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Abstract

In the era of large language models (LLMs),
utilizing these models to address a variety of
Natural Language Processing (NLP) tasks has
emerged as a focal point of research. However,
applying LLMs to the Grammatical Error Cor-
rection (GEC) task remains challenging. In this
paper, we introduce GEC-Agent, a novel frame-
work designed to effectively leverage the infer-
ential and syntactic capabilities of LLMs while
integrating external tools and rule-based ap-
proaches to enhance correction accuracy. The
framework incorporates grammar and retrieval
tools to identify and correct grammatical er-
rors effectively, and implements a reflection
mechanism to mitigate overcorrection. GEC-
Agent dynamically selects appropriate tools to
optimize the correction process and ensures
consistency with the original text’s style. Our
experiments on the CoNLL-2014 and JLFEG
datasets demonstrate that GEC-Agent outper-
forms the few-shot method, using the same
large language model, and achieves a higher re-
call rate compared to existing traditional meth-
ods with supervised learning.

1 Introduction

Grammatical Error Correction (Bryant et al., 2023)
is a fundamental task in Natural Language Process-
ing that involves automatically detecting and cor-
recting grammatical mistakes in the text. This task
is crucial not only for enhancing the quality of text
but also for applications like language learning and
automated writing evaluation. Over the years, vari-
ous models have been proposed for GEC. Junczys-
Dowmunt et al. (2018) uses the Transformer model,
Kaneko et al. (2020) applies BERT, and Rothe et al.
(2021) leverages T5 for GEC.

Recently, the emergence of Large Language
Models has catalyzed a paradigm shift in the appli-
cation of NLP technologies, leading to significant
advancements. Models like GPT and LLaMA have
exhibited exceptional proficiency in downstream
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Figure 1: Traditional Seq-Seq and transformer-based
models with supervised learning in GEC tasks prior-
itize precision, making fewer corrections to sentence
structure. In contrast, large language models emphasize
grammar and fluency, leading to deeper corrections but
often causing over-correction. Our GEC-Agent frame-
work attempts to accommodate both using LLM and
tools.

tasks, primarily due to their capacity to capture in-
tricate syntactic, semantic, and contextual nuances.
Extensive research has been conducted on the capa-
bilities of large language models in the task of GEC.
Fang et al. (2023a) and Loem et al. (2023) have
examined the performance of large language mod-
els in the task of GEC, demonstrating that LLMs
possess strong capabilities in capturing syntactic
and semantic nuances. Furthermore, LLMs tend to
achieve higher recall rates compared to traditional
models. However, a persistent challenge remains
in the form of overcorrection, where grammatically
correct text segments are unnecessarily modified,
thereby compromising the integrity of the original
sentence. Table 1 provides an example of overcor-
rection by an LLM.

GEC is inherently more constrained than other
generative tasks due to the necessity of balancing
error detection with the preservation of the original
meaning and style of the sentence. As shown in



Description Sentence

Source Sentence
become ambitious.

The more people spend time on social media sites, the less they

Gold Answer The more people spend time on social media sites, the less they
become ambitious.
LLM The more people spend time on social media sites, the less

ambitious they become.

Table 1: An example demonstrating the overcorrection by large language models shows that when faced with a
correct sentence, LLMs make unnecessary adjustments to the original sentence for issues like fluency or word order.

Figure 1, traditional methods with supervised learn-
ing can carefully ensure consistency in the form of
input and output text but often lead to missed error
corrections, whereas large models tend to ambi-
tiously overcorrect to make sentences fluent. Sim-
ple prompting techniques fail to ensure that LLMs
remain faithful to the original text, leading to a
trade-off between fluency and structural fidelity.

To address these limitations, we propose GEC-
Agent, a novel framework that integrates the in-
ferential power of LLMs with rule-based and tool-
assisted methods. By combining the reasoning
strengths of LLMs with the precision provided by
grammar rules and external tools, GEC-Agent en-
hances correction accuracy while preserving the
original style and intent of the sentence. This hy-
brid approach effectively mitigates overcorrection,
ensuring that the revisions are grammatically sound
while maintaining stylistic consistency. The core
contributions of this work are as follows:

* LLM as a Reasoner in GEC: For the first time
in GEC, we utilize the LLM as a reasoner, re-
sponsible for generating and proposing editing
operations to drive the correction process.

* Rule/Tool-based Constraints: We introduce
rule-based and tool-based constraints to limit
LLM flexibility, combining the adaptive reason-
ing of LLMs with the precision of strict gram-
matical rules.

» Explainable and Superior Performance: Our
approach surpasses LLMs by delivering inter-
pretable corrections, maintaining high recall, and
achieving more accurate and explainable GEC
outcomes.

2 Related Work

2.1 Grammatical Error Correction

Grammatical Error Correction has evolved signif-
icantly with advances in machine learning tech-
niques.
Seq2Seq Early work primarily focuses on
sequence-to-sequence models (Junczys-Dowmunt
et al., 2018), which treats GEC as a translation task,
translating erroneous sentences into corrected ones.
Enhancements such as data synthesis and advanced
reranking strategies have further improved these
models (Stahlberg and Kumar, 2021a; Lichtarge
et al., 2020).
Seq2Edit Seq2Edit models like GECToR
(Omelianchuk et al., 2020), have since gained
prominence, introducing an efficient token-level
correction process that tags errors instead of
rewriting entire sentences. This model reduces
inference time while maintaining high accuracy,
particularly in low-resource settings (Stahlberg
and Kumar, 2020).
Transformer-based Transformer-based models
have played a crucial role in recent developments,
leveraging architectures like BART and T5 (Lewis
et al., 2019; Raffel et al., 2019), which excel at
handling long dependencies. These models have
been fine-tuned on GEC-specific datasets, achiev-
ing state-of-the-art results. Pre-training strategies
and large-scale unsupervised data have been instru-
mental in this improvement (Grundkiewicz et al.,
2019).
Large language models LLMs such as GPT-3
and GPT-4 have been employed for GEC (Fang
et al., 2023b), although they face challenges related
to over-correction. Recent studies indicate that
these models perform well when guided with in-
context examples (Tang et al., 2024).
Syntax-aware approaches have also gained trac-



tion. SynGEC (Zhang et al., 2022b) incorporates
syntactic information to guide the correction pro-
cess, improving performance by exploiting sen-
tence structures. Tang et al. (2024) uses syntactic
information to select in-context examples.

Finally, data augmentation techniques have been
widely adopted to address the scarcity of annotated
GEC datasets. Models like that of Stahlberg and
Kumar (2021b) employ synthetic data generation
to create large, diverse corpora for training, which
significantly boosts model performance.

2.2 Tool-Augmented LLLM Agents

The development of Tool-Augmented Large Lan-
guage Models (TALMs) has greatly improved
LLMs’ ability to perform complex tasks by lever-
aging external tools. Some work introduces tool
integration to enhance decision-making and rea-
soning (Parisi et al., 2022; Schick et al., 2023; Lu
et al., 2023; Mialon et al., 2023; Qin et al., 2024;
Yin et al., 2024). Recent work has also focused
on the iterative refinement of outputs using exter-
nal tools (Madaan et al., 2023; Wu et al., 2023;
Shah et al., 2022). Yao et al. (2023) emphasized
the potential of combining reasoning and action
capabilities in TALMs for dynamic environments.
In domain-specific tasks, ChemCrow (Bran et al.,
2023) and TORA (Gou et al., 2024) highlight how
tool integration can enhance precision in certain
fields like chemistry and mathematics.

Augmenting LL.Ms with domain-specific tools
improves their ability to handle specialized tasks
in fields. However, there have been no attempts
to combine LLM and tools on GEC tasks, which
could synthesize the reasoning ability of LLM with
the ruled nature of tools.

3 GEC-Agent

This section outlines the design and implemen-
tation of the GEC-Agent framework, which inte-
grates LLMs with specialized grammar tools and
retrieval tools. By leveraging these components,
the framework aims to improve grammatical error
detection and correction while minimizing over-
correction. We will introduce GEC-Agent from
four key aspects: the overall framework and logic
design, the types of sentence operations, the tools
integrated, and the iterative correction algorithm.
Figure 2 provides an overview of the agent’s opera-
tional flow.

3.1 Framework and Logic Design

We adopt LangChain (Chase, 2022) to build GEC-
Agent, leveraging its modularity and seamless inte-
gration with external tools. Designed to enable
LLMs to interact dynamically with external re-
sources, LangChain provides the flexibility needed
for GEC, allowing the agent to automatically select
the most suitable tools based on sentence complex-
ity. By analyzing grammatical structure and com-
plexity, the agent invokes the appropriate tools to
make precise and contextually accurate corrections.

To achieve this, we design a control logic frame-
work that enables the agent to follow a predeter-
mined path. Appendix B outlines the main struc-
ture of the prompt guiding the agent’s operation.
This prompt specifies the requirements for the GEC
task, assists the agent in selecting appropriate tools
based on the context, defines how the agent should
perform corrections, and how it should reflect on its
results after correction. Ultimately, it generates out-
put that facilitates interaction with the LangChain
framework and external tools. The control logic
oversees the entire correction process, organizing
it into four stages: Thought, Action, Reflection, and
Final Answer. In the following paragraphs, we will
introduce each of these stages in detail.

Thought In the thought stage, the agent pro-
cesses the observed context and assesses whether
the current correction meets the requirements. The
observed context refers to the input information
maintained by the LangChain framework, includ-
ing initial rule constraints, each round’s actions,
tools’ outputs, and model outputs. This informa-
tion is stored as a stack of results in their gener-
ated order, without further processing. If the agent
identifies the need to reflect, the agent will either
move to the action stage to invoke tools or apply its
own reasoning to modify the sentence. If the agent
identifies the need to reflect on previous results, it
will enter the reflection stage, possibly rolling back
prior modifications and initiating a new round of
the process.

Action In the action stage, the agent will invoke
the appropriate tool and provide the input sentence
to the tool. Once the tool’s results are returned,
the agent will observe them, and the tool’s results
along with the observations will be incorporated
into the contextual information. After that, a new
round of the process will begin.
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Figure 2: The GEC-Agent framework. The agent utilizes external tools to conduct deeper grammar checks or
retrieve external knowledge and make corrections. By combining the inferential power of the LLM with the
precision of external tools, the framework ensures accurate grammatical corrections while minimizing unnecessary

changes.

Reflection Reflection is a core component of
GEC-Agent, dynamically reevaluating previous
corrections to determine whether they were nec-
essary. Reflection is triggered when the agent
thinks the previous changes may not have been
optimal. The agent uses its internal reasoning to
assess whether previous modifications were too ag-
gressive, resulting in the loss of the original mean-
ing or style of the sentence. If necessary, the agent
will roll back certain modifications, restoring parts
of the original text that were overcorrected, thus
preserving the intended meaning and maintaining
the accuracy and integrity of the final output.

Final Answer When the large model, through its
own reasoning, determines that the sentence has
been correctly fixed without overcorrection, it will
output the final answer.

Figure 2 illustrates the sequential relationship
between the Thought, Action, Reflection, and Fi-
nal Answer stages. Each stage is connected to the
next through decision points based on the agent’s
analysis. Also, the agent decides whether to invoke
an external tool, directly modify the text, or re-
flect on prior corrections. This control mechanism
helps that corrections are both accurate and stylisti-
cally consistent with the original text, preventing

overcorrection while preserving the intended mean-
ing.

3.2 Types of Sentence Operations

In GEC, common errors can be classified into four
types: misuse, missing, redundancy, and word
order (Bryant et al., 2017; Zhang et al., 2022a).
Grammatical error correction can be understood as
a series of operations that transform an incorrect
sentence into a correct one. To ensure a structured
and interpretable correction process, we have lim-
ited the types of modifications that the model can
make to erroneous sentences. According to Bryant
et al. (2017), we define a set of core operations,
each designed to handle specific types of errors:

* Insert: Adding missing words or phrases to the
sentence.

* Delete: Removing redundant or incorrect words.

* Transform: Modifying the form of words, such
as tense, singular/plural forms, or other grammat-
ical attributes, or replacing incorrect words with
appropriate ones.

* Rearrange: Changing the word order within the
sentence.
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Figure 3: Original illustration of GOPar from Zhang et al. (2022b). () denotes the missing word.

The table below shows how these operations
map to specific error types:

Error Type Applicable Operations
Missing Insert

Redundancy Delete

Misuse Delete, Transform
Word Order  Rearrange

Table 2: Mapping of GEC error types to predefined
operations.

These operations form the functional backbone
of the correction process, ensuring that all mod-
ifications are precise and minimize unnecessary
changes. Each operation is carefully mapped to ad-
dress specific error types, ensuring a targeted and
efficient correction strategy. Evidently, these four
types of errors can indeed be effectively resolved
using the defined operations!.

3.3 Tools

Inspired by the knowledge required by humans
when correcting grammatical errors, we equipped
GEC-Agent with grammar tools to provide precise
grammatical knowledge and retrieval tools to sup-
ply experiential knowledge from textual data.

3.3.1 Grammar Tools Integration

To improve correction accuracy, GEC-Agent in-
tegrates two primary grammar tools: SpaCy and
GOPar, each serving a distinct role in the analysis
and correction of grammatical errors. These tools
complement the model’s capabilities, enabling a
nuanced understanding of syntax and error patterns.
SpaCy SpaCy (Honnibal et al., 2020), a highly
efficient NLP library, is utilized in GEC-Agent for
its robust part-of-speech (POS) tagging and depen-
dency parsing functionalities. The agent leverages

'These sequential operations and the results of sequential
modifications are generated by the agent through reasoning
in the Thought stage, while the Action stage involves tool
invocation. Please avoid conflating the two.

SpaCy’s POS tagging to identify the grammatical
category of each word in a sentence, which serves
as foundational information for understanding sen-
tence structure and facilitating downstream tasks.
Dependency parsing is then employed to reveal the
syntactic relationships between words, enabling
the agent to detect deeper grammatical issues like
misaligned dependencies or incorrect phrasal struc-
tures. By integrating SpaCy’s syntactic insights,
GEC-Agent can accurately diagnose errors and pro-
pose corrections that adhere to grammatical rules.
GOPar GOPar (Zhang et al., 2022b) is a special-
ized grammatical error correction parser designed
to detect and annotate substitution, redundancy, and
omission errors. Unlike traditional parsers, GOPar
is tailored for GEC tasks, providing a fine-grained
analysis of both well-formed and erroneous sen-
tences. In GEC-Agent, GOPar enhances the agent’s
ability to handle complex grammatical issues by of-
fering detailed syntactic diagnostics, allowing the
model to pinpoint the exact nature and location of
errors. Through GOPar, GEC-Agent can perform
sentence-level corrections while aiming to preserve
the intended meaning, providing corrections that
are both syntactically accurate and contextually rel-
evant. Figure 3 illustrates three sample parses of
the tool.

By integrating the syntactic information pro-
vided by SpaCy and GOPar, GEC-Agent can per-
form more comprehensive grammatical corrections.
This tool integration enables the agent to flexibly
adapt its correction strategy based on the complex-
ity and structure of the input text, ensuring reliable
grammatical error correction.

3.3.2 Retrieval Tools Integration

We also incorporate retrieval tools through the
LangChain framework, leveraging DuckDuckGo?
APIs for real-time access to external grammati-
cal resources. Additionally, a local error sentence
database built from the W&I+LOCNESS (Bryant
et al., 2019) datasets allows the model to retrieve

https: //duckduckgo. com
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Algorithm 1 Interactive Grammatical Correction Algorithm

1: procedure CORRECTGRAMMAR(S(Set of Sentences), 7T'(Set of Tools), A(Set of Actions),

H (Context))

2: for each s; € S do

3: H « H U {ExtractContext(s;)}

4: while not TerminationCondition(H ) do

5: a; < DecideAction(H, A) > Decide to ’Think’, "Retrieve’ or use a tool
6: if a; = tool action then

7: t; < SelectTool(T")

8: h; < ApplyTool(t;, s;) > Apply selected tool to the sentence
9: H + H U {ExtractContext(h;) } > Update context with the tool’s result
10: else
11: h; < Think(s;, H) > Internal thinking/retrieving process. The Reflection stage can

be integrated into the Thought stage during implementation.

12: H «+ H U {ExtractContext(h;)} > Update context with the result of thinking
13: end if

14: s; + modifications(H, s;) > Correct the sentence according to the contextual information
15: end while
16: end for
17: return Final Answer(H) > Return the final corrected sentences

18: end procedure

grammar-related examples to guide its correction
decisions. To enhance the retrieval of grammar-
related examples, we utilize LLaMA3.1-70B to
summarize modification suggestions and the rel-
evant grammatical knowledge for sentence pairs
in the database. Through this, we can retrieve
grammatical knowledge and analogous corrections
through semantic similarity, by providing an erro-
neous sentence and the required grammatical con-
cept. The generated data segments and the prompts
provided to LLaMA3.1-70B are detailed in Ap-
pendix D. When the agent requires examples or
suggestions for specific grammatical knowledge,
it queries the database to retrieve grammatically
or semantically similar sentences, or those with
identical errors, aiding its correction decisions in
complex or ambiguous scenarios. By querying ex-
ternal sources and the local error database, enriched
with common grammatical mistakes, the model
avoids unnecessary corrections, maintains preci-
sion in challenging cases, and quickly accesses past
error patterns for more accurate and contextually
informed corrections.

3.4 Iterative Correction Algorithm

GEC-Agent utilizes an iterative correction algo-
rithm that progressively refines the sentence with
each correction cycle. If unresolved errors or new
errors from previous modifications are detected, the

agent initiates another correction or reflection. This
process continues until the sentence achieves an op-
timal state of grammatical correctness, determined
dynamically by the model. The termination condi-
tion is designed to avoid unnecessary adjustments,
ensuring an efficient and effective correction. For
detailed algorithmic steps, refer to Algorithm 1.

4 Experiment

To rigorously assess the performance of our pro-
posed GEC-Agent framework, we conduct compre-
hensive experiments across multiple benchmarks
and evaluate various aspects of the model’s abili-
ties, including grammatical correction, reasoning
capacity, and reflection effectiveness. We select
two major GEC datasets, CONLL-2014 (Ng et al.,
2014) and JFLEG (Napoles et al., 2017), for testing,
as these datasets are widely used in the GEC field
and encompass a broad spectrum of linguistic com-
plexity and error types. Moreover, the evaluation
metrics of CONLL-2014 focus more on structural
consistency, while the evaluation metrics of JLFEG
emphasize semantic consistency. By assessing both
aspects, we can better demonstrate the capabilities
of our Agent in terms of both semantics and form.
We also perform an ablation study to examine the
contribution of different components of our model.
For the evaluation experiments, we use GPT-40 and
LLaMA 3.1-70B to conduct tests on the CoNLL-



2014 and JFLEG datasets, respectively.

For the ablation experiments and tool usage anal-
ysis, we conduct tests on the CoNLL-2014 dataset
using the LLaMA 3.1-70B model.

Dataset #Sentences %Error Usage

W&I+LOCNESS 34,308 66 retrieval
CoNLL-14-Test 1,312 72 Testing
JFLEG-Test 747 - Testing

Table 3: Statistics of GEC datasets used in this work.
#Sentences refers to the number of sentences. % Error
refers to the percentage of erroneous sentences.

The proposed method is implemented using the
following LLMs:

* LLaMA 3.1 LLaMA 3.1-70B is a commonly
used model of the LLaMA family, specifically
designed to handle complex natural language
processing tasks in multi-task scenarios.

* GPT-40 GPT-40 is a more efficient architec-
ture, focusing on enhancing reasoning ability,
reducing inference time, and improving con-
text retention.

The relevant parameter settings for the large models
are presented in Appendix C.

4.1 Evaluation Metrics

In order to comprehensively evaluate the perfor-
mance of the GEC model, we evaluate the perfor-
mance on the CoNLL-14 test set (Ng et al., 2014)
using the M? Scorer (Dahlmeier and Ng, 2012),
and evaluate the performance on the JFLEG test
set using GLEU(Napoles et al., 2015).

4.2 Main Results

The proposed GEC-Agent framework demonstrates
superior performance in the task of GEC, partic-
ularly by addressing the pervasive issue of over-
correction found in Large Language Models. By
combining the inferential strengths of LLMs with
the precision of rule-based and tool-augmented cor-
rection mechanisms, our approach significantly en-
hances correction accuracy while reducing unnec-
essary alterations to the original text. The experi-
mental results across multiple benchmark datasets
validate this improvement.

On the CoNLL-2014 dataset, GEC-Agent
achieves an F0.5 score of 63.2, outperforming re-
cent three-shot LLMs, and maintaining a high re-
call rate. The model’s ability to dynamically adjust

its correction strategy by integrating external gram-
matical tools and a reflection mechanism proves
crucial in dealing with complex grammatical struc-
tures. On the JFLEG dataset, GPT-40+GEC-Agent
achieves a GLEU score of 63.4. Although it does
not surpass the results of the three-shot GPT-40 on
the JFLEG dataset, it still outperforms the previous
traditional models, reflecting its capacity to main-
tain the original meaning and style of sentences
while minimizing unnecessary corrections.
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Figure 4 shows the distribution of reasoning it-
erations required to reach the final answer across
the CoNLL-2014 dataset. From this figure, we can
observe that the average reasoning path length is
4.1, with a higher number of sentences requiring
only one iteration. Many sentences can arrive at
the correct answer after a single reasoning step.
The number of sentences requiring two iterations
is zero, and one possible reason for this is that a
full tool invocation step may exceed two iterations.
Figure 5 displays the Tool Usage Rate of various
tools during Agent execution. The GOPar tool,
which is most related to grammatical errors, has
the highest number of invocations, while the search



System | CoNLL-14 |JFLEG
| PR Fy5| GLEU
Transformer (Fang et al., 2023b) 60.1 36.6 53.3| 554
TS5 large (Rothe et al., 2021) 722 514 66.8| 62.8
GECToR (Omelianchuk et al., 2020) 75.6 445 66.3| 58.6
ChatGPT zero-shot (Fang et al., 2023b) 48.5 589 50.3 -
ChatGPT zero-shot CoT (Fang et al., 2023b) | 50.2 59.0 51.7| 614
LLaMA-3.1-70B three-shots 55.1 58.7 55.8| 62.1
LLaMA-3.1-70B +GEC-Agent 60.0 484 57.3| 62.7
GPT-40 three-shots 59.0 554 58.2| 64.1
GPT-40 +GEC-Agent 67.6 50.3 63.2| 634

Table 4: Results of state-of-the-art GEC systems and our proposed methods on two datasets: CoNLL-14 (evaluated
using Precision (P), Recall (R), and Fy 5) and JFLEG (evaluated using GLEU).

tool is invoked less frequently.

Condition P R Fos
Remove Grammar Tools | 58.7 43.8 55.0
Remove Retrieval Tools | 57.1 47.9 55.0
Remove both 53.6 464 52.0
Keep all 60.0 484 573

Table 5: Ablation Study Results

4.3 Ablation Study

The ablation study further underscores the impor-
tance of tool integration within GEC-Agent. When
either grammatical tools or retrieval mechanisms
are removed, there is a significant drop in perfor-
mance, particularly in precision. The Fj 5 score
drops from 57.3 to 52.0 when both components
are excluded, highlighting the indispensable role of
external tools in ensuring correction accuracy. Re-
taining all components allows the model to adapt its
correction strategy dynamically, providing robust
performance across a broader range of grammatical
erTors.

4.4 Case Study

We demonstrate two types of case studies: tool-
assisted correction and reflection. They are shown
in Appendix A. In tool-assisted correction, the large
model uses external tools to detect and fix gram-
matical errors with higher precision. In Example
A.1, the large model invokes the GOPar tool, which
returns a syntax tree annotated with grammatical
error information. The model observed these gram-
matical errors and reasoned accordingly. For differ-

ent types of errors, the model applied predefined
operation types to modify the sentence.

In reflection, the model reassesses prior correc-
tions, retracting unnecessary changes to maintain
the original meaning and style. In Example A.4,
the model evaluates each previous modification,
and when it detects that "requires" was an overcor-
rection of the original text, the model identifies this
and reverts the modification.

These examples also demonstrate that our
method offers excellent interpretability, making
it easier for non-native speakers to receive correct
and comprehensible error corrections, which fa-
cilitates both comprehension and learning when
encountering grammatical mistakes.

5 Conclusion

In this work, we propose a novel approach to Gram-
matical Error Correction through the integration of
large language models with external grammar tools
and a reflection mechanism, resulting in the cre-
ation of the GEC-Agent. The results in our exper-
iments demonstrate the significant advantages of
GEC-Agent: by combining the reasoning power of
LLMs with the precision of external grammatical
tools and the adaptability of the reflection mech-
anism, GEC-Agent gets an effective grammatical
correction while minimizing overcorrection, pre-
serving the original semantic and stylistic integrity
of the text, and showcasing the potential of tool-
augmented large model frameworks in GEC tasks.



6 Limitations

Despite promising results, the GEC-Agent system
has several limitations. The reliance on external
grammar tools and retrieval mechanisms poses ef-
ficiency challenges, particularly in large-scale or
real-time scenarios. Additionally, the evaluation of
publicly available datasets like CoONLL-14 and JF-
LEG may not fully capture the range of real-world
grammar errors, highlighting the need for testing
on more diverse and domain-specific datasets. Fur-
thermore, we acknowledge the language limita-
tions of our current system. Due to the availabil-
ity and robustness of current tools, GEC-Agent
currently supports English. We are working on
extending basic GEC capabilities to low-resource
languages through rule-based grammar guidance.
Lastly, while the GEC-Agent reduces overcorrec-
tion, it does not fully eliminate the problem. There
are still cases where the model modifies correct
sentences unnecessarily, especially in complex syn-
tactic structures or with rare grammatical construc-
tions. More experiments are needed to improve the
performance.
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A Some detailed examples

Al

Action: GOPar_dependency_parsing
Action Input: "Therefore, the social media
is not safe which is bad to teenager ’s future
development."

Observation:Based on the GOPar depen-
dency parsing results, I notice that the sen-
tence has several errors marked as R (Re-
dundant), M (Missing), and S (Substituted).
Specifically, the article "the" is marked as
redundant, the word "which" is marked as
missing, and the preposition "to" and the
possessive form "’s" are marked as substi-
tuted.

Thought:Based on the observation, I will
correct the sentence by addressing the iden-
tified issues. First, I will remove the re-
dundant article "the" before "social media."
Next, [ will add a comma before "which" to
properly separate the clauses. I will replace
the preposition "to" with "for," as it is the
appropriate preposition in this context. Fi-
nally, I will correct the possessive form by
changing "’s" to "s’."

Final Answer: "Therefore, social media is
not safe, which is bad for teenagers’ future
development."

A2

Action: duckduckgo_search
Action Input: "typical phrase with talk’"

Observation: After searching, I found that
the fixed combination referred to in the
sentence is "talking to people." Therefore, I
can rewrite the sentence as: "One can talk
to some people some of the time, but not all
people all of the time."

Final Answer: "One can talk to some peo-
ple some of the time, but not all people all
of the time."
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A3

Action: pos_tagging

Action Input:"My advice to any one start
to learn this sport to be careful of the
accident ."

Observation: "start" is VERB.
Thought: Need to change ’start’ to ’start-

]

Reflection: Based on the previous cor-
rection result, I will change "requires"
back to "needs" since "requires" was an
overcorrection and "needs" maintains the
original tone. Additionally, I will retain
the other corrections, such as combining
"any one" into "anyone," changing "start
learn" to "starting learning,"” and modifying
"carefully from the accident" to "be careful
of the accident,” as these were valid
improvements.

Final Answer: "My advice to anyone start-
ing learning this sport is to be careful of the
accident because it needs more concentra-
tion from the person to ride."

2
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B Main Prompt for the GEC-Agent

nonn

PREFIX =

You are an expert linguist specialized
in identifying and correcting
grammatical and spelling errors.
Your task is to find any grammatical
or spelling errors in the given
sentence and correct them using the
provided tools, applying the minimal
necessary edits. **Do not make any
additional changes** such as adding
content, replacing synonyms,
rephrasing sentences for better flow
, or altering the original meaning.

nonn

nnon

FORMAT_INSTRUCTIONS =
You must respond using one of the
following formats:

1. "Thought, Action, Action Input”
format:
- Thought: Reflect on your progress

and decide the next action.

- Action: Specify the tool to use,

selecting from [{tool_names}].

- Action Input: Provide the input for
the chosen tool.

OR

2. "Final Answer” format:
- Final Answer: Provide the corrected
sentence without grammatical or
spelling errors.

*x0nly a single complete format should
be used in each response.*x

nonn

nnn

QUESTION_PROMPT =

Identify any grammatical or spelling
errors in the sentence and correct
them using the following tools:

{tool_strings?}

Use the most appropriate tool available
for each correction.

*x IMPORTANT : xx Follow these steps in
order and strictly adhere to the
guidelines to ensure minimal
modifications:

1. *xGrammar and Spelling Check:*x*
Examine the sentence for the
following issues:

- Excessive or incorrect use of
prepositions or articles

- Missing prepositions, articles, or
verbs

- Tense and voice inconsistencies
- Capitalization errors

- Spelling mistakes

- Missing or incorrect punctuation
- Singular and Plural Errors:
Incorrect usage of singular or
plural forms.
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- Possessive Case Errors: Incorrect
usage of possessive forms.
- Subject-Verb Agreement Errors:
Ensure that the subject and verb
agree in number and person.
- Sentence Structure Errors:
- Sentence Fragments: Incomplete
sentences lacking main components.
- Run-on Sentences: Improperly
connected independent clauses.
- Pronoun-Antecedent Agreement Errors
Ensure pronouns agree with their
antecedents in number and gender.
- Incorrect Use of Conjunctions:
Proper usage of coordinating and
subordinating conjunctions.
- Misuse of Adjectives and Adverbs:
Correct application of adjectives
and adverbs to modify appropriate
words .
- Redundancy and Repetition:
Eliminate unnecessary repetition of
words or phrases.
- Improper Negation: Avoid double
negatives and ensure clear negation
structures.

*Note:* Do not consider word order or
synonym issues as grammatical
errors.

2. *%*No Errors Found:x* If no
grammatical or spelling errors are
detected, return the original
sentence.

3. **Minimal Modification:** Make =xxonly
one modification at a timex*x,
applying the least intrusive change
necessary to correct the error.

4. xxAvoid Unnecessary Changes:xx x*Do
not make any modifications#** that do
not address a grammatical or
spelling error. *xDo not add, remove
, or replace words*x beyond what is
necessary for correction.

5. xxValidation:xx After each
modification, **reflect to ensure it
meets the above requirements*xx. If
it does not, withdraw the
modification and do not apply it.

6. **Detailed Reflection:** At the end
of each step, provide a x*xdetailed
reflection** assessing whether the
current action complies with the
requirements. **Explain your
evaluation clearlyx*, ensuring that
no overediting has occurred.

**xDo not skip any of these steps. Do not
deviate from the instructions. Do
not provide additional explanations,
examples, or alternative formats.
Do not simulate tool outputs or
engage in reasoning loops.*x

Sentence: {input}

64

66
67
68
69
(
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nnn

nnn

SUFFIX =
Thought:

nonon

{agent_scratchpad}

FINAL_ANSWER_ACTION = "Final Answer:"

Listing 1: Main Prompt for the GEC-Agent

This prompt specifies the requirements for the GEC
task, defines how the agent should perform correc-
tions, and how it should reflect on its results after
correction.

C Model parameter settings

Parameter Value

Temperature 0.0
Top-p 0.3

Max Tokens 1024

Table 6: Parameter Settings for LLMs

For tasks like grammatical error correction, pre-
cision and consistency are paramount. Throughout
this paper, the temperature parameter for LLMs is
consistently set to 0.

D Retrieval Prompts and Data Segments

nonn

# Task Description:

You are an English grammar expert.
Analyze sentence pairs containing an
*%xerroneous sentencex* and its *%
corrected version**x, and extract:

1. *xGrammar Knowledge**: Rules or error

types (e.g., subject-verb agreement

, missing article).

2. **Modification Typex*:

- Insert: Adding missing words or
phrases.
- Delete: Removing redundant or

incorrect words.
- Transform: Modifying or replacing
incorrect words.
- Rearrange: Adjusting word order for
correctness.

3. **Structured Examples=*=*:
- Sentence Pair: Erroneous sentence
-> Corrected sentence.
- Word Pair: Erroneous word
Corrected word.
- Abstract Pattern:
for reuse.

->

Generalized form

## Example Output:

### Example 1

- x*Grammar Knowledgexx*:
Agreement

Subject-Verb
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Table 7: Grammar Knowledge and Examples for Database Retrieval

2 - xxWord Pairxx*:

Grammar Knowl- | Modification Type | Sentence Pair Word Pair
edge
Missing Article Insert Incorrect: He bought apple. [None] — an
Correct: He bought an apple.
Subject-Verb Transform Incorrect: Public transport provide... | provide — provides
Agreement Correct: Public transport provides...
Capitalization Transform Incorrect: i am john from canada. i—1
Correct: I am John from Canada.
Adverb Placement | Rearrange Incorrect: I like very much this sport. | very much —
Correct: I like this sport very much. placed after like
Verb Tense Consis- | Transform Incorrect: It must be play. play — played
tency Correct: It must be played.
Preposition Usage | Transform Incorrect: She gave the book for him. | for — to
Correct: She gave the book to him.

- **Modification Typex*: Transform

- **Sentence Pair#*x: "She go to school.”
-> "She goes to school.”

go -> goes

### Example 2

- xxGrammar Knowledgex*: Missing Article

- **Modification Typex*: Insert

- x*Sentence Pair*x: "He bought apple.”
-> "He bought an apple.”

- *x*Word Pair#*x: [None] -> an

nonon

Listing 2: Prompt for Retrieval-friendly Grammar
Database

This prompt instructs the large model to sum-
marize the grammatical knowledge involved in the
sentence pair modifications within the dataset, fa-
cilitating its use for retrieval.

Table 7 shows the grammatical knowledge and
related examples used for database retrieval. The
table includes various types of grammatical errors,
correction methods, sentence pairs illustrating in-
correct and corrected forms, as well as the cor-
responding word-level modifications. These ex-
amples provide a structured and clear reference,
enabling the system to retrieve relevant corrections
and apply appropriate fixes based on similar pat-
terns in the input text.

14




	Introduction
	Related Work
	Grammatical Error Correction
	Tool-Augmented LLM Agents

	GEC-Agent
	Framework and Logic Design
	Types of Sentence Operations
	Tools
	Grammar Tools Integration
	Retrieval Tools Integration

	Iterative Correction Algorithm

	Experiment
	Evaluation Metrics
	Main Results
	Ablation Study
	Case Study

	Conclusion
	Limitations
	Some detailed examples
	
	
	
	

	Main Prompt for the GEC-Agent
	Model parameter settings
	Retrieval Prompts and Data Segments

