the Trash folder, and the poster a pop-up window confirming it was sent. Reviewing my
file is visible on the screen. To send earlier steps, | discovered the party night poster in the
the poster to my mom, | need to Trash folder, recovered it, and then drafted an email to
recover the poster from the Trash. my mom with the poster attached. Thus, | have already

. . successfully completed the task.
Unified Action Space Plan

Click on the file of the poster of Plan

Q;) Tap @ Scroll @Execute party night. The task is complete. Terminate the action.

. H Act Act
Type @Zoom—ln . Tap(x=562, y=163) Terminate(reason=“email is sent”)
g

Figure 2: An illustration of FERRET-UI LITE on a multi-step GUI navigation task. Human users
prompt with a high-level goal in plain text, and the model autonomously interacts with GUI devices
through tapping, scrolling, typing, etc., until the task is complete. At each step, the model observes
the GUI screen, generates think-plan-act traces, and executes the action.

Seed, 2025; Lei et al., 2025; Team et al., 2025). However, larger models are still preferred for
end-to-end agents (Wang et al., 2025b; Bai et al., 2025; Yang et al., 2025a; Wang et al., 2025a), in
part because diverse agentic capabilities need to be incorporated into one single model, including
low-level GUI grounding, screen understanding, multi-step planning, and self-reflection (we refer
readers to Section B in the appendix for a detailed overview). Building competitive small on-device
end-to-end agents remains challenging.

In this paper, we explore the strategies to develop strong small GUI agents targeted for on-device
deployment (Li et al., 2025a). We present FERRET-UI LITE, a 3B end-to-end multimodal LLM
for GUI agentic tasks. FERRET-UI LITE is built with several key components, guided by insights
on training small-scale LMs: (1) Curating both real and synthetic GUI training data from a large
number of sources with a unified action space across diverse GUI domains. (2) Inference-time
techniques through visual tool-use with image cropping and zoom-in to achieve high-resolution
GUI perception. (3) Adapting a two-stage training strategy with supervised fine-tuning (SFT) and
reinforcement learning (RL). At the SFT stage, we collect online trajectories from a multi-agent
rollout pipeline. At the RL stage, we introduce step-wise reinforcement learning with verifiable
rewards, applying it to visual tool-use grounding tasks and to multi-step navigation tasks.

As aresult, FERRET-UI LITE (3B) shows competitive GUI grounding and navigation performance
compared to other models of the same size and outperforms many larger models. For example,
on the ScreenSpot-Pro GUI grounding benchmark, our model achieves 53.3% accuracy, surpass-
ing UI-TARS-1.5 (7B) (Seed, 2025) by over 15% (Figure 1a). However, on the GUI navigation
task, FERRET-UI LITE (3B) shows limited performance compared to larger models, with only on-
par performance with its UI-TARS-1.5 (7B) (Seed, 2025) on the OSWorld benchmark (Figure 1b),
highlighting the challenges of developing lightweight, on-device agents for multi-step navigation.

We conduct a series of experiments to investigate the capabilities and limitations of small GUI
agents. The results indicate that GUI grounding and navigation data can mutually benefit each
other, with a balanced mixture ratio achieving the best overall results. Moreover, the curation of
synthetic data from diverse sources, such as high-resolution grounding data and online roll-outs
from a multi-agent system, significantly improves grounding and navigation performance. Further-
more, inference-time techniques such as CoT reasoning and visual tool-use bring improvements,
yet the benefits remain limited. While small models can benefit from reinforcement learning, they
are sensitive to RL reward designs, underscoring the difficulty of designing robust rewards across
heterogeneous Ul agentic tasks. We anticipate that these findings will provide valuable guidance to
the community in the development of effective on-device GUI agents.

2 SUPERVISED FINE-TUNING

Training reliable GUI agents requires comprehensive supervision that spans the full spectrum of
interaction types, visual contexts, and device platforms, which is important for smaller models that
require a large number of diverse training tokens to achieve competitive performance (Kaplan et al.,

Training recipes

Supervised Fine-tuning (SFT) Reinforcement Learning (RLVR)

- Human annotated trajectories >
- Offline synthetic data
- Online synthetic data

+ Multi-scale grounding with zoom-in
- Multi-step trajectories

Ferret-Ul Lite

g Vb oYY

E_ _— _I Image —> Decoder-only LLM
e encoder
—
: ST L
[~ ASSISTANT: <think> ... <function>...

Figure 3: Model architecture and training recipes of FERRET-UI LITE. The model takes a GUI
screen and the user instruction as inputs, and predicts chain-of-thought reasoning traces and a low-
level action policy to control GUI devices in an end-to-end manner directly. The model is trained
through supervised fine-tuning (SFT) and reinforcement learning with verifiable rewards (RLVR).

2020). We curate both human-annotated and synthetic datasets to enhance scale, coverage, and
diversity of interaction patterns. These datasets include public benchmarks curated from diverse
multi-platform corpora and systematically generated synthetic trajectories, which we then combine
into a unified SFT recipe. We consolidate these heterogeneous data sources and align them under a
consistent annotation and action schema, establishing a foundation for developing GUI agents.

2.1 DATA DISTRIBUTION

For SFT, we draw on a diverse collection of public GUI grounding and navigation datasets, including
GroundUI (Zheng et al., 2024), OSAtlas (Wu et al., 2025), UGround (Gou et al., 2025), Aria-
UI (Yang et al., 2025b), Aguvis (Xu et al., 2025), WaveUI (Wu et al., 2023; Dwyer, 2022; Zheng
et al., 2024), ShowUI (Lin et al., 2024), Jedi (Xie et al., 2025), and AgentNet (Wang et al., 2025b).
Additionally, we generate synthetic datasets for mobile and OS platforms for both grounding and
navigation, which will be detailed later. Together, these resources span multiple platforms and
supervision types, forming a comprehensive basis for training generalizable GUI agents capable of
grounding and navigation across varied environments. Figure 11 illustrates the SFT data distribution
in Appendix E, and we present dataset ablations in the experiment section and Appendix G.

2.2 FORMAT UNIFICATION

To effectively leverage the heterogeneous supervision provided by public datasets, we unify their
annotation formats into a consistent training interface (see Appendix D). This unification ensures
that the model can learn from diverse sources without overfitting to dataset-specific schemas and
enables seamless multi-source training across grounding and navigation tasks.

Grounding. Datasets differ in how they specify interactive regions: some use bounding boxes, while
others provide single-point coordinates. We normalize all targets to a point-based representation by
mapping bounding boxes to their geometric centers, (Zcenter; Yeenter) = (Zmindmax = YmindUmax)
where (Zmin, Ymin) a0d (Tmax, Ymax) denote the box corners. Point-based annotations are left un-
changed. Natural language templates referencing the computed points provide a unified supervision
interface across datasets, allowing the agent to generalize effectively to unseen instruction styles.

)

Navigation. For action supervision, we define a unified action space spanning mobile, desktop, and
web environments. Following the taxonomy of Qin et al. (2025), we categorize actions into shared
and domain-specific types, resulting in eleven representative actions summarized in Table 5. While
prior work encodes actions as free-form text tokens (Lin et al., 2024; Qin et al., 2025) or through
specialized latent tokenizers (Bruce et al., 2024; Brohan et al., 2022; Szot et al., 2025), we instead
adopt a function-call representation inspired by tool-use paradigms (Schick et al., 2023). Each action
is formalized as a predefined function with constrained parameters, yielding structured outputs that

Set-of-mark visual @ Offline synthetic data

Human-annotated promptlng . COTSEZanSeOQLns%ription
WELE Ul element . Quer,es with task- - Action think

detections = generation prompts ° [RefikE e

- Evaluation
> « Synthetic task rewriting

Humap - High-res image synthesis
4_) annotation
GUI platforms Multi-agent systems @
Planning agent)—>{ Grounding agent Online
(1929) Jek) K synthetic data
Auto- 4 v VLM as a judge
labeling | ("Task generator Je—(_Critic model) filtering

Figure 4: Synthetic navigation data generation pipeline, which consists of offline data generation
based on human-annotated trajectories, and online rollouts collection from a multi-agent system.

enhance interpretability, facilitate extraction for downstream evaluation, and naturally align with the
coding and tool-use abilities of modern LLMs.

2.3 SYNTHETIC DATA GENERATION

While existing public datasets provide rich supervision signals, their scale and diversity remain
insufficient for training robust GUI agents. To bridge this gap, we carefully design synthetic data
generation pipelines covering various scenarios.

High-resolution grounding data. To enhance grounding supervision, we construct high-resolution
samples by concatenating multiple GUI screenshots into larger composite images (e.g., from OS-
Atlas (Wu et al., 2025)). This exposes the model to denser layouts and richer spatial contexts,
enabling more precise localization in realistic multi-element environments. Existing annotations are
converted into the unified point-based format described in Section 2, ensuring consistency across
datasets.

CoT navigation data. We collect three key CoT reasoning traces to enhance multi-step navigation,
similar to Zhang et al. (2024); Seed (2025): () plan (concise description of next action), (¢¢) action
think (reasoning over GUI elements, history traces, and candidate actions), and (¢4%) reflect (self-
assessment relative to the goal). Each component is generated separately by GPT-40 using set-of-
marks (SoM) visual prompting (Yang et al., 2023), conditioned on the human-annotated action for
the current screen and the episode history. Combined with those reasoning traces, we instantiate two
CoT-enabled GUI agents with different compute profiles: () short-CoT only adds plan reasoning
trace before the action output, and (¢) long-CoT extends to action think and reflection component,
capturing richer dependencies among GUI states, history traces, goals, and actions.

Synthetic QA data. To support assistive capabilities such as answering user queries (e.g., “What
items are left in my Amazon shopping cart?”), we generate synthetic visual QA pairs based on the
existing episodes, by rewriting the episode goal into a natural language question and providing an
answer in the terminal state, grounded by the last GUI screen. Furthermore, we improve agents
with replanning skills by deliberately perturbing clean trajectories with error-prone frames. For
instance, a correct terminate action can be replaced with an erroneous swipe, simulating a
stuck navigation state. The corresponding correction sequence is then generated to demonstrate
recovery strategies.

Online navigation data. We design a multi-agent system, inspired by Reflexion (Shinn et al.,
2024), that interacts directly with GUI platforms to generate synthetic rollouts at scale. These online
trajectories introduce action errors, environmental stochasticity, and various replanning strategies
that are absent from human-annotated data. The system comprises four components, as illustrated
in Figure 4: a curriculum task generator that produces goals of increasing difficulty, a planning
agent that decomposes goals into step-level instructions, a grounding agent that executes actions,
and a critic model that evaluates trajectories and provides textual rewards to the planning agent.
The online trajectories are further enriched with chain-of-thought reasoning traces and filtered by a
VLM-as-a-judge pipeline to remove low-quality or inconsistent samples.

3 REINFORCEMENT LEARNING

SFT provides a foundation for grounding and navigation, yet it enforces strict imitation of annotated
outputs and does not fully exploit the flexibility of GUI interaction tasks. In many scenarios, rea-
soning traces may vary in form while leading to the same correct action. Reinforcement learning
with verifiable rewards (RLVR) addresses this limitation by introducing rule-based, automatically
computable rewards that align model training with task success rather than surface-level annotation
matching. By grounding optimization in verifiable outcomes, RLVR enables the model to refine
both grounding accuracy and reasoning quality in a scalable and noise-tolerant manner.

RL for grounding. To further improve grounding beyond SFT, we apply reinforcement learning
on OSAtlas (Wu et al., 2025). Unlike SFT, which constrains the model to reproduce the annotated
center point exactly, RL allows us to design a reward function that reflects the true goal of grounding:
any prediction falling within the annotated bounding box is considered acceptable. We therefore
adopt a simple containment-based reward that assigns positive feedback whenever the predicted
location lies inside the ground-truth box.

To enhance robustness, we further
introduce a zoom-in mechanism in-
spired by recent research on thinking
with images (OpenAl, 2025; Shao
et al., 2024a; Fan et al., 2025). Af-
ter the model produces an initial pre-

diction, the image is cropped around ‘ ‘ : i
the predicted location, and the model g
makes a refined prediction on this
cropped region. This process mimics
human behavior of zooming in for de-
tail, and proves especially beneficial
for complex or high-resolution user
interfaces. This process also allows
our small model to only consider a
small region for the final grounding
decision, reducing the need for com- Figure 5: FERRET-UI LITE employs a zoom-in operation to
plex, nuanced understanding across refine predictions. It generates an initial prediction based on
a large number of image tokens that the given instruction, crops the image around this prediction,
might require larger models. Both and finally re-predicts on the cropped region for improved
initial and refined predictions are re- accuracy.

tained in the training pool, providing

the model with multi-scale grounding supervision.

User: Refresh the file explorer

RL for navigation. For navigation, we use our mobile and desktop synthetic datasets and Agent-
Net (Wang et al., 2025b) during RLVR training. The prompt includes the current screenshot, the
high-level instruction, and the history of past actions. Given this input, the model samples M num-
ber of candidate outputs denoted by z = [21, ..., 2, - . ., 2p], Where z; = [¢;; a;] consists of a chain
of thought text ¢; followed by a predicted action a; = [7;; 6;], with action type 7; and its parameters
0; (e.g. tapping location). A reward scalar, r, is then computed by comparing the generated action
with its ground-truth (a® = [78'; 6¢']), using reward functions. Specifically, the final reward is com-
puted by the sum of an action type match function, fiype, and an action parameter match function,
fparam: ri = ftype(Tia Tg[7 agt) + fparam(ei; egt) .

This formulation separates correctness into two complementary components. The first, fiyp., verifies
whether the predicted action type matches the ground truth. If no parameters are expected (68' = (),
a perfect type match is rewarded more strongly, while if parameters are required, the type match
provides partial credit:

2, if 7, = 78 and 08 = (),
ftyPe(Tia Tgta ogt) = 17 if Ti = 7¢ and 6 7é @7 (1)
0, otherwise.

The second component, fpaam, €valuates the fidelity of the predicted parameters. For string-based
parameters (e.g., text entry or direction), we adopt an exact-match function which assigns 1 if pre-
dicted and ground truth string parameters are matched, and 0 otherwise.

For location-based actions such as tap, we experiment with a sparse reward, which is the same as
our grounding reward, assigning 1 if the predicted coordinate lies inside the ground-truth bounding
box, and O otherwise. We also design a dense reward fgfgﬁﬁ that provides a graded score based on
the normalized distance between the predicted and ground-truth centers:

. 8t .8t
R Y e I U] @

w h

where (z;,y;) and (2, y#') denote the predicted and ground-truth centers of the UI elment, and w
and h its ground truth width and height, respectively. The decay factor A is used for controlling
sensitivity, and is set to 0.5.

Together, these reward functions allow navigation training to balance categorical correctness with
parameter precision, encouraging the model not only to predict the right action type but also to refine
its execution details.

Model training. Both grounding and navigation RL are optimized using Group Relative Policy
Optimization (GRPO) (Shao et al., 2024b). For each training example, multiple predictions are
sampled: 8 from the original image and 4 from the zoomed-in crop for grounding, and 32 candidate
outputs for navigation. Each sample receives a reward r; computed by the task-specific reward

functions, and a normalized advantage 4; = %ff;(r), r = [r1,r2,...,7a]. is calculated within

the group to stabilize optimization.

To further improve training efficiency, we apply online filtering (Yu et al., 2025). Prompts for
which all sampled rewards are identical (e.g., uniformly O or 1) are discarded, as they provide no
meaningful learning signal. By retaining only the most informative examples, the model focuses on
cases that sharpen its decision boundaries and refine its reasoning.

This unified optimization strategy ensures that RL improves both fine-grained grounding precision
and multi-step navigation robustness, while remaining stable and sample-efficient.

4 EXPERIMENTS

We experiment on an internal 3B dense model pretrained on a mixture of datasets containing text-
only and vision-language understanding data. The image encoder employs the VitDet architec-
ture (Li et al., 2022) and adopts the AnyRes strategy (Liu et al., 2024; Li et al., 2024b), which
dynamically partitions each input screenshot into a grid of cells. The model is trained for 10K steps
during SFT and for 1K steps during RL. We first report results on GUI grounding (Section 4.1),
followed by GUI navigation (Section 4.2).

4.1 GUI GROUNDING

We evaluate grounding performance on ScreenSpot-V2 (Wu et al., 2025), ScreenSpot-Pro (Li et al.,
2025b), and OSWorld-G (Xie et al., 2025). The selected benchmarks are designed to handle multiple
platforms (mobile, desktop, web) and accommodate a wide range of image resolutions, enabling
robust evaluations across device types. Especially, ScreenSpot-Pro features high-resolution desktop
GUI images that can be challenging for GUI grounding models.

Main results. Table 1 reports the performance of various models on the grounding benchmarks,
and we list fine-grained performance across different categories in Appendix H. FERRET-UI LITE-
3B demonstrates strong performance across all three benchmarks, outperforming other 3B models
by a clear margin and showing relatively small gaps compared to larger models. On ScreenSpot-
V2, it reaches 91.6, ahead of other 3B baselines such as UI-R1-3B (89.2) and Jedi-3B (88.8), and
close to the 7B tier where scores range from 90.3 to 92.8. On the more challenging ScreenSpot-
Pro benchmark, FERRET-UI LITE-3B achieves 53.3, considerably higher than other 3B models,
which are generally in the mid-30s, and only slightly below GUI-Owl-7B (54.9). On OSWorld-G,
FERRET-UI LITE-3B records 55.3, again stronger than other 3B models and competitive with larger

Model ScreenSpot-V2 ScreenSpot-Pro OSWorld-G

UI-R1 (3B) (Lu et al., 2025) 89.2 33.5 -
UlTars (2B) (Qin et al., 2025) 84.7 18.9 -
QwenVL 2.5 (3B) (Bai et al., 2025) - 259 27.3
InfiGUI-R1 (3B) (Liu et al., 20252) - 35.7 -
SE-GUI (3B) (Yuan et al., 2025) 90.3 36.1 -
Jedi (3B) (Xie et al., 2025) 88.8 37.1 50.9
GUI-G1 (3B) (Zhou et al., 2025) - 38.1 -
FERRET-UI LITE (3B) 91.6 53.3 55.3
UlTars (7B) (Qin et al., 2025) 91.6 35.7 475
Jedi (7B) (Xie et al., 2025) 91.7 42.0 54.1
SE-GUI (7B) (Yuan et al., 2025) 90.3 473

GTA1 (7B) (Yang et al., 2025a) 924 50.1 67.7
GUI-OWL (7B) (Ye et al., 2025) 92.8 54.9 55.9
Seed-1.5-VL (Guo et al., 2025) 95.2 60.9 62.9
UlTars 1.5 (72B) (Qin et al., 2025) 94.2 61.6 47.5
GTA1 (72B) (Yang et al., 20252) 94.8 58.4 66.7
GUI-OWL (32B) (Ye et al., 2025) 93.2 58.0 58.0

Table 1: GUI grounding performance on ScreenSpot-V2, ScreenSpot-Pro, and OSWorld-G.
FERRET-UI LITE-3B outperforms other 3B models and narrows the gap to larger models.

100 100
B SFT §9.689.690.5898 B grd:nay = 0:100 90 200 895 mEE w/highres
| coe e o = RL wo zoom-in " B grdinay = 30:70 = wio highres
_ B RL W/ zoom-in _ B grdinav = 50:50 %0
9 “ = o B grdmav=7030 | X
Iy Iy 50.149.5 270
< < - <
- - -
3 70 3 40 3
51 51 S 60
< < <
60 =3 20 50 489 483
523527533 54154122
0 40
ScreenSpot-V2 ScreenSpot-Pro OSWorld-G ScreenSpot-V2 ScreenSpot-Pro OSWorld-Chrome ScreenSpot-V2 ScreenSpot-Pro
(a) SFT vs RL variants (b) data ratios (c) w/ vs w/o high-res data

Figure 6: Ablation studies for grounding. (a) RL improves grounding performance, and our zoom-in
operation provides additional gains. (b) Navigation and grounding data can mutually benefit each
other, with balanced ratios performing best. (c) Synthetic high-resolution data improves results,
especially on ScreenSpot-Pro.

models like GUI-Owl-7B (55.9) and GUI-OwI-32B (58.0). While the best-performing 7B model,
GTA1-7B, still leads with 67.7, the difference is modest given the parameter scale. Overall, these
results suggest that FERRET-UI LITE-3B provides a favorable balance of efficiency and accuracy,
narrowing the gap to larger models while maintaining the advantages of a lightweight design.

SFT vs RL variants. We first compare SFT with RL variants (Figure 6a). RL consistently improves
performance, and our proposed zoom-in operation provides further gains. This indicates that the
model not only benefits from RL optimization but also learns to actively make use of zoom-in to
handle small or cluttered interface elements.

Effect of data mixture ratios. We then study different ratios of navigation and grounding data
(Figure 6b). The results show that the two types of data can mutually benefit each other: navigation
data provides complementary supervision that strengthens grounding ability, while grounding data
does not degrade performance on navigation benchmarks. Balanced ratios achieve the best overall
results, suggesting that maintaining diversity in training data is important for robust grounding and
navigation for small models.

Effect of synthetic high-resolution data. Finally, we examine the effect of incorporating synthetic
high-resolution data (Figure 6¢c). While improvements on ScreenSpot-V2 are modest, the gains are
more notable on the challenging ScreenSpot-Pro benchmark. This demonstrates that high-resolution
data is particularly helpful for precise localization and contributes to stronger overall performance.

Model Success Rates Model Success Rates

QwenVL 2.5 (3B)! (Bai et al., 2025) 16.8 ScaleCUA (3B) (Liu et al., 2025b) 9.6
ScaleCUA (3B, reported) (Liu et al., 2025b) 23.7 Kimi-VL (3B) (Team et al., 2025) 9.7
FERRET-UI LITE (3B) 28.0 OpenCUA (A3B) (Wang et al., 2025b) 16.9
QwenVL 2.5 (7B)' (Bai et al., 2025) 19.5 FERRET-UI LITE (3B) 17.3
UlTars 1.5 (7B)" (Qin et al., 2025) 26.4 ScaleCUA (7B) (Liu et al., 2025b) 14.3
UlTars 1.5 (72B)" (Qin et al., 2025) 377 UlTars 1.5 (7B) (Qin et al., 2025) 24.5
UlTars 1.5 (7B, reported) (Qm et al., 2025) 33.0 OpenCUA (7B) (Wang et al., 2025b) 243
UlTars 1.5 (72B, reported) (Qm etal., 2025) 46.6 GUI-OWL (7B) (Ye et al., 2025) 32.1
ScaleCUA (7B, reported) (Liu et al., 2025b) 27.2 QwenVL 2.5 (32B) (Bai et al., 2025) 3.0
ScaleCUA (32B, reported) (Liu et al., 2025b) 30.6 : . v g !
QwenVL 2.5 (72B) (Bai et al., 2025) 44
(a) AndroidWorld success rates (%). Models with (1)]S)ﬁ;gg?s(%ﬂlg; ?éil(;’eztosz)ozs) ;?g
are evaluated using the same random seed and en- Claude-4-Sonnet (Claude, 2024) ’ 312
vironment setup, averaged over five runs. QwenVL
models are evaluated using zero-shot settings. (b) OSWorld-Verified 15 steps success rates (%).

Table 3: Comparison in online evaluation benchmarks for GUI navigation.
4.2 GUI NAVIGATION

Offline evaluation. The FERRET-UI LITE model is evaluated on offline static benchmarks first. The
evaluation is conducted on the Android Control dataset (Li et al., 2024a), which evaluates agentic
planning and grounding capability in the mobile environment. There are two types of tasks in An-
droid Control evaluation: low-level tasks and high-level tasks. For low-level tasks, the inputs consist
of detailed single-step instructions, and the model’s grounding capability is critical for successful
performance. In a high-level task, a global goal is given, which requires multiple steps to accom-
plish. High-level tasks assess the model’s planning capability, as they require the model to connect
the global goal to the current screenshot to generate appropriate step instructions. We follow the
test setting in OSAtlas (Wu et al., 2025). Table 2 shows the FERRET-UI LITE-3B performance on
Android control. Our model achieves an 86.6% success rate in low-level tasks and a 68.9% success
rate in high-level tasks, outperforming similar-scale models.

Online evaluation. AndroidWorld (Rawles

et al., 2025) is chosen for mobile GUI navi- Model LL HL
gation evaluation, which is a fully functional InternVL-2 (4B) (Chen et al., 2024) 80.1 66.7
Android environment with 116 tasks across 20 OSAtlas (4B) (Wu et al., 2025) 80.6 67.5

Android apps. Table 3a presents the Android- _FERRET-UI'LITE (3B) 86.6 68.9
World result of our 3B model against other Qwen2-VL (7B) (Wang et al., 2024) 82.6 69.7
public models. Because AndroidWorld gener- ~_Aguvis (72B) (Xu et al., 2025) 84.4 664

ates tasks dynamically with randomness in each))
task, the mean evaluation results of five runs Table 2: Android Control (AC) offline success

are presented in the table. Our 3B model can Tates '(%)- L'L: low-level instruction. HL: high-
achieve 28% success rate, competitive with 7B level instruction.

models such as UlTars 1.5 (Qin et al., 2025) in

the same setting.

We also evaluate on the OSWorld-Verified benchmark (Xie et al., 2024), which includes challenging
tasks in computer use simulation environments. Our 3B model can achieve 17.3% (max steps: 15)
success rate, surpassing the performance of all 3B models and competitive with 7B models in the
OSWorld leaderboard as shown in Table 3b. After extending the maximum number of steps to 50,
our FERRET-UI LITE (3B) achieves a 19.8% success rate on the OSWorld evaluation, demonstrat-
ing the model’s test-time scaling capability. Although our 3B navigation model outperforms other
models of comparable size, its overall navigation performance remains constrained by the model
scale, falling short of the SOTA result on the OSWorld leaderboard, such as 43.9% for Claude-4-
Sonnet (Claude, 2024). For additional qualitative insights, we provide detailed case study of Android
World and OSWorld online evaluation in Appendix Section C.

Effect of synthetic CoT data. We conduct ablation studies on AndroidWorld to quantify the impact
of synthetic data introduced in Section 2.3 on GUI navigation tasks. The models are trained with
the same training steps, and we report mean success rates over five runs. Results are summarized in
Table 4. Short CoT reasoning traces improve the baseline model trained without CoT data by 2.1%.
Extending to more complex long-CoT traces further improves the performance by 4.1%, showing
the effectiveness of our CoT synthetic data.

Model Variants Success Rates

w
3

Baseline 13.7 30— SFr RL =
+ Short CoT 15.8 S 2.3
+ Long CoT 19.6 PR ;g 25
+ Syn. data (5K) 20.3 2 50 520
+ Syn. data (13K) 224 8 §
+ Syn. data (17K) 25.2 E a1
10
S € G o
Table 4: SFT ablations on the 10, SFE &S
AndroidWorld (AW) benchmark 2000 6000 10000 S FE
ndroidWorld () benchmark. Training steps Model Variants
Success rates (%) are averaged
over five runs. The baseline (a) Impact of SFT training steps (b) Impact of RL rewards de-
model is built using only human- for RL. sign.
annotated episodes, without CoT))
and synthetic data. Figure 7: RL ablations on the AW benchmark. RL re-
wards: AT (Action Type), SG (Sparse Grounding), DG
(Dense Grounding).

Effect of synthetic QA and navigation data. Built on the long-CoT agent, we further augment
the SFT training mixture with online synthetic data collected through the multi-agent system with
filtering, and offline synthetic data with task rewriting. As shown in Table 4, progressively scaling
synthetic data to 17K trajectories yields an additional improvement of nearly 6%, indicating that
scaling synthetic data with diversity improves navigation.

Effect of RL. We conduct experiments to evaluate the impact of RL training after the SFT stage
on Android World and OSWorld online evaluations. In this experiment, the action type reward
and dense grounding reward are incorporated, and the maximum number of steps allowed during
evaluation is set to 15. Compared to the baseline SFT checkpoint, RLVR increases the Android
World performance from 25% to 28% and OSWorld performance from 15% to 17.3%. Appendix F
illustrates the verifiable reward curve during RL training.

Effect of SFT training steps for RL. Figure 7a presents the impact of varying the number of
SFT steps prior to RLVR training on AndroidWorld success rate. We evaluate checkpoints trained
with 2000, 6000, and 10000 SFT steps, followed by RLVR with the same training steps. Across all
settings, RLVR consistently improves success rates compared to the corresponding SFT checkpoints.
The gains are most pronounced when the number of SFT steps is smaller, suggesting that RLVR is
particularly effective in compensating for limited SFT training.

Effect of reward designs. Figure 7b shows the effect of different reward configurations in RLVR
training on AndroidWorld success rate. We ablate four settings: (¢) action type reward only, (i7)
dense grounding reward only, (¢¢¢) action type reward combined with sparse grounding reward, and
(iv) action type reward combined with dense grounding reward. Using only the action type re-
ward leads to a substantial drop in performance, as correct grounding positions are not reinforced.
Grounding reward alone improves tapping accuracy but does not surpass the SFT baseline. Combin-
ing action type and grounding rewards yields consistent improvements, with dense grounding out-
performing sparse grounding. These findings highlight the importance of carefully designed RLVR
reward structures for enhancing small GUI agent models.

5 CONCLUSION

In this work, we present FERRET-UI LITE, a 3B multimodal LLM designed for GUI agentic tasks
with a focus on lightweight, on-device settings. Through real and synthetic data curation, inference-
time visual tool use, and a two-stage SFT-RL training strategy, FERRET-UI LITE achieves com-
petitive grounding and navigation performance relative to larger models. Our experiments validate
the effectiveness of these strategies for small-scale agents, while also revealing their limitations,
particularly in multi-step navigation. These findings highlight both the promise and challenges of
scaling down GUI agents, and we hope our lessons will inform future research on building efficient,
capable, and practical on-device Al agents.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical

report. arXiv preprint, 2023. 1

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S: An
open agentic framework that uses computers like a human. arXiv preprint, 2024. 1

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S2: A
compositional generalist-specialist framework for computer use agents. arXiv preprint, 2025. 1

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-VL technical report. arXiv preprint, 2025. 2,7, 8, 1

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic

Al arXiv preprint, 2025. 1
Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,

Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. RT-1: Robotics
transformer for real-world control at scale. Robotics: Science and Systems, 2022. 3

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. ICML, 2024. 3

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
FireACT: Toward language agent fine-tuning. arXiv preprint, 2023. 1

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. InternVL: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. CVPR, 2024. 8

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. ACL, 2024. 1

Claude. Claude Sonnet 4, 2024. URL https://www.anthropic.com/claude/sonnet.
1,8

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan
Taori, Yusuke Noda, Demetri Terzopoulos, Yejin Choi, et al. Agent Al: Surveying the horizons
of multimodal interaction. arXiv preprint, 2024. 1

Brad Dwyer. Website screenshots dataset. Roboflow Universe, 2022. https://universe.
roboflow.com/roboflow—-gw7yv/website-screenshots. 3

Yue Fan, Xuehai He, Diji Yang, Kaizhi Zheng, Ching-Chen Kuo, Yuting Zheng, Sravana Jyothi
Narayanaraju, Xinze Guan, and Xin Eric Wang. GRIT: Teaching MLLMs to think with images.

arXiv preprint, 2025. 5

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.

arXiv preprint, 2025. 3, 1

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-VL technical report. arXiv preprint, 2025. 7, 8

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. CogAgent: A
visual language model for GUI agents. CVPR, 2024. 1

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. GLM-4.1 V-Thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv preprint, 2025. 1

10

https://www.anthropic.com/claude/sonnet
https://universe.roboflow.com/roboflow-gw7yv/website-screenshots
https://universe.roboflow.com/roboflow-gw7yv/website-screenshots

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint, 2020. 2

Bin Lei, Weitai Kang, Zijian Zhang, Winson Chen, Xi Xie, Shan Zuo, Mimi Xie, Ali Payani, Mingyi
Hong, Yan Yan, et al. InfantAgent-Next: A multimodal generalist agent for automated computer
interaction. arXiv preprint, 2025. 2

Ethan Li, Anders Boesen Lindbo Larsen, Chen Zhang, Xiyou Zhou, Jun Qin, Dian Ang Yap, Naren-
dran Raghavan, Xuankai Chang, Margit Bowler, Eray Yildiz, et al. Apple intelligence foundation
language models tech report 2025. arXiv preprint, 2025a. 1, 2

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. ScreenSpot-Pro: GUI grounding for professional high-resolution computer use.

arXiv preprint, 2025b. 6

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyam-
agundlu, and Oriana Riva. On the effects of data scale on UI control agents. NeurIPS, 2024a.
8

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. ECCV, 2022. 6

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana
Prasad Sathya Moorthy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-UI 2: Mastering uni-
versal user interface understanding across platforms. ICLR, 2024b. 6, |

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Zechen Bai, Weixian Lei, Lijuan
Wang, and Mike Zheng Shou. Show-UI: One vision-language-action model for generalist GUI
agent. NeurIPS Workshop on Open-World Agents, 2024. 3, 1

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
Lee. LLaVA-Next: Improved reasoning, ocr, and world knowledge. https://llava-vl.
github.io/blog/2024-01-30-1lava-next/,2024. 6

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. InfiGUI-R1: Advancing multimodal GUI agents from reactive actors to deliberative
reasoners. arXiv preprint, 2025a. 7, 1

Zhaoyang Liu, JinglJing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang,
Qiushi Sun, Shi Liu, Weiyun Wang, et al. ScaleCUA: Scaling open-source computer use agents
with cross-platform data. arXiv preprint, 2025b. 8

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. GUI Odyssey: A comprehensive dataset for cross-app
GUI navigation on mobile devices, 2024. 1

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. UI-R1: Enhancing efficient action prediction of GUI agents
by reinforcement learning. arXiv preprint, 2025. 7, 1

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. GUI-R1: A generalist R1-style vision-language
action model for GUI agents. arXiv preprint, 2025. 1

OpenAl. Computer-Using Agent: Introducing a universal interface for ai to interact with the digital
world, 2025. URL https://openai.com/index/computer—-using-agent. |

OpenAl. Openai 03 and o4-mini system card. System card, OpenAl, April 2025. URL
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b—-e7758£3722cl/
o3-and-o4-mini-system-card.pdf. 5

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. UI-TARS: Pioneering automated GUI interaction with native
agents. arXiv preprint, 2025. 1, 3,7, 8

11

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/index/computer-using-agent
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. AndroidWorld: A
dynamic benchmarking environment for autonomous agents. ICLR, 2025. 8

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. NeurIPS, 2023. 3

ByteDance Seed. Ui-TARS-1.5. https://seed-tars.com/1.5,2025. 2,4

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and
Hongsheng Li. Visual CoT: Advancing multi-modal language models with a comprehensive
dataset and benchmark for chain-of-thought reasoning. NeurIPS, 2024a. 5

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepseekMath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint, 2024b. 6, 1

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. NeurIPS, 2024. 4

Andrew Szot, Bogdan Mazoure, Omar Attia, Aleksei Timofeev, Harsh Agrawal, Devon Hjelm, Zhe
Gan, Zsolt Kira, and Alexander Toshev. From multimodal LLMs to generalist embodied agents:
Methods and lessons. 2025. 3

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint, 2024. 1

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-VL technical report. arXiv preprint, 2025. 2, 8

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. UI-TARS-2 technical report: Advancing GUI
agent with multi-turn reinforcement learning. arXiv preprint, 2025a. 1, 2

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-VL: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint, 2024. 8

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda
Chen, Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqgiao Fu, Dongchan Shin, Martin
Shin, Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu,
Huarong Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang,
Diyi Yang, Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. OpenCUA: Open
foundations for computer-use agents. arXiv preprint, 2025b. 2, 3, 5, 8

Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey Bigham. WebUI: A
dataset for enhancing visual ui understanding with web semantics. CHI, 2023. 3

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, and
Shuo Shang. MobileVLM: A vision-language model for better intra- and inter-UI understanding.

EMNLP Findings, 2024. 1

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: A foundation action model
for generalist GUI agents. ICLR, 2025. 3,4, 5,6, 8, 1

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,

Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. OSWorld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. NeurIPS, 2024. 8

12

https://seed-tars.com/1.5

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint, 2025. 3, 6, 7

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous GUI interaction. ICML,
2025. 3,8

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. GPT-4V in wonderland: Large multimodal models
for zero-shot smartphone GUI navigation. arXiv preprint, 2023. 1

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in GPT-4V. arXiv preprint, 2023. 4

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. GTAI: Gui test-time scaling agent. arXiv preprint,
2025a. 1,2,7

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-UlI:
Visual grounding for GUI instructions. ACL Findings, 2025b. 3, 1

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-Agent-v3: Foundamental agents for GUI automation.

arXiv preprint, 2025. 7, 8

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-Ul: Grounded mobile Ul understanding with multimodal LLMs.
ECCV, 2024. 1

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. DAPO: An open-source LLM reinforcement learning
system at scale. arXiv preprint, 2025. 6

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for GUI agents via self-
evolutionary reinforcement learning. arXiv preprint, 2025. 7

Bofei Zhang, Zirui Shang, Zhi Gao, Wang Zhang, Rui Xie, Xiaojian Ma, Tao Yuan, Xinxiao Wu,
Song-Chun Zhu, and Qing Li. TongUI: Building generalized GUI agents by learning from multi-
modal web tutorials. arXiv preprint, 2025. 1

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for GUI agents. EMNLP Findings, 2024. 4

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan.
AgentStudio: A toolkit for building general virtual agents. arXiv preprint, 2024. 3

Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-G1: Understand-
ing R1-zero-like training for visual grounding in GUI agents. arXiv preprint, 2025. 7, 1

13

A USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as general-purpose assistive tools to revise the writing of
this paper and to improve the visualization quality of figures (e.g., suggestions for plot styling and
readability). The LLMs did not contribute to research ideation, experimental design, or experiment
result analysis, and their role was limited to language polishing and visualization refinement.

B RELATED WORK

Recent progress in GUI agents has been largely driven by multimodal large language models
(MLLMs). We review two central directions: GUI grounding and GUI navigation.

GUI grounding. GUI grounding focuses on mapping natural language instructions to the bounding
boxes of target elements in screen images. Early studies explored supervised fine-tuning (SFT)
to train models that predict coordinates as tokens (You et al., 2024; Cheng et al., 2024; Li et al.,
2024b; Gou et al., 2025; Yang et al., 2025b). Building on this foundation, reinforcement learning
(RL) has become an important tool, as the grounding reward signal can often be automatically
verified. GRPO-style optimization (Shao et al., 2024b) has been successfully applied with synthetic
recipes and verifiable rewards (Luo et al., 2025; Lu et al., 2025; Zhou et al., 2025; Liu et al., 2025a;
Yang et al., 2025a). These efforts have significantly advanced the accuracy and robustness of GUI
grounding across platforms.

GUI navigation. Beyond single-step grounding, GUI navigation requires multi-step reasoning and
action prediction. Two broad paradigms have been widely explored.

(1) Multi-agent systems. These methods decompose an agent into separate components, such as a
planner and a grounding module (Yan et al., 2023; Gou et al., 2025; Yang et al., 2025b;a). Large
models (e.g., GPT, Gemini) are often used as planners to generate action sequences, which are then
grounded by specialized modules. Extensions with memory, knowledge bases, and external tools
further enrich agent behavior (Agashe et al., 2024; 2025).

(2) End-to-end agents. Recent work has increasingly focused on unified vision-language-action
models that jointly learn grounding and navigation. Show-UI (Lin et al., 2024) and OS-Atlas (Wu
et al., 2025) predict action sequences directly from multimodal inputs. Other systems, such as
CogAgent (Hong et al., 2024), SeeClick (Cheng et al., 2024), GUIOdyssey (Lu et al., 2024), Mo-
bileVLM (Wu et al., 2024), UI-TARS (Qin et al., 2025), and TongUI (Zhang et al., 2025), extend
these designs to multiple platforms and applications. General-purpose MLLMs have also begun
integrating GUI navigation capabilities, including Qwen2.5-VL (Bai et al., 2025) and GLM-4.1V-
Thinking (Hong et al., 2025). Together, these works have established end-to-end modeling as a
powerful paradigm for GUI agents.

Toward small on-device GUI agents. Alongside these advances, many models release both small
and large variants to balance efficiency and capability. While larger models remain the dominant
focus due to their reasoning and planning strength, smaller models are attractive for on-device de-
ployment where latency, privacy, and connectivity are critical. Our work explores this complemen-
tary direction by studying a 3B end-to-end GUI agent, building on prior advances in SFT, synthetic
data generation, chain-of-thought modeling, and RL training. This perspective highlights practical
strategies for adapting modern GUI agent techniques to resource-constrained settings.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

C CASE STUDY

C.1 DESKTOP CASE STUDY

Step 1

Thought: Goal: Insert a sparkline for each order id in
column F. First step: Select cell F2 so we can insert the
first sparkline. ...

Action: pyautogui.click(580, 237)

Step 3

Thought: Cell F2 is now properly positioned in the
Chart column where I need to insert the first sparkline
chart. .. To create sparklines, I need to access the chart
insertion functionality. Looking at the toolbar, I can see
there are chart-related icons available. The most logical
next step would be to click on a chart insertion icon in
the toolbar to begin the process of creating a sparkline
chart.
Action: pyautogui.click(971, 106)

Step 5

Thought: The dialog shows several navigation buttons
at the bottom: Help, Back, Next, Cancel, and Finish.
Since I've already selected the appropriate chart type
(Line), the logical next step would be to continue with
the chart creation process by clicking "Next>" to
proceed to the next configuration step. ...

Action: pyautogui.click(1226, 760)

Step 7

Thought: ... The logical next step is to click the "Next
>" button to proceed to the next step of the chart
creation wizard. This will allow me to continue
configuring the chart settings and eventually reach the
final steps where I can specify the exact data range
needed for the sparkline charts. The "Next >" button
‘will advance me to the next configuration step,
Action: Click on the "Next >" button in the Data Range
dialog to proceed to the next step of the chart creation

Action: pyautogui click(1226, 760)

Step 9

Thought: ...I need to select cell E3 which corresponds
to the second order entry (Keira Daily). This will allow
‘me to create another sparkline chart for her data. The
logical next step is to click on cell E3 in the Chart
column to position the cursor there for creating the
second sparkline chart ... Action: Click on cell E3 in
the Chart column to position the cursor for creating the
second sparkline chart.

Action: pyautogui.click(611, 351)

Step 11

Thought: ... The logical next action is to click on the
"Points and Lines" line chart style option, which will
select this specific style for the sparkline chart I'm
creating for cell E3. Action: Click on the "Points and
Lines" line chart style option in the Chart Type dialog.
Action: pyautogui click(1031, 474)

Step 2

Thought: I can see that the Chart column header is
now selected, which is exactly where I need to insert
the sparkline charts. The previous action successfully
positioned me in the right column, but I need to be
more specific - I should click on cell F2 to start
inserting the first sparkline chart. ...

Action: pyautogui.click(583, 234)

Step 4

Thought: The Chart Type dialog has opened
successfully. However, for creating sparkline charts,
Line charts are typically more appropriate as they
provide better visual representation of trends in small
data sets. Looking at the available options in the dialog,
I can see Line is listed as one of the chart type options
... Action: Click on the "Line" option in the chart type
llist to select it as the chart type for creating sparkline
charts.
Action: pyautogui.click(788, 506)

Step 6

Thought: ... The "Next >" button at the bottom of the
dialog will allow me to proceed to the next step of the
chart creation wizard, which will likely take me to the
Chart Elements configuration where I can finalize the
sparkline chart settings ... Action: Click on the "Next
>" button at the bottom of the Data Series dialog to
proceed to the next step of the chart creation wizard.
Action: pyautogui.click(1226, 760)

Step 8

Thought: ... Since I'm at the final configuration step
and the chart elements appear to be properly
configured (with the legend position set to "Right"
which is a common default), the logical next action
would be to click the "Finish" button to complete the
chart creation process ... Action: Click on the "Finish"
button at the bottom right of the Chart Elements dialog
to complete the sparkline chart creation process.
Action: pyautogui.click(1408, 760)

Step 10

Thought: ... Since E3 is already selected, I need to
access the chart insertion functionality again to begin
creating the second sparkline chart. The logical next
step is to click on the Inscrt menu to access the chart
insertion options. This will open the Insert menu
dropdown, from which I can then select the Chart
option to begin creating the second sparkline chart ...
Action: Click on the Insert menu in the menu bar to
access the chart insertion options.

Action: pyautogui.click(563, 108)

Step 12

Thought: ... The Chart Type dialog is open and I've
selected the appropriate line chart style. The next
logical step is to confirm this selection and proceed
with the chart creation process by clicking the OK
button. This will close the Chart Type dialog and take
me to the next step of the chart creation wizard ...
Action: Click on the "OK" button at the bottom right of
the Chart Type dialog to confirm the line chart style
selection and proceed to the next step of the chart
creation process.

Action: pyautogui.click(1214, 700)

Figure 8: Successful completion for “Make sparkline charts for each order id with the data from Jan

to Mar in the Chart column.” task in OSWorld evaluation.

C.2 MOBILE CASE STUDY

Baked Cod with Lemon
and Dl

Kale g Quinoa Salag Orechons Disctions

Raspbery Almond
proit
e ‘

Raspberry Almond
othie

Raspbary Amond
Smoolbe

L]

Figure 9: Successful Completion for “Delete the following recipes from Broccoli app: Kale and
Quinoa Salad, Baked Cod with Lemon and Dill, Rasperry Almond Smoothie” task in AndroidWorld
evaluation.

15350 van ° vsn ° vao

PRS- 8 x comeconct @): x comeconoct @D comecos @ x comocma: @ ¢

™

£y
Allow Contacts to send you QT
notfcations? !
'Y . B | Company B [conpory ‘
No contacts yet ML % | P % [e % [o |
v;;)“c r;»m # OB o B & @ ¢ OB o B & @ ¢
QWERTYUI'OP QWERTYUI'OP
& [enes o
ASDFGHUJKL ASDFGHUJKL
L e - fome - + ZXCVBNM®&@ # ZXCVBNMGA
@ r © [soscaane 6 [s @ e » @ ¢ =]
... H
H
[wan o wan e e wo win so v e wn
U Coveconact @) x Cosecontoct @) ¢ x Cosecorioct @) ¢ x Covecowoct @) ¢ x Coveconact @ ¢ x Covecont @D ¢
: s
H s s £ - 2| toa v
HEY et ‘v & | toa v 2 [v a|u v & | e © e
'
'

-> 5 -
Ol ‘ B | compeny B B | company B | compeny R | +1ser08.33 x

[e | e o @ % ° J i - @

B o B 8 @ ¢ # O oo B & @ ¢ # @ o B S @ ¢ L::M» 2 I . 12345672890
QAWERTYUI'OP QWERTYUI'OP QWERTYUI'OP 1 2 Zor | = 1 2umc Zow | = qwer tyuiop
ASDFGHUJKL ASDFGHUJKL ASDFGHUJKL 4 5m gl 4o 5u puwo (IS asdfogh k.l
*# ZXCVBNMG®& 4 ZXCVBNMG®& ®# ZXCVBNMG®& 7 vor 9 7 8 9 © zxcvbnma@
m ., e 5 m e 5 mm e L 0« . - w0 - m e

Figure 10: Successful Completion for “Create a new contact for Lina Muller. Their number is
+15410831733” task in AndroidWorld evaluation.

D UNIFIED ACTION SPACE

Action Parameters Definition Platforms
tap (z,y) Tap/left-click on the specified screen location. All
move_to (z,y) Move to the specified screen location. All
drag_to (z,y) Drag to the specified screen location. All
locate (z,y) Locate on the specified screen location. All
textentry texts Type texts at a focused text bar. All
swipe direction Swipe/scroll in the given direction (up, down, left, right) ~ All

on the screen, with fixed start/end points and speed.
terminate reason End the navigation and provide a reason. All
press_enter - Press the enter button. All
press_hotkey hotkeys Trigger a predefined action via key combination. Desktop, Web
right_click (z,y) Right-click on the specified screen location. Desktop, Web
double_click (z,y) Double-click on the specified screen location. Desktop, Web
long_press (z,v) Long-press the specified screen location. Mobile
navigate_home - Return to the home screen. Mobile
open_app app-name Launch a specified application. Mobile
navigate_back - Navigate back to the previous page. Mobile

Table 5: Unified action space spanning shared and platform-specific operations.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

E SFT DATASET DISTRIBUTION

Mobile Synthetic
UGround

AGUVIS-Planning
Aria-Ul

0S-Atlas ¢

Mobile

- Desktop Synthetic

—— Deskop esktop
AGUVIS-Grounding

Mobile
OS-Atlas /]

UGround

OpenCUA

OS-Atlas

AGUVIS-Grounding AGUVIS-Planning

Figure 11: GUI dataset mixture used for supervised fine-tuning, including grounding datasets and
navigation datasets. The mobile synthetic dataset and desktop synthetic dataset are generated in-
house. Inner Ring: Platform Groups (Web, Desktop, Mobile) — Outer Ring: Datasets within each
Platform (square root scaled)

F EVOLUTION OF RLVR REWARD CURVE

0.75 %

0.70

0.65

0.60

Verifiable Reward

0.55

0.50 8
0 500 1000 1500 2000 2500 3000 3500

Training Step

Figure 12: Evolution of verifiable reward curve during RLVR training.

G GROUNDING DATASET ABLATIONS

Setting ScreenSpot-Pro ScreenSpot-v2
Base 50.15 90.49
w/o UGround 48.07 90.19
w/o OSAtlas 43.35 89.62
w/o Aria-Ul 46.93 89.94
w/o ShowUI 48.89 88.84
w/o Jedi 47.63 88.36

Table 6: Ablation study on ScreenSpot-Pro and ScreenSpot-v2.

We conduct an ablation study on different grounding datasets in Table 6. The results highlight the
contribution of different components to overall performance. Removing UGround and ShowUI leads
to relatively modest drops on ScreenSpot-Pro (-2.08 and -1.26) and minor changes on ScreenSpot-
v2. In contrast, excluding OSAtlas produces the largest degradation on ScreenSpot-Pro (-6.80),
underscoring its importance for grounding in this dataset. Removing Aria-UI and Jedi also causes
noticeable decreases, suggesting complementary roles across both benchmarks. Overall, each com-
ponent contributes to robustness, with OSAtlas emerging as the most critical for ScreenSpot-Pro.

H FINE-GRAINED GROUNDING RESULTS

Mobile Deskto Web
Sk Text Icon Text Icl:)n Text Icon Ll
Operator 473 415 902 803 928 843 70.5
Claude 3.7 Sonnet - - - - - - 87.6
UI-TARS-1.5 - - - - - - 94.2
Seed-1.5-VL - - - - - - 95.2
SeeClick 784 507 70.1 293 552 325 55.1
OmniParser-v2 955 746 923 609 88.0 596 80.7
Qwen2.5-VL-3B 934 735 88.1 586 88.0 714 80.9
UI-TARS-2B 952 79.1 90.7 68.6 872 78.3 84.7

OS-Atlas-Base-4B 952 758 90.7 63.6 906 773 85.1
OS-Atlas-Base-7B 96.2 834 89.7 693 940 79.8 87.1

JEDI-3B 96.6 815 969 78.6 885 83.7 88.6
Qwen2.5-VL-7B 97.6 872 902 742 932 813 88.8
UI-TARS-72B 948 863 912 879 915 877 90.3
UI-TARS-7B 969 89.1 954 850 936 852 91.6
JEDI-7B 969 872 959 879 944 842 91.7

Qwen2.5-VL-32B 983 86.7 943 836 936 89.7 91.9
Qwen2.5-VL-72B 99.0 90.1 964 87.1 96.6 90.6 94.0

GUI-Owl-7B 99.0 924 969 850 936 852 92.8
GUI-Owl-32B 98.6 90.0 979 878 944 86.7 93.2
GTA1-7B 99.0 88.6 949 893 923 86.7 92.4
GTAI1-32B 98.6 89.1 964 864 957 88.7 93.2
GTA1-72B 993 924 974 893 953 916 94.8

FERRET-UI LITE 972 839 985 850 953 857 91.6

Table 7: Fine-grained grounding performance on Screenspot-V?2.

Text Element Layout Fine-grained
Model Matching Recognition Understanding Manipulation Refusal Overall
Operator 51.3 42.4 46.6 31.5 0.0 40.6
Gemini-2.5-Pro 59.8 45.5 49.0 33.6 389 452
Seed1.5-VL 73.9 66.7 69.6 47.0 185 629
Qwen2.5-VL-3B 414 28.8 34.8 134 0.0 273
0OS-Atlas-7B 44.1 29.4 352 16.8 7.4 27.7
Qwen2.5-VL-7B 45.6 32.7 419 18.1 0.0 31.4
UGround-7B 51.3 40.3 43.5 24.8 0.0 36.4
Aguvis-7B 55.9 41.2 43.9 28.2 0.0 38.7
UI-TARS-7B 60.2 51.8 54.9 35.6 0.0 47.5
Qwen2.5-VL-32B 579 70.2 73.8 49.2 0.0 59.6
Jedi-3B 67.4 53.0 53.8 443 7.4 50.9
Jedi-7B 65.9 55.5 577 46.9 7.4 54.1
UI-TARS-72B 69.4 60.6 62.9 45.6 0.0 57.1
Qwen2.5-VL-72B 52.6 74.6 74.7 55.3 0.0 62.2
UI-TARS-1.5-7B 52.6 75.4 72.4 66.7 0.0 64.2
GTA1-7B 63.2 82.1 74.2 70.5 0.0 67.7
GTAI1-32B 52.6 73.1 72.0 59.9 0.0 61.9
GTAI1-72B 57.9 76.9 71.3 66.7 0.0 66.7
FERRET-UI LITE 36.8 72.4 62.2 50.0 0.0 55.3
Table 8: Fine-grained grounding performance on OSWorld-G.
Model Development Creative CAD Scientific Office 0S
Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon
GPT-40 1.3 0.0 10 00 20 00 21 00 11 00 00 00
Claude 3.7 Sonnet - - - - - - - - - - - -
Operator 500 193 515 23.1 16.8 141 583 245 605 283 346 303
Seed-1.5-VL - - - - - - - - - - - -
UI-TARS-1.5 - - - - - - - - - - - -
UI-TARS-2B 474 4.1 429 63 178 47 569 173 503 17.0 215 5.6
Qwen2.5-VL-3B 383 34 409 49 223 63 444 100 480 17.0 33.6 45
Qwen2.5-VL-7B 519 48 369 84 178 1.6 486 82 537 189 346 179
UI-R1-E-3B 46.1 69 419 42 37.1 125 569 218 650 264 327 10.1
UI-TARS-7B 584 124 500 9.1 208 94 639 31.8 633 208 308 169
InfiGUI-R1-3B 513 124 449 7.0 330 14.1 583 20.0 655 283 439 124
JEDI-3B 61.0 138 535 84 274 94 542 182 644 321 383 9.0
GUI-G1-3B 507 103 366 119 39.6 94 61.8 300 672 321 235 10.6
UI-TARS-72B 63.0 173 57.1 154 18.8 125 64.6 209 633 264 421 157
JEDI-7B 429 11.0 500 119 38.0 14.1 729 255 751 472 33.6 169
Qwen2.5-VL-32B 740 214 61.1 133 381 156 785 29.1 763 37.7 551 27.0
SE-GUI-7B 682 193 576 9.1 513 422 750 282 785 434 495 258
GUI-G2-7B 68.8 172 571 154 558 125 77.1 245 740 327 579 213
Qwen2.5-VL-72B - - - - - - - - - - - -
GUI-Owl-7B 76.6 31.0 596 273 645 219 79.1 373 774 39.6 59.8 33.7
GUI-Owl-32B 844 393 652 182 624 28.1 826 39.1 814 396 70.1 360
FERRET-UI LITE 753 248 717 224 43.1 266 757 309 83.6 49.1 664 303

Overall

0.8
27.7
36.6
60.9
61.6
27.7
259
27.6
335
35.7
35.7
36.1
37.1
38.1
39.5
47.6
47.3
47.5
533
54.9
58.0
533

Table 9: Fine-grained grounding performance on Screenspot-Pro.

