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ABSTRACT

Developing autonomous agents that effectively interact with Graphic User Inter-
faces (GUIs) remains a challenging open problem, especially for small on-device
models. In this paper, we present FERRET-UI LITE, a compact, end-to-end GUI
agent that operates across diverse platforms, including mobile, web, and desk-
top. Utilizing techniques optimized for developing small models, we build our 3B
FERRET-UI LITE agent through curating a diverse GUI data mixture from real
and synthetic sources, strengthening inference-time performance through chain-
of-thought reasoning and visual tool-use, and reinforcement learning with de-
signed rewards. FERRET-UI LITE achieves competitive performance with other
small-scale GUI agents. In GUI grounding, FERRET-UI LITE attains scores of
91.6%, 53.3%, and 61.2% on the ScreenSpot-V2, ScreenSpot-Pro, and OSWorld-
G benchmarks, respectively. For GUI navigation, FERRET-UI LITE achieves suc-
cess rates of 28.0% on AndroidWorld and 19.8% on OSWorld. We share our
methods and lessons learned from developing compact, on-device GUI agents.

1 INTRODUCTION
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(a) GUI Grounding.
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Figure 1: Comparing FERRET-UI LITE with other end-
to-end GUI agents. Our model achieves strong results
on GUI grounding tasks, surpassing many larger models.
However, its performance on multi-step navigation remains
limited, underscoring the inherent challenges of develop-
ing lightweight, on-device agents capable of robust long-
horizon reasoning.

Autonomous agents, which directly
interact with graphic user interfaces
(GUIs) to accomplish human tasks,
are emerging technologies with the
potential of revolutionizing the com-
puter industry and GUI automa-
tion (OpenAI, 2025; Claude, 2024;
Durante et al., 2024; Qin et al.,
2025; Wang et al., 2025a). Imagine
a GUI assistant that instantly helps
you write down a reminder while
you’re driving, or displays your fa-
vorite recipe while your hands are
wet in the kitchen. Many of these
scenarios require low latency, strong
privacy guarantee, and robustness un-
der limited connectivity, necessitat-
ing the development of small, on-
device GUI agents (Li et al., 2025a;
Belcak et al., 2025).

The majority of existing methods on GUI agents, contrarily, focus on large foundation models.
For example, a traditional multi-agent system design with separate perception, planning, and action
components is built on top of general-purpose large language models (LLMs) (such as GPT (Achiam
et al., 2023) and Gemini (Team et al., 2024)). The strong reasoning and planning capabilities of
large server-side models allow these agentic systems to achieve impressive capabilities in diverse
GUI navigation tasks (Yan et al., 2023). However, the usage of large models and a multi-agent
paradigm increases modeling complexity, compute budget requirements, and inference time (Chen
et al., 2023). End-to-end GUI agents offer an attractive alternative by streamlining the agentic
workflow, directly mapping raw GUI screenshots to actions (Yang et al., 2025a; Wang et al., 2025a;
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Mobile Desktop Web

Diverse GUI Platforms

Unified Action Space

Tap Scroll

Type Zoom-in

…

User: I love the poster of the party night. Help me find the poster and send it to my mom per mail.

Observe

Think 
Looking at the screen, I’m currently 
in the Trash folder, and the poster 
file is visible on the screen. To send 
the poster to my mom, I need to 
recover the poster from the Trash.  

Plan 
Click on the file of the poster of 
party night. 

Act 
Tap(x=562, y=163)

…

Execute

Think 
The current screen displays the email to my mom, with 
a pop-up window confirming it was sent. Reviewing my 
earlier steps, I discovered the party night poster in the 
Trash folder, recovered it, and then drafted an email to 
my mom with the poster attached. Thus, I have already 
successfully completed the task. 

Plan 
The task is complete. Terminate the action. 

Act 
Terminate(reason=“email is sent”)

Agent

1

3

2

Figure 2: An illustration of FERRET-UI LITE on a multi-step GUI navigation task. Human users
prompt with a high-level goal in plain text, and the model autonomously interacts with GUI devices
through tapping, scrolling, typing, etc., until the task is complete. At each step, the model observes
the GUI screen, generates think-plan-act traces, and executes the action.

Seed, 2025; Lei et al., 2025; Team et al., 2025). However, larger models are still preferred for
end-to-end agents (Wang et al., 2025b; Bai et al., 2025; Yang et al., 2025a; Wang et al., 2025a), in
part because diverse agentic capabilities need to be incorporated into one single model, including
low-level GUI grounding, screen understanding, multi-step planning, and self-reflection (we refer
readers to Section B in the appendix for a detailed overview). Building competitive small on-device
end-to-end agents remains challenging.

In this paper, we explore the strategies to develop strong small GUI agents targeted for on-device
deployment (Li et al., 2025a). We present FERRET-UI LITE, a 3B end-to-end multimodal LLM
for GUI agentic tasks. FERRET-UI LITE is built with several key components, guided by insights
on training small-scale LMs: (1) Curating both real and synthetic GUI training data from a large
number of sources with a unified action space across diverse GUI domains. (2) Inference-time
techniques through visual tool-use with image cropping and zoom-in to achieve high-resolution
GUI perception. (3) Adapting a two-stage training strategy with supervised fine-tuning (SFT) and
reinforcement learning (RL). At the SFT stage, we collect online trajectories from a multi-agent
rollout pipeline. At the RL stage, we introduce step-wise reinforcement learning with verifiable
rewards, applying it to visual tool-use grounding tasks and to multi-step navigation tasks.

As a result, FERRET-UI LITE (3B) shows competitive GUI grounding and navigation performance
compared to other models of the same size and outperforms many larger models. For example,
on the ScreenSpot-Pro GUI grounding benchmark, our model achieves 53.3% accuracy, surpass-
ing UI-TARS-1.5 (7B) (Seed, 2025) by over 15% (Figure 1a). However, on the GUI navigation
task, FERRET-UI LITE (3B) shows limited performance compared to larger models, with only on-
par performance with its UI-TARS-1.5 (7B) (Seed, 2025) on the OSWorld benchmark (Figure 1b),
highlighting the challenges of developing lightweight, on-device agents for multi-step navigation.

We conduct a series of experiments to investigate the capabilities and limitations of small GUI
agents. The results indicate that GUI grounding and navigation data can mutually benefit each
other, with a balanced mixture ratio achieving the best overall results. Moreover, the curation of
synthetic data from diverse sources, such as high-resolution grounding data and online roll-outs
from a multi-agent system, significantly improves grounding and navigation performance. Further-
more, inference-time techniques such as CoT reasoning and visual tool-use bring improvements,
yet the benefits remain limited. While small models can benefit from reinforcement learning, they
are sensitive to RL reward designs, underscoring the difficulty of designing robust rewards across
heterogeneous UI agentic tasks. We anticipate that these findings will provide valuable guidance to
the community in the development of effective on-device GUI agents.

2 SUPERVISED FINE-TUNING

Training reliable GUI agents requires comprehensive supervision that spans the full spectrum of
interaction types, visual contexts, and device platforms, which is important for smaller models that
require a large number of diverse training tokens to achieve competitive performance (Kaplan et al.,
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Model architecture and training pipeline

USER: I love the poster 
of the party night…

Decoder-only LLMImage 
encoder

…

…
ASSISTANT: <think> … <function>… 

Ferret-UI Lite

Supervised Fine-tuning (SFT)
• Human annotated trajectories 
• Offline synthetic data 
• Online synthetic data

Reinforcement Learning (RLVR)

• Multi-scale grounding with zoom-in 
• Multi-step trajectories

Training recipes

Figure 3: Model architecture and training recipes of FERRET-UI LITE. The model takes a GUI
screen and the user instruction as inputs, and predicts chain-of-thought reasoning traces and a low-
level action policy to control GUI devices in an end-to-end manner directly. The model is trained
through supervised fine-tuning (SFT) and reinforcement learning with verifiable rewards (RLVR).

2020). We curate both human-annotated and synthetic datasets to enhance scale, coverage, and
diversity of interaction patterns. These datasets include public benchmarks curated from diverse
multi-platform corpora and systematically generated synthetic trajectories, which we then combine
into a unified SFT recipe. We consolidate these heterogeneous data sources and align them under a
consistent annotation and action schema, establishing a foundation for developing GUI agents.

2.1 DATA DISTRIBUTION

For SFT, we draw on a diverse collection of public GUI grounding and navigation datasets, including
GroundUI (Zheng et al., 2024), OSAtlas (Wu et al., 2025), UGround (Gou et al., 2025), Aria-
UI (Yang et al., 2025b), Aguvis (Xu et al., 2025), WaveUI (Wu et al., 2023; Dwyer, 2022; Zheng
et al., 2024), ShowUI (Lin et al., 2024), Jedi (Xie et al., 2025), and AgentNet (Wang et al., 2025b).
Additionally, we generate synthetic datasets for mobile and OS platforms for both grounding and
navigation, which will be detailed later. Together, these resources span multiple platforms and
supervision types, forming a comprehensive basis for training generalizable GUI agents capable of
grounding and navigation across varied environments. Figure 11 illustrates the SFT data distribution
in Appendix E, and we present dataset ablations in the experiment section and Appendix G.

2.2 FORMAT UNIFICATION

To effectively leverage the heterogeneous supervision provided by public datasets, we unify their
annotation formats into a consistent training interface (see Appendix D). This unification ensures
that the model can learn from diverse sources without overfitting to dataset-specific schemas and
enables seamless multi-source training across grounding and navigation tasks.

Grounding. Datasets differ in how they specify interactive regions: some use bounding boxes, while
others provide single-point coordinates. We normalize all targets to a point-based representation by
mapping bounding boxes to their geometric centers, (xcenter, ycenter) =

(
xmin+xmax

2 , ymin+ymax

2

)
,

where (xmin, ymin) and (xmax, ymax) denote the box corners. Point-based annotations are left un-
changed. Natural language templates referencing the computed points provide a unified supervision
interface across datasets, allowing the agent to generalize effectively to unseen instruction styles.

Navigation. For action supervision, we define a unified action space spanning mobile, desktop, and
web environments. Following the taxonomy of Qin et al. (2025), we categorize actions into shared
and domain-specific types, resulting in eleven representative actions summarized in Table 5. While
prior work encodes actions as free-form text tokens (Lin et al., 2024; Qin et al., 2025) or through
specialized latent tokenizers (Bruce et al., 2024; Brohan et al., 2022; Szot et al., 2025), we instead
adopt a function-call representation inspired by tool-use paradigms (Schick et al., 2023). Each action
is formalized as a predefined function with constrained parameters, yielding structured outputs that
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Synthetic data generation pipeline
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trajectories

Offline synthetic data
• CoT reasoning 

• Scene description 
• Action think 
• Reflection 
• Evaluation 

• Synthetic task rewriting 
• High-res image synthesis

Queries with task-
generation prompts 

UI element 
detections 

Set-of-mark visual 
prompting

…

GUI platforms

…

Human 
annotation 

Multi-agent systems

Grounding agent

Critic model

Planning agent

Task generator
Auto-

labeling 
VLM as a judge 

filtering 

Online 
synthetic data

Figure 4: Synthetic navigation data generation pipeline, which consists of offline data generation
based on human-annotated trajectories, and online rollouts collection from a multi-agent system.

enhance interpretability, facilitate extraction for downstream evaluation, and naturally align with the
coding and tool-use abilities of modern LLMs.

2.3 SYNTHETIC DATA GENERATION

While existing public datasets provide rich supervision signals, their scale and diversity remain
insufficient for training robust GUI agents. To bridge this gap, we carefully design synthetic data
generation pipelines covering various scenarios.

High-resolution grounding data. To enhance grounding supervision, we construct high-resolution
samples by concatenating multiple GUI screenshots into larger composite images (e.g., from OS-
Atlas (Wu et al., 2025)). This exposes the model to denser layouts and richer spatial contexts,
enabling more precise localization in realistic multi-element environments. Existing annotations are
converted into the unified point-based format described in Section 2, ensuring consistency across
datasets.

CoT navigation data. We collect three key CoT reasoning traces to enhance multi-step navigation,
similar to Zhang et al. (2024); Seed (2025): (i) plan (concise description of next action), (ii) action
think (reasoning over GUI elements, history traces, and candidate actions), and (iii) reflect (self-
assessment relative to the goal). Each component is generated separately by GPT-4o using set-of-
marks (SoM) visual prompting (Yang et al., 2023), conditioned on the human-annotated action for
the current screen and the episode history. Combined with those reasoning traces, we instantiate two
CoT-enabled GUI agents with different compute profiles: (i) short-CoT only adds plan reasoning
trace before the action output, and (ii) long-CoT extends to action think and reflection component,
capturing richer dependencies among GUI states, history traces, goals, and actions.

Synthetic QA data. To support assistive capabilities such as answering user queries (e.g., “What
items are left in my Amazon shopping cart?”), we generate synthetic visual QA pairs based on the
existing episodes, by rewriting the episode goal into a natural language question and providing an
answer in the terminal state, grounded by the last GUI screen. Furthermore, we improve agents
with replanning skills by deliberately perturbing clean trajectories with error-prone frames. For
instance, a correct terminate action can be replaced with an erroneous swipe, simulating a
stuck navigation state. The corresponding correction sequence is then generated to demonstrate
recovery strategies.

Online navigation data. We design a multi-agent system, inspired by Reflexion (Shinn et al.,
2024), that interacts directly with GUI platforms to generate synthetic rollouts at scale. These online
trajectories introduce action errors, environmental stochasticity, and various replanning strategies
that are absent from human-annotated data. The system comprises four components, as illustrated
in Figure 4: a curriculum task generator that produces goals of increasing difficulty, a planning
agent that decomposes goals into step-level instructions, a grounding agent that executes actions,
and a critic model that evaluates trajectories and provides textual rewards to the planning agent.
The online trajectories are further enriched with chain-of-thought reasoning traces and filtered by a
VLM-as-a-judge pipeline to remove low-quality or inconsistent samples.
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3 REINFORCEMENT LEARNING

SFT provides a foundation for grounding and navigation, yet it enforces strict imitation of annotated
outputs and does not fully exploit the flexibility of GUI interaction tasks. In many scenarios, rea-
soning traces may vary in form while leading to the same correct action. Reinforcement learning
with verifiable rewards (RLVR) addresses this limitation by introducing rule-based, automatically
computable rewards that align model training with task success rather than surface-level annotation
matching. By grounding optimization in verifiable outcomes, RLVR enables the model to refine
both grounding accuracy and reasoning quality in a scalable and noise-tolerant manner.

RL for grounding. To further improve grounding beyond SFT, we apply reinforcement learning
on OSAtlas (Wu et al., 2025). Unlike SFT, which constrains the model to reproduce the annotated
center point exactly, RL allows us to design a reward function that reflects the true goal of grounding:
any prediction falling within the annotated bounding box is considered acceptable. We therefore
adopt a simple containment-based reward that assigns positive feedback whenever the predicted
location lies inside the ground-truth box.

Figure 5: FERRET-UI LITE employs a zoom-in operation to
refine predictions. It generates an initial prediction based on
the given instruction, crops the image around this prediction,
and finally re-predicts on the cropped region for improved
accuracy.

To enhance robustness, we further
introduce a zoom-in mechanism in-
spired by recent research on thinking
with images (OpenAI, 2025; Shao
et al., 2024a; Fan et al., 2025). Af-
ter the model produces an initial pre-
diction, the image is cropped around
the predicted location, and the model
makes a refined prediction on this
cropped region. This process mimics
human behavior of zooming in for de-
tail, and proves especially beneficial
for complex or high-resolution user
interfaces. This process also allows
our small model to only consider a
small region for the final grounding
decision, reducing the need for com-
plex, nuanced understanding across
a large number of image tokens that
might require larger models. Both
initial and refined predictions are re-
tained in the training pool, providing
the model with multi-scale grounding supervision.

RL for navigation. For navigation, we use our mobile and desktop synthetic datasets and Agent-
Net (Wang et al., 2025b) during RLVR training. The prompt includes the current screenshot, the
high-level instruction, and the history of past actions. Given this input, the model samples M num-
ber of candidate outputs denoted by z = [z1, . . . , zi, . . . , zM ], where zi = [ci; ai] consists of a chain
of thought text ci followed by a predicted action ai = [τi; θi], with action type τi and its parameters
θi (e.g. tapping location). A reward scalar, r, is then computed by comparing the generated action
with its ground-truth (agt = [τ gt; θgt]), using reward functions. Specifically, the final reward is com-
puted by the sum of an action type match function, ftype, and an action parameter match function,
fparam: ri = ftype(τi, τ

gt, θgt) + fparam(θi, θ
gt) .

This formulation separates correctness into two complementary components. The first, ftype, verifies
whether the predicted action type matches the ground truth. If no parameters are expected (θgt = ∅),
a perfect type match is rewarded more strongly, while if parameters are required, the type match
provides partial credit:

ftype(τi, τ
gt, θgt) =


2, if τi = τ gt and θgt = ∅,
1, if τi = τ gt and θgt ̸= ∅,
0, otherwise.

(1)
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The second component, fparam, evaluates the fidelity of the predicted parameters. For string-based
parameters (e.g., text entry or direction), we adopt an exact-match function which assigns 1 if pre-
dicted and ground truth string parameters are matched, and 0 otherwise.

For location-based actions such as tap, we experiment with a sparse reward, which is the same as
our grounding reward, assigning 1 if the predicted coordinate lies inside the ground-truth bounding
box, and 0 otherwise. We also design a dense reward f dense

param that provides a graded score based on
the normalized distance between the predicted and ground-truth centers:

f dense
param(θi, θ

gt) = max

(
1− λ

(
|xi − xgt|

w
+

|yi − ygt|
h

)
, 0

)
, (2)

where (xi, yi) and (xgt, ygt) denote the predicted and ground-truth centers of the UI elment, and w
and h its ground truth width and height, respectively. The decay factor λ is used for controlling
sensitivity, and is set to 0.5.

Together, these reward functions allow navigation training to balance categorical correctness with
parameter precision, encouraging the model not only to predict the right action type but also to refine
its execution details.

Model training. Both grounding and navigation RL are optimized using Group Relative Policy
Optimization (GRPO) (Shao et al., 2024b). For each training example, multiple predictions are
sampled: 8 from the original image and 4 from the zoomed-in crop for grounding, and 32 candidate
outputs for navigation. Each sample receives a reward ri computed by the task-specific reward
functions, and a normalized advantage Ai = ri−mean(r)

std(r) , r = [r1, r2, ..., rM ]. is calculated within
the group to stabilize optimization.

To further improve training efficiency, we apply online filtering (Yu et al., 2025). Prompts for
which all sampled rewards are identical (e.g., uniformly 0 or 1) are discarded, as they provide no
meaningful learning signal. By retaining only the most informative examples, the model focuses on
cases that sharpen its decision boundaries and refine its reasoning.

This unified optimization strategy ensures that RL improves both fine-grained grounding precision
and multi-step navigation robustness, while remaining stable and sample-efficient.

4 EXPERIMENTS

We experiment on an internal 3B dense model pretrained on a mixture of datasets containing text-
only and vision-language understanding data. The image encoder employs the VitDet architec-
ture (Li et al., 2022) and adopts the AnyRes strategy (Liu et al., 2024; Li et al., 2024b), which
dynamically partitions each input screenshot into a grid of cells. The model is trained for 10K steps
during SFT and for 1K steps during RL. We first report results on GUI grounding (Section 4.1),
followed by GUI navigation (Section 4.2).

4.1 GUI GROUNDING

We evaluate grounding performance on ScreenSpot-V2 (Wu et al., 2025), ScreenSpot-Pro (Li et al.,
2025b), and OSWorld-G (Xie et al., 2025). The selected benchmarks are designed to handle multiple
platforms (mobile, desktop, web) and accommodate a wide range of image resolutions, enabling
robust evaluations across device types. Especially, ScreenSpot-Pro features high-resolution desktop
GUI images that can be challenging for GUI grounding models.

Main results. Table 1 reports the performance of various models on the grounding benchmarks,
and we list fine-grained performance across different categories in Appendix H. FERRET-UI LITE-
3B demonstrates strong performance across all three benchmarks, outperforming other 3B models
by a clear margin and showing relatively small gaps compared to larger models. On ScreenSpot-
V2, it reaches 91.6, ahead of other 3B baselines such as UI-R1-3B (89.2) and Jedi-3B (88.8), and
close to the 7B tier where scores range from 90.3 to 92.8. On the more challenging ScreenSpot-
Pro benchmark, FERRET-UI LITE-3B achieves 53.3, considerably higher than other 3B models,
which are generally in the mid-30s, and only slightly below GUI-Owl-7B (54.9). On OSWorld-G,
FERRET-UI LITE-3B records 55.3, again stronger than other 3B models and competitive with larger
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Model ScreenSpot-V2 ScreenSpot-Pro OSWorld-G
UI-R1 (3B) (Lu et al., 2025) 89.2 33.5 -
UITars (2B) (Qin et al., 2025) 84.7 18.9 -
QwenVL 2.5 (3B) (Bai et al., 2025) - 25.9 27.3
InfiGUI-R1 (3B) (Liu et al., 2025a) - 35.7 -
SE-GUI (3B) (Yuan et al., 2025) 90.3 36.1 -
Jedi (3B) (Xie et al., 2025) 88.8 37.1 50.9
GUI-G1 (3B) (Zhou et al., 2025) - 38.1 -
FERRET-UI LITE (3B) 91.6 53.3 55.3
UITars (7B) (Qin et al., 2025) 91.6 35.7 47.5
Jedi (7B) (Xie et al., 2025) 91.7 42.0 54.1
SE-GUI (7B) (Yuan et al., 2025) 90.3 47.3
GTA1 (7B) (Yang et al., 2025a) 92.4 50.1 67.7
GUI-OWL (7B) (Ye et al., 2025) 92.8 54.9 55.9

Seed-1.5-VL (Guo et al., 2025) 95.2 60.9 62.9
UITars 1.5 (72B) (Qin et al., 2025) 94.2 61.6 47.5
GTA1 (72B) (Yang et al., 2025a) 94.8 58.4 66.7
GUI-OWL (32B) (Ye et al., 2025) 93.2 58.0 58.0

Table 1: GUI grounding performance on ScreenSpot-V2, ScreenSpot-Pro, and OSWorld-G.
FERRET-UI LITE-3B outperforms other 3B models and narrows the gap to larger models.
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(a) SFT vs RL variants
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Figure 6: Ablation studies for grounding. (a) RL improves grounding performance, and our zoom-in
operation provides additional gains. (b) Navigation and grounding data can mutually benefit each
other, with balanced ratios performing best. (c) Synthetic high-resolution data improves results,
especially on ScreenSpot-Pro.

models like GUI-Owl-7B (55.9) and GUI-Owl-32B (58.0). While the best-performing 7B model,
GTA1-7B, still leads with 67.7, the difference is modest given the parameter scale. Overall, these
results suggest that FERRET-UI LITE-3B provides a favorable balance of efficiency and accuracy,
narrowing the gap to larger models while maintaining the advantages of a lightweight design.

SFT vs RL variants. We first compare SFT with RL variants (Figure 6a). RL consistently improves
performance, and our proposed zoom-in operation provides further gains. This indicates that the
model not only benefits from RL optimization but also learns to actively make use of zoom-in to
handle small or cluttered interface elements.

Effect of data mixture ratios. We then study different ratios of navigation and grounding data
(Figure 6b). The results show that the two types of data can mutually benefit each other: navigation
data provides complementary supervision that strengthens grounding ability, while grounding data
does not degrade performance on navigation benchmarks. Balanced ratios achieve the best overall
results, suggesting that maintaining diversity in training data is important for robust grounding and
navigation for small models.

Effect of synthetic high-resolution data. Finally, we examine the effect of incorporating synthetic
high-resolution data (Figure 6c). While improvements on ScreenSpot-V2 are modest, the gains are
more notable on the challenging ScreenSpot-Pro benchmark. This demonstrates that high-resolution
data is particularly helpful for precise localization and contributes to stronger overall performance.
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Model Success Rates
QwenVL 2.5 (3B)† (Bai et al., 2025) 16.8
ScaleCUA (3B, reported) (Liu et al., 2025b) 23.7
FERRET-UI LITE (3B) 28.0

QwenVL 2.5 (7B)† (Bai et al., 2025) 19.5
UITars 1.5 (7B)† (Qin et al., 2025) 26.4
UITars 1.5 (72B)† (Qin et al., 2025) 37.7
UITars 1.5 (7B, reported) (Qin et al., 2025) 33.0
UITars 1.5 (72B, reported) (Qin et al., 2025) 46.6
ScaleCUA (7B, reported) (Liu et al., 2025b) 27.2
ScaleCUA (32B, reported) (Liu et al., 2025b) 30.6

(a) AndroidWorld success rates (%). Models with (†)
are evaluated using the same random seed and en-
vironment setup, averaged over five runs. QwenVL
models are evaluated using zero-shot settings.

Model Success Rates
ScaleCUA (3B) (Liu et al., 2025b) 9.6
Kimi-VL (3B) (Team et al., 2025) 9.7
OpenCUA (A3B) (Wang et al., 2025b) 16.9
FERRET-UI LITE (3B) 17.3
ScaleCUA (7B) (Liu et al., 2025b) 14.3
UITars 1.5 (7B) (Qin et al., 2025) 24.5
OpenCUA (7B) (Wang et al., 2025b) 24.3
GUI-OWL (7B) (Ye et al., 2025) 32.1
QwenVL 2.5 (32B) (Bai et al., 2025) 3.0
QwenVL 2.5 (72B) (Bai et al., 2025) 4.4
ScaleCUA (32B) (Liu et al., 2025b) 16.5
Doubao-1.5-Thinking (Guo et al., 2025) 31.9
Claude-4-Sonnet (Claude, 2024) 31.2

(b) OSWorld-Verified 15 steps success rates (%).

Table 3: Comparison in online evaluation benchmarks for GUI navigation.

4.2 GUI NAVIGATION

Offline evaluation. The FERRET-UI LITE model is evaluated on offline static benchmarks first. The
evaluation is conducted on the Android Control dataset (Li et al., 2024a), which evaluates agentic
planning and grounding capability in the mobile environment. There are two types of tasks in An-
droid Control evaluation: low-level tasks and high-level tasks. For low-level tasks, the inputs consist
of detailed single-step instructions, and the model’s grounding capability is critical for successful
performance. In a high-level task, a global goal is given, which requires multiple steps to accom-
plish. High-level tasks assess the model’s planning capability, as they require the model to connect
the global goal to the current screenshot to generate appropriate step instructions. We follow the
test setting in OSAtlas (Wu et al., 2025). Table 2 shows the FERRET-UI LITE-3B performance on
Android control. Our model achieves an 86.6% success rate in low-level tasks and a 68.9% success
rate in high-level tasks, outperforming similar-scale models.

Model LL HL
InternVL-2 (4B) (Chen et al., 2024) 80.1 66.7
OSAtlas (4B) (Wu et al., 2025) 80.6 67.5
FERRET-UI LITE (3B) 86.6 68.9
Qwen2-VL (7B) (Wang et al., 2024) 82.6 69.7
Aguvis (72B) (Xu et al., 2025) 84.4 66.4

Table 2: Android Control (AC) offline success
rates (%). LL: low-level instruction. HL: high-
level instruction.

Online evaluation. AndroidWorld (Rawles
et al., 2025) is chosen for mobile GUI navi-
gation evaluation, which is a fully functional
Android environment with 116 tasks across 20
Android apps. Table 3a presents the Android-
World result of our 3B model against other
public models. Because AndroidWorld gener-
ates tasks dynamically with randomness in each
task, the mean evaluation results of five runs
are presented in the table. Our 3B model can
achieve 28% success rate, competitive with 7B
models such as UITars 1.5 (Qin et al., 2025) in
the same setting.

We also evaluate on the OSWorld-Verified benchmark (Xie et al., 2024), which includes challenging
tasks in computer use simulation environments. Our 3B model can achieve 17.3% (max steps: 15)
success rate, surpassing the performance of all 3B models and competitive with 7B models in the
OSWorld leaderboard as shown in Table 3b. After extending the maximum number of steps to 50,
our FERRET-UI LITE (3B) achieves a 19.8% success rate on the OSWorld evaluation, demonstrat-
ing the model’s test-time scaling capability. Although our 3B navigation model outperforms other
models of comparable size, its overall navigation performance remains constrained by the model
scale, falling short of the SOTA result on the OSWorld leaderboard, such as 43.9% for Claude-4-
Sonnet (Claude, 2024). For additional qualitative insights, we provide detailed case study of Android
World and OSWorld online evaluation in Appendix Section C.

Effect of synthetic CoT data. We conduct ablation studies on AndroidWorld to quantify the impact
of synthetic data introduced in Section 2.3 on GUI navigation tasks. The models are trained with
the same training steps, and we report mean success rates over five runs. Results are summarized in
Table 4. Short CoT reasoning traces improve the baseline model trained without CoT data by 2.1%.
Extending to more complex long-CoT traces further improves the performance by 4.1%, showing
the effectiveness of our CoT synthetic data.
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Model Variants Success Rates
Baseline 13.7
+ Short CoT 15.8
+ Long CoT 19.6

+ Syn. data (5K) 20.3
+ Syn. data (13K) 22.4
+ Syn. data (17K) 25.2

Table 4: SFT ablations on the
AndroidWorld (AW) benchmark.
Success rates (%) are averaged
over five runs. The baseline
model is built using only human-
annotated episodes, without CoT
and synthetic data.
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Figure 7: RL ablations on the AW benchmark. RL re-
wards: AT (Action Type), SG (Sparse Grounding), DG
(Dense Grounding).

Effect of synthetic QA and navigation data. Built on the long-CoT agent, we further augment
the SFT training mixture with online synthetic data collected through the multi-agent system with
filtering, and offline synthetic data with task rewriting. As shown in Table 4, progressively scaling
synthetic data to 17K trajectories yields an additional improvement of nearly 6%, indicating that
scaling synthetic data with diversity improves navigation.

Effect of RL. We conduct experiments to evaluate the impact of RL training after the SFT stage
on Android World and OSWorld online evaluations. In this experiment, the action type reward
and dense grounding reward are incorporated, and the maximum number of steps allowed during
evaluation is set to 15. Compared to the baseline SFT checkpoint, RLVR increases the Android
World performance from 25% to 28% and OSWorld performance from 15% to 17.3%. Appendix F
illustrates the verifiable reward curve during RL training.

Effect of SFT training steps for RL. Figure 7a presents the impact of varying the number of
SFT steps prior to RLVR training on AndroidWorld success rate. We evaluate checkpoints trained
with 2000, 6000, and 10000 SFT steps, followed by RLVR with the same training steps. Across all
settings, RLVR consistently improves success rates compared to the corresponding SFT checkpoints.
The gains are most pronounced when the number of SFT steps is smaller, suggesting that RLVR is
particularly effective in compensating for limited SFT training.

Effect of reward designs. Figure 7b shows the effect of different reward configurations in RLVR
training on AndroidWorld success rate. We ablate four settings: (i) action type reward only, (ii)
dense grounding reward only, (iii) action type reward combined with sparse grounding reward, and
(iv) action type reward combined with dense grounding reward. Using only the action type re-
ward leads to a substantial drop in performance, as correct grounding positions are not reinforced.
Grounding reward alone improves tapping accuracy but does not surpass the SFT baseline. Combin-
ing action type and grounding rewards yields consistent improvements, with dense grounding out-
performing sparse grounding. These findings highlight the importance of carefully designed RLVR
reward structures for enhancing small GUI agent models.

5 CONCLUSION

In this work, we present FERRET-UI LITE, a 3B multimodal LLM designed for GUI agentic tasks
with a focus on lightweight, on-device settings. Through real and synthetic data curation, inference-
time visual tool use, and a two-stage SFT–RL training strategy, FERRET-UI LITE achieves com-
petitive grounding and navigation performance relative to larger models. Our experiments validate
the effectiveness of these strategies for small-scale agents, while also revealing their limitations,
particularly in multi-step navigation. These findings highlight both the promise and challenges of
scaling down GUI agents, and we hope our lessons will inform future research on building efficient,
capable, and practical on-device AI agents.
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A USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as general-purpose assistive tools to revise the writing of
this paper and to improve the visualization quality of figures (e.g., suggestions for plot styling and
readability). The LLMs did not contribute to research ideation, experimental design, or experiment
result analysis, and their role was limited to language polishing and visualization refinement.

B RELATED WORK

Recent progress in GUI agents has been largely driven by multimodal large language models
(MLLMs). We review two central directions: GUI grounding and GUI navigation.

GUI grounding. GUI grounding focuses on mapping natural language instructions to the bounding
boxes of target elements in screen images. Early studies explored supervised fine-tuning (SFT)
to train models that predict coordinates as tokens (You et al., 2024; Cheng et al., 2024; Li et al.,
2024b; Gou et al., 2025; Yang et al., 2025b). Building on this foundation, reinforcement learning
(RL) has become an important tool, as the grounding reward signal can often be automatically
verified. GRPO-style optimization (Shao et al., 2024b) has been successfully applied with synthetic
recipes and verifiable rewards (Luo et al., 2025; Lu et al., 2025; Zhou et al., 2025; Liu et al., 2025a;
Yang et al., 2025a). These efforts have significantly advanced the accuracy and robustness of GUI
grounding across platforms.

GUI navigation. Beyond single-step grounding, GUI navigation requires multi-step reasoning and
action prediction. Two broad paradigms have been widely explored.

(1) Multi-agent systems. These methods decompose an agent into separate components, such as a
planner and a grounding module (Yan et al., 2023; Gou et al., 2025; Yang et al., 2025b;a). Large
models (e.g., GPT, Gemini) are often used as planners to generate action sequences, which are then
grounded by specialized modules. Extensions with memory, knowledge bases, and external tools
further enrich agent behavior (Agashe et al., 2024; 2025).

(2) End-to-end agents. Recent work has increasingly focused on unified vision-language-action
models that jointly learn grounding and navigation. Show-UI (Lin et al., 2024) and OS-Atlas (Wu
et al., 2025) predict action sequences directly from multimodal inputs. Other systems, such as
CogAgent (Hong et al., 2024), SeeClick (Cheng et al., 2024), GUIOdyssey (Lu et al., 2024), Mo-
bileVLM (Wu et al., 2024), UI-TARS (Qin et al., 2025), and TongUI (Zhang et al., 2025), extend
these designs to multiple platforms and applications. General-purpose MLLMs have also begun
integrating GUI navigation capabilities, including Qwen2.5-VL (Bai et al., 2025) and GLM-4.1V-
Thinking (Hong et al., 2025). Together, these works have established end-to-end modeling as a
powerful paradigm for GUI agents.

Toward small on-device GUI agents. Alongside these advances, many models release both small
and large variants to balance efficiency and capability. While larger models remain the dominant
focus due to their reasoning and planning strength, smaller models are attractive for on-device de-
ployment where latency, privacy, and connectivity are critical. Our work explores this complemen-
tary direction by studying a 3B end-to-end GUI agent, building on prior advances in SFT, synthetic
data generation, chain-of-thought modeling, and RL training. This perspective highlights practical
strategies for adapting modern GUI agent techniques to resource-constrained settings.
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C CASE STUDY

C.1 DESKTOP CASE STUDY

Figure 8: Successful completion for “Make sparkline charts for each order id with the data from Jan
to Mar in the Chart column.” task in OSWorld evaluation.
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C.2 MOBILE CASE STUDY

Figure 9: Successful Completion for “Delete the following recipes from Broccoli app: Kale and
Quinoa Salad, Baked Cod with Lemon and Dill, Rasperry Almond Smoothie” task in AndroidWorld
evaluation.
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Figure 10: Successful Completion for “Create a new contact for Lina Muller. Their number is
+15410831733” task in AndroidWorld evaluation.

D UNIFIED ACTION SPACE

Action Parameters Definition Platforms
tap (x, y) Tap/left-click on the specified screen location. All
move to (x, y) Move to the specified screen location. All
drag to (x, y) Drag to the specified screen location. All

locate (x, y) Locate on the specified screen location. All
textentry texts Type texts at a focused text bar. All
swipe direction Swipe/scroll in the given direction (up, down, left, right)

on the screen, with fixed start/end points and speed.
All

terminate reason End the navigation and provide a reason. All
press enter - Press the enter button. All
press hotkey hotkeys Trigger a predefined action via key combination. Desktop, Web
right click (x, y) Right-click on the specified screen location. Desktop, Web
double click (x, y) Double-click on the specified screen location. Desktop, Web
long press (x, y) Long-press the specified screen location. Mobile
navigate home - Return to the home screen. Mobile
open app app name Launch a specified application. Mobile
navigate back - Navigate back to the previous page. Mobile

Table 5: Unified action space spanning shared and platform-specific operations.
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E SFT DATASET DISTRIBUTION

UGround

Aria-UI

OS-Atlas

AGUVIS-Grounding

OS-Atlas

UGround

OS-Atlas

AGUVIS-Grounding AGUVIS-Planning

OpenCUA

Desktop Synthetic

AGUVIS-Planning

Mobile Synthetic

Web

Desktop

Mobile Web

Desktop

Mobile

Grounding

Navigation

Figure 11: GUI dataset mixture used for supervised fine-tuning, including grounding datasets and
navigation datasets. The mobile synthetic dataset and desktop synthetic dataset are generated in-
house. Inner Ring: Platform Groups (Web, Desktop, Mobile) — Outer Ring: Datasets within each
Platform (square root scaled)

F EVOLUTION OF RLVR REWARD CURVE
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Figure 12: Evolution of verifiable reward curve during RLVR training.
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G GROUNDING DATASET ABLATIONS

Setting ScreenSpot-Pro ScreenSpot-v2
Base 50.15 90.49
w/o UGround 48.07 90.19
w/o OSAtlas 43.35 89.62
w/o Aria-UI 46.93 89.94
w/o ShowUI 48.89 88.84
w/o Jedi 47.63 88.36

Table 6: Ablation study on ScreenSpot-Pro and ScreenSpot-v2.

We conduct an ablation study on different grounding datasets in Table 6. The results highlight the
contribution of different components to overall performance. Removing UGround and ShowUI leads
to relatively modest drops on ScreenSpot-Pro (-2.08 and -1.26) and minor changes on ScreenSpot-
v2. In contrast, excluding OSAtlas produces the largest degradation on ScreenSpot-Pro (-6.80),
underscoring its importance for grounding in this dataset. Removing Aria-UI and Jedi also causes
noticeable decreases, suggesting complementary roles across both benchmarks. Overall, each com-
ponent contributes to robustness, with OSAtlas emerging as the most critical for ScreenSpot-Pro.

H FINE-GRAINED GROUNDING RESULTS

Mobile Desktop WebModel Text Icon Text Icon Text Icon Overall

Operator 47.3 41.5 90.2 80.3 92.8 84.3 70.5
Claude 3.7 Sonnet - - - - - - 87.6
UI-TARS-1.5 - - - - - - 94.2
Seed-1.5-VL - - - - - - 95.2
SeeClick 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OmniParser-v2 95.5 74.6 92.3 60.9 88.0 59.6 80.7
Qwen2.5-VL-3B 93.4 73.5 88.1 58.6 88.0 71.4 80.9
UI-TARS-2B 95.2 79.1 90.7 68.6 87.2 78.3 84.7
OS-Atlas-Base-4B 95.2 75.8 90.7 63.6 90.6 77.3 85.1
OS-Atlas-Base-7B 96.2 83.4 89.7 69.3 94.0 79.8 87.1
JEDI-3B 96.6 81.5 96.9 78.6 88.5 83.7 88.6
Qwen2.5-VL-7B 97.6 87.2 90.2 74.2 93.2 81.3 88.8
UI-TARS-72B 94.8 86.3 91.2 87.9 91.5 87.7 90.3
UI-TARS-7B 96.9 89.1 95.4 85.0 93.6 85.2 91.6
JEDI-7B 96.9 87.2 95.9 87.9 94.4 84.2 91.7
Qwen2.5-VL-32B 98.3 86.7 94.3 83.6 93.6 89.7 91.9
Qwen2.5-VL-72B 99.0 90.1 96.4 87.1 96.6 90.6 94.0
GUI-Owl-7B 99.0 92.4 96.9 85.0 93.6 85.2 92.8
GUI-Owl-32B 98.6 90.0 97.9 87.8 94.4 86.7 93.2
GTA1-7B 99.0 88.6 94.9 89.3 92.3 86.7 92.4
GTA1-32B 98.6 89.1 96.4 86.4 95.7 88.7 93.2
GTA1-72B 99.3 92.4 97.4 89.3 95.3 91.6 94.8
FERRET-UI LITE 97.2 83.9 98.5 85.0 95.3 85.7 91.6

Table 7: Fine-grained grounding performance on Screenspot-V2.
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Text Element Layout Fine-grainedModel
Matching Recognition Understanding Manipulation

Refusal Overall

Operator 51.3 42.4 46.6 31.5 0.0 40.6
Gemini-2.5-Pro 59.8 45.5 49.0 33.6 38.9 45.2
Seed1.5-VL 73.9 66.7 69.6 47.0 18.5 62.9
Qwen2.5-VL-3B 41.4 28.8 34.8 13.4 0.0 27.3
OS-Atlas-7B 44.1 29.4 35.2 16.8 7.4 27.7
Qwen2.5-VL-7B 45.6 32.7 41.9 18.1 0.0 31.4
UGround-7B 51.3 40.3 43.5 24.8 0.0 36.4
Aguvis-7B 55.9 41.2 43.9 28.2 0.0 38.7
UI-TARS-7B 60.2 51.8 54.9 35.6 0.0 47.5
Qwen2.5-VL-32B 57.9 70.2 73.8 49.2 0.0 59.6
Jedi-3B 67.4 53.0 53.8 44.3 7.4 50.9
Jedi-7B 65.9 55.5 57.7 46.9 7.4 54.1
UI-TARS-72B 69.4 60.6 62.9 45.6 0.0 57.1
Qwen2.5-VL-72B 52.6 74.6 74.7 55.3 0.0 62.2
UI-TARS-1.5-7B 52.6 75.4 72.4 66.7 0.0 64.2
GTA1-7B 63.2 82.1 74.2 70.5 0.0 67.7
GTA1-32B 52.6 73.1 72.0 59.9 0.0 61.9
GTA1-72B 57.9 76.9 77.3 66.7 0.0 66.7
FERRET-UI LITE 36.8 72.4 62.2 50.0 0.0 55.3

Table 8: Fine-grained grounding performance on OSWorld-G.

Development Creative CAD Scientific Office OSModel
Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon

Overall

GPT-4o 1.3 0.0 1.0 0.0 2.0 0.0 2.1 0.0 1.1 0.0 0.0 0.0 0.8
Claude 3.7 Sonnet – – – – – – – – – – – – 27.7
Operator 50.0 19.3 51.5 23.1 16.8 14.1 58.3 24.5 60.5 28.3 34.6 30.3 36.6
Seed-1.5-VL – – – – – – – – – – – – 60.9
UI-TARS-1.5 – – – – – – – – – – – – 61.6
UI-TARS-2B 47.4 4.1 42.9 6.3 17.8 4.7 56.9 17.3 50.3 17.0 21.5 5.6 27.7
Qwen2.5 -VL-3B 38.3 3.4 40.9 4.9 22.3 6.3 44.4 10.0 48.0 17.0 33.6 4.5 25.9
Qwen2.5 -VL-7B 51.9 4.8 36.9 8.4 17.8 1.6 48.6 8.2 53.7 18.9 34.6 7.9 27.6
UI-R1-E-3B 46.1 6.9 41.9 4.2 37.1 12.5 56.9 21.8 65.0 26.4 32.7 10.1 33.5
UI-TARS-7B 58.4 12.4 50.0 9.1 20.8 9.4 63.9 31.8 63.3 20.8 30.8 16.9 35.7
InfiGUI-R1-3B 51.3 12.4 44.9 7.0 33.0 14.1 58.3 20.0 65.5 28.3 43.9 12.4 35.7
JEDI-3B 61.0 13.8 53.5 8.4 27.4 9.4 54.2 18.2 64.4 32.1 38.3 9.0 36.1
GUI-G1-3B 50.7 10.3 36.6 11.9 39.6 9.4 61.8 30.0 67.2 32.1 23.5 10.6 37.1
UI-TARS-72B 63.0 17.3 57.1 15.4 18.8 12.5 64.6 20.9 63.3 26.4 42.1 15.7 38.1
JEDI-7B 42.9 11.0 50.0 11.9 38.0 14.1 72.9 25.5 75.1 47.2 33.6 16.9 39.5
Qwen2.5 -VL-32B 74.0 21.4 61.1 13.3 38.1 15.6 78.5 29.1 76.3 37.7 55.1 27.0 47.6
SE-GUI-7B 68.2 19.3 57.6 9.1 51.3 42.2 75.0 28.2 78.5 43.4 49.5 25.8 47.3
GUI-G2-7B 68.8 17.2 57.1 15.4 55.8 12.5 77.1 24.5 74.0 32.7 57.9 21.3 47.5
Qwen2.5 -VL-72B – – – – – – – – – – – – 53.3
GUI-Owl-7B 76.6 31.0 59.6 27.3 64.5 21.9 79.1 37.3 77.4 39.6 59.8 33.7 54.9
GUI-Owl-32B 84.4 39.3 65.2 18.2 62.4 28.1 82.6 39.1 81.4 39.6 70.1 36.0 58.0
FERRET-UI LITE 75.3 24.8 71.7 22.4 43.1 26.6 75.7 30.9 83.6 49.1 66.4 30.3 53.3

Table 9: Fine-grained grounding performance on Screenspot-Pro.
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