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ABSTRACT

Recent advances in wearable devices and mobile sensing technologies have en-
abled the continuous collection of multimodal lifestyle data. However, transform-
ing these heterogeneous signals into coherent and interpretable insights for health
management remains a fundamental challenge. These difficulties arise both at the
data level, where signals are fragmented and lack a unified structure, and at the
modeling level, where existing methods are often limited to single domains and
short-term tasks. Large language models (LLMs) have demonstrated strong po-
tential for complex reasoning, yet systematic benchmarks to evaluate their cross-
dimensional and long-horizon reasoning abilities in lifestyle health are still lack-
ing. We propose MultiLifeQA, the first large-scale QA dataset and benchmark for
multidimensional lifestyle health reasoning. MultiLifeQA spans four lifestyle di-
mensions (diet, activity, sleep, and emotion) and contains 22,573 questions across
single-user and multi-user scenarios. The tasks are grouped into five categories,
spanning from simple fact retrieval to complex cross-dimensional temporal rea-
soning, providing a comprehensive evaluation of model reasoning capabilities.
We establish two prompt evaluation methods: context and database-augmented,
along with fine-grained metrics that evaluate query validity, execution quality, and
final answer accuracy. Extensive experiments on eight open-source and three pro-
prietary LLMs highlight both the capabilities and limitations of current models
in long-term, multidimensional health reasoning. By addressing this gap, Multi-
LifeQA establishes a standardized benchmark that advances LLMs toward more
integrated health analytics and personalized interventions. The code and datasets
are publicly available at https://anonymous.4open.science/r/MultilifeQA-05D2.

1 INTRODUCTION

Analyzing lifestyle behaviors and delivering timely, personalized feedback are essential for promot-
ing effective health management and preventing disease. Noncommunicable diseases (NCDs) such
as heart disease, cancer, and diabetes account for 75% of global deaths, causing over 43 million
deaths annually (World Health Organization, 2023). Insufficient physical activity, poor sleep, un-
healthy diets, and chronic psychological stress are established risk factors for NCDs onset and pro-
gression (World Health Organization, 2023; St-Onge et al., 2016; Vaccarino et al., 2025). Timely and
accurate identification of lifestyle factors, coupled with their translation into personalized, action-
able recommendations, can substantially reduce disease risk and prevent premature mortality (Chu
et al., 2016; Motevalli & Stanford, 2025). Wearable devices and smart applications have made the
continuous, fine-grained collection of daily-life data increasingly convenient (Jamieson et al., 2025).
Many smartwatches (e.g., Apple (Apple Inc., 2025) and Google (Google LLC, 2025)) capture step
counts, calorie expenditure, heart-rate variability, and sleep stages. Applications can quantify diet
from images (Oei et al., 2024), classify activity from IMU signals (Zareeia et al., 2025), and esti-
mate stress from electrodermal activity (EDA) and heart-rate recovery (McDuff et al., 2025). These
advancements provide a rich multimodal data foundation for health management.

Yet, despite this wealth of information, transforming heterogeneous multimodal signals into inter-
pretable health insights and delivering feedback through natural language question answering (QA)
remains a major challenge. This challenge stems primarily from two factors: First, the limitations
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at the data level. Raw lifestyle data are often stored in fragmented forms such as log files and high-
frequency time-series signals. These data lack a unified structure and are not directly interpretable.
For ordinary users, it is nearly impossible to extract meaningful health insights from large collections
of step counts, heart rate fluctuations, or sleep-stage logs. Instead, users expect to obtain an analysis
of their health conditions in an intuitive way, such as by asking some questions: “Has my deep sleep
duration been continuously decreasing over the past week?” or “Did my stress decrease when I
increased the time I spent on aerobic exercise?” Second, the limitations of current model level.
Effective health reasoning often requires integrating multiple dimensions and temporal dynamics to
detect abnormal patterns and capture long-term trends. For instance, a single night of reduced sleep
may seem trivial, but when paired with rising stress and declining activity over weeks, it reveals a
potential health risk that single-dimensional analysis would miss. Traditional machine learning and
deep learning methods typically focus on single-dimensional prediction or classification tasks, such
as activity recognition from accelerometer signals or predicting nightly sleep quality based on heart
rate variability. While these approaches perform well on individual tasks, they lack the capacity for
multi-dimensional reasoning across heterogeneous lifestyle factors. As a result, they are limited in
supporting continuous, holistic health assessment and personalized management.
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Cross-dimension

same domain

Cross-dimension

Cross-domains

NC

TA

Health

LLM
SQLQuestion

Answer
Context Prompting

Answer

Database-augmented Prompting

Database

QA Examples
Single dimension for single user:
Q: What categories of food did [uid] eat on [datetime]?

A: Sweets and pastries, vegetables and fruits, beverages

Cross-dimension for multi-user:
Q: How many users had minutes_in_deep_sleep lower 
than [value] and resting_heart_rate in [activity name] 
higher than [value] within one week, starting from XXX?

A: 6 

Prompt Settings

Figure 1: MultiLifeQA: A large-scale health reasoning QA benchmark, ranging from single-
dimensional to cross-dimensional, single-user to multi-user tasks. It covers four core domains:
diet, emotion, sleep, and activity, and has five categories questions: Fact Query (FQ), Aggregated
Statistics (AS), Numeric comparison (NC), Conditional Query (CQ) and Trend Analysis (TA).

To systematically evaluate and advance models capable of multidimensional health reasoning, robust
QA benchmarks are essential. In recent years, several health-related QA datasets have been intro-
duced, including those focused on nutritional decision making (NGQA (Zhang et al., 2024)), activity
and sensor data analysis (SensorQA (Reichman et al., 2025)), sleep health (SleepQA (Bojic et al.,
2022)), emotional and psychological support (MentalChat16K (Xu et al., 2025) , MHQA (Racha
et al., 2025)), and lifelog analysis (OpenLifelogQA (Tran et al., 2025)). These efforts offer valu-
able insights into applying the QA paradigm to health and lifestyle analysis. However, they are
typically limited to single domains or narrowly defined tasks and do not capture the interactions
across multiple lifestyle dimensions. In addition, the emergence of large language models (LLMs)
offers a promising avenue to overcome model-level limitations. Recent studies have explored the
use of LLMs for personalized health and lifestyle analysis, including sleep assessment (Khasentino
et al., 2025; Fang et al., 2024), activity prediction (Kim et al., 2024; Yu et al., 2025), daily logs
generation (Tian et al., 2025), and emotion analysis (Xu et al., 2024; Yang et al., 2024). Although
these studies provide initial evidence of LLMs’ applicability in health and lifestyle analysis, they
generally evaluate performance within single dimensions or narrowly defined tasks. To date, there is
no unified benchmark for systematically assessing LLMs’ ability to perform long-horizon reasoning
and integrated analysis across multiple dimensions, including diet, activity, sleep, and emotion.

To address this gap, we present MultiLifeQA, as illustrated in Figure 1, the first large-scale QA
benchmark constructed from multidimensional lifestyle data. It contains 22,573 questions, covering
tasks that range from basic fact retrieval to cross-dimensional, long-horizon reasoning. We develop
a systematic evaluation framework with two settings: Context Prompting (CP), in which the model
answers directly from prompts containing the relevant data and questions, and Database-augmented
Prompting (DP), in which the model generates and executes SQL queries and subsequently performs
reasoning based on the returned results. We also propose a set of metrics to evaluate the fine-grained
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performance of the model reasoning process: Accuracy for final-answer correctness, SQL Validity
(VA) to assess whether the generated query is complete and executable, Execution Accuracy (EX) to
measure whether the execution result contains all correct information, and Acc/EX, the ratio of cases
where the LLM infers the correct answer given that the SQL query executes successfully.

We conduct a systematic evaluation of eight open-source and three proprietary models on MultiL-
ifeQA, and provide an in-depth analysis. The results indicate that first of all, proprietary models
generally outperform open-source ones: GPT-4o achieves the highest accuracy 57.02% with CP,
while Gemini leads with DP (39.04%). Second, in terms of question types, aggregation statistics
are the most challenging, with average accuracies of only 5.98% (CP) and 14.2% (DP), highlighting
the limitations of current LLMs in long-horizon reasoning. Third, the comparison across answer
types shows that LLMs perform well on questions with Boolean or single-number answers, but their
accuracy drops substantially for more complex reasoning tasks that involve multiple-item answers.
Last but not least, the experiment show that cross-dimensional and multi-user reasoning tasks are
significantly more challenging. With CP, average accuracy drops from 41.54% (single-dimension)
to 23.42% (cross-dimension). With DP, the decline is even sharper, from 30.84% to 9.63%. Mean-
while, the performance of all models on multi-user tasks generally lags behind that on single-user
tasks (16.99% vs. 24.43%). Overall, these results suggest that while current LLMs possess capabil-
ity for health reasoning, substantial limitations remain in cross-dimensional and multi-user aggregate
reasoning, underscoring important directions for future research.

Method Task Scale Annotation Covered Dimensions Multi-user Cross-dimension

NGQA (Zhang et al., 2024) Nutrition reasoning 13.8K LLM & human validation Nutrition Health ✗ ✗
SensorQA (Reichman et al., 2025) Daily-life QA 5.6K Manual Creation Activity and Location ✗ ✗
SleepQA (Bojic et al., 2022) Sleep guidance 7K Manual Creation Sleep data ✗ ✗
MentalChat16K (Xu et al., 2025) Mental health dialogue 16.1K Interview Collection & Synthetic Emotion / Mental health ✗ ✗
OpenLifelogQA (Tran et al., 2025) Lifelog QA 14.2K LLM Ggeneration & Manual Creation Multi-modal lifestyle ✗ ✓

MultiLifeQA (Ours) Cross-dimensional health QA 22.6K Template Generation & Human Validation Diet, activity, sleep and emotion data ✓ ✓

Table 1: Comparison of existing QA dataset benchmarks and MultiLifeQA.

2 RELATED WORK

Lifestyle Datasets for Health Analysis. Lifestyle datasets are essential for monitoring health be-
haviors and supporting disease prevention. Existing resources capture diverse lifestyle aspects but
often emphasize short-term or single-dimension monitoring. For instance, MMASH (Rossi et al.,
2020) provides 24-hour multimodal data from 22 participants for sleep and psychological analysis,
WESAD (Philip Schmidt et al., 2018) records stress and affective states in controlled settings, and
CAPTURE-24 (Doherty et al., 2017) offers large-scale accelerometer data with sleep diaries for ac-
tivity recognition. More recent efforts extend to longer-term and multidimensional monitoring, such
as LifeSnaps (Yfantidou et al., 2022), GLOBEM (Xu et al., 2022), ETRI Lifelog (Oh et al., 2025).
Among them, AI4FoodDB (Romero-Tapiador et al., 2023; Lacruz-Pleguezuelos et al., 2025) stands
out for its comprehensive design, collecting one month of multimodal lifestyle and clinical data
from 100 participants. Covering nutrition, activity, sleep, emotion, and other health dimensions, it
uniquely supports cross-dimensional analysis and long-term health trajectory modeling. Therefore,
we adopt AI4FoodDB as the source dataset for constructing our QA benchmark.

Health Lifestyle QA Benchmarks. Recent studies have applied LLMs to personalized health and
lifestyle tasks such as sleep and fitness guidance (Khasentino et al., 2025), dietary assessment (Hua
et al., 2024), daily activity query (Yu et al., 2025), mental health analysis (Xu et al., 2024; Yang et al.,
2024), and lifelogs generation (Tian et al., 2025), demonstrating their potential for interpreting per-
sonal health data. To further enhance LLMs’ capabilities in health analysis and reasoning, several
QA datasets tailored to personal health and lifestyle analysis have been developed. For instance,
NGQA (Zhang et al., 2024) models dietary decision-making with graph-based reasoning for per-
sonalized nutrition, and SensorQA (Reichman et al., 2025) interprets raw sensor data through QA.
Other resources include SleepQA (Bojic et al., 2022) for sleep guidance, MentalChat16K (Xu et al.,
2025) for conversational emotional well-being support, and OpenLifelogQA (Tran et al., 2025) for
lifestyle queries derived from personal lifelogs. As summarized in Table 1, existing datasets, despite
these advances, remain limited to single dimension (e.g, sleep) and single-user, and also provide
little support for long-horizon reasoning. To address this gap, we present the first large-scale QA
benchmark built on a comprehensive multidimensional lifestyle dataset, enabling systematic evalu-
ation and advancement of LLMs in long-term, multi-user, and cross-dimensional health reasoning.
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3 MULTILIFEQA

3.1 DATASET OVERVIEW

MultiLifeQA consists of 22,573 questions spanning four lifestyle domains: diet, sleep, activity, and
emotion, including 13,452 single-user queries, which focus on reasoning about the lifestyle of a
single individual, and 9,121 multi-user queries, which involve comparisons or joint reasoning across
multiple individuals. Effective health analysis requires both low-level descriptive retrieval and high-
level complex reasoning. Driven by this motivation, MultiLifeQA organizes reasoning tasks into
five major categories: Fact Query, Aggregated Statistics, Numeric comparison, Conditional Query,
and Trend Analysis, with their distribution illustrated in Figure 2c. Specifically, Fact Query estab-
lishes baseline information to reconstruct individual behavioral trajectories; Aggregated Statistics
extends analysis to longer temporal windows for characterizing long-term behavioral patterns; Nu-
meric comparison reveals relative differences and individual preferences; Conditional Query incor-
porates personalized thresholds and group-level references to identify anomalies and potential risks;
and Trend Analysis captures dynamic changes, helping to uncover emerging health concerns or
signs of continuous improvement. Overall, these categories reflect the complex, multi-dimensional
aspects of lifestyle reasoning and establish a direct link between raw behavioral data and health-
related insights. The answer types mainly include categorical responses (Yes/No), numerical values
(single-number), short text (one word or phrase), pairwise answer (=2 items), and multi-item answer
(≥3 items). In addition, we visualize the distribution of meaningful lexical items extracted from the
questions, as illustrated in Figure 2b. Terms such as sleep, stress, active, and oxygen saturation
appear most frequently, highlighting people’s primary concerns about lifestyle and health.
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Figure 2: (a).User and single domain distribution. (b).Visualization of word frequency in the health
question. (c).Question and answer distribution.

3.2 DATA SOURCE

The source data of MultiLifeQAare derived from AI4FoodDB (Romero-Tapiador et al., 2023), a
large-scale personal lifestyle database collected from 100 participants over a one-month period. It
integrates self-reported questionnaires (e.g., surveys on lifestyle habits), clinical assessments (e.g.,
standardized physical examinations and laboratory test results), and continuous digital records from
wearable devices (e.g., step counts, heart rate, sleep patterns, and activity levels). Collectively,
these data span a wide range of domains, including anthropometrics, lifestyle and health history,
nutrition, biomarkers, gut microbiome, vital signs, physical activity, sleep behaviors, and emotional
states. Owing to its multidimensional and comprehensive design, AI4FoodDB represents one of the
most complete open resources currently available for studying lifestyle factors and their interactions
with health outcomes. Building on this foundation, we design a pipeline that automatically generates
health queries, from simple fact retrieval to long-horizon cross-dimensional reasoning.

3.3 QA DATASET GENERATION PIPELINE

We design an automated pipeline to generate MultiLifeQA, as illustrated in Figure 3. In particular,
we develop a scalable code framework that can be flexibly extended with new data and reasoning
tasks, with detailed instructions and guidelines provided in Appendix D. The main steps for gener-
ating MultiLifeQA are outlined as follows.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Diet

Activities
Sleep

Emotion

Template 

Design

QA Dataset Generation

Get QA 

Pairs

DatabaseData Source

Code 

Generation
Human 

Verification

Figure 3: MultiLifeQA Dataset Generation Pipeline, which transforms raw lifestyle data from four
domains (diet, sleep, activity, and emotion) into high-quality QA pairs through database construc-
tion, template design, automated code generation, and human verification.

Database Construction. We build a structured database on MySQL, importing data on diet, phys-
ical activity, sleep, and emotion from the source data. Records are aligned by anonymized user
identifiers and timestamps to support subsequent question generation and ground-truth validation.

Template Design. We design question templates at both single-user and multi-user levels to cover
individual reasoning and multi-user-comparison health reasoning tasks. Concretely, we first hand-
craft single-dimension lifestyle templates for five task categories (Fact Query, Aggregated Statistics,
Numeric comparison, Conditional Query, Trend Analysis), targeting reasoning needs related to one
dimension (diet, activity, sleep, or emotion). We then extend these templates to generate cross-
dimensional composite queries that capture complex interactions across lifestyle dimensions and
reveal latent health patterns and deep insights. The templates are designed to ensure both scalability
and interpretability, with further details provided in Section 3.4.

Code Generation. Given the database schema and designed templates, we develop a programmatic
framework that automatically instantiates natural-language questions from templates and retrieves
corresponding answers via SQL queries and subsequent computations as ground truth, ensuring
diversity without duplication and balanced coverage across question types.

Human Verification. We manually inspect all of the generated questions and ground-truth answers,
removing invalid or duplicate items, thereby yielding a high-quality QA dataset.

3.4 QUERY TEMPLATE DESIGN

Single-dimension Template Design. The single-dimension templates are designed to capture
lifestyle patterns and enable health reasoning across four domains: diet, physical activity, sleep,
and emotion. Together, these domains represent fundamental determinants of health: diet reflects
nutritional balance and eating habits; activity captures daily energy expenditure and exercise behav-
iors; sleep signals indicate restorative quality and physiological stability; and emotion data reveal
stress states and their drivers. Collectively, they provide the foundation for understanding individual
behaviors and health trajectories. We design QA templates according to five categories, with rep-
resentative examples provided in the Appendix G. These templates convert raw lifestyle logs into
interpretable questions, enable reasoning across multiple time scales, and facilitate the identifica-
tion of potential health risks or trends for improvement. Yet, single-dimension queries cannot fully
capture the complex associations among health determinants, so we extend our approach to cross-
dimension, enabling queries that capture interactions among diet, activity, sleep, and emotion, and
thus support higher-level reasoning tasks more aligned with real-world health management.

Cross-dimension Template Design. We extend the templates to generate cross-dimensional queries
that explicitly model interactions among lifestyle factors. For example, physical activity levels may
influence sleep quality; diet may affect emotion; and emotion, in turn, can modulate dietary and
sleep behaviors. Following these observations, many user-centric questions naturally arise, such as:
“When I increase aerobic exercise, do I experience longer deep sleep and lower stress?” and “Are
specific food categories or cooking methods associated with sleep quality?” We formalize these
questions as computable queries and organize them into five categories (see detailed examples in
Appendix G.1). Fact Query captures cross-dimensional snapshots of multiple lifestyle factors on a
given date. Aggregated Statistics reveals long-term associations, for example, correlations between
sleep quality and exercise regimes. Numeric comparison assesses relative differences across di-
mensions, such as whether weeks with higher activity levels show lower stress. Conditional Query

5
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detects joint threshold events, such as days where sedentary time is high and stress is elevated. Fi-
nally, Trend Analysis tracks dynamic co-variation over multiple days, identifying patterns such as
co-occurrences of reduced activity, insufficient sleep, and rising stress. Therefore, these queries
enable systematic evaluation of cross-dimensional, long-horizon health reasoning.

Multi-user Template Design. While single-user queries can capture an individual’s lifestyle char-
acteristics and health trajectory, their scope remains confined to the personal level and does not
provide comparison and reference among more users. Many health reasoning tasks become more
meaningful when contextualized within a broader population, such as evaluating an individual’s
sleep quality relative to age-matched peers or community-level averages. Similarly, ranking activity
levels within a peer group can inform personalized adjustments. To support such analyses, we de-
sign multi-user queries that allow comparison, aggregation, and filtering across individuals, thereby
uncovering health insights that are not only more generalizable but also socially contextualized.

For implementation, we utilize anonymized user identifiers and align behavioral records across indi-
viduals through shared timestamps, enabling synchronized and systematic cross-user comparisons.
Multi-user queries adopt the same five reasoning categories as single-user queries but place greater
emphasis on group-level statistics and contrasts. For example: Fact Query can be used to retrieve
the user with the longest activity duration on a given day; Aggregated Statistics computes the aver-
age REM sleep duration across all users in a week; Numeric comparison quantifies the difference
between a specific user and the multi-user mean; Conditional Query filters subgroups of users with
insufficient sleep over consecutive days, and Trend Analysis captures multi-user-level dynamics over
time. Some representative examples are provided in the Appendix G.2. Thus, MultiLifeQA can sup-
port cross-dimensional multi-user queries, such as examining whether higher energy expenditure
aligns with longer deep sleep or whether frequent fried-food consumption correlates with elevated
stress, revealing broader health insights that link individual behaviors with group-level trends.

Summary. MultiLifeQA is a comprehensive health reasoning dataset that encompasses both single-
user and multi-user scenarios, supporting cross-dimensional and long-horizon reasoning. It enables
the evaluation of models’ ability to capture fine-grained individual lifestyle characteristics, while si-
multaneously assessing their reasoning capabilities across multiple dimensions and at the multi-user
level. By combining these features, MultiLifeQA establishes a systematic and robust benchmark that
can drive advances in health analytics and support the development of personalized interventions.

4 EXPERIMENTS

We define two evaluation settings and perform a comprehensive evaluation of eight widely used
open-source LLMs and three proprietary LLMs on MultiLifeQA. We first compute and compare
the overall accuracy of all models across the complete set of reasoning questions. Subsequently,
we perform a detailed analysis along multiple dimensions, including comparisons by question and
answer distribution, as well as differences across dimensions and user settings.

4.1 EXPERIMENTAL SETUP

Evaluation Settings. To assess the capability of mainstream LLMs for comprehensive health analy-
sis and reasoning on MultiLifeQA, we establish two evaluation settings: Context Prompting, which
directly embeds user-specific data into the prompt after pre-filtering, and Database-augmented
Prompting, which leverages structured SQL queries to retrieve relevant information before reason-
ing. The reason we adopt these two complementary settings is that context prompting is the most
straightforward and lightweight strategy in existing work (Lee et al., 2024), embedding data directly
into the prompt with ‘zero engineering cost,’ and is widely used as a fair baseline for comparison.
However, when tasks involve larger-scale reasoning data, directly embedding all information into the
prompt often exceeds the context window of LLMs. Database-augmented prompting provides a fea-
sible solution by leveraging structured SQL queries to effectively support complex reasoning (Zhu
et al., 2024). Therefore, we employ both settings to comprehensively evaluate LLMs’ capabilities
in health reasoning tasks on MultiLifeQA.

1) Context Prompting. In this setting, the question and the relevant health data for the target user are
embedded directly into the prompt for the LLM to answer. To mitigate the context-length limitations
of LLMs, we pre-filter the data during prompt construction by first selecting a user identifier and
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retaining only the data corresponding to this user for inclusion in the prompt. Note that even with
pre-filtering, a small number of questions still exceed the context window due to the large volume of
data required for reasoning. Therefore, for multi-user reasoning tasks with much larger data scopes,
we design database-augmented prompting.

2) Database-augmented Prompting. In this setting, we first encode the question and the constructed
database schema into a carefully designed prompt template to guide the LLM in generating the
corresponding SQL query. The generated SQL is then subject to a preliminary check to ensure it is a
complete SELECT statement; otherwise, it is considered invalid to the database and directly marked
as a failure. The system then executes the passed SQL, and if execution raises an error it is also
treated as a failure; otherwise, the results are returned to the LLM, which performs further reasoning
on the feedback to produce the final output. This approach can be evaluated over the entire dataset,
supporting both single-user and multi-user reasoning tasks.

Prompt Design. We design tailored templates for the two settings. For 1) Context Prompting, the
prompt consists of four components: an overall task description, the reasoning question, the relevant
data, and the specification of the expected answer type. For 2) Database-augmented Prompting, the
prompt is structured in two stages. In the (i) SQL Generation Stage, it includes the overall task
description, the reasoning question, the schema of the relevant database tables, and any explicit
database constraints. In the (ii) Answer Generation Stage, it consists of the overall task description,
the reasoning question, the generated SQL, the results returned from executing the SQL query, and
the specification of the expected answer type. More details are provided in Appendix E.

LLMs. We evaluate current mainstream LLMs, encompassing both open-source and proprietary
models, to provide a comprehensive and representative assessment.

1) Open-source models. We include Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, and Llama-3.1-
70B-Instruct (4-bit) (Grattafiori et al., 2024); Phi-3.5-mini-instruct (Abdin et al., 2024); Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023); DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025); and the Qwen-
2.5 series, including Qwen-2.5-7B-Instruct, Qwen-2.5-14B-Instruct (4-bit and 8-bit), and Qwen-
2.5-32B-Instruct (4-bit) (Hui et al., 2024).

2) Proprietary models. We further include leading proprietary LLMs: GPT-4o (Achiam et al., 2023),
Claude-3-haiku (Anthropic AI, 2024), and Gemini 2.5 Lite (Flash-Lite) (Comanici et al., 2025).

Evaluation Metrics. We use accuracy as the primary metric to evaluate LLMs performance on
reasoning tasks. For the database-augmented prompting, we further introduce three additional,
finer-grained metrics to provide a more comprehensive assessment of LLMs performance: 1) Accu-
racy: For each answer type, we adopt tailored evaluation criteria to ensure fairness and precision.
For yes/no answer type, the prediction must match the ground truth. For numeric answer type,
a tolerance is allowed: when the ground-truth answer is an integer (≤ 14), an absolute error of
at most ±1 is permitted; when the answer is a integer (> 14) or a real number, an error bound
of max(0.5% · |gt|, 0.01) is permitted. This criterion preserves tolerance for small integers while
maintaining precision for large integers and real-valued answers. For multi-item answers, the pre-
diction and the ground truth must contain the same number of items, and each corresponding item
must be correct. 2) SQL Validity (VA): The proportion of generated SQL queries that pass a prelim-
inary check (ensuring a complete SELECT statement) and execute on the database without errors.
3) Execution Accuracy (EX): We define EX as the proportion of generated SQL queries that can be
successfully executed and whose results provide all the information required to derive the correct
answer (within the tolerance defined in Accuracy). 4) Acc/Execution Accuracy (Acc/EX): The ac-
curacy of the LLM’s final answers conditioned on EX, i.e., the proportion of correct answers given
that the SQL query executed successfully and returned the appropriate intermediate results.

4.2 RESULTS AND DISCUSSION

Overall Results. Table 2 and Figure 4 summarize the performance of all LLMs on MultiLifeQA.
First, the results indicate that proprietary models (GPT-4o, Gemini 2.5 Lite, Claude-3-Haiku) gen-
erally outperform open-source models under both evaluation settings. With Context Prompting,
GPT-4o achieves the highest accuracy of 57.02%. With Database-augmented Prompting, Gemini
attains the best accuracy at 39.04%. Smaller models (e.g., deepseek-coder-1.3B) fail to complete
the tasks, while medium-to-large open-source models (e.g., Qwen-2.5-7B, Llama-3.1-70B) perform
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reasonably well when using Context Prompting but accuracy drops substantially with Database-
augmented Prompting, indicating obvious gaps of current LLMs in complex reasoning.

Secondly, with the database-augmented setting, the main limitation arises from the models’ ability
to generate SQL queries that are both executable and semantically accurate. As shown in Table 2, all
models exhibit low execution accuracy (EX), with an average of only 25.94%. On the other hand,
once the SQL executes correctly and returns the requisite information (satisfied EX), models are rel-
atively reliable at inferring the final answer: seven models achieve Acc/EX above 70%, and GPT-4o
reaches 95.65%. These findings indicate that for cross-dimensional, multi-user, and long-horizon
health reasoning, the integration of external tools such as relational databases is both effective and
essential. However, accurately interpreting database schemas, understanding inter-table relation-
ships, and generating executable and precise SQL queries remain key challenges for current LLMs.

Moreover, we investigate the effects of model size and quantization on performance within the
same model series, using Qwen-2.5 as an example. Detailed results are provided in Appendix H.2.
Overall, increasing model size leads to substantial performance gains. As Qwen-2.5 scales from
7B to 32B parameters, overall accuracy improves consistently, rising from 40.45% to 53.86% when
using Context Prompting and from 21.45% to 26.95% with Database-augmented Prompting. These
results indicate that larger models possess stronger capabilities for health reasoning. Moreover,
quantization precision also affects performance. For Qwen-2.5-14B, 8-bit quantization achieves
higher accuracy than 4-bit, indicating that higher-precision quantization better preserves reasoning
capabilities while maintaining efficiency and storage benefits.

Table 2: Overall results of all LLMs on MultiLifeQA.

Dataset Context Prompting Database-augmented Prompting

Metrics Acc (%) Acc (%) VA(%) EX(%) Acc/EX(%)

Open Source LLMs
deepseek-coder-1.3B 1.09 1.26 43.83 14.62 4.00
Llama-3.2-3B 20.18 13.47 47.29 17.99 67.68
Phi-3.5-mini-3.8B 20.57 16.16 56.67 20.23 77.34
Mistral-v0.3-7B 30.97 9.03 28.46 11.48 75.35
Qwen-2.5-7B 40.45 21.45 55.83 24.71 84.78
Llama-3.1-8B 20.65 21.53 63.33 27.25 77.73
gemma-2-IT-9B 24.44 14.54 56.24 27.85 51.15
Llama-3.1-70B 40.51 13.91 45.77 22.73 58.41

Proprietary LLMs
Gemini 2.5 Lite 44.81 39.04 84.84 45.97 82.92
Claude-3-haiku 35.30 29.30 74.06 36.49 75.71
GPT-4o 57.02 34.71 63.85 35.97 95.65
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Figure 4: Accuracy (%) of all LLMs
under two evaluation settings.

Results by Question Type and Answer Type. To further analyze the differences in model perfor-
mance on questions of different reasoning difficulties, we analyze the reasoning results of different
question types and answer types. Appendix H.1 reports the detailed results. Overall, from the per-
spective of question types, LLMs perform best on trend analysis and conditional query tasks. With
Context Prompting, the average accuracies reach 56.08% and 48.03%, respectively. In contrast, ag-
gregation statistics questions are the most challenging category: accuracy is only 5.98% with Con-
text Prompting, and although it rises to 14.29% with Database-augmented Prompting, it remains
the lowest, highlighting clear limitations in long-horizon reasoning for current LLMs. From the per-
spective of answer types, models perform best on questions whose answers are Yes/No (49.69%) and
Single Number (45.25%) with Context Prompting, indicating that simple answer formats that map
directly to a Boolean or a single numeric value are easier to handle. In contrast, for more complex
reasoning tasks with pairwise answers and multi-item answers, accuracy drops substantially. With
Context Prompting, the averages are 12.44% and 8.12%, and with Database-augmented Prompting,
they are only 4.29% and 3.21%, respectively.

To complement these overall findings, we further examine the performance of the best model, GPT-
4o, as shown in Figure 5, across question and answer types. The results show that GPT-4o’s reason-
ing accuracy is substantially higher than the average across all models, with the highest results on
Conditional Query and Fact Query: with context prompting, the accuracies reach 71.5% and 69.8%,
respectively. In the database-augmented setting, when the generated SQL executes successfully,
Acc/EX rises to 99.3% (CQ) and 93.7% (FQ). By answer type, GPT-4o performs best on short-text
answers. In particular, with Database-augmented Prompting, when SQL returns the correct answer,
Acc/EX reaches 99.2%. However, even if GPT-4o performs outstandingly on these tasks, GPT-4o
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remains weak on pairwise-answer and multi-item answer questions, with accuracy only of 33.9%
and 28.1%, respectively. A deeper analysis shows that in these challenging tasks, Acc drops much
more than Acc/EX, underscoring that understanding data relations and generating executable SQL
remain key bottlenecks for current LLMs when faced with complex reasoning.

In summary, these findings indicate that contemporary LLMs perform relatively well on fact re-
trieval and comparison questions as well as for simple answer formats (e.g., yes/no, single number),
but they still struggle with aggregate statistics and more complex answer forms, highlighting the
necessity for future research to improve in long-horizon reasoning and complex answer generation.
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Figure 5: Accuracy of GPT-4o by question type (left) and answer type (middle). Average accuracy
of all models across different dimensions and user settings (right).

Results with Varying User Settings and Dimensions. We evaluate and analyze model performance
on single- and cross-dimensional reasoning tasks, as well as the impact of user settings. Detailed
results are provided in Appendix H.3. Figure 5 reports the average performance across dimensions
for all models. “Single” denotes single-dimension tasks confined to one lifestyle domain (diet,
activity, sleep, or mood). “M-C2” denotes cross-dimensional reasoning over two distinct domains
(e.g., jointly analyzing sleep and activity), while “M-C4” denotes integrated reasoning across all
four domains, representing the most challenging setting.

We observe a clear trend: accuracy degrades markedly as the number of involved dimensions in-
creases. Under context prompting, the average accuracy drops from 41.54% on single-dimension
tasks to 30.74% on M-C2, and further to 23.42% on M-C4. Under database-augmented prompt-
ing, the decline is even steeper, from 30.84% down to 11.9% (M-C2) and 9.63% (M-C4). These
results indicate that cross-dimensional reasoning particularly challenging, as models must not only
capture fine-grained signals within each domain but also integrate interactions across lifestyle di-
mensions. This underscores the importance of advancing LLMs capability for cross-dimensional
health reasoning.

For different user settings, from the performance of all LLMs, their performance on single-user tasks
generally surpasses that on multi-user tasks (see Appendix H.3). In particular, with the context-
prompting setting, multi-user reasoning tasks are infeasible because embedding large-scale multi-
user data directly into the prompt exceeds the typical context-window limits. These experimental
results suggest that, compared with individual-level reasoning, cross-user aggregation is more chal-
lenging, mainly due to the need for large-scale data integration and the management of complex
inter-user relationships. This also highlights an important direction for future research.

5 CONCLUSION

We present MultiLifeQA, a large-scale cross-dimensional health QA dataset and benchmark with
two evaluation settings and multiple metrics, and evaluate eight open-source and three proprietary
LLMs. Experiments show that proprietary models outperform open-source ones, but they still ex-
hibit clear limitations in cross-dimensional, long-horizon, and multi-user reasoning. Furthermore,
understanding data relationships and generating complex reasoning remains a key bottleneck for
current LLMs. Overall, the results highlight both potential and limitations of current LLMs, under-
scoring the value of MultiLifeQA as a health reasoning benchmark. The released code and dataset,
together with an extensible framework and guidelines, support future research on new health data
and tasks, pushing LLMs toward a more comprehensive paradigm of health reasoning.
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APPENDIX

A REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we release all code for data generation, prompt con-
struction, and evaluation, together with processed datasets, schema definitions and guidelines at
https://anonymous.4open.science/r/MultilifeQA-05D2. Our experimental settings, including model
configurations, decoding parameters, and hardware environments, are described in detail in Ap-
pendix C. The exact prompt templates used in each evaluation setting are provided in Appendix E.
We also specify the evaluation metrics and correctness criteria in the main text. With these resources,
independent researchers can replicate our experiments and verify all reported numbers.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist with grammar correction and polishing of the manuscript. All generated
text was carefully checked and validated by the authors, who take full responsibility for the final
content.

C IMPLEMENTATION DETAILS

We evaluate open-source models on two hardware setups: smaller models (deepseek-coder-1.3B,
Llama-3.2-3B, Phi-3.5-mini-3.8B, Llama-3.1-8B, Mistral-v0.3-7B, Qwen2.5-7B, and gemma-2-IT-
9B) were run on a single RTX 4090 GPU, while larger models (Qwen2.5-14B 4/8-bit, Qwen2.5-
32B 4-bit, and Llama-3.1-70B 4-bit) were run on 4×A6000 GPUs; proprietary models (GPT-4o,
Claude-3.7-Sonnet, Gemini 2.5 Pro) were accessed via official APIs. All experiments used a con-
text length of 4096 tokens (or the maximum allowed if smaller). For Context Prompting, we set
max new tokens=32. For Database-augmented Prompting, we used 480 tokens for the SQL
generation step and 48 tokens for the answer generation step. All open-source models used deter-
ministic decoding with temperature effectively disabled (greedy decoding) for reproducibility.

D QA DATASET GENERATION PIPELINE

D.1 DETAILED DESCRIPTION OF THE DATASET GENERATION PIPELINE

To systematically evaluate large language models on multi-domain health reasoning tasks, we
develop a general-purpose pipeline for automatic QA dataset construction. The pipeline inte-
grates raw relational data from an open-source dataset AI4FoodDB into a unified framework
and outputs question–answer (QA) pairs in three complementary forms: original QA, Context
prompting and Database-augmented prompting. You can find our code and detailed guide at
https://anonymous.4open.science/r/MultilifeQA-05D2. The generation pipeline proceeds as follow:

Preparing Raw Data and MySQL Database. Raw data sources, including structured CSV files
and relational tables from AI4FoodDB and FoodNExtDB, are loaded into a MySQL database. The
loading scripts define table schemas, map attributes across domains, and ensure consistent naming
conventions. This step guarantees that both single-domain and cross-domain information can be
queried with SQL.

Template-based QA Generation. Once the database is prepared, a set of extensible templates
is applied to automatically generate questions and answers. Each template specifies the question
structure, SQL retrieval logic, and answer derivation rules. The outputs are written into JSONL
files, where each line corresponds to a QA pair.

Processed Dataset Organization. The generated QA pairs are organized into a hierarchical
folder structure that reflects user scope (single-user vs. multi-user) and task complexity (sin-
gle table vs. multi-table). In addition, we provide summary files (all prompts.jsonl,
single user.jsonl, multi user.jsonl) to facilitate direct evaluation. This structured de-
sign ensures that both context-based prompting and database-augmented prompting can be evaluated
under consistent conditions.
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Through this pipeline, we produce a large-scale, standardized dataset that covers diverse reasoning
tasks across diet, activity, sleep, and emotion domains. The modularity of the pipeline also makes it
suitable for adapting to new datasets or reasoning problems.

D.2 GUIDELINE FOR EXTENSIBLE TEMPLATE FRAMEWORK

A key feature of our framework is its extensibility: researchers can expand more data and tasks by
this pipeline. We summarize the guidelines for extending the template framework as follows.

Prepare and Load Your Own Data. Begin by organizing the target dataset into structured rela-
tional tables (e.g., CSV files). By modifying the provided loading scripts (load mysql db.py,
load food db.py), users can map new attributes and table names into MySQL. Once loaded, the
data becomes fully compatible with our pipeline.

Define New Question Templates. The framework is template-driven, which means that question
styles and reasoning operations are explicitly defined. Users may: reuse the existing five categories
(FQ, AS, CQ, NC, TA); extend to new categories such as causal reasoning, longitudinal trend anal-
ysis, or multi-hop inference; and modify the SQL generation logic or natural language phrasing to
capture domain-specific constraints.

Integrate with the Generation Scripts. After defining new templates, they can be directly applied
into the provided build.py script. After modifying key parts of this script, it will automatically
generate questions, execute the corresponding SQL queries, and store the final QA pairs in JSONL
format consistent with the existing dataset.

Share and Evaluate. By following the same structure, newly generated QA datasets can be seam-
lessly evaluated under both context prompting and database-augmented prompting. We encourage
more researchers will share their extensions, which allows fair comparison across datasets while
continually expanding the scope and difficulty of reasoning challenges.

Summary. The extensible template framework provides a principled yet flexible methodology for
QA dataset construction. It not only ensures reproducibility and consistency across different prompt-
ing strategies, but also enables the community to explore new reasoning paradigms and domains
while leveraging a common framework.
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E PROMPT TEMPLATES

We design unified prompt templates for both Context Prompting and Database-augmented Prompt-
ing settings, as summarized in Tables 3 and 4. For Context Prompting, the prompt provides the ques-
tion together with either a single compact TSV table or multiple compact tables for the same user,
followed by explicit output requirements specifying the number and type of expected answers. For
Database-augmented Prompting, the process is divided into two stages: (i) SQL generation, where
the model is instructed to produce exactly one valid MySQL query based on the given schema, and
(ii) reasoning after SQL execution, where the question, the executed SQL, and its result are provided,
and the model is required to return the final answer in the prescribed format.

Table 3: Prompt Template for Context Prompting

Prompt Template of Context Prompting

SYSTEM:
You are a concise evaluator. Read the question and reply with ONLY the final answer (no explanation).
USER:

You are given [TABLE SCOPE] TSV view(s) derived from [TABLE TYPE]. Each view is restricted to a
single entity (id). A date column is provided and should be treated as [DATE FIELD]. [SPECIAL RULES]
Answer strictly with [OUTPUT FORMAT]; do not include explanations.

Question: [Question]

=== BEGIN TABLE [TABLE NAME] ===
[TABLE1 TSV]
=== END TABLE ===
. . . (If more than one table)
=== BEGIN TABLE [TABLE NAME] ===
[TABLEN TSV]
=== END TABLE ===

Output requirement: return [Number of Answer] value(s); types (ordered): {[Answer Type]};
{[Answer Type]}, ..., {[Answer Type]}.

Label definition:

• [Answer Type]: Choose from {”yes or no”, ”uid”, ”date”, ”datetime”, ”real number (two decimal)”,
”integer”, ”word”}.

• [TABLE SCOPE]: “a compact TSV view” (single-table) or “compact TSV views from multiple
relational tables” (multi-table).

• [TABLE TYPE]: “a single relational table” or “multiple relational tables”.

• [DATE FIELD]: date normalization field, e.g. DATE(ts), DATE(start time),
DATE(start sleep), DATE(record ts), DATE(night end).

• [SPECIAL RULES]: optional task-specific rules (e.g., deduplicate labels within a meal, count dis-
tinct meals containing a label, cross-reference by id and date).

• [OUTPUT FORMAT]:
– Single number (two decimals).
– One word (yes/no; increase/decrease/same; categorical token).
– Value+Date (“N on YYYY-MM-DD”).
– Semicolon-separated list of tokens.
– Token–Number (“TOKEN; NUMBER”).
– Multiple Value+Date items (two/three; semicolon-separated).
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Table 4: Prompt Templates of Database-augmented Prompting.

Prompt Template of SQL generation

SYSTEM:

You are an expert MySQL analyst. The database is already connected and available. Write ONE and only ONE
read-only SQL query to answer the question. Constraints: MySQL dialect; SELECT/CTE only; no DDL/DML;
no multiple statements; output SQL only.
USER:

Given the following MySQL table schema, write ONE SELECT statement to compute the data you need. Use
DATE(ts) for date filtering if needed. Output SQL only.

Question: [Question]

Schema (DDL):

“‘sql
[Schema]
[Notes]
... (If more than one table)
[Schema]
[Notes]
“‘

[Note] The MySQL database is connected. Use DATE(ts) for day filtering. Output only one SQL statement;
end with a semicolon; no backticks.

Label definition:

• [Schema]: SQL schema, e.g.: CREATE TABLE ‘TABLE NAME’ (column name column type [con-
straints], ... , column name column type [constraints], PRIMARY KEY (column1, column2, ...))

• [Notes]: Special notes for this schema, e.g.:

– Use DATE(column name) for day filtering; group by column name if needed.
– Semantics: Deduplicate within a meal (id, ts, label). For ”times” counts across a day/week,

count distinct meals (ts) that include the label.

Prompt Template of Reasoning after SQL execution

SYSTEM:
You are a concise evaluator. You will see a question and the SQL result. Answer the question using ONLY the
provided SQL result. Reply with ONLY the final answer (no explanations).
USER:

You will be given the SQL result for the question. Answer the question based on the SQL result, do not include
explanations.

Question: [Question]

Output requirement: return [Number of Answer] value(s); types (ordered): {[Answer Type]};
{[Answer Type]}, ..., {[Answer Type]}.

SQL used:
“‘sql
[Generated SQL]
“‘
SQL result (rows=[Number of Rows]):
[SQL Result]

Label definition:

• [Answer Type]: Choose from {”yes or no”, ”uid”, ”date”, ”datetime”, ”real number (two decimal)”,
”integer”, ”word”}.

• Number of Rows: Number of rows fetched by SQL.

• [SQL Result]: Results by executing the generated SQL.
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F DATASET STATISTICS

To better understand the distribution of questions in MultiLifeQA , we summarize the dataset statis-
tics under the two evaluation setups: Context Prompting and Database-augmented Prompting. Both
setups are categorized along multiple dimensions, including question type, answer type, table set-
ting, and domain coverage. The Database-augmented Prompting setup further distinguishes between
single-user and multi-user cases.

Table 5 reports the detailed data distribution. With Context Prompting, the dataset contains a bal-
anced set of reasoning categories that ensure coverage across different levels of difficulty. For ques-
tion types, conditional queries (3,065; 22.8%) are the most frequent, followed by trend analysis
(2,806; 20.9%), aggregation statistics (2,725; 20.3%), and numerical comparison (2,735; 20.3%),
with fact-based queries slightly fewer (2,121; 15.8%). For answer types, single-number answers
dominate (6,306; 46.9%), while yes/no (1,564; 11.6%), short text (1,308; 9.7%), pairwise (3,150;
23.4%), and multi-item answers (1,124; 8.4%) diversify the output formats. In terms of table
settings, single-dimension tasks (4,029; 30.0%) coexist with a much larger proportion of cross-
dimensional queries, most notably M-C2 (6,475; 48.1%), highlighting that the dataset places partic-
ular emphasis on cross-domain integration rather than isolated fact retrieval.

With Database-augmented Prompting, the distribution is larger but follows a similar trend. Condi-
tional queries remain the largest category (5,134; 22.7%), with aggregation (4,732; 21.0%), numer-
ical comparison (4,550; 20.2%), and trend analysis (4,755; 21.1%) also well represented. Answer
types continue to be dominated by single numbers (10,642; 47.2%), with short text (4,061; 18.0%),
pairwise (3,186; 14.1%), and multi-item answers (1,184; 5.2%) providing added diversity. For table
settings, again the majority of queries involve multi-dimensional reasoning, including 6,475 M-C2
queries (28.7%) and 960 M-C4 queries (4.3%), emphasizing that the purpose of this benchmark is to
evaluate the model’s ability to reason across dimensions. Importantly, this setting also incorporates
multi-user queries, such as 7,901 single-dimension (35.0%) and 1,220 M-C4 (5.4%) tasks, enabling
evaluation of both individualized reasoning and population-level comparisons.

Overall, this design not only guarantees broad coverage of different reasoning difficulties but also
emphasizes cross-domain and cross-user integration, ensuring that MultiLifeQA serves as a rigorous
and comprehensive benchmark for evaluating LLMs in complex health reasoning.
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Table 5: Data distribution of MultiLifeQA by setup, dimension, and category. Counts and percent-
ages are computed within each category.

Setup Dimension Category Number Percentage

Context Prompting

Question Type:
What kind of question in the dataset

FQ 2121 15.8%
AS 2725 20.3%
CQ 3065 22.8%
NC 2735 20.3%
TA 2806 20.9%

Answer Type:
What kind of answer in the dataset

Yes/No 1564 11.6%
Single Number 6306 46.9%
Short Text 1308 9.7%
Pairwise Answer 3150 23.4%
Multi-item Answer 1124 8.4%

Different Dimensions:
How many domains are covered

Single 4029 30.0%
M-Sleep 278 2.1%
M-Act 1710 12.7%
M-C2 6475 48.1%
M-C4 960 7.1%

Each Domain:
Counted if the domain appears in the question

Activity 6472 48.1%
Sleep 7155 53.2%
Emotion 4920 36.6%
Diet 4260 31.7%

Database-augmented
Prompting

Question Type:
What kind of question in the dataset

FQ 3402 15.1%
AS 4732 21.0%
CQ 5134 22.7%
NC 4550 20.2%
TA 4755 21.1%

Answer Type:
What kind of answer in the dataset

Yes/No 3500 15.5%
Single Number 10642 47.2%
Short Text 4061 18.0%
Pairwise Answer 3186 14.1%
Multi-item Answer 1184 5.2%

Different Dimensions (single-user):
How many domains are covered

Single 4029 17.8%
M-Sleep 278 1.2%
M-Act 1710 7.6%
M-C2 6475 28.7%
M-C4 960 4.3%

Different Dimensions (multi-user):
How many domains are covered

Single 7901 35.0%
M-C4 1220 5.4%

Each Domain (single-user):
Counted if the domain appears in the question

Activity 6472 28.7%
Sleep 7155 31.7%
Emotion 4920 21.8%
Diet 4260 18.9%

Each Domain (multi-user):
Counted if the domain appears in the question

Activity 3531 15.6%
Sleep 5267 23.3%
Emotion 2030 9.0%
Diet 1953 8.7%
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G SOME EXAMPLES OF HEALTH QUERY REASONING

G.1 EXAMPLES OF DIFFERENT DIMENSIONS FOR A SINGLE USER

Table 6: Examples of different dimensions for a single user in MultiLifeQA.

Domain Question Type Sample

Diet

FQ What subcategories of food did [uid] eat on [datetime]?

AS How many times did [uid] eat foods from category=’Protein Sources’
within one week, starting from [date]?

CQ How many days within a week did [uid] eat foods cooked in
cooking style=’Oven-Baked’, starting from [date]?

NC Which category of food did [uid] eat most frequently
within one week, starting from [date]?

TA How many consecutive days did [uid] eat foods from
category=’Protein Sources’, starting from [date]?

Physical
Activity

FQ On [datetime], how many steps did [uid] take during Walk?
And on that day how many steps did A[uid] take in total?

AS What is the average distance covered and the average active duration
during Run of [uid] within one week, starting from [date]?

CQ How many days within one week did [uid] have resting heart rate lower than 61.02
or average heart rate during Run lower than 29, starting from [date]?

NC What was the highest distance and the highest active duration during Workout within a week for [uid],
and on which days did they occur, starting from [date]?

TA Did [uid]’s cardio minutes, resting heart rate, and average heart rate during Run
show the same trend (increase/decrease) on [date], compared to the previous day?

Sleep

FQ On [datetime], what was [uid]’s rmssd during sleeping?
And on that day what was his/her lower bound oxygen saturation?

AS What is the total minutes asleep and the average full sleep breathing rate
of [uid] within one week, starting from [date]?

CQ How many days within one week did [uid] have minutes in light sleep fewer than 237.79
and light sleep breathing rate lower than 16.1, starting from [date]?

NC Within one week starting from [date], which minimum was lower for [uid]:
the sleep average oxygen saturation or the full sleep breathing rate?

TA How many consecutive days did [uid]’s minutes asleep and
full sleep breathing rate both decrease, starting from [date]?

Emotion

FQ What was the value of stress score for [uid] on [date]?

AS What is the total exertion points of [uid] within one week, starting from [date]?

CQ How many days within a week did [uid] have sleep points greater than 17.14,
starting from [date]?

NC How much higher was exertion points for [uid] on [date] compared to the previous day?

TA How many consecutive days did [uid]’s stress score decrease, starting from [date]?

Cross
2-domains

FQ On [date], how many calories did [uid] burn
and how long did he/she stay in bed?

AS What is the average calories burned and average minutes in bed
of [uid] within one week, starting from [date]?

CQ How many days within one week did [uid] have nightly temperature lower than 1.94
while also recording stress score/sleep points lower than 9.93, starting from [date]?

NC
Within one week starting from [date], how many more very active minutes did [uid] record
on the most active day compared to the least active day,
and what was the most common food category on those days?

TA How many consecutive days did [uid]’s calories minutes increase
while his/her stress score decreased, starting from [date]?

Cross
4-domains

FQ On [date], what was [uid]’s very active minutes, what cooking style did he/she consume most,
what was his/her rmssd during sleep, and what were his/her responsiveness points?

AS Within one week starting from [date], what was [uid]’s most frequent food category,
his/her average minutes in rem sleep, and his/her average responsiveness points?

CQ Within one week starting from [date], how many days did [uid] eat meals cooked with none more than 0 times,
while getting rmssd greater than 36.43 and recording responsiveness points greater than 21.53?

NC Within one week starting from [date], on the day when [uid] had the highest very active minutes,
what was his/her most frequent food subcategory, and what were his/her minutes in rem sleep and stress score?

TA How many consecutive days starting from [date] did [uid] increase his/her frequency of none meals
and very active minutes, while minutes asleep increased and stress score decreased?
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G.2 EXAMPLES OF DIFFERENT DIMENSIONS FOR MULTI-USER

Table 7: Examples of different dimensions for multi-user in MultiLifeQA.

Domain Question Type Sample

Diet

FQ What was the most common subcategory of food across all users on [date]?

AS Which user had the highest number of meals cooked in the same cooking style
within one week, starting from [date]?

CQ How many users consumed subcategory ’Juices’ on [date]?

NC Which cooking style was used most frequently across all users
within one week, starting from [date]?

TA Was the most common category across all users on [date]
the same as the previous day?

Physical
Activity

FQ Which user had the highest steps on [date]?

AS Which user had the highest lightly active minutes within one week, starting from [date]?

CQ How many users had sedentary minutes greater than 372.31 on [date]?

NC Which activity type had the highest average steps across all users on [date]:
running, walking, or cycling?

TA How many consecutive days was [uid]’s steps higher than the average
across all users, starting from [date]?

Sleep

FQ What was [uid]’s rank among all users for rmssd during sleeping on [date]?

AS What was the average nightly temperature across all users
within one week, starting from [date]?

CQ How many users had lower bound oxygen saturation lower than 89.9 on [date]?

NC Within one week starting from [date], which minimum was lower for [uid]:
the sleep average oxygen saturation or the full sleep breathing rate?

TA Was the average entropy across all users higher, lower,
or the same within one week, starting from [date], compared to the previous week?

Emotion

FQ Which user had the highest stress score on [date]?

AS What was the median exertion points across all users within one week, starting from [date]?

CQ How many users had stress score lower than 390.4 within one week, starting from [date]?

NC Was [uid]’s stress score lower than the median across all users on [date]?

TA How many consecutive days did the average sleep points across all users increase,
starting from [date]?

Cross
4-domains

FQ Which user consumed protein sources category
and also had the highest resting heart rate on [date]?

AS Which user had the most days consuming meat
and also the highest average steps within one week, starting from [date]?

CQ How many users had at least 5 days with steps ≥ population daily P70
within one week, starting from [date]?

NC Within one week starting [date], was the average resting heart rate lower among high-oxygen users (daily oxygen ≥ P70)
than among low-oxygen users (≤ P30)?

TA How many consecutive days did the average sleep points across all users increase,
starting from [date]?
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H SUPPLEMENTARY EXPERIMENTAL RESULTS

H.1 RESULTS BY QUESTION TYPE AND ANSWER TYPE.

We further analyze the performance of all LLMs by splitting results across different question types
and answer types, as summarized in Table 8. The results reveal clear differences across categories.
Aggregate statistics (AS) and numeric comparison (NC) questions are generally more challenging,
with low accuracy across open-source models, while GPT-4o achieves significantly higher perfor-
mance. In contrast, fact query (FQ), conditional query (CQ) and trend analysis (TA) show higher
variance across models, reflecting the difficulty of reasoning over multiple conditions.

On the answer side, binary (Yes/No) and single-number questions are relatively easier for most mod-
els, while pairwise and multi-item answers exhibit very low accuracy, highlighting that generating
multiple related outputs remains a key challenge. When the answer type is short and simple, most
LLMs can provide the correct response as long as the SQL query retrieves the right information,
as reflected in the high Acc/EX scores. However, for pairwise and multi-item answers, Acc/EX re-
mains low, indicating that increasing complexity not only makes SQL generation more difficult but
also makes it harder for most LLMs to identify the correct answer from what retured by SQL when
relying solely on the question and the SQL query itself. These findings underscore the limitations of
current LLMs in handling complex multi-condition reasoning and compositional answer generation.

Table 8: Unified results by Question Type and Answer Type. Left: model/setup/metric; Right: statis-
tics across multiple categories. Question Type (FQ/AS/CQ/NC/TA) and Answer Type (Yes/No, Sin-
gle Number, Short Text, Pairwise Answer, Multi-item Answer). For Database-augmented Prompt-
ing, we show both Acc and Acc/EX as separate rows.

Question Type Answer Type
Model Setup Metric FQ AS CQ NC TA Yes/No Single Number Short Text Pairwise Answer Multi-item Answer

Open Source LLMs

deepseek-coder-1.3B
Context Prompting Acc 0.47 0.04 0.0 0.37 4.78 8.57 0.32 0.76 0.0 0.0

Database-augmented Prompting Acc 0.06 0.08 2.90 1.60 1.18 3.00 1.68 0.0 0.0 0.0
Acc/EX 0.21 0.20 2.15 10.55 11.95 14.54 1.76 0.0 0.0 0.0

Llama-3.2-3B
Context Prompting Acc 10.27 1.17 38.95 10.75 34.82 33.06 29.92 21.33 0.98 0.09

Database-augmented Prompting Acc 17.72 9.82 19.81 11.63 9.00 17.78 16.04 17.43 0.13 0.0
Acc/EX 68.69 84.64 79.19 52.87 52.32 52.05 81.19 69.60 6.67 0.0

Phi-3.5-mini-3.8B
Context Prompting Acc 13.96 2.53 28.42 19.96 35.10 41.62 27.70 23.70 1.84 0.09

Database-augmented Prompting Acc 25.10 10.65 24.68 13.01 9.06 9.37 21.43 25.46 0.16 0.0
Acc/EX 69.09 91.94 93.95 65.98 61.87 51.17 90.33 86.94 1.73 0.0

Mistral-v0.3-7B
Context Prompting Acc 24.47 2.83 49.43 13.89 59.69 48.66 44.61 28.13 6.79 0.89

Database-augmented Prompting Acc 20.99 6.78 11.24 9.01 0.34 8.63 10.75 14.55 0.03 0.0
Acc/EX 82.45 77.48 81.69 59.76 55.00 55.21 83.92 88.50 1.96 0.0

Qwen2.5-7B
Context Prompting Acc 19.38 5.21 70.34 24.42 73.56 63.38 60.69 42.66 1.78 0.36

Database-augmented Prompting Acc 29.78 17.37 36.21 12.90 11.80 11.71 27.07 32.55 6.06 3.04
Acc/EX 83.57 94.19 95.15 65.86 70.03 60.21 97.53 80.05 63.46 29.51

Llama-3.1-8B
Context Prompting Acc 20.93 2.83 24.67 17.92 36.03 56.78 21.31 25.31 5.24 4.45

Database-augmented Prompting Acc 24.96 11.39 30.46 28.13 13.21 24.68 25.93 28.27 1.51 3.46
Acc/EX 67.44 82.74 97.77 71.32 66.27 58.14 97.35 82.89 14.33 18.46

gemma-2-IT-9B
Context Prompting Acc 23.90 4.29 33.18 14.15 44.87 22.44 35.70 37.92 6.00 0.0

Database-augmented Prompting Acc 19.08 9.62 17.04 17.43 10.71 15.97 15.64 24.43 1.69 1.01
Acc/EX 59.43 51.15 55.78 47.13 41.25 35.00 58.05 66.60 18.93 7.69

Qwen2.5-14B (4-bit)
Context Prompting Acc 17.49 6.24 62.97 30.24 71.45 56.39 59.56 49.84 0.35 0.18

Database-augmented Prompting Acc 22.87 13.10 22.38 15.78 9.13 11.60 16.89 30.16 6.94 4.22
Acc/EX 61.01 60.59 50.10 49.20 63.16 49.21 50.40 68.91 58.75 27.22

Qwen2.5-14B (8-bit)
Context Prompting Acc 60.54 8.29 75.89 35.65 75.52 62.72 66.97 52.14 26.19 19.48

Database-augmented Prompting Acc 29.59 17.05 29.59 18.31 5.78 9.26 22.35 33.02 7.31 2.87
Acc/EX 84.23 78.30 84.23 74.68 72.30 62.19 82.44 83.56 63.66 21.85

Qwen2.5-32B (4-bit)
Context Prompting Acc 65.48 9.80 69.98 41.94 81.90 71.99 67.46 56.12 28.38 21.17

Database-augmented Prompting Acc 29.75 19.65 46.67 25.49 12.34 17.71 34.03 37.85 8.29 3.63
Acc/EX 64.84 79.84 79.71 73.18 76.50 69.70 79.19 82.54 48.95 20.28

Llama-3.1-70B
Context Prompting Acc 47.52 8.00 40.10 34.59 73.02 65.15 48.16 49.92 19.81 10.41

Database-augmented Prompting Acc 15.26 7.78 22.22 16.55 7.57 11.80 15.28 26.08 1.35 0.0
Acc/EX 52.43 56.29 67.73 54.93 51.04 46.30 63.79 74.90 12.91 0.0

Proprietary LLMs

Gemini 2.5 Lite
Context Prompting Acc 59.74 9.80 54.78 33.42 67.74 48.85 56.56 52.68 25.71 17.62

Database-augmented Prompting Acc 39.04 34.86 54.32 44.46 36.23 44.89 45.49 50.26 9.26 5.41
Acc/EX 82.92 73.75 98.30 76.89 78.88 70.23 97.92 84.75 40.31 22.86

Claude-3-haiku
Context Prompting Acc 45.73 7.01 52.20 23.95 47.51 41.05 46.29 39.98 17.27 10.77

Database-augmented Prompting Acc 28.22 15.49 45.62 29.01 26.46 34.31 32.78 44.74 1.76 4.31
Acc/EX 64.95 79.12 98.35 64.25 63.88 56.73 94.40 90.28 9.56 21.25

GPT-4o
Context Prompting Acc 69.78 15.63 71.45 49.58 79.08 75.06 68.31 61.62 33.87 28.11

Database-augmented Prompting Acc 42.50 26.45 58.47 31.31 14.89 19.29 41.50 50.41 15.63 16.98
Acc/EX 93.74 98.89 99.26 87.52 96.85 77.59 99.23 99.17 86.04 87.78
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H.2 THE IMPACT OF MODEL SIZE AND QUANTIZATION

Table 9 summarizes the performance of Qwen2.5 variants across different model scales and quan-
tization settings. The results show that model size and precision both have a clear influence on
accuracy. Larger models such as Qwen2.5-32B (4-bit) and Qwen2.5-14B (8-bit) achieve higher per-
formance under context prompting compared to the smaller 7B variant, indicating that larger models
size improve reasoning and answer generation across most question and answer types.

However, quantization introduces trade-offs. The 14B 4-bit model shows a significant drop in accu-
racy relative to its 8-bit counterpart, even being surpassed by the 7B model. These patterns highlight
that both scaling up model size and preserving sufficient numerical precision are critical for reliable
performance in multi-table reasoning tasks.

Table 9: Results of Qwen2.5 variants across scales and quantization.

Question Type Answer Type Overall
Model Setup Metric FQ AS CQ NC TA Yes/No Single Number Short Text Pairwise Answer Multi-item Answer

Qwen2.5-7B
Context Prompting Acc 19.38 5.21 70.34 24.42 73.56 63.38 60.69 42.66 1.78 0.36 40.45

Database-augmented Prompting Acc 29.78 17.37 36.21 12.90 11.80 11.71 27.07 32.55 6.06 3.04 21.45
Acc/EX 83.57 94.19 95.15 65.86 70.03 60.21 97.53 80.05 63.46 29.51 84.78

Qwen2.5-14B (4-bit)
Context Prompting Acc 17.49 6.24 62.97 30.24 71.45 56.39 59.56 49.84 0.35 0.18 38.42

Database-augmented Prompting Acc 22.87 13.10 22.38 15.78 9.13 11.60 16.89 30.16 6.94 4.22 16.39
Acc/EX 61.01 60.59 50.10 49.20 63.16 49.21 50.40 68.91 58.75 27.22 54.82

Qwen2.5-14B (8-bit)
Context Prompting Acc 60.54 8.29 75.89 35.65 75.52 62.72 66.97 52.14 26.19 19.48 51.51

Database-augmented Prompting Acc 29.59 17.05 29.59 18.31 5.78 9.26 22.35 33.02 7.31 2.87 19.10
Acc/EX 84.23 78.30 84.23 74.68 72.30 62.19 82.44 83.56 63.66 21.85 77.82

Qwen2.5-32B (4-bit)
Context Prompting Acc 65.48 9.80 69.98 41.94 81.90 71.99 67.46 56.12 28.38 21.17 53.86

Database-augmented Prompting Acc 29.75 19.65 46.67 25.49 12.34 17.71 34.03 37.85 8.29 3.63 26.95
Acc/EX 64.84 79.84 79.71 73.18 76.50 69.70 79.19 82.54 48.95 20.28 75.24

H.3 RESULTS WITH VARYING USER SETTINGS AND DIMENSIONS.

Table 10 reports results across different user settings and levels of table complexity. The Single setup
corresponds to a single table, M-Sleep aggregates five sleep-related tables, M-Activity combines
three activity-related tables, and M-C4 involves ten tables spanning sleep, activity, diet, and emotion
domains.

The results show a clear trend: accuracy generally decreases as the number of tables and domain
coverage increase. Most models achieve their highest performance under the Single-table setting,
while performance drops notably in M-Sleep and M-Activity, and further degrades in the more
complex M-C4 setting. This reflects the increasing difficulty of reasoning over larger and more
heterogeneous schemas.

Database-augmented prompting improves execution validity (Acc/EX), but raw accuracy often lags
behind context prompting, particularly in multi-table scenarios. Proprietary models such as GPT-
4o and Gemini 2.5 Lite maintain stronger robustness under complex settings, whereas open-source
models experience sharper performance degradation. Overall, these findings highlight that the com-
bination of multi-table integration and multi-domain reasoning substantially increases task diffi-
culty, underscoring the need for future methods that can better handle schema complexity and cross-
domain reasoning.
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Table 10: Results under different user settings and dimensions. (Single = Single dimension; M-
Sleep = multi-dimension within sleep domain; M-Act = multi-dimension within activity domain;
M-C2 = multi-dimension across two domains; M-C4 = multi-dimension across four domains.)

Model Setup Metric Single-user Multi-user

Single M-Sleep M-Activity M-C2 M-C4 Single M-C4

Open Source LLMs

deepseek-coder-1.3B
Context Prompting Acc 0.77 0.72 3.57 0.37 2.92 / /

Database-augmented Prompting Acc 2.90 2.88 0.64 1.05 0.00 1.01 0.00
Acc/EX 2.39 21.05 1.59 5.95 0.00 4.17 0.00

Llama-3.2-3B
Context Prompting Acc 22.53 10.07 23.68 16.90 29.17 / /

Database-augmented Prompting Acc 17.42 0.00 4.21 6.17 0.63 21.58 12.87
Acc/EX 66.78 0.00 58.62 58.95 75.00 71.54 68.11

Phi-3.5-mini-3.8B
Context Prompting Acc 28.10 14.75 26.67 17.27 2.08 / /

Database-augmented Prompting Acc 32.06 0.36 3.33 4.99 2.71 23.72 6.15
Acc/EX 86.45 1.35 53.40 50.09 92.86 83.37 56.15

Mistral-v0.3-7B
Context Prompting Acc 34.60 24.82 42.46 29.30 8.33 / /

Database-augmented Prompting Acc 19.71 0.00 0.70 0.45 0.31 15.15 0.25
Acc/EX 77.57 0.00 100.00 18.84 100.00 76.34 75.00

Qwen2.5-7B
Context Prompting Acc 45.00 18.70 48.54 40.23 14.69 / /

Database-augmented Prompting Acc 38.37 21.22 15.43 12.74 2.81 24.52 15.00
Acc/EX 86.28 83.10 88.00 86.33 67.50 83.97 74.59

Llama-3.1-8B
Context Prompting Acc 28.07 19.06 21.11 16.73 15.63 / /

Database-augmented Prompting Acc 35.15 4.68 8.95 12.91 4.48 27.12 20.98
Acc/EX 91.01 13.27 60.96 68.29 48.31 80.43 69.32

gemma-2-IT-9B
Context Prompting Acc 42.59 11.15 38.25 13.68 0.00 / /

Database-augmented Prompting Acc 22.01 4.32 6.08 7.27 3.02 21.26 9.03
Acc/EX 53.27 28.57 32.10 34.46 26.61 61.74 47.74

Qwen2.5-14B (4-bit)
Context Prompting Acc 52.54 14.75 45.44 34.89 11.35 / /

Database-augmented Prompting Acc 22.46 5.03 10.79 10.19 18.65 20.01 21.15
Acc/EX 45.26 54.72 23.99 55.84 89.95 58.23 93.39

Qwen2.5-14B (8-bit)
Context Prompting Acc 53.26 44.60 53.98 51.43 42.40 / /

Database-augmented Prompting Acc 36.01 4.68 3.16 9.22 10.63 24.00 16.23
Acc/EX 85.04 31.71 26.70 82.70 26.70 75.09 94.33

Qwen2.5-32B (4-bit)
Context Prompting Acc 59.09 48.92 54.80 51.14 50.10 / /

Database-augmented Prompting Acc 39.31 2.52 26.90 16.01 20.31 30.82 30.08
Acc/EX 75.12 5.79 85.29 65.49 87.44 78.70 88.97

Llama-3.1-70B (4-bit)
Context Prompting Acc 51.28 35.25 42.51 33.76 38.85 / /

Database-augmented Prompting Acc 16.95 0.72 4.39 7.29 12.71 20.39 14.43
Acc/EX 54.18 11.76 24.15 46.18 62.56 69.19 73.13

Proprietary LLMs

Gemini 2.5 Lite
Context Prompting Acc 55.35 46.76 44.21 40.20 32.19 / /

Database-augmented Prompting Acc 54.13 18.71 25.38 32.09 22.81 42.40 40.81
Acc/EX 93.47 41.60 80.00 77.86 60.07 84.10 78.25

Claude-3-haiku
Context Prompting Acc 45.79 42.81 42.81 30.01 22.71 / /

Database-augmented Prompting Acc 39.54 11.15 23.74 23.14 12.19 33.73 19.51
Acc/EX 80.68 28.85 69.28 62.91 55.39 89.02 70.21

GPT-4o
Context Prompting Acc 62.64 47.12 54.67 54.51 57.39 / /

Database-augmented Prompting Acc 55.67 32.73 31.40 23.04 23.54 36.27 31.31
Acc/EX 98.40 89.22 99.63 93.40 99.12 94.71 90.63
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