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ABSTRACT

The size of vision models has grown exponentially over the last few years, es-
pecially after the emergence of Vision Transformer. This has motivated the de-
velopment of parameter-efficient tuning methods, such as learning adapter layers
or visual prompt tokens, which allow a tiny portion of model parameters to be
trained whereas the vast majority obtained from pre-training are frozen. However,
designing a proper tuning method is non-trivial: one might need to try out a lengthy
list of design choices, not to mention that each downstream dataset often requires
custom designs. In this paper, we view the existing parameter-efficient tuning
methods as “prompt modules” and propose Neural prOmpt seArcH (NOAH), a
novel approach that learns, for large vision models, the optimal design of prompt
modules through a neural architecture search algorithm, specifically for each down-
stream dataset. By conducting extensive experiments on over 20 vision datasets,
we demonstrate that NOAH (i) is superior to individual prompt modules, (ii) has
good few-shot learning ability, and (iii) is domain-generalizable.

1 INTRODUCTION

The size of vision models has grown exponentially from tens of millions a few years ago (e.g.,
ResNet (He et al., 2016)) to today’s hundreds of millions (Dosovitskiy et al., 2020), or even bil-
lions (Brown et al., 2020; Devlin et al., 2018; Reed et al., 2022), for Transformers (Vaswani et al.,
2017). Such an increase can cause a number of problems to transfer learning (Houlsby et al., 2019;
Jia et al., 2022), and the first and foremost is that fine-tuning becomes more difficult as large model
size can easily lead to overfitting in a typical-sized dataset, let alone the increase of compute and
storage costs.

Recently, there is a growing interest in developing parameter-efficient tuning methods (Houlsby et al.,
2019; Hu et al., 2021; Jia et al., 2022). The key idea is to insert a tiny trainable module to a large
pre-trained model and only adjust its parameters by optimizing some task-specific losses like the
cross-entropy for classification problems. The most representative methods are Adapter (Houlsby
et al., 2019), Low-Rank Adaptation (LoRA) (Hu et al., 2021), and Visual Prompt Tuning (VPT) (Jia
et al., 2022). As exemplified in Fig. 1(a), Adapter is a bottleneck-shaped neural network appended
to a network block’s output; LoRA is a “residual” layer consisting of rank decomposition matrices;
VPT prepends additional tokens to the input of a Transformer block, which can be seen as adding
learnable “pixels.”

By evaluating the three parameter-efficient tuning methods on a commonly-used transfer learning
benchmark, i.e., VTAB-1k (Zhai et al., 2019), we identify a couple of critical issues. First, none of the
three methods performs consistently well on all datasets, as illustrated in Fig. 1(b). For instance, when
it comes to scene structure understanding tasks, VPT outperforms Adapter and LoRA on SmallNORB/
azimuth (LeCun et al., 2004), but its performance plunges on SmallNORB/elevation (LeCun et al.,
2004) and Clevr/count (Johnson et al., 2017), which is largely behind the two competitors. The results
suggest that, for a specific dataset, one needs to perform an extensive evaluation on different tuning
methods in order to identify the most suitable one. Second, performance is found to be sensitive to the
selection of model parameters, such as Adapter’s feature dimension or the token length in VPT—this
is also observed by Jia et al. (2022) that the optimal token length in VPT varies from 1 to 200 on
different datasets.

In this work, we view the existing parameter-efficient tuning methods as prompt modules and propose
to automatically search for the optimal prompt design from data via a neural architecture search
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Figure 1: Our approach, neural prompt search, or NOAH for short, subsumes three representative
parameter-efficient tuning methods (i.e., Adapter, LoRA and VPT) and learns from data the optimal
design through neural architecture search (a). The approach is motivated by the observation that none
of the three individuals shows dominance on the VTAB-1k benchmark (b). The colors of the datasets’
names indicate which method performs the best. Clearly, NOAH is the best overall approach. It
achieves the best performance on 10 out of 19 datasets.

(NAS) algorithm. Specifically, we introduce the concept of Neural prOmpt seArcH (NOAH) for large
vision models, particularly those equipped with the Transformer block (Dosovitskiy et al., 2020). The
search space is constructed by subsuming Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021)
and VPT (Jia et al., 2022) into each Transformer block, as depicted in Fig. 1(a). The specific model
parameters, including the feature dimension for Adapter and LoRA and the token length for VPT, are
determined by a one-shot NAS algorithm.

We conduct extensive experiments on VTAB-1k (Zhai et al., 2019), which is composed of 19 diverse
vision datasets and covers a wide spectrum of visual domains like objects, scenes, textures and
satellite imagery. The results show that NOAH significantly outperforms the individual prompt
modules on 10 out of 19 datasets while the performance on the remaining is highly competitive
(see Fig. 1(b) for an overview of the results). We also evaluate on few-shot learning and domain
generalization where the results also confirm the superiority of NOAH to the hand-crafted prompt
modules.

Our contributions are summarized as follows. (i) We present a systematic study of three representative
prompt modules and expose some critical issues associated with performance and efficiency. (ii) A
novel concept, neural prompt search, is proposed to address the challenge of hand-engineering prompt
modules. (iii) An efficient NAS-based implementation of NOAH is provided. (iv) We demonstrate
that NOAH is better than individual prompt modules in downstream transfer learning, few-shot
learning, and domain generalization. The models and code will be released.

2 NEURAL PROMPT SEARCH

2.1 BACKGROUND

Vision Transformer We first briefly review Vision Transformer (ViT) (Dosovitskiy et al., 2020), to
which our approach is mainly applied. ViT consists of alternating blocks of multihead self-attention
(MSA) and multi-layer perceptron (MLP). Given an input sequence x ∈ RN×D where N denotes
the token length and D is the embedding dimension, MSA first maps x to queries Q ∈ RN×d, keys
K ∈ RN×d and values V ∈ RN×d using three projection matrices, Wq ∈ RD×d, Wk ∈ RD×d and
Wv ∈ RD×d, respectively, where d means the hidden dimension. Then, MSA computes the weighted
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sums over the values based on the self-attention between the queries and keys,

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (1)

where 1√
d

is a scaling factor.

Below we briefly review the three representative—and top-performing—parameter-efficient tuning
methods, i.e., Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021) and VPT (Jia et al., 2022),
which will be incorporated into our search space. An illustration of these three methods can be found
in Fig. 1(a). Note that VPT has been studied for vision models while Adapter and LoRA have only
been studied for language models.

Adapter is essentially a bottleneck-like neural network consisting of a down-sample layer Wdown ∈
Rd×r and an up-sample layer Wup ∈ Rr×d, where r denotes the down-sampled dimension. A non-
linear activation function ϕ(·), such as ReLU, is inserted in-between. The computation can be
formulated as

h′ = ϕ(hWdown)Wup, (2)

where h ∈ RN×d is a normalized output of the MLP in a Transformer block.

LoRA aims to update the two projection layers, Wq (for queries) and Wk (for keys), in an indirect
way by optimizing their rank-decomposed changes, △Wq = W down

q Wup
q and △Wk = W down

k Wup
k ,

where W down
q/k ∈ RD×r and Wup

q/k ∈ Rr×d (r is the down-projection dimension). For a specific input
x, we have

Q = xWq + s · xW down
q Wup

q , K = xWk + s · xW down
k Wup

k , (3)
where s is a fixed scaling parameter for modulating the updates.

Visual Prompt Tuning (VPT) prepends a set of learnable tokens to the input of a Transformer
block, which can be viewed as adding some learnable pixels in the input space. We investigate the
best-performing version, VPT-Deep, which applies prompt tuning to multiple layers (Jia et al., 2022).
We call this module VPT for brevity hereafter and formulate it in mathematical terms below. A typical
input x ∈ RN×D to a Transformer block contains a learnable class token [CLS] of D-dimension and
a sequence of image patch embeddings E = {ei|ei ∈ RD, i = 1, ..., N − 1} where the positional
embeddings are omitted. VPT adds m learnable tokens, P = {pk|pk ∈ RD, k = 1, ...,m}, to x,
which then becomes

x = [CLS,P,E]. (4)

2.2 PROMPT SEARCH ALGORITHM

As discussed, none of the individual parameter-efficient tuning methods, or prompt modules called
in this paper, shows dominance in the transfer learning benchmark. Our approach, neural prompt
search (NOAH), incorporates Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021) and VPT (Jia
et al., 2022) into each Transformer block and learns the design that best suits a dataset through neural
architecture search (NAS). Specifically, we employ a one-shot NAS algorithm, AutoFormer (Chen
et al., 2021), for prompt module search. Our supernet is a ViT-like model composed of 12 Transformer
blocks (layers). Below we detail the search space and how the search is done.

Search Space As shown in Fig. 1(a), we embed the three prompt modules into each Transformer
block following the guidelines proposed in the original work (Houlsby et al., 2019; Hu et al., 2021;
Jia et al., 2022). Concretely, we install VPT in the input position, add LoRA alongside the two
projection matrices as residuals, and insert Adapter after the normalized output of the MLP. The
search space mainly contains the model parameters associated with the three prompt modules.
Specifically, each prompt module has two sets of parameters to search from: (i) the embedding
dimension ∈ {1, 5, 10, 50, 100}; (ii) the depth ∈ {3, 6, 9, 12} (zero-based indexing is adopted.) A
depth means up to which layer a module is applied, e.g., depth = 3 for VPT means layers 0, 1 and 2
have VPT installed while the remaining layers, 3 to 11, do not have VPT. For VPT, the embedding
dimension means the token length whereas for Adapter and LoRA, the embedding dimension means
the down-sampled dimension, i.e., r.
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Figure 2: Illustration of the three stages in NOAH. For each dataset, NOAH finds the optimal
designs of the prompt modules through supernet training and evolutionary search. NOAH retrains the
subnet, which performs the best on the validation set, for achieving better performance if needed.

Supernet Training The supernet, as mentioned, has 12 Transformer layers, each containing the
three prompt modules with full embedding dimension, i.e., 100. During each forward pass, a subnet
is randomly sampled from the supernet for training. Specifically, for each prompt module, a depth is
first sampled from {3, 6, 9, 12} to determine which layers should have the module. Then, for each
layer within the depth range, an embedding dimension is chosen from {1, 5, 10, 50, 100} , all with a
uniform probability. Note that only the prompt modules’ parameters are learned while the pre-trained
model is kept fixed. AutoFormer (Chen et al., 2021) allows the weights in each prompt module to
be entangled during training, meaning that different weights are maximally shared, e.g., in a VPT
module, if 100 tokens are selected for training, the previously trained tokens, such as 50, will be
reused and trained together with other 50 tokens. This way, as suggested in AutoFormer, leads to
faster convergence and low memory cost. We add more details of this step in Supplementary.

Evolutionary Search After the supernet is trained, evolutionary search is conducted to obtain
the optimal subnet architecture under a parameter size limit (Chen et al., 2021). Specifically, we
first select K random architectures, from which the top k architectures (with the best performance)
are used as parents to produce the next generation through crossover and mutation. For crossover,
two candidates are randomly chosen and crossed to produce a “child” architecture. For mutation, a
candidate mutates its prompt module design with a probability. See Fig. 2 for an illustration. We add
more details of this step in Supplementary.

3 EXPERIMENTS

In this section, we mainly address the following questions: (i) Is NOAH better than the individual
prompt modules? (ii) Can NOAH work in a few-shot setting? (iii) Are models learned by NOAH
robust to domain shift? The answers are discussed in Sec. 3.1, 3.2 and 3.3, respectively. We also
conduct some analyses in Sec. 3.4 to have a deeper understanding of NOAH, such as what a subnet
looks like and whether it is transferable beyond the dataset in which the architecture was found.

Baselines The main competitors are Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021) and
VPT (Jia et al., 2022). Among them, only VPT is specifically designed for vision models while the
other two are originally developed for language models. We also compare two common fine-tuning
methods on the VTAB-1k benchmark: full tuning (Full) and linear probing (Linear). Full simply
tunes the entire model parameters whereas Linear freezes the pre-trained part and only adjusts the
newly added linear classification layer.1 It is worth mentioning that Full has been considered as a
strong baseline in existing studies (Jia et al., 2022; Houlsby et al., 2019).

1Note that all methods have a new linear classification layer to learn.
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Table 1: Full results on the VTAB-1k benchmark. The first block contains conventional tuning
methods while the second block contains parameter-efficient tuning methods, which is the main focus
in this paper. NOAH achieves the best overall performance, which is 1% higher on average than the
individual prompt modules.
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Full 85.8 68.9 87.7 64.3 87.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 0.04 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6

VPT 0.64 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Adapter 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
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NOAH 0.43 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5

Implementation Details We keep the training parameters identical across all experiments through-
out this paper. ViT-B/16 (Dosovitskiy et al., 2020) pre-trained on ImageNet-22K (Deng et al., 2009) is
used as the base model, which is strong enough so the results are fair and convincing. The supernet for
NOAH is trained for 500 epochs and the ultimate subnet is trained for 100 epochs— note that “subnet”
means the prompt modules/architectures. Since the AutoFormer (Chen et al., 2021) algorithm allows
a subnet to be used without retraining, we demonstrate later that the subnet found by NOAH without
retraining is also comparable to the retrained one. The evolutionary search in NOAH takes 5 epochs in
total and each step of random pick/crossover/mutation produces 50 new subnets. The probability for
crossover and mutation is set to 0.2, which follows AutoFormer (Chen et al., 2021). The individual
prompt modules, i.e., Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021) and VPT (Jia et al.,
2022), are constructed using the best recipes suggested by the original papers (also trained for 100
epochs; see the Supplementary for more details). The parameter sizes for Adapter, LoRA and VPT
are 0.16M, 0.29M and 0.64M, respectively. For fair comparison, we set the upper-limit of parameter
size of the final subnet in NOAH to 0.64M so the resulting size would be comparable to the baselines.
More implementation details including image augmentation and other hyper-parameters are provided
in the Supplementary.

3.1 EXPERIMENTS ON VTAB-1K

Datasets We choose the VTAB-1k (Zhai et al., 2019) benchmark to evaluate the transfer learning
performance of our approach. VTAB-1k consists of 19 vision datasets, which are clustered into
three groups: Natural, Specialized and Structured. The Natural group contains natural images
that are captured by standard cameras and cover a broad spectrum of concepts including generic,
fine-grained and abstract objects. The Specialized group contains images captured by specialist
equipment for remote sensing (like aerial images) and medical purposes. The Structured group is
designed specifically for scene structure understanding, such as object counting, depth prediction and
orientation prediction. Each dataset in VTAB-1k contains 1,000 labeled examples, which are split
into a train (80%) and a val (20%) set (the latter is used for hyper-parameter tuning), while the
test data comes from the original test set. The final model used for evaluation is trained using the full
1,000 examples in each dataset. Top-1 classification accuracy is used as the performance measure.

Results Table 1 presents the full results on the VTAB-1k benchmark. A high-level summary is
shown earlier in Fig. 1(b). The average performance within each group is summarized in Fig. 3. We
have the following observations.

Observation 1: Overall, NOAH is the best parameter-efficient tuning method. First and foremost, we
demonstrate that searching for the optimal combination of the individual prompt modules works the
best. This is evidenced by the 1% average gain over the strongest prompt module, i.e., LoRA. Given
the diversity of the benchmark, the 1% average gain can be considered to be significant. It is also
worth mentioning that Adapter was previously proved to be the best-performing prompt module in
NLP (Mao et al., 2021), but in our study for computer vision tasks, LoRA takes over the seat. This
further confirms that search is a better option than hand-engineering in practice.
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Figure 3: Group-wise average results on VTAB-1k. NOAH performs the best in the Natural and
Structured groups while its performance in the Specialized group is similar to that of LoRA—but
NOAH does not require a manual search over the architecture and hyper-parameters.

Figure 4: Results of few-shot learning on five fine-grained visual recognition datasets. NOAH
beats the individual modules on average.

Observation 2: NOAH slightly dims in the Specialized group. The results suggest that NOAH’s
weakness seems to be in the Specialized tasks where the individual modules achieve the on-par
performance: NOAH’s results are not too far from those of the competitors, e.g., NOAH’s 84.9 vs
LoRA’s 84.6 on average. And while NOAH is superior on a Retinopathy, it lags on the other datasets,
especially on the EuroSAT. Since the individual modules require a manual search over architecture
and hyper-parameters, NOAH is more compelling.

3.2 EXPERIMENTS ON FEW-SHOT LEARNING

Datasets We choose five fine-grained visual recognition datasets, which include Food101 (Bossard
et al., 2014), OxfordFlowers102 (Nilsback & Zisserman, 2006), StandfordCars (Krause et al., 2013),
OxfordPets (Parkhi et al., 2012), and FGVCAircraft (Maji et al., 2013). The categories in these
datasets cover a wide range of visual concepts closely related to our daily life: food, plant, vehicle
and animal. We follow existing studies (Zhou et al., 2022b; Radford et al., 2021) to evaluate on 1, 2,
4, 8 and 16 shots, which are sufficient for observing the trend.

Results The results are summarized in Fig. 4. In terms of the average performance, we can observe
that: (i) In the low-data regime like 1 or 2 shots, NOAH, LoRA and Adapter perform similarly but
VPT largely lags behind; (ii) NOAH shows clear dominance when more shots become available, e.g.,
with 16 shots the gap between NOAH and the runner-up is around 2%. By looking at the individual
graphs, we can see that none of the individual prompt modules performs consistently well on all
datasets, which, again, justifies that search is better than hand-engineering.
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Figure 5: Average subnets (architectures) for the three groups in VTAB-1k. Adapter and LoRA
tend to live in deep layers while VPT is found nearly in all depths. The demands for VPT (indicated
by the embedding dimension) differ in different groups. The co-existence of the three modules,
especially in deep layers, serves as strong evidence of their complementarity, and such a synergy is
difficult to obtain by hand-engineering.

3.3 EXPERIMENTS ON DOMAIN GENERALIZATION

Table 2: Results on domain generalization. NOAH is
significantly better than the individual prompt modules
on the four domain-shifted datasets.

Source Target

ImageNet -V2 -Sketch -A -R

Adapter 70.5 59.1 16.4 5.5 22.1
VPT 70.5 58.0 18.3 4.6 23.2
LoRA 70.8 59.3 20.0 6.9 23.3
NOAH 71.5 66.1 24.8 11.9 28.5

Datasets Since domain shift is ubiqui-
tous in real-world applications (Zhou et al.,
2021a), we are interested to know how
our search-based approach compares with
the individual prompt modules in terms
of domain generalization ability. Follow-
ing prior studies (Zhou et al., 2022b;a),
we first train a model on ImageNet (Deng
et al., 2009) (using 16 shots per category)
and then directly test it on four other vari-
ants of ImageNet that undergo different
types of domain shift. Specifically, the test
datasets include (i) ImageNetV2 (Recht
et al., 2019), which is collected from differ-
ent sources than ImageNet but following the same collection protocol, (ii) ImageNet-Sketch (Wang
et al., 2019), which is composed of sketch images of the same 1,000 classes in ImageNet, (iii)
ImageNet-A (Hendrycks et al., 2021b), which contains adversarially-filtered images, (iv) ImageNet-
R (Hendrycks et al., 2021a), which is a rendition of ImageNet. Both ImageNet-A and -R have 200
classes derived from a subset of ImageNet’s 1000 classes. All results are averaged over three random
seeds.

Results Table 2 compares NOAH with the three individual prompt modules. On ImageNet, which
is the source dataset, the gap between NOAH and the individual modules is small, which is about 1%.
However, on the four test datasets, NOAH demonstrates significantly stronger robustness than the
baselines: over 6.8%, 4.8%, 5% and 5.2% improvements on -V2, -Sketch, -A and -R, respectively.
The results, together with those from previous subsections, justify that our search-based approach is
superior to the individual prompt modules.

3.4 FURTHER ANALYSIS

Architecture of Subnet A key question to answer is: how does NOAH’s subnet, i.e., the ultimate
architecture, look like. To make the results convincing, we visualize the average architecture found
within each group of VTAB-1k, as well as the global average over all datasets, in Fig. 5. The x-axis
represents the network depth while the y-axis represents the embedding dimension. An intriguing
observation is that Adapter and LoRA, across all groups (Fig. 5(a)), mainly appear in deep layers with
the embedding dimension larger than four and reduced to zero in some shallow layers. In contrast,
VPT can be found nearly in all depths (layers), but the dimensions vary significantly in different
groups, which indicates different demands for VPT. For instance, in the Natural group (Fig. 5(b)),
shallow layers need more VPT modules; but in the Structured group (Fig. 5(d)), deep layers need
more VPT modules. Moreover, the co-existence of the three modules, especially in deep layers,
suggests that they are complementary to each other—such a synergy is difficult to obtain by manual
design. In summary, the observed high variances in the module designs strongly indicate that search
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Table 3: Computational Cost. We illustrate the computational cost of NOAH and other individual
prompt modules. VPT, Adapter*, and LoRA* on each dataset are the best ones over grid search of
search space. The computational cost for them is, therefore 1.2 ∗ 6 = 7.2. Param. of VPT, Adapter*,
and LoRA* are the average architecture parameters of their best architecture on each dataset.

Time (GPU hour/dataset) Param. (M) Top-1 Accuracy
Supernet Search Retrain Total Caltech101 EuroSAT KITTI Average

VPT - - - 7.2 0.8 90.8 96.1 72.8 86.6
Adapter - - - 1.2 0.2 90.1 94.9 78.3 87.7
Adapter* - - - 7.2 1.5 91.9 95.7 80.6 89.4
LoRA - - - 1.2 0.3 91.4 95.3 78.5 88.4
LoRA* - - - 7.2 3.0 92.0 95.8 80.5 89.4
NOAH 3.1 2.0 1.2 6.3 0.5 92.7 95.4 81.7 89.9

is much more efficient than hand-engineering when it comes to developing parameter-efficient tuning
methods.

Computational Cost In Table. 3, we provide the GPU hour/dataset to compare the computation
cost of different methods and their variants. To gain more insights, we show their performance on
three datasets selected from VTAB-Natural, VTAB-Specified, and VTAB-Structural. We observe
that (i) compared to the VPT, Adapter, and LoRA, NOAH achieves at least 1.5% average accuracy
gain on these three datasets at manageable computational overhead (1.2 v.s. 6.3). We would like to
emphasize how to accelerate NOAH further is worthwhile future work. (ii) NOAH achieves the best
performance (89.9%) with the lowest storage cost (0.5MB), compared to the best individual prompt
modules obtained by manually searching. Specifically, we conduct a grid search on the Adapter,
LoRA, following the grid search strategy of VPT (Jia et al., 2022), obtaining Adapter* and LoRA*.
Under a similar computational budget (7.2 v.s. 6.3), the performance of Adapter* and LoRA* still
lags behind NOAH by 0.5% with 3 and 6 times more parameters than NOAH. It demonstrates the
superiority of the neural prompt search over manual search.

Table 4: With vs without retraining NOAH’s subnets.
The results show that there is no significant difference
between them, suggesting that retraining can be safely
removed in practice if the compute resource is limited.

Nat. Spe. Str. Average

VPT 78.5 82.4 55.0 72.0
Adapter 79.0 84.1 58.5 73.9
LoRA 79.5 84.6 60.5 74.5
NOAH (inherited) 80.0 84.7 60.3 75.1
NOAH (retrained) 80.2 84.9 61.3 75.5

With vs Without Retraining Thanks to
the weight entanglement strategy in Aut-
oFormer (Chen et al., 2021), the subnet
extracted from the supernet can be directly
deployed for use without retraining. To ver-
ify if such a rule also applies to NOAH, we
compare the subnets with and without re-
training on VTAB-1k. The results averaged
over each group are shown in Table 4 where
we observe that NOAH without retraining
(denoted as inherited) is still competitive:
the inherited version still outperforms the
VPT and Adapter. The results suggest that
the retraining cost can be safely removed
without incurring any significant loss.

4 RELATED WORK

Parameter-Efficient Tuning A recent trend in transfer learning is to develop parameter-efficient
tuning methods (Jia et al., 2022; Houlsby et al., 2019; Hu et al., 2021; He et al., 2021; Zhong et al.,
2021; Zhou et al., 2022b), which is spurred by the rapid increase in model size. Existing methods
can be generally divided into two groups. The first group fine-tunes a small portion of the internal
parameters, such as biases (Zaken et al., 2021). The second group adds tiny learnable modules
like Adapter (Houlsby et al., 2019) or LoRA, which is more relevant to our research and thus the
focus here. Adapter (Houlsby et al., 2019) and LoRA (Hu et al., 2021) essentially share similar
architectures—both look like a bottleneck—but are installed at different places: Adapter is often
installed at the output of a block while LoRA is treated as residuals to the projection matrices in a
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Transformer (Vaswani et al., 2017) block. It is worth noting that these methods are first studied in
natural language processing (NLP) since pre-trained language models (Devlin et al., 2018; Brown
et al., 2020) typically have an enormous parameter size that reaches the billion level. Another popular
design in NLP is prompt learning (Zhong et al., 2021; Li & Liang, 2021; Lester et al., 2021), which
turns some text prompt tokens into learnable vectors. Such an idea has recently been applied to
vision-language models (Zhou et al., 2022b;a;b; Lu et al., 2022) and is also the source of inspiration
for the recently proposed VPT (Jia et al., 2022), which adds learnable “pixels” to the input of
ViT (Dosovitskiy et al., 2020). However, as discussed in recent works (Chen et al., 2022; Ding et al.,
2022) in NLP and from our observation in computer vision, the optimal parameter-efficient tuning
methods may differ as to the model and dataset change.

More relevant to our work are those trying to unify different parameter-efficient tuning methods (He
et al., 2021; Mao et al., 2021). He et al. (2021) build a connection between Adapter and prompt
learning and cast the problem into the learning of a modification vector, which leads to a unified
view and a stronger baseline. UNIPELT (Mao et al., 2021) is another unified framework, which
subsumes several prompt modules in a block and learns a set of gating functions to selectively
activate them. Our work differs from these studies in two crucial ways: (i) we target computer vision
problems whereas the previous studies (He et al., 2021; Mao et al., 2021) focus on NLP; (ii) we
unify prompt modules from the NAS perspective with a much more fine-grained control over the
model hyper-parameters (e.g., token length and embedding dimension). This allows our model to be
deployed in a resource-constrained environment. In the future, we plan to apply our approach to NLP.

Neural Architecture Search Neural architecture search (NAS) consists of two crucial components:
search space and search algorithm. A search space can subsume various designs of how neurons are
connected (Zoph et al., 2018), diverse combinations of model hyper-parameters (Zoph & Le, 2016),
or different arrangements of specific modules like normalization layers (Zhou et al., 2021b). When it
comes to the search algorithm part, the community has witnessed significant advances: from costly
methods like reinforcement learning (Zoph & Le, 2016) or evolutionary search (Real et al., 2017) to
more efficient ones based on weight-sharing (Pham et al., 2018) or differentiable optimization (Liu
et al., 2018). The most relevant work to ours is AutoFormer (Chen et al., 2021), which is a NAS
method focusing on Transformer (Vaswani et al., 2017) models. AutoFormer features a weight
entanglement strategy to allow different subnets sampled from a big supernet to share weights among
each other. Our work leverages AutoFormer to solve the problem of engineering parameter-efficient
tuning methods, which we hope can inspire future work to address efficient transfer learning.

5 DISCUSSION, LIMITATION AND FUTURE WORK

Our research presents timely studies on how some recently-proposed parameter-efficient tuning
methods, or prompt modules, fare in computer vision problems. Our studies expose a critical issue
that, for any specific downstream dataset, hand-designing an optimal prompt module is extremely
challenging. More importantly, we for the first time solve the problem from a NAS perspective and
demonstrate the potential of our search-based approach in terms of downstream transfer learning
performance, the ability to work in low-data regimes, and robustness to domain shift, which is
ubiquitous in real-world data (Zhou et al., 2021a).

Our studies also unveil some intriguing phenomena. In particular, we find that the ultimate subnet
exhibits different architectural patterns for the three prompt modules across datasets of different
natures. Since neural networks’ features, as often suggested (Zeiler & Fergus, 2014), progress from
low-level visual primitives in bottom layers to high-level abstractions in top layers, the aforementioned
findings entail that different prompt modules work best for features at different levels. We hope such
findings and insights can inspire future work on designing more advanced prompt modules.

In terms of limitations, NOAH requires additional training for the supernet, which inevitably increases
the development cost. Moreover, as suggested by the few-shot learning results, NOAH’s advantages
become clearer when more labeled images are available. In other words, NOAH would require
more labels to unleash its full power in practice. For future work, we plan to dig deeper into the
mechanisms behind NOAH for better interpretation of the intriguing results and apply NOAH to
broader application domains beyond computer vision, such as NLP.
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A BACKGROUND

A.1 AUTOFORMER

We present the detailed steps of the AutoFormer algorithm as follows (we use AutoFormer-base
as an example). As described below, AutoFormer searches for the optimal architecture for ViT.
NOAH adopts AutoFormer for the parameter-efficient tuning task by (i) designing the specific search
space for this task (please refer to Section 2.2 for details). (ii) using “weight entangled” to sample
subnet weights. Notable, other NAS approaches are also available and can be a future work to extend
NOAH, but designing a specific search space, which is general for NAS approaches, is novel for
parameter-efficient tuning tasks.
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Search Space AutoFormer aims to find the optimal architecture for the Vision Transformer (ViT).
The search space of AutoFormer includes different variant factors of the ViT architecture. Specifically,
the search space includes the number of layer ∈ {1, 2, 3}; the number of multi-attention head
∈ {8, 10, 1}; the embedding dimension of multi-attention block ∈ {528, 624, 48}; the reduction ratio
of MLP block ∈ {3, 4, 0.5}; and the embedding dimension of Q-K-V ∈ {512, 640, 64}.

Supernet Training The supernet is initialized with the largest architecture in the search space:
the number of layer = 16; the number of multi-attention head = 10; the embedding dimension of
multi-attention block = 624; the reduction ratio of MLP block = 0.5; the embedding dimension
of Q-K-V = 512. In each training step, AutoFormer randomly samples a subnet for parameter
training. First, it samples the value of the number of layers, says 14, which means the subnet only
has top-14 layers of the supernet. Then for each layer, it samples values from other factors, say
{8, 48, 3, 64} for layer 1, which means layer 1 has 8 multi-attention heads; the embedding dimension
of the multi-attention block is 48, etc. AutoFormer proposed “weight entangled” to sample subnet
weights. Specifically, as the full embedding dimension of the multi-attention block is 624, if the
sampled value of the embedding dimension is 48, the embedding of the multi-attention block of the
subset is the top-48 of embedding of the multi-attention block of the supernet. Model inference and
loss backward at the current step are based on the sampled subnet.

B DETAILS OF NOAH

B.1 SUPERNET TRAINING

We detail the supernet training formally as follows. We first uniformly sample 5 subnet models
from the pre-defined search space/model size. We then select the attentive subnet model M as
mentioned before, and optimize its corresponding weights W in each training iteration. We represent
the structure and weight of this subnet as:

W =
{
W 0,W i, · · · ,W l

}
,

M =
{
M0,M i, · · · ,M l

}
,

(5)

where i indicates the i+ 1 block of the Transformer with l + 1 blocks. Referred to the Eq. 234 in the
main paper, we denotes the adapter weights as W (A), W (A) =

{
W down,Wup

}
, the LoRA weights

as W (L), W (L) =
{
W down

q ,Wup
q ,W down

k ,Wup
k

}
, the VPT weight as W (V), W (V) = P. Hence

M i and W i are denoted as follows:

W i =
{
W i(V),W i(A),W i(L)

}
,

M i =
{
M i(V),M i(A),M i(L)

}
.

(6)

There are multiple choices of each prompt module during the prompt search. Hence, W i(·) and
M i(·) are selected from a set of s candidates that equal the number of choices of the embedding
dimension, which is formulated as:

W i(·) ∈
{
W i

0(·),W i
j (·),W i

k(·), · · · ,W i
s(·)

}
,

M i(·) ∈
{
M i

0(·),M i
j(·),M i

k(·), · · · ,M i
s(·)

}
,

(7)

where M i
j(·) is a candidate prompt module, i.e. Adapter, LoRA or VPT, in the search space and

W i
j (·) is its weights.

In this work, we use the weight entangle strategy Chen et al. (2021) to sample and update the W i
j (·).

Specifically, for any two candidates prompt module M i
j(·) and M i

k(·) with their weight W i
j (·) and

W i
k(·), we have:

W i
j (·) ⊆ W i

k(·), j ≤ k. (8)

Weight entangle strategy makes the weight updates of W i
j (·) and W i

k(·) entangled with each other.
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B.2 EVOLUTIONARY SEARCH

After training the supernet, we conduct the evolutionary search to obtain the optimal subnet under the
parameter size limit Chen et al. (2021). In each search epoch, we have three steps. The mutation and
crossover steps are illustrated in Fig. 2. We maintain a subnet pool P , which is initialized as ϕ, to
store the subnet candidates.

Random sampling. We uniformly produce n legal subnets M = {M1, . . . ,Mn}. Legal subnets
are under the pre-defined parameter limit. Then we renew P , as P = P ∪M

Mutation. We sample n subnets from the newest version P , and mutate each module by randomly
mutating each prompt module with a probability Pm, producing n new subnets. Then we renew
P = P ∪M

Crossover. We sample 2n subnets from P in this step. Then, every two subnets are randomly
combined, forming n pairs. For a pair, we crossover prompt modules located at different subnets but
belonging to the same Transformer layer and the same type, producing two new subnets. Then we
renew P = P ∪M
After each epoch, we renew P as the subnets that achieve the top-N validation performance.

C IMPLEMENTATION DETAIL

Augmentation For the VTAB-1k (Zhai et al., 2019), we follows its default augmentation settings,
implementing the resizing and normalization for input images. Specifically, we resize a input image
to 224 × 224, followed by normalizing it with ImageNet (Deng et al., 2009) means and standard
deviation. For few-shot learning and domain generalization experiments, we implement color-jitters
with the factor as 0.4, and RandAugmentation with magnitude equals 9, magnitude standard deviation
equals 0.5.

Hyperparameters We consistently set the embedding dimension of Adapter (Houlsby et al., 2019)
and LoRA (Hu et al., 2021) as 8. We set prompt length of VPT (Jia et al., 2022) following the paper.
For few-shot learning (FS) and domain generalization (DG) experiments, we consistently set the
VPT prompt length as 8. We use AdamW optimizer (Loshchilov & Hutter, 2017) with the cosine
scheduler. The weight decay equals 1e−3, warm-up epochs equals 10, and the batch size equals 64.
Other hyperparameters are shown in below.

Table 5: Hyperparameters. Others includes few-shot learning and domain generalization.

Learning Rate Dimension DepthVTAB Others

VPT 1e-3 5e-3

{1, 5, 10, 50, 100} {3, 6, 9, 12}
Adapter 1e-3 5e-3
LoRA 1e-3 5e-3
NOAH-supernet 5e-4 5e-4
NOAH-subnet 1e-3 5e-3

D EXPERIMENTS

Transferability of Subnet As discussed previously, the subnet (i.e., architecture) found for different
datasets differs dramatically. Here we study whether, or in what circumstances, the subnet found from
one dataset can be transferred to another. To this end, we train NOAH on ImageNet and apply the
ultimate subnet to the VTAB-1k benchmark where the model is retrained and evaluated. To measure
transferability, we compare the ImageNet subnet with the dataset-specific subnets on VTAB-1k. Fig. 6
shows the comparisons. Overall, the gap between the ImageNet subnet and the 19 dataset-specific
subnets on VTAB-1k is below 3%, meaning that NOAH has fair transferability. By digging deeper
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Figure 6: Evaluation on the transferability of subnets. Dataset-specific subnet means the architec-
ture is found from the target dataset. ImageNet subnet means the architecture is found from ImageNet
and transferred to the target dataset. All target datasets come from VTAB-1k. In general, better
transferability is achieved when the source and target datasets are closer, and vice versa.

into the results, we find that the transfer gap is smaller when the source (i.e., ImageNet) and target
datasets are closer, and vice versa. For instance, the gaps in the Natural group are less than 1%, which
make sense because the ImageNet images and those from the Natural group share similar visual
concepts, such as generic objects, flowers and animals.

D.1 ARCHITECTURE OF SUBNET

We illustrate the subnets architectures of each dataset in Figure 7. Across all datasets, Adapter
and LoRA are usually inserted in the shallow layers. The embedding dimension and depth of VPT
are various in different datasets. Specifically, in most datasets of VTAB-natural, VPT has small
embedding dimensions, i.e., less than or equal to 50, and lies in shallow depth (layers). In contrast,
in the KITTI-Dist (Geiger et al., 2013), DMLab (Beattie et al., 2016), Clevr-Dist (Johnson et al.,
2017), and Clevr-Count (Johnson et al., 2017) datasets of VTAB-structured, VPT plays an important
role in deeper layers with larger embedding dimensions. We note that the variation of searched
VPT by different groups coincides with that of manually designed VPT in (Jia et al., 2022), i.e.,
VPT has a smaller embedding dimension for VTAB-natural and a larger embedding dimension for
VTAB-structured, which indicates the superiority of NOAH that can automatically search the optimal
subnet without carefully custom designs.
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(a) Natural

(b) Specialized

(c) Structured

Figure 7: Illustration of the subnets architectures for the datasets in VTAB-1k. Subnet architec-
tures show different characteristic in different groups.
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