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ABSTRACT

Toolpath smoothing and feedrate planning are key techniques in Computer Nu-
merical Control (CNC) machining, and play a significant role in machining accu-
racy, efficiency, and tool life. Traditional methods typically decouple path smooth-
ing from feedrate planning, without considering the kinematic constraints during
the smoothing process. As a result, the subsequent feedrate planning process is
subject to more stringent kinematic limitations, which hinders the achievement
of optimal speed execution. However, the integration of these two processes
presents a significant challenge due to severe complexity and nonlinearity of the
problem. Here, we propose a novel Reinforcement Learning (RL) based method,
termed KIRL, to address the integrated optimization problem. Experimental re-
sults demonstrate that KIRL can generate smoother trajectories and optimize ma-
chining time compared to traditional decoupled methods. To our best knowledge,
KIRL is the first RL-based method for solving the integrated toolpath smoothing
and feedrate planning optimization problem in CNC machining.

1 INTRODUCTION

Computer Numerical Control (CNC) machining is a widely used manufacturing technique for pro-
ducing high-precision parts and components across various industries, including aerospace (Nab-
hani, 2001), automotive (Kim & Song, 2013), and medical devices (Lepasepp & Hurst, 2021). Tool-
path smoothing and feedrate planning are two critical factors that significantly impact machining
accuracy, efficiency, and tool life Zhang & Xu (2021). Toolpath smoothing aims to generate a
smooth and continuous trajectory for the cutting tool, while feedrate planning determines the speed
along the toolpath to minimize machining time while satisfying various kinematic constraints such
as maximum velocity, acceleration, and jerk (Altintas & Erkorkmaz, 2003; Beudaert et al., 2012).

In practice, toolpaths are commonly represented using G01 codes (Tulsyan & Altintas, 2015), which
consist of a series of continuous line segments. However, linear toolpaths have discontinuities in tan-
gent and curvature at the junctions, which typically result in low machining efficiency and machine
vibration (Zhao et al., 2013). To mitigate this issue, path smoothing methods are often employed to
create smooth transitions at each corner of the polyline path, followed by velocity planning along
the smoothed path curve.

However, the decoupled approach often yields suboptimal results, as the smoothed path may not
consider the machine tool’s kinematic constraints, limiting the achievable feedrate in the subsequent
planning stage. Recent studies have formulated the integration of toolpath smoothing and feedrate
planning into a holistic optimization problem to address this limitation (Yang et al., 2015; Lin et al.,
2019; Wu et al., 2023). By considering kinematic constraints during the smoothing process, the in-
tegrated approach generates toolpaths that are more suitable for high-speed execution. Nevertheless,
solving this integrated optimization problem is quite challenging due to its high nonconvexity and
nonlinearity.

In this paper, we propose a novel approach called KIRL (Kinematics-Informed Reinforcement
Learning), which leverages Reinforcement Learning (RL) to solve the integrated toolpath smoothing
and feedrate planning problem in CNC machining. RL has emerged as a powerful machine learning
technique for solving complex decision-making problems in diverse domains such as robotics, game
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playing, and autonomous driving (Silver et al., 2016; Mnih et al., 2015; Lillicrap et al., 2019). Here,
we formulate the integrated optimization problem as a Markov Decision Process (MDP), where each
state encapsulates the current kinematic and positional information of the tool, actions correspond to
adjustments in kinematic states for the next segment, and rewards are designed to balance machining
time and trajectory smoothness. We employ Proximal Policy Optimization (PPO) and Soft Actor-
Critic (SAC) (Haarnoja et al., 2018) to train RL agents that predict intermediate kinematic states.
Our experimental demonstrations show that KIRL can generate smoother trajectories and optimize
machining time effectively compared to traditional decoupled methods.

To summarize, the key contributions of this work are as follows:

• We propose KIRL, the first RL-based method for solving the integrated toolpath smoothing
and feedrate planning problem in CNC machining.

• We formulate the integrated optimization problem as an MDP and use PPO and SAC to
train RL agents to predict intermediate kinematic states.

• We demonstrate the effectiveness of KIRL in a series of simulated CNC machining tasks,
showing improved performance in trajectory smoothness and machining efficiency com-
pared to traditional methods.

2 PRELIMINARIES

2.1 TOOLPATH REPRESENTATION
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si(t)
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δ(t)

Figure 1: Comparison of linear and
smoothed toolpaths.

Linear Toolpath. In CNC machining, toolpaths are often
defined as a sequence of discrete points based on G01 com-
mands, which describe straight-line movements. As illustrated
in Fig. 1, let {pi}Ni=0 denote a sequence of N + 1 code points
in R2. The complete linear toolpath P consists of N linear
segments, expressed as:

P =

N⋃
i=1

Pi,

where each segment Pi, i = 1, · · · , N, connects points pi−1

and pi, parameterized by the scalar τ ∈ [0, 1]:

Pi =
{
p ∈ R2 : p = (1− τ)pi−1 + τpi

}
.

While this piecewise linear representation ensures geometric continuity, it introduces discontinuities
in the velocity vector at the junctions pi. These abruptly cause significant changes in velocity
direction, particularly in high-speed machining. Sharp turns cause excessive tool wear, vibrations,
and necessitate deceleration at each junction, which negatively affects machining efficiency and
surface quality.

Smoothed Toolpath. To address the issues of linear toolpath, a smoothed toolpath s(t) is con-
structed to approximate the original path P while ensuring smooth transitions between segments.
As presented in Fig. 1, s(t) is defined as a piecewise function over the time interval [0, Tm], where
Tm represents the total machining time. Each segment of the smoothed toolpath, si(t), is defined
over a time interval [ti−1, ti] between points qi−1 and qi:

s(t) = si(t− ti−1), t ∈ [ti−1, ti], i ∈ {1, . . . , N}.
The points qi, typically located near the original G01 points pi, are chosen to minimize the discrep-
ancy between the original and smoothed paths while ensuring continuity in velocity and acceleration.
This smoothing reduces tool wear and vibrations, and thus allows for higher machining speeds.

Chord Error. The accuracy of the smoothed toolpath is evaluated by the chord error, which mea-
sures the perpendicular distance between the smoothed path s(t) and the set of the original linear
segments P . For each smoothed segment si(t), the chord error δi(t) is calculated by

δi(t) =
∥(si(t)− pi−1)× (pi − pi−1)∥

∥pi − pi−1∥
.

2
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Consequently, minimising the chord error ensures that the smoothed path s(t) remains close to the
original toolpath P , while maintaining a balance between machining accuracy and efficiency.

2.2 CONSTRAINTS

The optimization process must adhere to several constraints to ensure the generated trajectory is
both feasible and secure for CNC operations.

Kinematic Constraints. The trajectory must comply with the machine’s physical limits on veloc-
ity, acceleration, and jerk. These constraints are defined as:

∥ṡi(t)∥ ≤ vmax, ∥s̈i(t)∥ ≤ amax, ∥ ...
s i(t)∥ ≤ jmax, i ∈ {1, . . . , N}, (1)

where vmax, amax, and jmax represent the maximum allowable velocity, acceleration, and jerk, re-
spectively.

Chord Error Constraint. In addition to the kinematic constraints, the smoothed toolpath must
adhere to a chord error constraint, ensuring the toolpath’s deviation from the original linear path
does not exceed a predefined tolerance:

δi(t) ≤ δmax, i ∈ {1, . . . , N}, (2)
where δmax is the maximum allowable chord error. This constraint ensures geometric accuracy and
limits toolpath deviation during machining.

2.3 OPTIMIZATION OBJECTIVES

The trajectory optimization problem aims to balance the goals of improving machining efficiency
while ensuring trajectory smoothness.

Trajectory Jerk Minimization. To achieve a smooth trajectory, we need to minimize the integral
of the squared jerk J . Jerk, denoted by

...
s (t), represents the third derivative of position s(t) with

respect to time t. The jerk minimization objective is formulated as:

J =

N∑
i=1

Ji =

N∑
i=1

∫ ti

ti−1

∥ ...
s (t)∥2 dt =

N∑
i=1

∫ Ti

0

∥ ...
s i(t)∥2 dt, (3)

where Ti = ti − ti−1 is the duration of the i-th segment. Minimizing the jerk ensures that the
toolpath is smooth and continuous, reducing udden changes in motion that can lead to tool wear,
vibrations, and potential inaccuracies in the machined part.

Machining Time Minimization. The second key objective is minimizing the total machining time
Tm, which is the cumulative time for all segments:

Tm =

N∑
i=1

Ti. (4)

Reducing machining time enhances production efficiency by lowering overall cycle times while
maintaining quality and precision.

3 PROPOSED METHOD

According to the above preliminaries, our target is to perform an integrated optimization to find a
trajectory s(t) that minimizes a weighted sum of both the trajectory jerk and the machining time.
This optimization process takes into account the kinematic constraints:

min
s(t)

J + wTm =

∫ Tm

0

∥ ...
s (t)∥2 + w dt,

s.t. Constraints in Eqs. (1) and (2) are satisfied.
(5)

Here w is the weighting factor that balances the importance of each objective in the optimization
process.

3
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3.1 TOOLPATH SEGMENTATION
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Figure 2: Toolpath segmentation
approach. The blue line repre-
sents the linear toolpath, and the
red curve represents the smoothed
toolpath. The line segment pL

i p
R
i

represents the angle bisector of
∠pi−1pipi+1.

To solve Eq. (5), we first divide the toolpath into N seg-
ments. Each segment corresponds to the portion of the tool-
path between two successive toolpath points. As illustrated in
Fig. 2, the i-th segment, denoted as si(t), connects the bound-
ary points qi−1 and qi.

For each segment, we consider the duration Ti and specify the
kinematic states at the segment boundaries, which include po-
sitions qi−1 and qi, velocities vi−1 and vi, and accelerations
ai−1 and ai. These boundary conditions ensure smooth tran-
sitions between segments in terms of position, velocity, and
acceleration.

The kinematic state constraints at the segment boundaries are
expressed as:

si(0) = qi−1, si(Ti) = qi,

ṡi(0) = vi−1, ṡi(Ti) = vi,

s̈i(0) = ai−1, s̈i(Ti) = ai.

(6)

The optimization problem for the i-th segment is then formu-
lated as:

min
si(t)

∫ Ti

0

∥ ...
s i(t)∥2 dt,

s.t. Constraints in Eqs. (1), (2) and (6) are satisfied.
(7)

The objective is to minimize the integral of the squared jerk
over the duration Ti, which promotes smoothness in the tra-
jectory. The constraints ensure that the smoothed path adheres
to the maximum allowable chord error δmax, complies with the
machine’s kinematic limits, and satisfies the boundary conditions for continuity.

After theoretical analysis, we establish the following theorem:
Theorem 1. The optimal solution to the optimization problem in Equation equation 7 is a quintic
polynomial function of time t.

Proof. The proof of this theorem can be found in Appendix A.

By employing quintic polynomials for each segment, we ensure that the trajectory is continuous
and differentiable up to the second derivative, satisfying the position, velocity, and acceleration
constraints at the boundaries. This approach yields a smooth and feasible toolpath that minimizes
jerk while respecting all physical and geometrical limitations.

3.2 MOTION PRIMITIVE GENERATION

From Theorem 1, we define the quintic polynomial function of time t explicitly as:

si(t) = ci0 + ci1t+ ci2t
2 + ci3t

3 + ci4t
4 + ci5t

5, t ∈ [0, Ti], (8)

where ci0, ci1, . . . , ci5 are the coefficients of the quintic polynomial. The coefficients can be deter-
mined by imposing the boundary conditions Eq. (6). We can transform the boundary conditions into
a linear system of equations:

Ac = q, (9)
where A ∈ R6×6 represents the coefficient matrix that encodes the time information (detailed in
Appendix B), c = [ci0ci1, ci2, ci3, ci4, ci5]

⊤, and q = [qi−1,vi−1,ai−1,qi,vi,ai]
⊤.

To accelerate the computation of the quintic polynomial coefficients, we precompute A−1, allowing
us to efficiently solve for the coefficients using matrix multiplication. From the precomputed A−1,
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Figure 3: Left: 2D trajectories with different Ti values. Right: Velocity profiles of the trajectories.

we conclude that the coefficients are determined exclusively by the segment duration Ti when the
boundary conditions are fixed.

As illustrated in Fig. 3, increasing the segment duration Ti results in more distorted trajectories,
while the velocity profile exhibits greater smoothness. Therefore, the segment duration Ti serves
as a hyperparameter to balance the trade-off between trajectory smoothness and velocity profile
smoothness.

3.3 REINFORCEMENT LEARNING FOR KINEMATIC STATE PREDICTION

d

s
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pi

pi+1

pR
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pL
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qi−1

qi

Figure 4: Local coordinate system
of the segment.

In the previous section, we have presented a method for gen-
erating smooth trajectories within each segment using quintic
polynomial functions. However, the kinematic states at the
segment boundaries are still unknown. To predict the optimal
kinematic state at the boundary of each segment, we use an
RL agent trained by the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017) and Soft Actor-Critic (SAC)
algorithm (Haarnoja et al., 2018). Within the current segment,
assuming the initial kinematic state is (qi−1, vi−1, ai−1), then
the RL agent is trained to predict the optimal kinematic state
(qpred

i , vpred
i , apred

i ) at the end of the segment.

To enhance the generalization ability of the target RL agent,
we use the local coordinate system of the segment to represent
the kinematic states. As shown in Fig. 4, the local coordinate
system originates from pi−1, with the s-axis extending from
pi−1 to pi, and the d-axis being orthogonal to the s-axis. The transformation from the global to the
local coordinate system is mathematically expressed as

p̃ = R(θi −
π

2
)⊤(p− pi), R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, (10)

where p and p̃ are the coordinates in the global and local coordinate systems, respectively, and
θi = arctan(pi − pi−1) represents the angle between the s-axis and the x-axis.

Observation Space. The observation space describes the current state of the system that the RL
agent can observe. In our RL environment, the state vector Si ∈ R10 is expressed as

Si = [N − i, ℓi, ℓi+1, φi, q̃
⊤
i−1, ṽ

⊤
i−1, ã

⊤
i−1]

⊤, (11)

where N denotes the total number of segments, ℓi = ∥pi − pi−1∥ represents the segment length,
φi is the turning angle between −−−−→pi−1pi and −−−−→pipi+1, and q̃i−1, ṽi−1, and ãi−1 denote the position,
velocity, and acceleration in the local coordinate system, respectively.
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Action Space. For each observation Si, the RL agent produces an action Ai ∈ R5, which predicts
the kinematic state at the end of the segment. To ensure that qpred

i lies on the line segment pL
i p

R
i ,

we parameterize q̃pred
i by ui as follows:

q̃pred
i = p̃i + ui

(
p̃R
i − p̃i

)
, (12)

where p̃R
i denotes the right endpoint of the segment. Then the action vector is defined as:

Ai = [ui, ṽ
pred
i , ãpred

i ], (13)

After receiving the action, the trajectory si(t) can be generated using the quintic polynomial function
with Ti.

Reward Function. When action Ai is executed, the RL agent receives a reward signal Ri, which
evaluates the quality of the generated trajectory. The reward function is defined as

Ri = λ1r
time
i + λ2r

jerk
i + λ3r

chord
i + rconstraint

i , (14)

in which rtime
i rewards the reduction in machining time, rconstraint

i penalizes violations of the kine-
matic constraints, and rchord

i penalizes deviations from the desired path. Concretely, the components
of the reward are defined as follows:

rtime
i = T pred

i , rjerk
i =

∫ Ti

0

[ji(t)− jmax]+ dt, rchord
i =

∫ Ti

0

(
δi(t)

δmax

)2

dt,

rconstraint
i =

{
−Cpenalty if any vi(t), ai(t), ji(t), or δi(t) exceeds its limit,
0 otherwise,

where vi(t) = ∥ṡi(t)∥ is the velocity, ai(t) = ∥s̈i(t)∥ is the acceleration, and ji(t) = ∥ ...
s i(t)∥

is the jerk. If any of the kinematic constraints are violated, the reinforcement learning process is
terminated immediately, and a large penalty Cpenalty is applied. The weights λ1, λ2, and λ3 are
hyperparameters that balance the importance of each component in the reward function.

Optimal Duration Search. Before evaluating the generated trajectory using the reward function,
we need to determine the appropriate duration Ti. When the initial and final kinematic states are
fixed, the reward function Ri becomes a univariate function with respect to Ti. Hence, we aim to
minimize the negative reward function, which can be formulated as:

Ti = argmin
T

−Ri(T ). (15)

This optimization problem is a bounded one-dimensional minimization problem, which can be effi-
ciently solved using Brent’s method (Brent, 1971). Brent’s method combines the robustness of the
golden-section search with the speed of parabolic interpolation. It dynamically switches between
these strategies based on the function’s behavior to ensure both stability and rapid convergence. Im-
portantly, it does not rely on derivative information, making it particularly suitable for optimizing
non-smooth or complex reward functions in our framework.

Overall Algorithm The trajectory generation process iterates through each segment, utilizing the
RL agent to predict optimal kinematic states, optimizing the segment duration, generating the trajec-
tory using quintic polynomials, and ensuring all constraints are satisfied. The algorithm is presented
below:

6
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Algorithm 1: Reinforcement Learning-Based Trajectory Generation
Input : Waypoints: p0,p1, . . . ,pN

Pre-trained RL Agent (PPO or SAC)
Hyperparameters: λ1, λ2, λ3, Cpenalty
Constraints: vmax, amax, jmax, δmax

Output: Generated Trajectory: s(t)
1 Initialize q0 = p0, v0 = 0, a0 = 0;
2 for i← 1 to N do
3 if i > 1 then
4 // Prepare observation
5 Si = ConstructObservation(i,qi−1,vi−1,ai−1);
6 // RL Prediction
7 Ai = RL Agent(Si);
8 // Set boundary conditions
9 qi,vi,ai = SetBoundary(Ai);

10 end if
11 // Optimize Duration
12 Ti = OptimizeDuration(qi−1,qi);
13 // Generate Trajectory Segment
14 si(t) = QuinticPolynomial(qi−1,vi−1,ai−1,qi,vi,ai, Ti);
15 // Evaluate Constraints
16 if Constraints Violated then
17 Terminate and Apply Penalty;
18 end if
19 // Append to Trajectory
20 s(t)← s(t) ∪ si(t);
21 end for
22 // Finalize Trajectory
23 if Global Constraints Satisfied then
24 return s(t);
25 end if
26 else
27 return Failure;
28 end if

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed KIRL method on common CNC ma-
chining tasks. As the first RL-based method in this domain, we compare KIRL with representative
traditional methods and analyze the results based on multiple metrics related to machining time,
trajectory smoothness, and kinematic performance.

4.1 EXPERIMENTAL SETUP

Datasets and Preprocessing. We adopt four representative toolpaths for test: Butterfly, Dolphin,
Golden Fish, and Shark. These toolpaths are obtained from a publicly available repository1 and were
selected for their varying complexity and curvature characteristics. This provides a comprehensive
evaluation of the methods under different conditions. The original linear toolpaths are normalized
to fit within a [0, 100]2 coordinate space to ensure consistency across different paths. Each toolpath
is resampled to generate 200 equally spaced points, serving as the input format for all approaches.

Compared Methods. We compare KIRL against two traditional decoupled approaches for tool-
path smoothing and feedrate planning: 1) ICR method (Zhao et al., 2013): An inscribed corner
rounding (ICR) technique that smooths toolpaths using curvature-continuous B-splines with G2
continuity and performs feedrate planning; 2) CCR method (Xu & Sun, 2018): A circumscribed

1The raw NC G-code files are obtained from https://cncgcode.weebly.com/
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corner rounding (CCR) technique that smooths the toolpath by inserting transition curves using
double cubic B-splines at junctions, followed by conventional feedrate planning. Both approaches
utilize a jerk-limited S-shape acceleration-deceleration algorithm for feedrate planning (Lin et al.,
2007). For our proposed KIRL method, we implement two variants using different reinforcement
learning algorithms: 1) KIRL-PPO: KIRL using Proximal Policy Optimization (PPO) (Schulman
et al., 2017); 2) KIRL-SAC: KIRL using Soft Actor-Critic (SAC) (Haarnoja et al., 2018). Due to
the unavailability of baseline implementations, we have re-implemented these approaches ourselves.
We plan to release all of the code to facilitate future research in learning-guided CNC maching.

4.2 EVALUATION METRICS

To comprehensively assess the performance of all compared methods, we employ the following met-
rics for evaluation. 1) Total Machining Time (Tm): The total time required to complete the whole
toolpath, reflecting machining efficiency. 2) Maximum Curvature (κmax): The highest curvature
along the toolpath, indicating the sharpest turn impacting machining quality; Maximum Turning
Angle (θmax): The largest angle between consecutive path segments, indicating trajectory smooth-
ness. These two metrics are used for path smoothness assessment. 3) For kinematic smoothness
evaluation, we use both RMS Acceleration (arms) and RMS Jerk (jrms). arms is defined as the
variability in acceleration along the toolpath computed as:

arms =

√√√√ 1

N

N∑
i=1

∥ai∥2, (16)

where N is the number of points and ai is the acceleration at point i. jrms is the change rate of
acceleration (jerk) computed as:

jrms =

√√√√ 1

N

N∑
i=1

∥ji∥2, (17)

where ji is the jerk at point i. Lower values of κmax, θmax, arms, and jrms indicate smoother trajectories
and better kinematic performance, while a lower Tm indicates higher machining efficiency.

4.3 EXPERIMENTAL RESULTS AND DISCUSSION

Numerical Results. Tab. 1 reports the results for each toolpath, with the best-performing method
highlighted in bold. As observed, on the Butterfly toolpath, KIRL-PPO achieves the lowest maxi-
mum curvature, indicating a smoother path compared to the baselines. KIRL-SAC attains the lowest
RMS acceleration and jerk, reflecting better kinematic smoothness. Both KIRL variants outperform
the baselines in most metrics, demonstrating the effectiveness of integrating kinematic constraints
during optimization.

For the Dolphin toolpath, KIRL-SAC achieves the best performance in maximum curvature, turning
angle, RMS acceleration, and jerk. Although ICR method achieve a slightly lower machining time,
KIRL-SAC provides a better balance between efficiency and smoothness.

On the Golden Fish toolpath, KIRL-PPO excels in minimizing the maximum turning angle, RMS
acceleration, and jerk. While ICR method achieve the lowest machining time, the trajectories gen-
erated by KIRL are smoother, which can enhance machining quality and reduce tool wear.

For the Shark toolpath, KIRL-PPO outperforms all baselines across all metrics. Notably, it achieves
a significant reduction in maximum curvature and kinematic quantities, leading to smoother and
more efficient machining processes.

Trajectory Visualization. Fig. 5 illustrates the trajectories generated by KIRL-PPO and ICR
methods on the Shark toolpath, as well as KIRL-SAC and CCR methods on the Dolphin toolpath.
Across both toolpaths, the KIRL-based methods produce smoother transitions and fewer abrupt
changes in direction compared to the traditional methods, highlighting their effectiveness in gener-
ating more refined and continuous trajectories.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance Comparison Across Different Toolpaths. The best-performing method for
each metric under each toolpath is highlighted in bold.

Toolpath Metric KIRL-PPO KIRL-SAC CCR ICR

Butterfly

Maximum Curvature 25.61 363.95 45.72 80.52
Maximum Turning Angle 0.0502 0.0735 0.0295 0.0335
RMS Acceleration 52.46 37.78 85.64 78.25
RMS Jerk 1655.67 1025.50 5723.21 5405.78
Machining Time 41.16 45.37 43.38 42.36

Dolphin

Maximum Curvature 17.37 16.41 36.90 27.11
Maximum Turning Angle 0.0204 0.0137 0.0263 0.0217
RMS Acceleration 59.53 56.85 108.05 89.03
RMS Jerk 2377.80 2341.08 7134.80 6326.47
Machining Time 31.76 31.02 31.81 29.71

Golden Fish

Maximum Curvature 9.23 6.23 31.14 25.88
Maximum Turning Angle 0.0096 0.0157 0.0258 0.0225
RMS Acceleration 42.57 45.67 93.72 84.99
RMS Jerk 1163.34 1367.33 6292.79 5788.44
Machining Time 45.46 43.88 43.39 42.08

Shark

Maximum Curvature 7.30 24.83 36.52 48.91
Maximum Turning Angle 0.0204 0.0336 0.0271 0.0272
RMS Acceleration 63.04 88.84 123.25 108.65
RMS Jerk 2766.11 4002.50 7883.43 7388.95
Machining Time 27.87 28.44 30.96 28.94
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Figure 5: Trajectory comparison of KIRL-PPO against the ICR Method for the Shark toolpath (left),
and KIRL-SAC against the CCR Method for the Dolphin toolpath (right). Red dots indicate the input
toolpath points.

Discussion. The experimental results consistently show that KIRL generates smoother trajecto-
ries compared to traditional methods by integrating kinematic constraints during optimization. The
RL-based approach allows KIRL to adaptively predict intermediate kinematic states that adhere to
the machine’s limitations, resulting in improved kinematic smoothness without compromising effi-
ciency. Although some baselines achieve slightly shorter machining times, this comes at the cost
of increased acceleration and jerk, which can lead to machine wear and reduced machining quality.
KIRL provides a balanced trade-off between efficiency and smoothness, highlighting the advantages
of the integrated optimization approach.

4.4 LIMITATIONS AND FUTURE WORK

Limitations. KIRL demonstrates promising results, but several limitations need to be addressed
for broader industrial adoption. First, the training process is slow due to the CPU-based simulation
environment, resulting in long training times and low GPU utilization. Second, KIRL requires sep-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

arate training for each toolpath, which limits its scalability, especially in environments with many
unique toolpaths. Additionally, the current implementation only supports 2-axis machining, which
restricts its applicability to more advanced multi-axis operations. Lastly, KIRL has only been eval-
uated in simulation, with no real-world validation on physical CNC machines.

Future Work. Future efforts will focus on several key areas to overcome these limitations. First,
improving training efficiency will be critical—this could be achieved by incorporating parallel en-
vironment sampling to make better use of available computational resources and reduce training
times. Second, enabling KIRL to generalize across different toolpaths through transfer learning or
meta-learning could significantly improve scalability and reduce the need for retraining. Expanding
KIRL to support multi-axis machining, such as 5-axis and 6-axis operations, will enhance its indus-
trial relevance by addressing more complex machining tasks. Finally, real-world validation on actual
CNC machines will be essential to assess KIRL’s performance, reliability, and potential challenges
in practical settings.

5 CONCLUSIONS

In this work, we introduced KIRL, a Reinforcement Learning-based approach for the integrated
optimization of toolpath smoothing and feedrate planning in CNC machining. By formulating the
problem as a Markov Decision Process and utilizing advanced RL algorithms like PPO and SAC,
KIRL effectively predicts intermediate kinematic states that balance machining efficiency with tra-
jectory smoothness. Experimental results demonstrated that KIRL outperforms traditional decou-
pled methods in generating smoother trajectories and optimizing machining time across various
complex toolpaths.

REPRODUCIBILITY STATEMENT

To the best of our knowledge, this work presents the first RL-based method for optimizing the tool-
path smoothing and feedrate planning problem in CNC machining. To reproduce the experimental
results, we elaborate on the hyper-parameter settings in Appendix C. To facilitate reproducibility,
we also publicly release our code.
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A PROOF OF THEOREM 1

Proof. Let si(t) be the optimal solution of Eq. (7). Consider an additive perturbation p(t) that
satisfies the boundary conditions p(0) = p(Ti) = 0, ṗ(0) = ṗ(Ti) = 0, and p̈(0) = p̈(Ti) = 0.
Then, we have ∫ Ti

0

∥ ...
s i(t)∥2 dt ≤

∫ Ti

0

∥ ...
s i(t) + λ

...
p (t)∥2 dt, (18)

and the function

f(λ) =

∫ Ti

0

∥ ...
s i(t) + λ

...
p (t)∥2 dt

=

∫ Ti

0

∥ ...
s i(t)∥2 dt+ 2λ

∫ Ti

0

...
s i(t) ·

...
p (t) dt

+ λ2

∫ Ti

0

∥ ...
p (t)∥2 dt

(19)

is minimized at λ = 0, which implies that

f ′(0) = 2

∫ Ti

0

...
s i(t) ·

...
p (t) dt = 0. (20)

Using integration by parts, we have∫ Ti

0

...
s i(t) ·

...
p (t) dt = −

∫ Ti

0

s
(6)
i (t) · p(t) dt = 0, (21)

which implies that si(t) is a polynomial of degree at most five.

B DETAILS OF THE LINEAR SYSTEM

The boundary conditions defined in Eq. (6) can be transformed into the following linear system:
1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 Ti T 2

i T 3
i T 4

i T 5
i

0 1 2Ti 3T 2
i 4T 3

i 5T 4
i

0 0 2 6Ti 12T 2
i 20T 3

i




ci0
ci1
ci2
ci3
ci4
ci5

 =


qi−1

vi−1

ai−1

qi

vi

ai

 . (22)

By precomputing the inverse of the matrix in Eq. (22), we can solve for the coefficients efficiently:
ci0
ci1
ci2
ci3
ci4
ci5

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1/2 0 0 0

−10/T 3
i −6/T 2

i −3/(2Ti) 10/T 3
i −4/T 2

i 1/(2Ti)
15/T 4

i 8/T 3
i 3/(2T 2

i ) −15/T 4
i 7/T 3

i −1/T 2
i

−6/T 5
i −3/T 4

i −1/(2T 3
i ) 6/T 5

i −3/T 4
i 1/(2T 3

i )




qi−1

vi−1

ai−1

qi

vi

ai

 . (23)

From Eq. (23), we observe that the coefficients depend solely on the segment duration Ti when the
boundary conditions are fixed. This insight allows for efficient computation and highlights the role
of Ti as a hyperparameter in balancing trajectory smoothness and velocity profile smoothness.

C ADDITIONAL EXPERIMENTAL DETAILS

Experimental Setup. For the experimental setup, the following parameters were used:

• Maximum speed: 10
• Maximum acceleration: 100
• Maximum jerk: 10,000
• Chord error tolerance: 0.5
• Interpolation period: 0.0005s
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Training Parameters. For training the KIRL agents using PPO and SAC, we set the following
hyperparameters:

• Learning rate: 3× 10−4

• Discount factor (γ): 1
• Number of training epochs: 2000,000
• Batch size: 64
• Network architecture: Three hidden layers with 256 neurons each and ReLU activation.
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