
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CAUSAL-AWARE GRAPH NEURAL ARCHITECTURE
SEARCH UNDER DISTRIBUTION SHIFTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural architecture search (Graph NAS) has emerged as a promising ap-
proach for autonomously designing graph neural network architectures by lever-
aging the correlations between graphs and architectures. However, the existing
methods fail to generalize under distribution shifts that are ubiquitous in real-world
graph scenarios, mainly because the graph-architecture correlations they exploit
might be spurious and varying across distributions. In this paper, we propose to
handle the distribution shifts in the graph architecture search process by discov-
ering and exploiting the causal relationship between graphs and architectures to
search for the optimal architectures that can generalize under distribution shifts.
The problem remains unexplored with the following critical challenges: 1) how to
discover the causal graph-architecture relationship that has stable predictive abili-
ties across distributions, 2) how to handle distribution shifts with the discovered
causal graph-architecture relationship to search the generalized graph architec-
tures. To address these challenges, we propose a novel approach, Causal-aware
Graph Neural Architecture Search (CARNAS), which is able to capture the causal
graph-architecture relationship during the architecture search process and discover
the generalized graph architecture under distribution shifts. Specifically, we pro-
pose Disentangled Causal Subgraph Identification to capture the causal subgraphs
that have stable prediction abilities across distributions. Then, we propose Graph
Embedding Intervention to intervene on causal subgraphs within the latent space,
ensuring that these subgraphs encapsulate essential features for prediction while
excluding non-causal elements. Additionally, we propose Invariant Architecture
Customization to reinforce the causal invariant nature of the causal subgraphs,
which are utilized to tailor generalized graph architectures. Extensive experiments
on synthetic and real-world datasets demonstrate that our proposed CARNAS
achieves advanced out-of-distribution generalization ability by discovering the
causal relationship between graphs and architectures during the search process.

1 INTRODUCTION

Graph neural architecture search (Graph NAS), aiming at automating the designs of GNN architectures
for different graphs, has shown great success by exploiting the correlations between graphs and
architectures. Present approaches (11; 25; 31) leverage a rich search space filled with GNN operations
and employ strategies like reinforcement learning and continuous optimization algorithms to pinpoint
an optimal architecture for specific datasets, aiming to decode the natural correlations between graph
data and their ideal architectures. Based on the independently and identically distributed (I.I.D)
assumption on training and testing data, existing methods assume the graph-architecture correlations
are stable across graph distributions.

Nevertheless, distribution shifts are ubiquitous and inevitable in real-world graph scenarios, particu-
larly evident in applications existing with numerous unforeseen and uncontrollable hidden factors
like drug discovery, in which the availability of training data is limited, and the complex chemical
properties of different molecules lead to varied interaction mechanisms (20). Consequently, GNN
models developed for such purposes must be generalizable enough to handle the unavoidable varia-
tions in data distribution between training and testing sets, underlining the critical need for models
that can adapt to and perform reliably under such varying conditions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

However, existing Graph NAS methods fail to generalize under distribution shifts, since they do
not specifically consider the relationship between graphs and architectures, and may exploit the
spurious correlations between graphs and architectures unintendedly, which vary with distribution
shifts, during the search process. Relying on these spurious correlations, the search process identifies
patterns that are valid only in the training data but do not generalize to unseen data. This results
in good performance on the training distribution but poor performance when the underlying data
distribution changes in the test set.

In this paper, we study the problem of graph neural architecture search under distribution shifts by
capturing the causal relationship between graphs and architectures to search for the optimal graph
architectures that can generalize under distribution shifts. The problem is highly non-trivial with the
following challenges:

• How to discover the causal graph-architecture relationship that has stable predictive abilities
across distributions?

• How to handle distribution shifts with the discovered causal graph-architecture relationship to
search the generalized graph architectures?

To address these challenges, we propose the Causal-aware Graph NAS (CARNAS), which is able to
capture the causal relationship, stable to distribution shifts, between graphs and architectures, and
thus handle the distribution shifts in the graph architecture search process. Specifically, we design a
Disentangled Causal Subgraph Identification module, which employs disentangled GNN layers to
obtain node and edge representations, then further derive causal subgraphs based on the importance
of each edge. This module enhances the generalization by deeply exploring graph features as well
as latent information with disentangled GNNs, thereby enabling a more precise extraction of causal
subgraphs, carriers of causally relevant information, for each graph instance. Following this, our
Graph Embedding Intervention module employs another shared GNN to encode the derived causal
subgraphs and non-causal subgraphs in the same latent space, where we perform interventions on
causal subgraphs with non-causal subgraphs. Additionally, we ensure the causal subgraphs involve
principal features by engaging the supervised classification loss of causal subgraphs into the training
objective. We further introduce the Invariant Architecture Customization module, which addresses
distribution shifts not only by constructing architectures for each graph with their causal subgraph but
also by integrating a regularizer on simulated architectures corresponding to those intervention graphs,
aiming to reinforce the causal invariant nature of causal subgraphs derived in module 1. We remark
that the classification loss for causal subgraphs in module 2 and the regularizer on architectures for
intervention graphs in module 3 help with ensuring the causality between causal subgraphs and the
customized architecture for a graph instance. Moreover, by incorporating them into the training and
search process, we make the Graph NAS model intrinsically interpretable to some degree. Empirical
validation across both synthetic and real-world datasets underscores the remarkable out-of-distribution
generalization capabilities of CARNAS over existing baselines. Detailed ablation studies further
verify our designs. The contributions of this paper are summarized as follows:

• We are the first to study graph neural architecture search under distribution shifts from the causal
perspective, by proposing the causal-aware graph neural architecture search (CARNAS), that
integrates causal inference into graph neural architecture search, to the best of our knowledge.

• We propose three modules: disentangled causal subgraph identification, graph embedding in-
tervention, and invariant architecture customization, offering a nuanced strategy for extracting
and utilizing causal relationships between graph data and architecture, which is stable under
distribution shifts, thereby enhancing the model’s capability of out-of-distribution generalization.

• Extensive experiments on both synthetic and real-world datasets confirm that CARNAS signifi-
cantly outperforms existing baselines, showcasing its efficacy in improving graph classification
accuracy across diverse datasets, and validating the superior out-of-distribution generalization
capabilities of our proposed CARNAS. 1

1We provide the datasets and codes of our paper in the anonymous link.

2

https://anonymous.4open.science/r/CARNAS-0A75/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 PRELIMINARY

2.1 GRAPH NAS UNDER DISTRIBUTION SHIFTS

Denote G and Y as the graph and label space. We consider a training graph dataset Gtr =
{(Gi, Yi)}Ntr

i=1 and a testing graph dataset Gte = {(Gi, Yi)}Nte
i=1, where Gi ∈ G, Yi ∈ Y, Ntr

and Nte represent the number of graph instances in training set and testing set, respectively. The
generalization of graph classification under distribution shifts can be formed as:

Problem 1 We aim to find the optimal prediction model F ∗(·) : G −→ Y that performs well on Gte
when there is a distribution shift between training and testing data, i.e. P (Gtr) ̸= P (Gte):

F ∗(·) = argmin
F

E(G,Y)∼P (Gte) [ℓ(F (G), Y) | Gtr] , (1)

where ℓ(·, ·) : Y× Y −→ R is a loss function.

Graph NAS methods search the optimal GNN architecture A∗ from the search space A, and form
the complete model F together with the learnable parameters ω. Unlike most existing works using
a fixed GNN architecture for all graphs, (41) is the first to customize a GNN architecture for each
graph, supposing that the architecture only depends on the graph. We follow the idea and inspect
deeper concerning the graph neural architecture search process.

2.2 CAUSAL VIEW OF THE GRAPH NAS PROCESS

Causal approaches are largely adopted when dealing with out-of-distribution (OOD) generalization by
capturing the stable causal structures or patterns in input data that influence the results (27). While in
normal graph neural network cases, previous work that studies the problem from a causal perspective
mainly considers the causality between graph data and labels (28; 53).

Causal analysis in Graph NAS. Based on the known that different GNN architectures suit different
graphs (7; 60) and inspired by (56), we analyze the potential relationships between graph instance G,
causal subgraph Gc, non-causal subgraph Gs and optimal architecture A∗ for G in the graph neural
architecture search process as below:

• Gc → G← Gs indicates that two disjoint parts, causal subgraph Gc and non-causal subgraph
Gs, together form the input graph G.

• Gc → A∗ represents our assumption that there exists the causal subgraph which solely determines
the optimal architecture A∗ for input graph G. Taking the Spurious-Motif dataset (63) as an
example, (41) discovers that different shapes of graph elements prefer different architectures.

• Gc Gs means that there are potential probabilistic dependencies between Gc and Gs (39; 40),
which can make up spurious correlations between non-causal subgraph Gs and the optimal
architecture A∗.

Intervention. Inspired by the ideology of invariant learning (2; 24; 5), that forms different envi-
ronments to abstract the invariant features, we do interventions on causal subgraph Gc by adding
different spurious (non-causal) subgraphs to it, and therefore simulate different environments for a
graph instance G.

2.3 PROBLEM FORMALIZATION

Based on the above analysis, we propose to search for a causal-aware GNN architecture for each input
graph. To be specific, we target to guide the search for the optimal architecture A∗ by identifying
the causal subgraph Gc in the Graph NAS process. Therefore, Problem 1 is transformed into the
following concrete task as in Problem 2.

Problem 2 We systematize model F : G −→ Y into three modules, i.e. F = fC ◦ fA ◦ fY , in
which fC(G) = Gc : G −→ Gc abstracts the causal subgraph Gc from input graph G, where causal
subgraph space Gc is a subset of G, fA(Gc) = A : Gc −→ A customizes the GNN architecture A for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Graph
Embedding Intervention

Disentangled Causal
Subgraph Identification

Invariant
Architecture Customization

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

		𝐎𝟏
		𝐎𝟐
		𝐎𝟑

spurious
subgraph
												𝑮𝐬

causal
subgraph
													𝑮𝐜

𝒄

		𝒔𝟏 		𝒗𝟐

		𝒗𝟏

		𝒗𝟑

		𝒔𝟑

		𝒔𝟐

𝒀𝒄" 𝒀#

𝓛𝒂𝒓𝒄𝒉

learnable

vectors of

operations

		𝐨𝐩𝟐

		𝐨𝐩𝟏

𝓛𝒐𝒑

Graph 𝑮

𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝟏 − 𝝈 (𝓛𝒄𝒑𝒓𝒆𝒅(𝒀𝒄",𝒀) + 𝜽𝟏𝓛𝒂𝒓𝒄𝒉 + 𝜽𝟐𝓛𝒐𝒑) + 𝝈𝓛𝒑𝒓𝒆𝒅(𝒀#, 𝒀)

edge

mask

identification

network 𝑮𝑵𝑵𝟎

shared

graph

encoder

𝑮𝑵𝑵𝟏

𝑮

Figure 1: The framework of our proposed method CARNAS. As for an input graph G, the disen-
tangled causal subgraph identification module abstracts its causal subgraph Gc with disentangled
GNN layers. Then, in the graph embedding intervention module, we conduct several interventions on
Gc with non-causal subgraphs in latent space and obtain Lcpred from the embedding of Gc in the
meanwhile. After that, the invariant architecture customization module aims to deal with distribution
shift by customizing architecture from Gc to attain Ŷ , Lpred, and form Larch, Lop to further constrain
the causal invariant property of Gc. Blue lines present the prediction approach and grey lines show
other processes in the training stage. Additionally, green lines denote the updating process.

causal subgraph Gc, and fY (G,A) = Ŷ : G×A −→ Y outputs the prediction Ŷ . Further, we derive
the following objective function:

min
fC ,fA,fY

σLpred + (1− σ)Lcausal, (2)

Lpred =

Ntr∑
i=1

ℓ
(
FfC(Gi),fA(Gci),fY (Gi,Ai) (Gi) , Yi

)
, (3)

where Lpred guarantees the final prediction performance of the whole model, Lcausal is a regularizer
for causal constraints and σ is the hyper-parameter to adjust the optimization of those two parts.

3 METHOD

We present our proposed method in this section based on the above causal view. Firstly, we present
the disentangled causal subgraph identification module to obtain the causal subgraph for searching
optimal architecture in Section 3.1. Then, we propose the intervention module in Section 3.2, to help
with finding the invariant subgraph that is causally correlated with the optimal architectures, making
the NAS model intrinsically interpretable to some degree. In Section 3.3, we introduce the simulated
customization module which aims to deal with distribution shift by customizing for each graph and
simulating the situation when the causal subgraph is affected by different spurious parts. Finally, we
show the total invariant learning and optimization procedure in Section 3.4.

3.1 DISENTANGLED CAUSAL SUBGRAPH IDENTIFICATION

This module utilizes disentangled GNN layers to capture different latent factors of the graph structure
and further split the input graph instance G into two subgraphs: causal subgraph Gc and non-
causal subgraph Gs. Specifically, considering an input graph G = (V, E), its adjacency matrix is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

D ∈ {0, 1}|V|×|V|, where Di,j = 1 denotes that there exists an edge between node Vi and node
Vj , while Di,j = 0 otherwise. Since optimizing a discrete binary matrix M ∈ {0, 1}|V|×|V| is
unpractical due to the enormous number of subgraph candidates (63), and learning M separately
for each input graph fails in generalizing to unseen test graphs (33), we adopt shared learnable
disentangled GNN layers to comprehensively unveil the latent graph structural features and better
abstract causal subgraphs. Firstly, we denote Q as the number of latent features taken into account,
and learn Q-chunk node representations by Q GNNs:

Z(l) = ∥Qq=1 GNN0

(
Z(l−1)

q ,D
)
, (4)

where Zl
q is the q-th chunk of the node representation at l-th layer, D is the adjacency matrix, and ∥

denotes concatenation. Then, we generate the edge importance scores SE ∈ R|E|×1 with an MLP:

SE = MLP
(
Z(L)

row,Z
(L)
col

)
, (5)

where Z(L) ∈ R|V|×d is the node representations after L layers of disentangled GNN, and Z
(L)
row,Z

(L)
col

are the subsets of Z(L) containing the representations of row nodes and column nodes of edges E
respectively. After that, we attain the causal and non-causal subgraphs by picking out the important
edges through SE :

Ec = Topt(SE), Es = E − Ec, (6)
where Ec and Es denotes the edge sets of Gc and Gs, respectively, and Topt(·) selects the top
t-percentage of edges with the largest edge score values.

3.2 GRAPH EMBEDDING INTERVENTION

After obtaining the causal subgraph Gc and non-causal subgraph Gs of an input graph G, we use
another shared GNN1 to encode those subgraphs so as to do interventions in the same latent space:

Zc = GNN1 (Gc) , Zs = GNN1 (Gs) . (7)

Moreover, a readout layer is placed to aggregate node-level representations into graph-level represen-
tations:

Hc = READOUT(Zc) , Hs = READOUT(Zs) . (8)

Supervised classification for causal subgraphs. We claim that the causal subgraph Gc inferred in
Section 3.1 for finding the optimal GNN architecture is supposed to contain the main characteristic
of graph G’s structure as well as capture the essential part for the final graph classification predicting
task. Hence, we employ a classifier on Hc to construct a supervised classification loss:

Lcpred =

Ntr∑
i=1

ℓ
(
Ŷci , Yi

)
, Ŷci = Φ(Hci) , (9)

where Φ is a classifier, Ŷci is the prediction of graph Gi’s causal subgraph Gci and Yi is the ground
truth label of Gi.

Interventions by non-causal subgraphs. Based on subgraphs’ embedding Hc and Hs, we formu-
late the intervened embedding Hv in the latent space. Specifically, we collect all the representations
of non-causal subgraphs {Hsi}, i ∈ [1, Ntr], corresponding to each input graph {Gi}, i ∈ [1, Ntr],
in the current batch, and randomly sample Ns of them as the candidates {Hsj}, j ∈ [1, Ns] to do
intervention with. As for a causal subgraph Gc with representation Hc, we define the representation
under an intervention as:

do(S = Gsj) : Hvj = (1− µ) ·Hc + µ ·Hsj , j ∈ [1, Ns], (10)

in which µ ∈ (0, 1) is the hyper-parameter to control the intensity of an intervention.

3.3 INVARIANT ARCHITECTURE CUSTOMIZATION

After obtaining graph representations Hc and Hvj , j ∈ [1, Ns], we introduce the method to construct
a specific GNN architecture from a graph representation on the basis of differentiable NAS (31).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Architecture customization. To begin with, we denote the space of operator candidates as O and
the number of architecture layers as K. Then, the ultimate architecture A can be represented as a
super-network:

gk(x) =

|O|∑
u=1

αk
uou(x), k ∈ [1,K], (11)

where x is the input to layer k, ou(·) is the operator from O, αk
u is the mixture coefficient of operator

ou(·) in layer k, and gk(x) is the output of layer k. Thereat, an architecture A can be represented as a
matrix A ∈ RK×|O|, in which Ak,u = αk

u. We learn these coefficients from graph representation H
via trainable prototype vectors opk

u (u ∈ [1, |O|], k ∈ [1,K]), of operators:

αk
u =

exp
(
opk

u
T
H
)

∑|O|
u′=1 exp

(
opk

u′
T
H
) . (12)

In addition, the regularizer for operator prototype vectors:

Lop =
∑
k

∑
u,u′∈[1,|O|],u ̸=u′

cos(opk
u,op

k
u′), (13)

where cos(·, ·) is the cosine distance between two vectors, is engaged to avoid the mode collapse,
following the exploration in (41).

Architectures from causal subgraph and intervention graphs. So far we form the mapping of
fA : G → A in Problem 2. As for an input graph G, we get its optimal architecture Ac with the
matrix Ac based on its causal subgraph’s representation Hc through equation (12), while for each
intervention graph we have Avj based on Hvj , j ∈ [1, Ns] similarly.

The customized architecture Ac is used to produce the ultimate prediction of input graph G by
fY : G×A → Y in Problem 2, and we formulate the main classification loss as:

Lpred =

Ntr∑
i=1

ℓ(Ŷi, Yi), Ŷi = fY (Gi, Aci). (14)

Furthermore, we regard each Avj , j ∈ [1, Ns] as an outcome when causal subgraph Gc is in a specific
environment (treating the intervened part, i.e. non-causal subgraphs, as different environments).
Therefore, the following variance regularizer is proposed as a causal constraint to compel the inferred
causal subgraph Gc to have the steady ability to solely determine the optimal architecture for input
graph instance G:

Larch =
1

Ntr

Ntr∑
i=1

1T ·Vari · 1,Vari = var
({

Avij

})
, j ∈ [1, Ns], (15)

where var(·) calculates the variance of a set of matrix, 1T ·Vari · 1 represents the summation of
elements in matrix Vari.

3.4 OPTIMIZATION FRAMEWORK

Up to now, we have introduced fC : G −→ Gc in section 3.1, fA : Gc −→ A in section 3.2 and 3.3,
fY : G × A −→ Y in section 3.3, and whereby deal with Problem 2. To be specific, the overall
objective function in equation (2) is as below:

Lall = σLpred + (1− σ)Lcausal,Lcausal = Lcpred + θ1Larch + θ2Lop, (16)

where θ1, θ2 and σ are hyper-parameters. Additionally, we adopt a linearly growing σp corresponding
to the epoch number p as:

σp = σmin + (p− 1)
σmax − σmin

P
, p ∈ [1, P], (17)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

where P is the maximum number of epochs. In this way, we can dynamically adjust the training
key point in each epoch by focusing more on the causal-aware part (i.e. identifying suitable causal
subgraph and learning vectors of operators) in the early stages and focusing more on the performance
of the customized super-network in the later stages. We show the dynamic training process and how
σp improve the training and convergence efficiency in Appendix E.3. The overall framework and
optimization procedure of the proposed CARNAS are summarized in Figure 1 and Algorithm 1.

4 EXPERIMENTS

In this section, we present the comprehensive results of our experiments on both synthetic and
real-world datasets to validate the effectiveness of our approach. We also conduct a series of ablation
studies to thoroughly examine the contribution of the components within our framework. More
analysis on experimental results, training efficiency, complexity and sensitivity are in Appendix E.

4.1 EXPERIMENT SETTING

Setting. To ensure reliability and reproducibility, we execute each experiment ten times using
distinct random seeds and present the average results along with their standard deviations. We do not
employ validation dataset for conducting architecture search. The configuration and use of datasets
in our method align with those in other GNN methods, ensuring fairness across all approaches.

Table 1: The test accuracy of all methods on synthetic dataset
Spurious-Motif. Values after ± denote the standard devia-
tions. The best results overall are in bold and the best results
of baselines in each category are underlined separately.

Method b = 0.7 b = 0.8 b = 0.9

GCN 48.39±1.69 41.55±3.88 39.13±1.76

GAT 50.75±4.89 42.48±2.46 40.10±5.19

GIN 36.83±5.49 34.83±3.10 37.45±3.59

SAGE 46.66±2.51 44.50±5.79 44.79±4.83

GraphConv 47.29±1.95 44.67±5.88 44.82±4.84

MLP 48.27±1.27 46.73±3.48 46.41±2.34

ASAP 54.07±13.85 48.32±12.72 43.52±8.41

DIR 50.08±3.46 48.22±6.27 43.11±5.43

Random 45.92±4.29 51.72±5.38 45.89±5.09

DARTS 50.63±8.90 45.41±7.71 44.44±4.42

GNAS 55.18±18.62 51.64±19.22 37.56±5.43

PAS 52.15±4.35 43.12±5.95 39.84±1.67

GRACES 65.72±17.47 59.57±17.37 50.94±8.14

DCGAS 87.68±6.12 75.45±17.40 61.42±16.26

CARNAS 94.41±4.58 88.04±13.77 87.15±11.85

Baselines. We compare our model
with 12 baselines from the following
two different categories:

• Manually design GNNs. We in-
corporate widely recognized ar-
chitectures GCN (22), GAT (49),
GIN (59), SAGE (15), and Graph-
Conv (37), and MLP into our
search space as candidate opera-
tors as well as baseline methods in
our experiments. Apart from that,
we include two recent advance-
ments: ASAP (42) and DIR (56),
which is specifically proposed for
out-of-distribution generalization.

• Graph Neural Architecture
Search. For classic NAS, we
compare with DARTS (31), a
differentiable architecture search
method, and random search.
For graph NAS, we explore a
reinforcement learning-based
method GNAS (11), and PAS (51) that is specially designed for graph classification tasks.
Additionally, we compare two state-of-the-art graph NAS methods that are specially designed for
non-i.i.d. graph datasets, including GRACES (41) and DCGAS (61).

4.2 ON SYNTHETIC DATASETS

Datasets. The synthetic dataset, Spurious-Motif (41; 56; 63), encompasses 18,000 graphs, each
uniquely formed by combining a base shape (denoted as Tree, Ladder, or Wheel with S = 0, 1, 2) with
a motif shape (represented as Cycle, House, or Crane with C = 0, 1, 2). Notably, the classification of
each graph relies solely on its motif shape, despite the base shape typically being larger. This dataset
is particularly designed to study the effect of distribution shifts, with a distinct bias introduced solely
on the training set through the probability distribution P (S) = b× I(S = C) + 1−b

2 × I(S ̸= C),
where b modulates the correlation between base and motif shapes, thereby inducing a deliberate shift
between the training set and testing set, where all base and motif shapes are independent with equal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

probabilities. We choose b = 0.7/0.8/0.9, enabling us to explore our model’s performance under
various significant distributional variations. The effectiveness of our approach is measured using
accuracy as the evaluation metric on this dataset.

Results. Table 1 presents the experimental results on three synthetic datasets, revealing that our
model significantly outperforms all baseline models across different scenarios.

Specifically, we observe that the performance of all GNN models is particularly poor, suggesting
their sensitivity to spurious correlations and their inability to adapt to distribution shifts. However,
DIR (56), designed specifically for non-I.I.D. datasets and focusing on discovering invariant rationale
to enhance generalizability, shows pretty well performance compared to most of the other GNN
models. This reflects the feasibility of employing causal learning to tackle generalization issues.

Moreover, NAS methods generally yield slightly better outcomes than manually designed GNNs in
most scenarios, emphasizing the significance of automating architecture by learning the correlations
between input graph data and architecture to search for the optimal GNN architecture. Notably,
methods specifically designed for non-I.I.D. datasets, such as GRACES (41), DCGAS (61), and our
CARNAS, exhibit significantly less susceptibility to distribution shifts compared to NAS methods
intended for I.I.D. data.

Among these, our approach consistently achieves the best performance across datasets with various
degrees of shifts, demonstrating the effectiveness of our method in enhancing Graph NAS perfor-
mance, especially in terms of out-of-distribution generalization, which is attained by effectively
capturing causal invariant subgraphs to guide the architecture search process, and filtering out spurious
correlations meanwhile.

4.3 ON REAL-WORLD DATASETS

Table 2: The test ROC-AUC of all methods on real-world
datasets OGBG-Mol*. Values after ± denote the standard
deviations. The best results overall are in bold and the best re-
sults of baselines in each category are underlined separately.

Method HIV SIDER BACE

GCN 75.99±1.19 59.84±1.54 68.93±6.95

GAT 76.80±0.58 57.40±2.01 75.34±2.36

GIN 77.07±1.49 57.57±1.56 73.46±5.24

SAGE 75.58±1.40 56.36±1.32 74.85±2.74

GraphConv 74.46±0.86 56.09±1.06 78.87±1.74

MLP 70.88±0.83 58.16±1.41 71.60±2.30

ASAP 73.81±1.17 55.77±1.18 71.55±2.74

DIR 77.05±0.57 57.34±0.36 76.03±2.20

DARTS 74.04±1.75 60.64±1.37 76.71±1.83

PAS 71.19±2.28 59.31±1.48 76.59±1.87

GRACES 77.31±1.00 61.85±2.58 79.46±3.04

DCGAS 78.04±0.71 63.46±1.42 81.31±1.94

CARNAS 78.33±0.64 83.36±0.62 81.73±2.92

Datasets. The real-world datasets
OGBG-Mol*, including Ogbg-
molhiv, Ogbg-molbace, and Ogbg-
molsider (16; 58), feature 41127,
1513, and 1427 molecule graphs,
respectively, aimed at molecular
property prediction. The division
of the datasets is based on scaf-
fold values, designed to segregate
molecules according to their struc-
tural frameworks, thus introducing a
significant challenge to the prediction
of graph properties. The predictive
performance of our approach across
these diverse molecular structures
and properties is measured using
ROC-AUC as the evaluation metric.

Results. Results from real-world
datasets are detailed in Table 2, where
our CARNAS model once again sur-
passes all baselines across three dis-
tinct datasets, showcasing its ability to handle complex distribution shifts under various conditions.

For manually designed GNNs, the optimal model varies across different datasets: GIN achieves
the best performance on Ogbg-molhiv, GCN excels on Ogbg-molsider, and GraphConv leads on
Ogbg-molbace. This diversity in performance confirms a crucial hypothesis in our work, that different
GNN models are predisposed to perform well on graphs featuring distinct characteristics.

In the realm of NAS models, we observe that DARTS and PAS, proposed for I.I.D. datasets, perform
comparably to manually crafted GNNs, whereas GRACES, DCGAS and our CARNAS, specifically
designed for non-I.I.D. datasets outshine other baselines. Our approach reaches the top performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

across all datasets, with a particularly remarkable breakthrough on Ogbg-molsider, highlighting our
method’s superior capability in adapting to and excelling within diverse data environments.

4.4 ABLATION STUDY

In this section, we conduct ablation studies to examine the effectiveness of each vital component in
our framework. Detailed settings are in Appendix D.3.1.

b = 0.740

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

b = 0.840

50

60

70

80

90

100

b = 0.940

50

60

70

80

90

100

CARNAS w/o arch w/o cpred w/o arch & cpred

Figure 2: Results of ablation studies on synthetic
datasets, where ‘w/o Larch’ removes Larch from
the overall loss in Eq. (16), ‘w/o Lcpred’ removes
Lcpred, and ‘w/o Larch & Lcpred’ removes both of
them. The error bars report the standard deviations.
Besides, the average and standard deviations of the
best-performed baseline on each dataset are denoted
as the dark and light thick dash lines respectively.

Results. From Figure 2, we have the follow-
ing observations. First of all, our proposed
CARNAS outperforms all the variants as well
as the best-performed baseline on all datasets,
demonstrating the effectiveness of each com-
ponent of our proposed method. Secondly, the
performance of ‘CARNAS w/o Larch’, ‘CAR-
NAS w/o Lcpred’ and ‘CARNAS w/o Larch &
Lcpred’ dropped obviously on all datasets com-
paring with the full CARNAS , which validates
that our proposed modules help the model to
identify stable causal components from com-
prehensive graph feature and further guide the
Graph NAS process to enhance its performance
significantly especially under distribution shifts.
What’s more, though ‘CARNAS w/oLarch’ de-
creases, its performance still surpasses the best
results in baselines across all datasets, indicat-
ing that even if the invariance of the influence
of the causal subgraph on the architecture is
not strictly restricted by Larch, it is effective to use merely the causal subgraph guaranteed by Lcpred

to contain the important information of the input graph and use it to guide the architecture search.

5 RELATED WORK

Neural Architecture Search (NAS) automates creating optimal neural networks using RL-based (76),
evolutionary (43), and gradient-based methods (31). GraphNAS (11) inspired studies on GNN
architectures for graph classification in various datasets (41; 61). Real-world data differences between
training and testing sets impact GNN performance (46; 27; 70; 71). Studies (28; 9) identify invariant
subgraphs to mitigate this, usually with fixed GNN encoders. Our method automates designing
generalized graph architectures by discovering causal relationships. Causal learning explores variable
interconnections (40), enhancing deep learning (65). In graphs, it includes interventions on non-
causal components (57), causal and bias subgraph decomposition (9), and ensuring out-of-distribution
generalization (6; 72; 73). These methods use fixed GNN architectures, while we address distribution
shifts by discovering causal relationships between graphs and architectures.

6 CONCLUSION

In this paper, we address distribution shifts in graph neural architecture search (Graph NAS) from a
causal perspective. Existing methods struggle with distribution shifts between training and testing sets
due to spurious correlations. To mitigate this, we introduce Causal-aware Graph Neural Architecture
Search (CARNAS). Our approach identifies stable causal structures and their relationships with
architectures. We propose three key modules: Disentangled Causal Subgraph Identification, Graph
Embedding Intervention, and Invariant Architecture Customization. These modules leverage causal
relationships to search for generalized graph neural architectures. Experiments on synthetic and real-
world datasets show that CARNAS achieves superior out-of-distribution generalization, highlighting
the importance of causal awareness in Graph NAS.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

[1] Raghavendra Addanki, Shiva Kasiviswanathan, Andrew McGregor, and Cameron Musco. Efficient
intervention design for causal discovery with latents. In International Conference on Machine Learning,
pages 63–73. PMLR, 2020.

[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[3] Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre
Drouin. Differentiable causal discovery from interventional data. Advances in Neural Information
Processing Systems, 33:21865–21877, 2020.

[4] Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang, Zheng-Jun Zha, Li Su, and Qingming Huang.
Rethinking graph neural architecture search from message-passing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6657–6666, 2021.

[5] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In International
Conference on Machine Learning, pages 1448–1458. PMLR, 2020.

[6] Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu, Bo Han,
and James Cheng. Learning causally invariant representations for out-of-distribution generalization on
graphs. Advances in Neural Information Processing Systems, 35:22131–22148, 2022.

[7] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbour-
hood aggregation for graph nets. Advances in Neural Information Processing Systems, 33:13260–13271,
2020.

[8] Abbas El Gamal and Young-Han Kim. Network information theory. Cambridge university press, 2011.

[9] Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, and Jian Tang. Debiasing graph neural networks via
learning disentangled causal substructure. In NeurIPS, 2022.

[10] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Khar-
lamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs. Advances in
neural information processing systems, 33:22092–22103, 2020.

[11] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search.
In International joint conference on artificial intelligence. International Joint Conference on Artificial
Intelligence, 2021.

[12] Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph neural architecture
search. In International Conference on Machine Learning, pages 7968–7981. PMLR, 2022.

[13] Chaoyu Guan, Xin Wang, and Wenwu Zhu. Autoattend: Automated attention representation search. In
International conference on machine learning, pages 3864–3874. PMLR, 2021.

[14] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
Advances in Neural Information Processing Systems, 35:2059–2073, 2022.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020.

[17] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

[18] Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur. Reinforcement learning
for neural architecture search: A review. Image and Vision Computing, 89:57–66, 2019.

[19] Amin Jaber, Murat Kocaoglu, Karthikeyan Shanmugam, and Elias Bareinboim. Causal discovery from
soft interventions with unknown targets: Characterization and learning. Advances in neural information
processing systems, 33:9551–9561, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

[20] Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong, Lanqing
Li, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution (ood) dataset curator and benchmark for
ai-aided drug discovery–a focus on affinity prediction problems with noise annotations. arXiv preprint
arXiv:2201.09637, 2022.

[21] Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu, Yu Rong,
Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution dataset curator and benchmark for ai-aided drug
discovery–a focus on affinity prediction problems with noise annotations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 8023–8031, 2023.

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2016.

[23] Wanzeng Kong, Min Qiu, Menghang Li, Xuanyu Jin, and Li Zhu. Causal graph convolutional neural
network for emotion recognition. IEEE Transactions on Cognitive and Developmental Systems, 2022.

[24] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In
International Conference on Machine Learning, pages 5815–5826. PMLR, 2021.

[25] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard Ghanem. Sgas:
Sequential greedy architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1620–1630, 2020.

[26] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Ood-gnn: Out-of-distribution generalized graph
neural network. IEEE Transactions on Knowledge and Data Engineering, 2022.

[27] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-of-distribution generalization on graphs: A
survey. arXiv preprint arXiv:2202.07987, 2022.

[28] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations for
out-of-distribution generalization. Advances in Neural Information Processing Systems, 35:11828–11841,
2022.

[29] Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant rationale
discovery inspire graph contrastive learning. In ICML, pages 13052–13065, 2022.

[30] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with environment-
based augmentations. In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2022.

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations, 2018.

[32] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey on
evolutionary neural architecture search. IEEE transactions on neural networks and learning systems, 2021.

[33] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. Advances in neural information processing systems,
33:19620–19631, 2020.

[34] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolutional
networks. In International conference on machine learning, pages 4212–4221. PMLR, 2019.

[35] Jovana Mitrovic, Brian McWilliams, Jacob C Walker, Lars Holger Buesing, and Charles Blundell. Repre-
sentation learning via invariant causal mechanisms. In ICLR, 2020.

[36] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663,
2020.

[37] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pages 4602–4609, 2019.

[38] Judea Pearl. Causality. Cambridge university press, 2009.

[39] Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress, 19(2):3,
2000.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

[40] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer. John
Wiley & Sons, 2016.

[41] Yijian Qin, Xin Wang, Ziwei Zhang, Pengtao Xie, and Wenwu Zhu. Graph neural architecture search under
distribution shifts. In International Conference on Machine Learning, pages 18083–18095. PMLR, 2022.

[42] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for learning
hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5470–5477, 2020.

[43] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. Large-scale evolution of image classifiers. In International conference on machine
learning, pages 2902–2911. PMLR, 2017.

[44] Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for causal
transfer learning. Journal of Machine Learning Research, 19(36):1–34, 2018.

[45] Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Laurence T Yang. Neighbor contrastive learning on
learnable graph augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 9782–9791, 2023.

[46] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv:2108.13624, 2021.

[47] Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal attention for
interpretable and generalizable graph classification. Proceedings of the 28th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2022.

[48] Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and Xiangnan
He. Unleashing the power of graph data augmentation on covariate distribution shift. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[49] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al.
Graph attention networks. stat, 1050(20):10–48550, 2017.

[50] Hao Wang, Ruonan Liu, Steven X Ding, Qinghua Hu, Zengxiang Li, and Hongkuan Zhou. Causal-trivial
attention graph neural network for fault diagnosis of complex industrial processes. IEEE Transactions on
Industrial Informatics, 2023.

[51] Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for graph
classification. In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pages 2091–2100, 2021.

[52] Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and Shirui Pan. Graph learning
under distribution shifts: A comprehensive survey on domain adaptation, out-of-distribution, and continual
learning. arXiv preprint arXiv:2402.16374, 2024.

[53] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations, 2021.

[54] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. International Conference on Learning Representations, 2022.

[55] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat seng Chua. Discovering invariant rationales
for graph neural networks. In ICLR, 2022.

[56] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales
for graph neural networks. In International Conference on Learning Representations, 2021.

[57] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales
for graph neural networks. In ICLR, 2022.

[58] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical
science, 9(2):513–530, 2018.

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
In International Conference on Learning Representations, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

[60] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-Ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. In International Conference
on Learning Representations, 2020.

[61] Yang Yao, Xin Wang, Yijian Qin, Ziwei Zhang, Wenwu Zhu, and Hong Mei. Data-augmented curriculum
graph neural architecture search under distribution shifts. 2024.

[62] Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and Wanli Ouyang. beta-darts: Beta-decay
regularization for differentiable architecture search. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10864–10873. IEEE, 2022.

[63] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

[64] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in neural information processing systems, 33:5812–5823, 2020.

[65] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, and Qianru Sun. Causal intervention for
weakly-supervised semantic segmentation. NeurIPS, pages 655–666, 2020.

[66] Jing Zhang, Xueying Zhang, Guijun Chen, and Qing Zhao. Granger-causality-based multi-frequency band
eeg graph feature extraction and fusion for emotion recognition. Brain Sciences, 12(12):1649, 2022.

[67] Jing Zhang, Xueying Zhang, and Qing Zhao. Improved graph convolutional neural networks based on
granger causality analysis for eeg emotion recognition. In 2022 International Conference on Computer
Engineering and Artificial Intelligence (ICCEAI), pages 684–688. IEEE, 2022.

[68] Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong Li, and
Kaize Ding. A survey of deep graph learning under distribution shifts: from graph out-of-distribution
generalization to adaptation. arXiv preprint arXiv:2410.19265, 2024.

[69] Shengyu Zhang, Kun Kuang, Jiezhong Qiu, Jin Yu, Zhou Zhao, Hongxia Yang, Zhongfei Zhang, and Fei
Wu. Stable prediction on graphs with agnostic distribution shift. arXiv preprint arXiv:2110.03865, 2021.

[70] Zeyang Zhang, Xingwang Li, Fei Teng, Ning Lin, Xueling Zhu, Xin Wang, and Wenwu Zhu. Out-of-
distribution generalized dynamic graph neural network for human albumin prediction. In IEEE International
Conference on Medical Artificial Intelligence, 2023.

[71] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph neural
networks under spatio-temporal distribution shift. In Advances in Neural Information Processing Systems,
2022.

[72] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, and Wenwu Zhu. Out-of-distribution generalized
dynamic graph neural network with disentangled intervention and invariance promotion. arXiv preprint
arXiv:2311.14255, 2023.

[73] Zeyang Zhang, Xin Wang, Ziwei Zhang, Zhou Qin, Weigao Wen, Hui Xue, Haoyang Li, and Wenwu Zhu.
Spectral invariant learning for dynamic graphs under distribution shifts. In Advances in Neural Information
Processing Systems, 2023.

[74] Zeyang Zhang, Ziwei Zhang, Xin Wang, Yijian Qin, Zhou Qin, and Wenwu Zhu. Dynamic heterogeneous
graph attention neural architecture search. In Thirty-Seventh AAAI Conference on Artificial Intelligence,
2023.

[75] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data augmentation
for graph neural networks. In Proceedings of the aaai conference on artificial intelligence, volume 35,
pages 11015–11023, 2021.

[76] Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A NOTATION

Table 3: Important Notation

Notation Meaning
G, Y Graph space and Label space
Gtr, Gte Training graph dataset, Testing graph dataset
Gi, Yi Graph instance i, Label of graph instance i
Gc, Gs Causal subgraph and Non-causal subgraph
D Adjacency matrix of graph G
Z Node representations
SE Edge importance scores
Ec, Es Edge set of the causal subgraph and the non-causal subgraph
Hc, Hs Graph-level representation of causal subgraph and non-causal subgraph
Ŷci Prediction of graph Gi’s causal subgraph Gci
Hv Intervened graph representation
O, ou(·) Space of operator candidates, operator from O
K Number of architecture layers
A Search space of GNN architectures
A, A An architecture represented as a super-network; matrix of architecture A
gk(x) Output of layer k in the architecture.
αk
u Mixture coefficient of operator ou(·) in layer k

opk
u Trainable prototype vectors of operators

B ALGORITHM

The overall framework and optimization procedure of the proposed CARNAS are summarized in
Figure 1 and Algorithm 1, respectively.
Algorithm 1 The overall algorithm of CARNAS
Require: Training Dataset Gtr,

Hyper-parameters t in Eq. (6), µ in Eq. (10), θ1, θ2 in Eq. (16)
1: Initialize all trainable parameters
2: for p = 1, . . . , P do
3: Set σp as Eq. (17)
4: Derive causal and non-causal subgraphs as Eq. (4) (5) (6)
5: Calculate graph representations of causal and non-causal subgraphs as Eq. (7) (8)
6: Calculate Lcpred using Eq. (9)
7: Sample Ns non-causal subgraphs as candidates
8: for causal subgraph Gc of graph G in Gtr do
9: Do interventions on Gc in latent space as Eq. (10)

10: Calculate architecture matrix Ac and {Avj} from causal subgraph and their intervention
graphs as Eq. (12)

11: end for
12: Calculate Lop using Eq. (13)
13: Calculate Lpred using Eq. (11) (14)
14: Calculate Larch using Eq. (15))
15: Calculate the overall loss Lall using Eq. (16)
16: Update parameters using gradient descends
17: end for

C THEORETICAL ANALYSIS

In this section, in order to more rigorously establish our method, we provide a theoretical analysis
about the problem of identifying and leveraging causal graph-architecture relationship to find the
optimal architecture.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

To begin with, since causal relationships are, by definition, invariant across environments, we make
the below assumption on our causal invariant subgraph generator fC(G) = Gc : G −→ Gc, following
previous literature on invariant learning (44; 28).

Assumption 1 There exists an optimal causal invariant subgraph generator fC(G) satisfying:

a. Invariance property: For all e, e′ ∈ supp(E), P e(A∗|fC(G)) = P e′(A∗|fC(G)).

b. Sufficiency property: A∗ = fA(fC(G)) + ϵ, where fA(·) customizes the GNN architecture
from a graph, ϵ ⊥ G (indicating statistical independence), and ϵ is random noise.

Invariance assumption indicating that the subgraph generator fC(G) is capable of generating invariant
subgraphs across different environments e, e′ ∈ supp(E), where E is a random variable of all
environments. This ensures that the conditional distribution P (A∗|fC(G)) remains consistent and
unaffected by the environment. Sufficiency assumption demonstrates that the subgraph generated by
fC(G) has sufficient expressive power to enable prediction of the optimal architecture A∗. This is
achieved through fA(·), customizing the GNN architecture from a graph, while the added random
noise ϵ is independent of the graph G.

Then, how can we get the optimal causal invariant subgraph generator? Following previous work(28),
we can prove that it can be obtain through maximizing I(A∗; fC(G)), i.e. the mutual information
between optimal architecture and the generated subgraph.

Theorem 1 (Optimal Generator of Causal Subgraphs) A generator fC(G) is the optimal genera-
tor that satisfies Assumption 1 if and only if it is the maximal causal subgraph generator, i.e.,

f∗
C = arg max

fC∈FE
I(A∗; fC(G)), (18)

where FE is the subgraph generator set with related to the random vector of all environments, and
I(·; ·) is the mutual information between the optimal architecture A∗ and the generated causal
subgraph.

Proof. Let f̂C = argmaxfC∈FE I(A∗; fC(G)). From the invariance property in Assumption 1,
it follows that f∗

C ∈ FE . To prove the theorem, we show that: I(A∗; f̂C(G)) ≤ I(A∗; f∗
C(G)),

which implies f̂C = f∗
C . Using the functional representation lemma (8), any random variable X2

can be expressed as a function of another random variable X1 and an independent random variable
X3. Applying this to f∗

C(G) and f̂C(G), there exists a f ′
C(G) such that f ′

C(G) ⊥ f∗
C(G) and

f̂C(G) = γ(f∗
C(G), f ′

C(G)), where γ(·) is a deterministic function. Then, the mutual information
can be decomposed as follows:

I(A∗; f̂C(G)) = I(A∗; γ(f∗
C(G), f ′

C(G)))

≤ I(A∗; f∗
C(G), f ′

C(G))

= I(fA(f
∗
C(G)); f∗

C(G), f ′
C(G))

= I(fA(f
∗
C(G)); f∗

C(G))

= I(A∗; f∗
C(G)),

(19)

which completes the proof.

Since maximizing I(A∗; fC(G)) is difficult, we transform it into anther way which will be introduced
in later passage.

Next, we show the theorem that guide us to optimize the model, represented as Q, that can construct
optimal architecture A∗ for graph instance G under distribution shifts. The prediction is based on
the causal subgraph G∗

c , which delineates the causal graph-architecture relationship. We denote the
conditional distribution modeled by Q as q(A∗|G∗

c).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Theorem 2 Let f∗
C be the optimal causal invariant subgraph generator from Assumption 1, and let

G∗
c = f∗

C(G) and G∗
s = G \G∗

c . Then, we can get the optimal model Q under distribution shifts by
minimizing the following objective:

minE
[
log

p(A∗|G∗
c)

q(A∗|G∗
c)

]
+ I(G∗

s;A
∗|G∗

c). (20)

Here, I(G∗
s;A

∗|G∗
c) quantifies the spurious correlation between G∗

s and A∗, which the model need
to ignore, and the first term ensures that q(A∗|G∗

c) closely matches p(A∗|G∗
c).

Proof.

From the sufficiency assumption of f∗
C in Assumption 1, we know that: A∗ = fA(fC(G))+ ϵ, where

ϵ ⊥ G. This implies that A∗ is conditionally independent of G∗
s (i.e., the non-causal subgraph) given

G∗
c . Therefore, the full graph G = (G∗

c , G
∗
s) satisfies:

P (A∗|G) = P (A∗|G∗
c). (21)

Additionally, by the invariance property, for any e, e′ ∈ supp(E), the conditional distribution of
A∗ given G∗

c remains invariant across environments: P e(A∗|G∗
c) = P e′(A∗|G∗

c). This invariance
guarantees that Q will generalize well under distribution shifts caused by changes in the environment,
when q(A∗|G∗

c) approximates the stable p(A∗|G∗
c).

To approximate p(A∗|G∗
c) with q(A∗|G∗

c), we minimize the negative conditional log-likelihood of
the observed data:

−ℓ = −
n∑

i=1

log q(A∗
i |G∗

ci). (22)

Expanding this objective using G = (G∗
c , G

∗
s), we rewrite it as:

−ℓ =
n∑

i=1

log
p(A∗

i |G∗
ci)

q(A∗
i |G∗

ci)
+

n∑
i=1

log
p(A∗

i |Gi)

p(A∗
i |G∗

ci)
−

n∑
i=1

log p(A∗
i |Gi) (23)

= E
[
log

p(A∗|G∗
c)

q(A∗|G∗
c)

]
+ E

[
log

p(A∗|G)

p(A∗|G∗
c)

]
− E [log p(A∗|G)] . (24)

The third term is irreducible constant inherent in the dataset, so we omit it when optimizing. Then,
we decompose G into (G∗

c , G
∗
s) and rewrite the second term as:

E
[
log

p(A∗|G)

p(A∗|G∗
c)

]
= E

[
log

p(A∗|G∗
c , G

∗
s)

p(A∗|G∗
c)

]
(25)

=

n∑
i=1

p(G∗
ci , G

∗
si , A

∗
i) log

p(A∗
i |G∗

ci , G
∗
si)

p(A∗
i |G∗

ci)
(26)

=

n∑
i=1

p(G∗
ci , G

∗
si , A

∗
i) log

p(A∗
i |G∗

ci , G
∗
si)p(G

∗
si |G

∗
ci)

p(A∗
i |G∗

ci)p(G
∗
si |G∗

ci)
(27)

=

n∑
i=1

p(G∗
ci , G

∗
si , A

∗
i) log

p(G∗
si , A

∗
i |G∗

ci)

p(A∗
i |G∗

ci)p(G
∗
si |G∗

ci)
(28)

= I(G∗
s;A

∗|G∗
c). (29)

Thus, the final objective to optimize q(A∗|G∗
c) is:

minE
[
log

p(A∗|G∗
c)

q(A∗|G∗
c)

]
+ I(G∗

s;A
∗|G∗

c), (30)

where the second term, I(G∗
s;A

∗|G∗
c), measures the residual spurious correlation between G∗

s and
A∗ given G∗

c .

This concludes the proof.

However, this objective is challenging to optimize directly in practice. To address this, we analyze
each term intuitively and explain how our method is derived from the theorem.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

The first term, E
[
log

p(A∗|G∗
c)

q(A∗|G∗
c)

]
, ensures that the model accurately approximates the true conditional

distribution p(A∗|G∗
c) based on the causal subgraph G∗

c . Since the optimal architecture A∗ is defined
as the one achieving the best predictive performance on label Y , we indirectly optimize the first term
E
[
log

p(A∗|G∗
c)

q(A∗|G∗
c)

]
by focusing on label’s prediction performance. Specifically, we minimize Lpred

(Equation 14), which measures the loss between the ground-truth label and the prediction from the
learned optimal architecture A∗/Ac. This surrogate loss guides q(A∗|G∗

c) to approximate p(A∗|G∗
c),

as A∗ is inherently tied to the optimal predictive performance on final task.

The second term I(G∗
s;A

∗|G∗
c) represents the conditional mutual information between the optimal

architecture A∗ and the spurious subgraph G∗
s , given the causal subgraph G∗

c . Minimizing this term
encourages the model to reduce its reliance on the spurious subgraph G∗

s when predicting the optimal
architecture, given G∗

c . This motivates the use of Larch in Equation 15, which measures the variance
of simulated architectures corresponding to intervention graphs formed by combining the causal
subgraph with different spurious subgraphs. By reducing this variance, the model is encouraged to
rely solely on the causal subgraph G∗

c for determining the optimal architecture, ensuring that the
causal subgraph has a stable and consistent predictive capability across varying spurious components
in input graph G. Then, we prove that I(G∗

s;A
∗|G∗

c) = I(G;A∗)− I(G∗
c ;A

∗):

Proof. By the chain rule of mutual information, we have

I(G;A∗) = I(G∗
c , G

∗
s;A

∗) = I(G∗
c ;A

∗) + I(G∗
s;A

∗|G∗
c), (31)

where G = (G∗
c , G

∗
s). Rearranging the equation, we obtain

I(G∗
s;A

∗|G∗
c) = I(G;A∗)− I(G∗

c ;A
∗). (32)

Thus, minimizing I(G∗
s;A

∗|G∗
c) in turn encourages maximizing I(A∗; fC(G)), which proved to lead

to optimizing the causal subgraph generator in Theorem 1.

Therefore, we propose to jointly optimize causal graph-architecture relationship and architecture
search by offering an end-to-end training strategy for extracting and utilizing causal relationships
between graph data and architecture, which is stable under distribution shifts, during the architecture
search process, thereby enhancing the model’s capability of OOD generalization.

D REPRODUCIBILITY DETAILS

D.1 DEFINITION OF SEARCH SPACE

The number of layers in our model is predetermined before training, and the type of operator for each
layer can be selected from our defined operator search space O. We incorporate widely recognized
architectures GCN, GAT, GIN, SAGE, GraphConv, and MLP into our search space as candidate
operators in our experiments. This allows for the combination of various sub-architectures within a
single model, such as using GCN in the first layer and GAT in the second layer. Furthermore, we
consistently use standard global mean pooling at the end of the GNN architecture to generate a global
embedding.

D.2 DATASETS DETAILS

We utilize synthetic SPMotif datasets, which are characterized by three distinct degrees of distribution
shifts, and three different real-world datasets, each with varied components, following previous
works (41; 61; 56). Based on the statistics of each dataset as shown in Table 4, we conducted a
comprehensive comparison across various scales and graph sizes. This approach has empirically
validated the scalability of our model.

Detailed description for real-world datasets The real-world datasets are 3 molecular property
prediction datasets in OGB (16), and are adopted from the MoleculeNet (58). Each graph represents
a molecule, where nodes are atoms, and edges are chemical bonds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 4: Statistics for different datasets.

Graphs Avg. Nodes Avg. Edges

ogbg-molhiv 41127 25.5 27.5
ogbg-molsider 1427 33.6 35.4
ogbg-molbace 1513 34.1 36.9
SPMotif-0.7/0.8/0.9 18000 26.1 36.3

• The HIV dataset was introduced by the Drug Therapeutics Program (DTP) AIDS Antiviral Screen,
which tested the ability to inhibit HIV replication for over 40000 compounds. Screening results
were evaluated and placed into 2 categories: inactive (confirmed inactive CI) and active (confirmed
active CA and confirmed moderately active CM).

• The Side Effect Resource (SIDER) is a database of marketed drugs and adverse drug reactions
(ADR). The version of the SIDER dataset in DeepChem has grouped drug side-effects into 27
system organ classes following MedDRA classifications measured for 1427 approved drugs
(following previous usage).

• The BACE dataset provides quantitative (IC50) and qualitative (binary label) binding results for a
set of inhibitors of human β-secretase 1 (BACE-1). It merged a collection of 1522 compounds
with their 2D structures and binary labels in MoleculeNet, built as a classification task.

The division of the datasets is based on scaffold values, designed to segregate molecules according
to their structural frameworks, thus introducing a significant challenge to the prediction of graph
properties.

D.3 DETAILED HYPER-PARAMETER SETTINGS

We fix the number of latent features Q = 4 in Eq. (4), number of intervention candidates Ns as batch
size in Eq. (10), σmin = 0.1, σmax = 0.7, P = 100 in Eq. (17), and the tuned hyper-parameters for
each dataset are as in Table 5.

Table 5: Hyper-parameter settings

Dataset t in Eq. (6) µ in Eq. (10) θ1 in Eq. (16) θ2 in Eq. (16)

SPMotif-0.7/0.8/0.9 0.85 0.26 0.36 0.010
ogbg-molhiv 0.46 0.68 0.94 0.007

ogbg-molsider 0.40 0.60 0.85 0.005
ogbg-molbace 0.49 0.54 0.80 0.003

D.3.1 DETAILED SETTINGS FOR ABLATION STUDY

We compare the following ablated variants of our model in Section 4.4:

• ‘CARNAS w/o Larch’ removes Larch from the overall loss in Eq. (16). In this way, the con-
tribution of the graph embedding intervention module together with the invariant architecture
customization module to improve generalization performance by restricting the causally invariant
nature for constructing architectures of the causal subgraph is removed.

• ‘CARNAS w/o Lcpred’ removes Lcpred, thereby relieving the supervised restriction on causal
subgraphs for encapsulating sufficient graph features, which is contributed by disentangled causal
subgraph identification module together with the graph embedding intervention module to enhance
the learning of causal subgraphs.

• ‘CARNAS w/o Larch & Lcpred’ further removes both of them.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

E DEEPER ANALYSIS

E.1 SUPPLEMENTARY ANALYSIS OF THE EXPERIMENTAL RESULTS

Sythetic datasets. We notice that the performance of CARNAS is way better than DIR (56), which
also introduces causality in their method, on synthetic datasets. We provide an explanation as follows:
Our approach differs from and enhances upon DIR in several key points. Firstly, unlike DIR, which
uses normal GNN layers for embedding nodes and edges to derive a causal subgraph, we employ
disentangled GNN. This allows for more effective capture of latent features when extracting causal
subgraphs. Secondly, while DIR focuses on the causal relationship between a graph instance and
its label, our study delves into the causal relationship between a graph instance and its optimal
architecture, subsequently using this architecture to predict the label. Additionally, we incorporate
NAS method, introducing an invariant architecture customization module, which considers the impact
of architecture on performance. Based on these advancements, our method may outperform DIR.

60 65 70 75 80 85 90
AUC

CARNAS

w/o arch

w/o cpred

w/o arch \& cpred

Figure 3: Results of ablation studies on SIDER, where ‘w/o
Larch’ removes Larch from the overall loss in Eq. (16),
‘w/o Lcpred’ removes Lcpred, and ‘w/o Larch & Lcpred’
removes both of them. The error bars report the standard
deviations. Besides, the average and standard deviations
of the best-performed baseline on each dataset are denoted
as the dark and light thick dash lines respectively.

Real-world datasets. We also notice
that our methods improves a lot on the
performance for the second real-world
dataset SIDER. We further conduct an
ablation study on SIDER to confirm that
each proposed component contributes
to its performance, as present in Fig-
ure 3. The model ‘w/o Larch’ shows
a slight decrease in performance, while
‘w/o Lcpred’ exhibits a substantial de-
cline. This indicates that both restrict-
ing the invariance of the influence of the
causal subgraph on the architecture via
Larch, and ensuring that the causal sub-
graph retains crucial information from
the input graph via Lcpred, are vital for
achieving high performance on SIDER,
especially the latter which empirically
proves to be exceptionally effective.

E.2 COMPLEXITY ANALYSIS

In this section, we analyze the complexity of our proposed method in terms of its computational time
and the quantity of parameters that require optimization. Let’s denote by |V | the number of nodes in a
graph, by |E| the number of edges, by |O| the size of search space, and by d the dimension of hidden
representations within a traditional graph neural network (GNN) framework. In our approach, d0
represents the dimension of the hidden representations within the identification network GNN0, d1
represents the dimension of the hidden representations within the shared graph encoder GNN1, and
ds denotes the dimension within the tailored super-network. Notably, d0 encapsulates the combined
dimension of Q chunks, meaning the dimension per chunk is d0/Q.

E.2.1 TIME COMPLEXITY ANALYSIS

For most message-passing GNNs, the computational time complexity is traditionally O(|E|d+|V |d2).
Following this framework, the GNN0 in our model exhibits a time complexity of O(|E|d0 + |V |d20),
and the GNN1 in our model exhibits a time complexity of O(|E|d1 + |V |d21). The most computa-
tionally intensive operation in the invariant architecture customization module, which involves the
computation of Lop, leads to a time complexity of O(|O|2d1). The time complexity attributed to the
customized super-network is O(|O|(|E|ds + |V |d2s)). Consequently, the aggregate time complexity
of our method can be summarized as O(|E|(d0 + d1 + |O|ds) + |V |(d20 + d21 + |O|d2s) + |O|2d1).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

E.2.2 PARAMETER COMPLEXITY ANALYSIS

A typical message-passing GNN has a parameter complexity of O(d2). In our architecture, the
disentangled causal subgraph identification network GNN0 possesses O(d20) parameters, the shared
GNN encoder GNN1 possesses O(d21), the invariant architecture customization module contains
O(|O|d1) parameters and the customized super-network is characterized by O(|O|d2s) parameters.
Therefore, the total parameter complexity in our framework is expressed as O(d20 + d21 + |O|d1 +
|O|d2s).
The analyses underscore that the proposed method scales linearly with the number of nodes and edges
in the graph and maintains a constant number of learnable parameters, aligning it with the efficiency
of prior GNN and graph NAS methodologies. Moreover, given that |O| typically represents a modest
constant (for example, |O| = 6 in our search space) and that d0 and d1 is generally much less than
ds, the computational and parameter complexities are predominantly influenced by ds. To ensure
equitable comparisons with existing GNN baselines, we calibrate ds within our model such that the
parameter count, specifically |O|d2s, approximates d2, thereby achieving a balance between efficiency
and performance.

E.3 DYNAMIC TRAINING PROCESS AND CONVERGENCE

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
Lo

ss

Comparison of Validation Loss on SPMotif-0.7
Val Loss w/o Dynamic
Val Loss with Dynamic

0 10 20 30 40 50
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy with Dynamic on SPMotif-0.7

Train Acc with Dynamic
Val Acc with Dynamic
Test Acc with Dynamic

0 10 20 30 40 50
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy w/o Dynamic on SPMotif-0.7

Train Acc w/o Dynamic
Val Acc w/o Dynamic
Test Acc w/o Dynamic

Figure 4: Training process of synthetic datasets.

For a deeper understanding of our model training
process, and further remark the impact of the
dynamic σp in Eq.(17), we conduct experiments
and compare the training process in the following
settings:

• ‘with Dynamic σ’ means we use the dynamic
σp in Eq.(17) to adjust the training key point
in each epoch.

• ‘w/o Dynamic σ’ means we fix the σ in
Eq.(16) as a constant value σmax+σmin

2 .

According to Figure 4, our method can converge
rapidly in 10 epochs. Figure 4 also obviously
reflects that after 10 epochs the validation loss
with dynamic σ keeps declining and its accuracy
continuously rising. However, in the setting with-
out dynamic σ, the validation loss may rise again,
and accuracy cannot continue to improve.

These results verify our aim to adopt this σp to
elevate the efficiency of model training in the way
of dynamically adjusting the training key point in
each epoch by focusing more on the causal-aware
part (i.e. identifying suitable causal subgraph and
learning vectors of operators) in the early stages
and focusing more on the performance of the
customized super-network in the later stages. We
also empirically confirm that our method is not
complex to train in Appendix E.4.

Furthermore, we report both the training loss and
validation loss for the two components (Lcausal, representing the causal-aware part, and Lpred,
representing the customized super-network optimization as defined in Equation 16) with and without
the dynamic σ schedule in Figure 5.

For the training loss, Lpred decreases more steadily and reaches a lower value with less fluctuation
under the dynamic schedule. In terms of validation loss, Lpred with the dynamic schedule decreases
significantly in later stages, whereas without it, Lpred struggles to converge. Additionally, Lcausal

without the dynamic schedule exhibits a slight initial increase before decreasing, whereas with the
dynamic schedule, it decreases smoothly from the outset. These results indicate that the dynamic

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Epoch

Lo
ss

Train Loss w/o Dynamic
causal-aware part
customized super-network optimization

Epoch

Train Loss with Dynamic
causal-aware part
customized super-network optimization

Epoch

Val Loss w/o Dynamic
causal-aware part
customized super-network optimization

Epoch

Val Loss with Dynamic
causal-aware part
customized super-network optimization

Figure 5: Changes of the two parts of loss.

schedule effectively adjusts the training focus during each epoch. It emphasizes the causal-aware
part (i.e., identifying suitable causal subgraphs and learning operator vectors) in the early stages and
shifts focus to the customized super-network performance in later stages.

E.4 TRAINING EFFICIENCY

To further illustrate the efficiency of CARNAS, we provide a direct comparison with the best-
performed NAS baseline, DCGAS, based on the total runtime for 100 epochs. As shown in Table 6,
CARNAS consistently requires less time across different datasets while achieving superior best
performance, demonstrating its enhanced efficiency and effectiveness.

Table 6: Comparison of runtime

Method SPMotif HIV BACE SIDER

DCGAS 104 min 270 min 12 min 11 min
CARNAS 76 min 220 min 8 min 8 min

E.5 HYPER-PARAMETERS SENSITIVITY

0.1 0.4 0.7 1.0

1

72

74

76

78

80

82

RO
C-

AU
C

(%
)

0.001 0.005 0.01 0.02

2

76

78

80

82

RO
C-

AU
C

(%
)

0.4 0.5 0.6 0.7
t

70

72

74

76

78

80

82

RO
C-

AU
C

(%
)

0.4 0.5 0.6 0.7

72

74

76

78

80

82

RO
C-

AU
C

(%
)

Figure 6: Hyper-parameters sensitivity analysis. The area shows the average ROC-AUC and standard
deviations. The green, yellow, grey dashed lines represent the average performance corresponding to
the fine-tuned hyper-parameters of CARNAS, best performed baseline DCGAS, 2nd best performed
baseline GRACES, respectively.
We empirically observe that our model is insensitive to most hyper-parameters, which remain fixed
throughout our experiments. Consequently, the number of parameters requiring tuning in practice is
relatively small. t, µ, θ1 and θ2 have shown more sensitivity, prompting us to focus our tuning efforts
on these 4 hyper-parameters.

Therefore, we conduct sensitivity analysis (on BACE) for the 4 important hyper-parameters, as shown
in Figure 6. The value selection for these parameters were deliberately varied evenly within a defined
range to assess sensitivity thoroughly. The specific hyper-parameter settings used for the CARNAS
reported in Table 2 are more finely tuned and demonstrate superior performance to the also finely
tuned other baselines. The sensitivity allows for potential performance improvements through careful
parameter tuning, and our results in sensitivity analysis outperform most baseline methods, indicating
a degree of stability and robustness in response to these hyper-parameters.

Mention that, the best performance of the fine-tuned DCGAS may exceed the performance of our
method without fine-tuning sometimes. This is because, DCGAS addresses the challenge of out-of-
distribution generalization through data augmentation, generating a sufficient quantity of graphs for
training. In contrast, CARNAS focuses on capturing and utilizing causal and stable subparts to guide

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 7: Performance Comparison (ROC-AUC) ‘-’ denotes CIGA is not suitable for multi-task dataset

Class Method SIDER BACE HIV

Vanilla GNN

GCN 59.84 ± 1.54 68.93 ± 6.95 75.99 ± 1.19
GAT 57.40 ± 2.01 75.34 ± 2.36 76.80 ± 0.58
GIN 57.57 ± 1.56 73.46 ± 5.24 77.07 ± 1.49
SAGE 56.36 ± 1.32 74.85 ± 2.74 75.58 ± 1.40
GraphConv 56.09 ± 1.06 78.87 ± 1.74 74.46 ± 0.86
MLP 58.16 ± 1.41 71.60 ± 2.30 70.88 ± 0.83

OOD GNN

ASAP 55.77 ± 1.18 71.55 ± 2.74 73.81 ± 1.17
DIR 57.34 ± 0.36 76.03 ± 2.20 77.05 ± 0.57
MoleOOD 57.12 ± 0.82 76.65 ± 2.71 76.57 ± 1.11
CIGA - 77.53 ± 2.53 76.89 ± 0.85
iMoLD 60.76 ± 0.65 78.72 ± 1.75 77.17 ± 0.93
Coral 60.32 ± 1.04 78.65 ± 1.55 76.88 ± 1.75
DANN 59.52 ± 1.02 78.84 ± 1.11 76.98 ± 1.32
GIL 59.67 ± 0.32 75.72 ± 1.93 73.70 ± 1.14
GSAT 60.06 ± 1.11 78.47 ± 1.70 76.70 ± 0.98
Mixup 60.83 ± 0.74 78.16 ± 2.54 76.81 ± 1.31
GroupDRO 61.15 ± 1.06 79.24 ± 1.30 76.97 ± 1.36
IRM 59.50 ± 0.52 78.87 ± 1.50 76.77 ± 1.01
VREx 54.60 ± 0.91 75.77 ± 3.35 71.60 ± 1.56

NAS

DARTS 60.64 ± 1.37 76.71 ± 1.83 74.04 ± 1.75
PAS 59.31 ± 1.48 76.59 ± 1.87 71.19 ± 2.28
GRACES 61.85 ± 2.58 79.46 ± 3.04 77.31 ± 1.00
DCGAS 63.46 ± 1.42 81.31 ± 1.94 78.04 ± 0.71
CARNAS 83.36 ± 0.62 81.73 ± 2.92 78.33 ± 0.64

the architecture search process. The methodological differences and the resulting disparity in the
volume of data used could also contribute to the performance variations observed.

Limitation. Although the training time and search efficiency of our method is comparable to most
of the Graph NAS methods, we admit that it is less efficient than standard GNNs. At the same time,
in order to obtain the best performance for a certain application scenario, our method does need to
fine-tune four sensitive hyper-parameters.

F MORE COMPARISON WITH OOD GNN

In our initial experiment, we compared our model with two non-NAS-based graph OOD methods,
ASAP and DIR. We expanded our evaluation to include 13 well-known non-NAS-based graph OOD
methods, providing a comprehensive comparison. The results, presented in Table 7, demonstrate
that CARNAS not only performs well among NAS-based methods but also significantly outperforms
non-NAS graph OOD methods. This superior performance is attributed to CARNAS’s ability to
effectively discover and leverage the stable causal graph-architecture relationships during the neural
architecture search process.

Regarding time and memory costs, Table 8 and 9 show that CARNAS is competitive with non-NAS-
based graph OOD methods, as we search the architecture and learn its weights simultaneously. The
time and memory efficiency of CARNAS make it a practical choice. Thus, we experimentally verify
that the proposed CARNAS does make sense, for addressing the graph OOD problem by diving into
the NAS process from causal perspective.

G CASE STUDY

For graphs with different motif shapes (causal subparts), we present the learned operation probabilities
for each layer (in expectation) in Figure 7. The values that are notably higher than others for each
layer are highlighted in bold, and the most preferred operators for each layer are listed in the last row.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 8: Comparison of Time and Memory Cost between OOD GNN and CARNAS

Method SIDER BACE HIV

Time (Mins) Mem. (MiB) Time Mem. Time Mem.

DIR 5 4328 5 4323 103 4769
MoleOOD 5 4317 5 4315 96 4650
CIGA - - 4 4309 86 4510
iMoLD 3 4184 3 4182 65 4377
Coral 3 4323 2 4323 70 4795
DANN 2 4309 2 4314 47 4505
GIL 26 4386 33 4373 412 6225
GSAT 4 4318 4 4310 49 4600
GroupDRO 4 4311 10 4309 50 4509
IRM 4 975 3 978 80 1301
VREx 6 4313 16 4314 51 4516

CARNAS 8 2556 8 2547 220 2672

Table 9: Performance Comparison on Graph-SST2. All performances are reported under 100 epochs,
except for those annotated. Time(Mins), Mem.(MiB).

Method Acc Time Mem. Method Acc Time Mem.

Coral 77.28 ± 1.98 62 4820 DANN 77.96 ± 3.50 38 4679
DIR 67.90 ± 10.08 171 4891 DIR (200 epochs) 79.19 ± 1.85 326 4891
GIL 75.53 ± 6.01 418 5628 GIL (200 epochs) 78.67 ± 1.48 816 5629
GSAT 78.79 ± 1.85 36 4734 Mixup 78.76 ± 2.00 31 4682
ERM 75.99 ± 3.25 29 4667 GroupDRO 76.97 ± 3.49 28 4695
IRM 78.12 ± 1.73 70 1389 VREx 79.62 ± 1.26 27 4692
CIGA 65.62 ± 7.87 157 4683 CIGA (200 epochs) 79.98 ± 1.61 306 4683
CARNAS 80.58 ± 1.72 199 2736

We observe that different motif shapes indeed prefer different architectures, e.g., graphs with cycle
prefer GAT in the third layer, while this operator is seldomly chosen in neither layer of the other
two types of graphs; the operator distributions are similar for graphs with cycle and house in the
first layer, but differ in other layers. To be specific, Motif-Cycle is characterized by a closed-loop
structure where each node is connected to two neighbors, displaying both symmetry and periodicity.
For graphs with this motif, CARNAS identifies SAGE-GCN-GAT as the most suitable architecture.
Motif-House, on the other hand, features a combination of triangular and quadrilateral structures,
introducing a certain level of hierarchy and asymmetry. For graphs with this shape, CARNAS
determines that GIN-MLP-GCN is the optimal configuration. Lastly, Motif-Crane presents more
complex cross-connections between nodes compared to the previous two motifs, and CARNAS
optimally configures graphs with it with a GIN-SAGE-GCN architecture.

By effectively integrating various operations and customizing specific architectures for different
causal subparts (motifs) with diverse features, our NAS-based CARNAS can further improve the
OOD generalization.

To better illustrate the learned graph-architecture relationship, we also visualize the causal subgraphs
for each dataset in our case study in Figure 8.

H RELATED WORK

H.1 GRAPH NEURAL ARCHITECTURE SEARCH

In the rapidly evolving domain of automatic machine learning, Neural Architecture Search (NAS)
represents a groundbreaking shift towards automating the discovery of optimal neural network ar-
chitectures. This shift is significant, moving away from the traditional approach that heavily relies
on manual expertise to craft models. NAS stands out by its capacity to autonomously identify archi-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

layer1 layer2 layer3

GCN

GIN

GAT

SAGE

GraphConv

MLP

Cycle

layer1 layer2 layer3

House

layer1 layer2 layer3

Crane

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0

0.1

0.2

0.3

0.4

0.5

Figure 7: Comparison of operation probabilities for graphs with different motif shapes.

(a) Cycle (b) House (c) Crane

Figure 8: Visualization of edge importance for forming causal subgraphs in SP-Motif Dataset.
Structures with deeper colors mean higher importance.

tectures that are finely tuned for specific tasks, demonstrating superior performance over manually
engineered counterparts. The exploration of NAS has led to the development of diverse strategies,
including reinforcement learning (RL)-based approaches (76; 18), evolutionary algorithms-based
techniques (43; 32), and methods that leverage gradient information (31; 62). Among these, graph
neural architecture search has garnered considerable attention.

The pioneering work of GraphNAS (11) introduced the use of RL for navigating the search space of
graph neural network (GNN) architectures, incorporating successful designs from the GNN literature
such as GCN, GAT, etc. This initiative has sparked a wave of research (11; 51; 41; 4; 13; 74; 12),
leading to the discovery of innovative and effective architectures. Recent years have seen a broadening
of focus within Graph NAS towards tackling graph classification tasks, which are particularly relevant
for datasets comprised of graphs, such as those found in protein molecule studies. This research area
has been enriched by investigations into graph classification on datasets that are either independently
identically distributed (51) or non-independently identically distributed, with GRACES (41) and
DCGAS (61) being notable examples of the latter. Through these efforts, the field of NAS continues
to expand its impact, offering tailored solutions across a wide range of applications and datasets.

H.2 GRAPH OUT-OF-DISTRIBUTION GENERALIZATION

In the realm of machine learning, a pervasive assumption posits the existence of identical distributions
between training and testing data. However, real-world scenarios frequently challenge this assumption
with inevitable shifts in distribution, presenting significant hurdles to model performance in out-
of-distribution (OOD) scenarios (46; 70; 71). The drastic deterioration in performance becomes
evident when models lack robust OOD generalization capabilities, a concern particularly pertinent
in the domain of Graph Neural Networks (GNNs), which have gained prominence within the
graph community (27). Several noteworthy studies (55; 54; 28; 9; 47; 30; 48) have tackled this

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

challenge by focusing on identifying environment-invariant subgraphs to mitigate distribution shifts.
These approaches typically rely on pre-defined or dynamically generated environment labels from
various training scenarios to discern variant information and facilitate the learning of invariant
subgraphs. (52; 68) have divided recent literature that solve the graph OOD generalization problem,
into three categories: 1) Graph augmentation methods (75; 45; 10; 64) enhance OOD generalization
by increasing the quantity and diversity of training data through systematic graph modifications.
2) The second type of methods (34; 26) develop new graph models to learn OOD-generalized
representations. 3)The third type of methods (69; 17) enhance OOD generalization through tailored
training schemes with specific objectives and constraints. There are various datasets and benchmarks
(16; 36; 14; 20; 21) help for assessing generalizability and adaptability. Moreover, the existing
methods usually adopt a fixed GNN encoder in the whole optimization process, neglecting the role of
graph architectures in out-of-distribution generalization. In this paper, we focus on automating the
design of generalized graph architectures by discovering causal relationships between graphs and
architectures, and thus handle distribution shifts on graphs.

H.3 CAUSAL LEARNING ON GRAPHS

The field of causal learning investigates the intricate connections between variables (40; 38), offering
profound insights that have significantly enhanced deep learning methodologies. Leveraging causal
relationships, numerous techniques have made remarkable strides across diverse computer vision
applications (65; 35). Additionally, recent research has delved into the realm of graphs (72; 73).
For instance, (57) implements interventions on non-causal components to generate representations,
facilitating the discovery of underlying graph rationales. (9) decomposes graphs into causal and
bias subgraphs, mitigating dataset biases. (29) introduces invariance into self-supervised learning,
preserving stable semantic information. (6) ensures out-of-distribution generalization by capturing
graph invariance. (19) tackled the challenge of learning causal graphs involving latent variables,
which are derived from a mixture of observational and interventional distributions with unknown
interventional objectives. To mitigate this issue, the study proposed an approach leveraging a Ψ-
Markov property. (1) introduced a randomized algorithm, featuring p-colliders, for recovering
the complete causal graph while minimizing intervention costs. Additionally, (3) presented an
adaptable method for causality detection, which notably benefits from various types of interventional
data and incorporates sophisticated neural architectures such as normalizing flows, operating under
continuous constraints. However, these methods adopt a fixed GNN architecture in the optimization
process, neglecting the role of architectures in causal learning on graphs. In contrast, in this paper,
we focus on handling distribution shifts in the graph architecture search process from the causal
perspective by discovering the causal relationship between graphs and architectures. There are also
works (50; 23; 66; 67) employ GNN for causality learning.

25

	Introduction
	Preliminary
	Graph NAS under distribution shifts
	Causal view of the Graph NAS process
	Problem formalization

	Method
	Disentangled causal subgraph identification
	Graph embedding intervention
	Invariant architecture customization
	Optimization framework

	Experiments
	Experiment setting
	On synthetic datasets
	On real-world datasets
	Ablation study

	Related work
	Conclusion
	Notation
	Algorithm
	Theoretical Analysis
	Reproducibility details
	Definition of search space
	Datasets details
	Detailed hyper-parameter settings
	Detailed settings for ablation study

	Deeper analysis
	Supplementary analysis of the experimental results
	Complexity analysis
	Time complexity analysis
	Parameter complexity analysis

	Dynamic training process and convergence
	Training efficiency
	Hyper-parameters sensitivity

	More comparison with OOD GNN
	Case study
	Related work
	Graph neural architecture search
	Graph out-of-distribution generalization
	Causal learning on graphs

