DYNAMIC BANZHAF: GAME-THEORETIC ATTRIBUTION WITH DYNAMIC FEATURE-WISE PROBABILITIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Game-theoretic attribution methods approximate target model as a cooperative game and evaluate feature importance as payoff allocation to the input features. Most methods use well-known game-theoretic solutions such as the Shapley value because they satisfy key desirable axioms. However, the strict assumptions of game theory reduce the flexibility of explanations: in particular, most methods use fixed coalition sampling distributions, preventing the dynamic alignment of explanations to user criteria. To address this gap, we introduce Dynamic Banzhaf, a game-theoretic attribution method that optimizes the masking probability of each feature to a user-defined objective function. We provide theoretical proof on the convergence of Dynamic Banzhaf, discuss optimal probability selection, and empirically demonstrate the effect of probability adjustment on the quality of the explanations in machine learning models. Our results indicate that masking probabilities can be calibrated to improve the alignment of explanations to user criteria, highlighting the effect of dynamic probability selection in game-theoretic attribution.

1 Introduction

Artificial Intelligence (AI) is becoming a ubiquitous tool in many fields owing to its capacity to reflect complicated patterns in large datasets. However, this capacity is often accompanied by high model complexity, turning a model into a black box whose prediction process is difficult to interpret. In high-stakes domains like health care or finance (Caruana et al., 2015; Grath et al., 2018), interpretability is just as important as the accuracy of predictions, and model complexity hinders the practical adoption of AI in these domains. Explainable AI addresses this challenge by attaching explanations to the models (Samek, 2017; Gunning et al., 2019; Longo et al., 2024).

Among various explanation techniques, feature attribution measures the contribution of input features to a model's prediction (Ribeiro et al., 2016b; Lundberg & Lee, 2017; Sundararajan et al., 2017). In particular, local model-agnostic approaches are popular in explainable AI as they compute the input importance regardless of target model's architecture (Ribeiro et al., 2016a). Game-theoretic explainable AI is a branch of local model-agnostic attribution that approaches the explanation process as a cooperative game, where each feature i is a 'player' and the 'game' v is a set function that maps a subset of features (coalition S) to the model's output. The feature importance is equivalent to the 'payment' allocated to player i, which is a weighted average of $\Delta_i v(S)$, the change in v caused by adding i to S. Thus, in game-theoretic explainable AI, the weighting scheme determines the feature importance.

The Shapley value (Shapley, 1953), which performs an average over all possible permutations of features by using combinatorial weights, is frequently used in explainable AI because it satisfies several desirable axioms. It can be approximated by KernelSHAP (Lundberg & Lee, 2017), which performs a weighted linear regression on randomly sampled coalitions. KernelSHAP has been explored thoroughly in the past literature (Lundberg et al., 2018; Sundararajan & Najmi, 2020; Chen et al., 2021; Mosca et al., 2022). However, Shapley value has several issues due to its weights. Specifically, it applies much higher weights on either very small or very large subsets, ignoring the effects of mid-sized subsets. This weighting scheme leads to instabilities in various explanation tasks that has to be addressed with specific techniques like specialized sampling (Covert & Lee, 2020). It

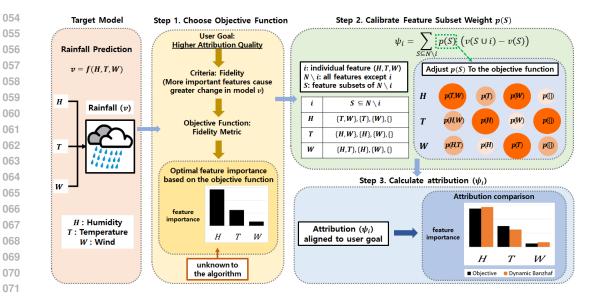


Figure 1: **Illustration of Dynamic Banzhaf value**. Given a model, a user chooses a goal for the attribution, such as improving its quality. The user defines relevant criteria and an objective function that quantifies the criteria, which leads to an optimal feature importance. These values are not known *a priori* to the algorithm (Step 1). Dynamic Banzhaf adjusts the weights of the weighted average to the objective function dynamically. Larger and darker circles represent heavier weights (Step 2). The attribution values calculated with the calibrated weights become better aligned with the optimal feature importance (Step 3).

also makes the approximation of the Shapley values numerically unstable (Karczmarz et al., 2022; Wang & Jia, 2023; Liu et al., 2024).

Another solution of cooperative games is the probabilistic values (Dubey & Weber, 1977), which take the expectation of $\Delta_i v(S)$ by using p(S), the probability of coalition formation, as the weights. The Banzhaf value (Banzhaf III, 1964) is a specific probabilistic value with uniform p(S), and has recently gained attention as an alternative of the Shapley value because it is still axiomatic, more intuitive, and more stable (Liu et al., 2024). It has been applied in tasks like data valuation (Wang & Jia, 2023) and feature attribution (Liu et al., 2024).

A key limitation of the Banzhaf value is that it assumes a fixed p(S) that is only dependent on the number of coalitions. This strict assumption forces all coalitions to be accounted for equally in all scenarios. However, different users often prioritize different qualities in their explanations, which result in different true optimal attribution. The inflexibility of the Banzhaf value implies that it cannot adapt to these requirements. An ideal attribution method should be able to calibrate its p(S) to the user's criteria. For example, consider the simple 3-input model in Figure 1, which predicts rainfall based on humidity, temperature, and wind. A user has a goal for the attribution, especially regarding improving certain desiderata. The user chooses the relevant criteria and an objective function to quantify the criteria (fidelity in the example, which is the alignment between the importance assigned to a feature and its impact on model prediction (Hedström et al., 2023; Nauta et al., 2023)). The chosen objective function implies certain optimal attribution values that are not known to the algorithm $a\ priori$ (step 1). The feature subset weights p(S) (where larger and darker circle size indicates heavier weights in the diagram) are adjusted dynamically to optimize the objective function (step 2). By using these calibrated weights, the final attribution values would be better aligned with the optimal attribution for the chosen criteria (step 3).

Based on this notion, we introduce Dynamic Banzhaf, which adjusts p(S) dynamically by optimizing each feature's coalition-joining probability (or *masking* probability) to a user-defined objective function (step 2 in Figure 1). We show that the attribution values can be computed through a centered linear regression, prove the convergence rate of Dynamic Banzhaf value, discuss the masking

probability calibration process, and empirically demonstrate the benefits of masking probability calibration. Our contributions are as follows:

- We introduce Dynamic Banzhaf, a novel algorithm that efficiently computes axiomsatisfying attribution using a different masking probability for each feature that is optimized to meet user-defined attribution criteria.
- We show Dynamic Banzhaf as a linear regression with intercept centered by each feature's probability, and its theoretical convergence rate.
- We discuss the process for dynamic calculation of optimal masking probabilities, and empirically demonstrate how using Dynamic Banzhaf improves the quality of the generated explanations, highlighting the importance of optimized masking probabilities in gametheoretic attribution.

2 RELATED WORK

2.1 Shapley Value-based Explanation

Game theory-based explainable AI literature focuses on developing methods that satisfy axiomatic properties. They are typically based on the Shapley value (Shapley, 1953), which satisfies four axioms (linearity, dummy, symmetry, and efficiency). The Shapley value is defined as:

$$\phi_i = \frac{1}{n} \sum_{S \subset N \setminus i} \binom{n-1}{|S|}^{-1} [v(S \cup i) - v(S)] \tag{1}$$

Where N the player set with size n, S is a subset of players, v(S) is a value function. In explainable AI, the features are equivalent to the players, and v maps S to model outputs.

While the Shapley value is too costly to calculate exactly, Lundberg & Lee (2017) shows that it can be estimated using a weighted linear regression, a method known as KernelSHAP. This method has been adapted in many different directions in explainable AI (Mosca et al., 2022), such as architecture specialization (Lundberg et al., 2020; Ghorbani & Zou, 2020; Wang et al., 2021) or estimation method improvements (Messalas et al., 2019; Covert & Lee, 2020). One issue with the Shapley value is that its weights are the highest for small or large coalitions, minimizing the effects of intermediate-sized coalitions. This weighting scheme also makes Shapley approximations numerically unstable algorithmically (Wang & Jia, 2023; Liu et al., 2024). Recent works relax some of the axioms to address these shortcomings. For example, Kwon & Zou (2022) propose Beta Shapley, which adjust the Shapley averaging scheme based on a Beta distribution.

2.2 BANZHAF VALUE-BASED EXPLANATION

Another solution of cooperative game theory is the probabilistic values (Dubey & Weber, 1977), which takes the expectation of the marginal contributions with p(S), the probability of coalition formation, as the weights:

$$\phi_i = \sum_{S \subset N \setminus i} p(S)[v(S \cup i) - v(S)] \tag{2}$$

The Banzhaf value (Banzhaf III, 1964) is a specific probabilistic value with uniform p(S):

$$\phi_i = \frac{1}{2^{n-1}} \sum_{S \subseteq N \setminus i} \left[v(S \cup i) - v(S) \right] \tag{3}$$

Intuitively, the Banzhaf value is the expected marginal contribution assuming all players may join a coalition with independent probability of w=0.5. The Banzhaf value has recently gained attention as an alternative of the Shapley value because it is still axiomatic, more intuitive, and more stable

(Liu et al., 2024). Furthermore, the two values are similar qualitatively, especially in terms of the contribution ranks (Freixas et al., 2012; Karczmarz et al., 2022). KernelBanzhaf Liu et al. (2024) approximates the Banzhaf values using linear regression with mask values set to $\{-0.5, 0.5\}$; Karczmarz et al. (2022) uses the Banzhaf value for data valuation; Patel et al. (2021) uses the Shapley and the Banzhaf value to select the optimal vocabulary subset for NLP tasks; and Chhablani et al. (2024) utilizes the Banzhaf value to create counterfactuals in graph neural networks. Li & Yu (2024) generalizes the Banzhaf value to weighted Banzhaf value, which sets $p(S) = w^{|S|}(1-w)^{(n-|S|)}$ for data valuation. They show that optimal w is dependent on the dataset and model. However, there has not been any research on computing the Banzhaf values when all features have different weights in a kernelized manner, or analytic methods for determining optimal w.

3 Method

3.1 DEFINITION

Given a set of features N of size |N| = d, coalition $S \subseteq N$, and value function v(S), let w_i be the probability that feature i joins S. Then, the Dynamic Banzhaf value ψ_i of player i is defined as:

$$\psi_i = \sum_{S \in N \setminus i} \left(\prod_{j \in S} w_j \prod_{j \notin S} (1 - w_j) \right) \left(v(S \cup i) - v(S) \right) \tag{4}$$

Intuitively, ψ_i is the expected change in v(S) given that the probability of coalition formation p(S) follows a multivariate Bernouilli distribution with parameter $\mathbf{w} = \{w_1, w_2, ..., w_d\}$. The Banzhaf value is a special case where $w_i = 0.5 \quad \forall i$, while the weighted Banzhaf value is another special case where $w_i = \alpha \quad \forall i, \quad 0 \leq \alpha \leq 1$. In explainable AI, w_i is called a *masking* probability since a feature is 'removed' from a coalition by masking it with other values.

3.2 APPROXIMATION OF DYNAMIC BANZHAF VALUE WITH CENTERED LINEAR REGRESSION

Once the set of probabilities \mathbf{w} is fixed, we can approximate Dynamic Banzhaf value with a centered linear regression:

Theorem 1 (Dynamic Banzhaf as centered linear regression with intercept). Given $z = \{0, 1\}^d \sim Ber(\mathbf{w})$, Dynamic Banzhaf values ψ is the solution of the centered linear regression:

$$\beta_0^*, \boldsymbol{\psi} = \arg\min_{\beta_0, \boldsymbol{\beta}} E_Z[(v(\mathbf{z}) - \beta_0 - \boldsymbol{\beta}^T(\mathbf{z} - \mathbf{w}))^2]$$
 (5)

The full proof is presented in Appendix C.

It should be noted that the theorem also holds without an intercept (e.g, (Marichal & Mathonet, 2011)), which is the traditional setup for game-theoretic explainable AI. However, we specify the inclusion of intercept term because formulations without an intercept is sensitive to vertical shifts like subtraction of a baseline value. Another benefit of including the intercept is that in terms of implementation, we do not need to center **z** to approximate the Dynamic Banzhaf values since centering does not affect the feature coefficients of a linear model with intercept.

We can derive the convergence guarantee of the linear regression approximation of Dynamic Banzhaf value as follows.

Theorem 2 (Convergence of Dynamic Banzhaf). Let $Z_n = \{z_i - w\}_{i=1,...,n}$ and $V_n = \{v(z)\}_{i=1,...,n}$ be n samples from $z_i = \{0,1\}^d \sim Ber(w)$ and the corresponding evaluations of v. Let β_n^* be the coefficient of centered linear regression on Z_n and V_n . Then, given constants δ , ϵ , and M > 0, β_n^* converges to ψ with probability $1 - \delta$ (i.e., $P(|\beta_n^* - \psi|_2 \le \epsilon) \le 1 - \delta$) for $n = \Omega(\epsilon^{-2}M^2\sigma^2d^3\gamma^4\log(4/\delta))$), where $\sigma^2 = max(w_i(1-w_i))$, $\gamma^2 = \sum_{i=1}^d 1/(w_i(1-w_i))$, and |v(z)| < M.

The full proof is presented in Appendix C. Intuitively, the theorem states that the convergence error (ϵ) decreases with larger number of samples (n); lower maximum value function magnitude (M);

lower maximum variance of the feature masks (σ^2); and lower sum of feature mask precisions ((γ^2). In particular, with all else held constant, the solution converges the fastest when $\sigma^2 \gamma^4$ is minimized, which occurs when $w_i = 0.5 \quad \forall i$, i.e., the regular Banzhaf value.



Figure 2: Convergence experiment between L_2 error and $\sigma^2 \gamma^4$ for random masking probabilities and models generated from the specified seeds across different input dimensions. The relation is approximately linear across all seeds and input dimensions as expected from Theorem 2.

We demonstrate the linearity between ϵ^2 and $\sigma^2\gamma^4$ Theorem 2 through a toy experiment (Figure 2). Each subplot presents L_2 error estimates versus $\sigma^2\gamma^4$ for a quadratic model with 4 to 7 input features, with model parameters, inputs and ${\bf w}$ randomly generated using the specified seed. All values are calculated with 1000 perturbations. The relationship is approximately linear as expected, indicating that the convergence holds.

3.3 CALCULATING OPTIMAL MASKING PROBABILITIES

Theorems 1 and 2 assume that masking probabilities $\{\mathbf{w}\}_{i=1,\dots,n}$ are known. In real world, the optimal \mathbf{w} can vary widely depending on the qualities that a user expects from an attribution. These qualities are usually some desiderata of explanations (Nauta et al., 2023), such as faithfulness – the degree to which an explanation matches the model output behavior (Hedström et al., 2023) – and sensitivity – the stability of the attribution for identical inputs (Nauta et al., 2023). Once the user specifies an objective function $L(\mathbf{w})$ that quantifies the chosen quality, Dynamic Banzhaf can calibrate \mathbf{w} to optimize $L(\mathbf{w})$. For continuous $L(\mathbf{w})$, we can perform gradient descent to compute \mathbf{w} . For some $L(\mathbf{w})$, the optimal \mathbf{w} may be found theoretically: for example, for ϵ from Theorem 2 the optimal probabilities are $w_i = 0.5$ $\forall i$.

In the experiments, we demonstrate this idea by setting $L(\mathbf{w})$ to a continuous approximation of the Area over Perturbation Curve (AOPC) (Tomsett et al., 2020), a measure of explanation fidelity that calculates the area over the curve (AOC) of the change in model output from the target input as we replace each feature in the input with the chosen baseline. The approximation is as follows:

$$AOPC_{\beta_n^*} = \frac{1}{d+1} \sum_{k=1}^{d} (d-k+1) \beta_{n,\pi(k)}^*$$
 (6)

where $\beta_{n,\pi(k)}^*$ is the k-th highest value in β_n^* , the Dynamic Banzhaf value estimate from the centered linear regression. The idea is to approximate the change from replacing each feature with the corresponding estimated Dynamic Banzhaf value. The metric and its continuous approximation are discussed in Appendix A.

Since β_n^* is the coefficient of a weighted linear regression and therefore has an analytic solution with respect to \mathbf{w} , we can compute the gradient of $AOPC_{\beta_n^*}$ using the chain rule for gradient descent optimization of \mathbf{w} .

4 EXPERIMENT

In this section, we demonstrate the effect of calibrating masking probabilities through two experiments. Firstly, we apply Dynamic Banzhaf value using approximated AOPC objective function from Section 3.3 and compare it against popular baseline methods to quantitatively evaluate the impact of dynamic masking probability adjustments on common metrics. In the second experiment, we investigate the intuitive meaning behind masking probabilities by assigning fixed probabilities across an image by location (center or periphery) and measuring the effect on explanation fidelity.

4.1 SETUP

Algorithms. We use the following algorithms for the experiments:

- KernelBanzhaf (KBanzhaf) (Liu et al., 2024): equivalent to setting $w_i = 0.5 \quad \forall i$.
- Weighted Banzhaf with probability α (WBanzhaf(α)): equivalent to setting $w_i = \alpha \quad \forall i$. We use α of 0.25 and 0.75 to test the effect of uniform α at different levels.
- KernelSHAP (Lundberg & Lee, 2017) (KSHAP): linear regression approximation of Shapley value.
- Beta Shapley (Kwon & Zou, 2022) ($BetaShap(\alpha, \beta)$): this method uses the Beta distribution to compute the coalition weights of marginal contributions. We adapt the original data valuation method to feature attribution task. We use (α, β) of (16,1), (4,1), (1,4), and (1,16) following the original paper.
- Dynamic Banzhaf (DBanzhaf): We optimize w_i based on continuous approximation of logit AOPC (referred to as DBanzhaf(MoRF)).

Models and datasets. We train XGBoost classifiers for several real world tabular datasets (Bank Marketing (Moro & Cortez, 2014), Communities and Crime (Redmond, 2002), Adult Census (Becker & Kohavi, 1996), Diabetes (Kahn), and California Housing (Pace & Barry, 1997)). We use the default settings provided by the training package. Each model is trained on an random 80% split of the corresponding dataset. We also train modified ResNet101 classifiers on Imagenette and Imagewoof datasets (Howard & Gugger, 2020). Details on the models and hardware, as well as simple input-label descriptions of the datasets are provided in Appendix B.

Evaluation. We evaluate the faithfulness of the attributions using AOPC with predicted class's logit (Logit AOPC) and probability (Probability AOPC), as well as Iterative Removal of Features (IROF) (Rieger & Hansen, 2020). Higher AOPC and lower IROF represents greater fidelity. It should be noted that while there are discussions on biases with these metrics (Hooker et al., 2019; Rong et al., 2022; Wang & Wang, 2024), they are still widely used in explainable AI literature for evaluation and it is outside of the scope of the study to discuss their limitations.

We evaluate the sensitivity of the attributions using L_2 -normalized error following Liu et al. (2024), average pairwise rank correlation, and top-K Jaccard index. For The last metric, we set K to 5 for Adult and Diabetes datasets, and the minimum between 20 and half of the number of features for the rest of the datasets. Detailed descriptions of all metrics are provided in Appendix A.

Settings. For the California Housing and Diabetes datasets, which have only d=7 features, we generate explanations with sample size equal to 25%, 50%, and 100% of $2^d=128$. For the rest of the tabular datasets, we use 500 to 1000 perturbations at 100 intervals to evaluate the explanations. The attribution is performed across 40 different seeds between 0 and 800. The replacement value for masking is a random instance in the opposite class. For image datasets, we use a baseline of 0 with a fixed seed of 0. The images are segmented into 64 square segments. All evaluations are performed on the remaining 20% test split.

4.2 FAITHFULNESS AND SENSITIVITY ANALYSIS

4.2.1 FAITHFULNESS

The faithfulness evaluations on Bank Marketing dataset are shown in Figure 3. The complete results are reported Appendix D and E in both table and graph format. Across the datasets, we observe several patterns:

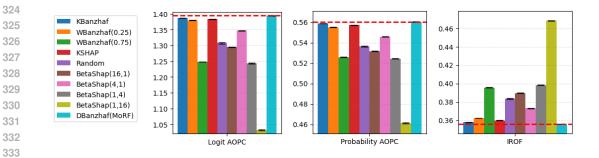


Figure 3: Faithfulness results for Bank Marketing dataset. The red line marks the level of DBanzhaf(MoRF) (rightmost bar). For all three measures, DBanzhaf(MoRF) makes statistically significant improvements in fidelity.

- The average faithfulness is generally the highest for DBanzhaf(MoRF). For several datasets, the difference is statistically significant compared to the standard error.
- The only times where DBanzhaf(MoRF) shows non-significant difference in fidelity is when it shows comparable performance to KBanzhaf. For such scenarios, it is likely $w_i = 0.5 \quad \forall i$ is optimal or near-optimal probabilities already.
- For other methods, the ranks can vary across dataset and metric. However, Banzhaf variants (effectively special cases of DBanzhaf) tend to outperform non-Banzhaf methods most of the time.
- Using random w_i (Random) results in degraded performance. This decrease in fidelity suggests that randomly choosing masking probabilities is worse than using a fixed probability across all features for fidelity in terms of the chosen metrics.

Overall, these results indicate that we can achieve greater average faithfulness by optimizing **w** on continuous approximation of AOPC, highlighting the importance of careful feature-wise adjustment of masking probabilities to align with user criteria.

4.2.2 SENSITIVITY

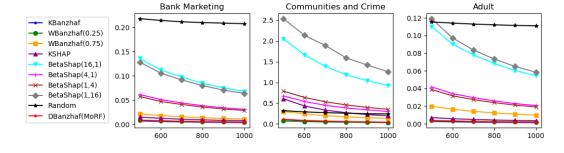


Figure 4: L_2 -normalized error over n across different datasets. We see that KBanzhaf generally achieves the lowest sensitivity, followed closely by $WBanzhaf(\alpha)$ and DBanzhaf(MoRF).

The L_2 -normalized error for datasets with large number of features (Bank Marketing, Communities and Crime, and Adult) is presented in Figure 4. Other results (including other metrics and the results for Diabetes and California Housing datasets) are reported in Appendix D and F. We observe the following patterns:

 KBanzhaf tends to achieve the lowest sensitivity in terms of L₂-normalized error among all Banzhaf variants across almost all datasets, which supports Theorem 2.

Table 1: Average faithfulness for Dynamic Banzhaf value with masking probability focus placed on image center versus image periphery.

IROF

0.2049 0.2113

Name	Logit AOPC	Probability AOPC
$DBanzhaf(Center)\\DBanzhaf(Periph)$	5.0321 4.8623	0.7224 0.7154

(a) Imagenette

Name	Logit AOPC	Probability AOPC	IROF
$DBanzhaf(Center) \ DBanzhaf(Periph)$	5.2139	0.7388	0.1413
	5.0047	0.7310	0.1482

(b) Imagewoof

- DBanzhaf(MoRF) shows low sensitivity as well, performing nearly as good as KBanzhaf in most scenarios. In contrast, Random performs poorly in all scenarios, showing a clear difference between random and proper w_i selection.
- KSHAP achieves lower sensitivity than WBanzhaf(0.75) in most datasets, while BetaSHAP all have significantly higher L_2 -normalized errors.
- The results using other sensitivity metrics generally agree with the trends in L₂-normalized error with some variations. Most notably, for Jaccard distance and correlation, BetaShap variants can sometimes outperform the Banzhaf variants.

Overall, the results indicate that while Banzhaf variants approach their actual values in a more stable manner (lower L_2 -normalized error), the ranking stability can vary (mixed Jaccard distance and average pairwise rank correlation). Combined with the fidelity evaluation, we can surmise that:

- KBanzhaf (setting $w_i = 0.5 \quad \forall i$) is generally the best for sensitivity in terms of L_2 -normalized error.
- On average, DBanzhaf(MoRF) can provide more accurate (or at least equivalently accurate) attribution compared to other Banzhaf variants at the cost of slight deterioration in sensitivity.
- Using random w_i performs worst in terms of sensitivity. Combined with the prior two points, this result again highlights the importance of methodical mask probability adjustment: arbitrarily chosen \mathbf{w} can be detrimental to attribution quality, while carefully calibrated probabilities can improve those properties.
- BetaShap variants are 'consistently less right' they sometimes have lower sensitivity than Banzhaf variants, but still have lower average fidelity.

4.3 Understanding The Role of Masking Probabilities in Fidelity

In this section, we apply two different w_i between the center and periphery of images in the image datasets to investigate the information captured by w_i . Specifically, we compare the faithfulness of explanations depending on the location of high and low w_i in the image. For each image, we divide the image into 64 equally sized segments. Using $w_{high} = 0.7$ (high probability) and $w_{low} = 0.3$ (low probability), we set the masking probability of either the center 4×4 segments (DBanzhaf(Center)) or the periphery segments (DBanzhaf(Periph)) to w_{low} . The opposite set of segments are set to w_{high} . Comparing the faithfulness between the two setups, we find that DBanzhaf(Center) has higher average fidelity than DBanzhaf(Periph) (Table 1). Given that many instances in the image datasets have their objects at the center of the image, this result implies that a higher overlap between the object and low w_i tends to result in more faithful attributions on

average. In other words, w_i seems to act as 'prior information regarding feature importance': by assigning lower w_i to clearly important features (the objects of an image), they are removed more frequently so that more accurate ranking can be computed for the remaining inputs.

5 CONCLUSION

In this paper, we present Dynamic Banzhaf, an axiomatic feature attribution method that computes feature importance with each feature having a unique probability of joining a coalition (i.e., the feature masking probability). We prove that Dynamic Banzhaf values can be computed through a centered linear regression and derive the theoretical convergence given a set of masking probabilities. We also discuss calculating optimal probabilities through continuous objective functions that represent user criteria. We optimize the probabilities of Dynamic Banzhaf on a continuous approximation of a faithfulness metric, and compare its performance in terms of fidelity and sensitivity against other game-theoretic attribution methods. We find that Dynamic Banzhaf value meets or beats most baseline methods in terms of average fidelity across all datasets with minimal degradation in sensitivity. These results indicate the importance of adjusting masking probabilities with appropriate objective function to improve the quality of explanations in machine learning.

Given that game-theoretic explainable AI is becoming important for other tasks such as data valuation, it may be interesting to see if we can generalize Dynamic Banzhaf to different applications. In particular, discovering appropriate objective functions for different tasks and metrics could help users gain greater understanding into a model's behavior. Another interesting future research direction would be extending this work to other data, especially for those that need to reflect the original data probability in the masking process.

REFERENCES

- John F Banzhaf III. Weighted voting doesn't work: A mathematical analysis. *Rutgers L. Rev.*, 19: 317, 1964.
- Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI: https://doi.org/10.24432/C5XW20.
- Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1721–1730, 2015.
- Hugh Chen, Scott Lundberg, and Su-In Lee. Explaining models by propagating shapley values of local components. *Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability*, pp. 261–270, 2021.
- Chirag Chhablani, Sarthak Jain, Akshay Channesh, Ian A Kash, and Sourav Medya. Game-theoretic counterfactual explanation for graph neural networks. In *Proceedings of the ACM on Web Conference* 2024, pp. 503–514, 2024.
- Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation via linear regression. *arXiv preprint arXiv:2012.01536*, 2020.
- Pradeep Dubey and Robert J Weber. Probabilistic values for games. 1977.
- Josep Freixas, Dorota Marciniak, and Montserrat Pons. On the ordinal equivalence of the johnston, banzhaf and shapley power indices. *European Journal of Operational Research*, 216(2):367–375, 2012.
- Amirata Ghorbani and James Y Zou. Neuron shapley: Discovering the responsible neurons. *Advances in neural information processing systems*, 33:5922–5932, 2020.
 - Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, and Freddy Lecue. Interpretable credit application predictions with counterfactual explanations. *arXiv* preprint arXiv:1811.05245, 2018.

- David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-Zhong Yang. Xai—explainable artificial intelligence. *Science robotics*, 4(37):eaay7120, 2019.
 - Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, and Marina M-C Höhne. Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond. *Journal of Machine Learning Research*, 24(34):1–11, 2023.
 - Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability methods in deep neural networks. *Advances in neural information processing systems*, 32, 2019.
 - Jeremy Howard and Sylvain Gugger. Fastai: a layered api for deep learning. *Information*, 11(2): 108, 2020.
 - Michael Kahn. Diabetes. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5T59G.
 - Adam Karczmarz, Tomasz Michalak, Anish Mukherjee, Piotr Sankowski, and Piotr Wygocki. Improved feature importance computation for tree models based on the banzhaf value. In *Uncertainty in Artificial Intelligence*, pp. 969–979. PMLR, 2022.
 - Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework for machine learning. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of Machine Learning Research*, pp. 8780–8802. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/kwon22a.html.
 - Weida Li and Yaoliang Yu. Robust data valuation with weighted banzhaf values. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Yurong Liu, R Teal Witter, Flip Korn, Tarfah Alrashed, Dimitris Paparas, and Juliana Freire. Kernel banzhaf: A fast and robust estimator for banzhaf values. *arXiv preprint arXiv:2410.08336*, 2024.
 - Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser, Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, et al. Explainable artificial intelligence (xai) 2.0: A manifesto of open challenges and interdisciplinary research directions. *Information Fusion*, 106:102301, 2024.
 - Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.
 - Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution for tree ensembles. *arXiv preprint arXiv:1802.03888*, 2018.
 - Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global understanding with explainable ai for trees. *Nature machine intelligence*, 2(1):56–67, 2020.
 - Jean-Luc Marichal and Pierre Mathonet. Weighted banzhaf power and interaction indexes through weighted approximations of games. *European journal of operational research*, 211(2):352–358, 2011.
 - Andreas Messalas, Yiannis Kanellopoulos, and Christos Makris. Model-agnostic interpretability with shapley values. In 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–7. IEEE, 2019.
 - Rita P. Moro, S. and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2014. DOI: https://doi.org/10.24432/C5K306.

- Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, and Georg Groh. Shap-based explanation methods: a review for nlp interpretability. In *Proceedings of the 29th international conference on computational linguistics*, pp. 4593–4603, 2022.
 - Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice Van Keulen, and Christin Seifert. From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai. *ACM Computing Surveys*, 55(13s):1–42, 2023.
 - R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33 (3):291–297, 1997.
 - Roma Patel, Marta Garnelo, Ian Gemp, Chris Dyer, and Yoram Bachrach. Game-theoretic vocabulary selection via the shapley value and banzhaf index. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2789–2798, 2021.
 - Michael Redmond. Communities and Crime. UCI Machine Learning Repository, 2002. DOI: https://doi.org/10.24432/C53W3X.
 - Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of machine learning. *arXiv preprint arXiv:1606.05386*, 2016a.
 - Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1135–1144, 2016b.
 - Laura Rieger and Lars Kai Hansen. Irof: a low resource evaluation metric for explanation methods. *arXiv preprint arXiv:2003.08747*, 2020.
 - Yao Rong, Tobias Leemann, Vadim Borisov, Gjergji Kasneci, and Enkelejda Kasneci. A consistent and efficient evaluation strategy for attribution methods. In *International Conference on Machine Learning*, pp. 18770–18795. PMLR, 2022.
 - W Samek. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. *arXiv preprint arXiv:1708.08296*, 2017.
 - Lloyd S Shapley. A value for n-person games. Contribution to the Theory of Games, 2, 1953.
 - Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In *International conference on machine learning*, pp. 9269–9278. PMLR, 2020.
 - Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.
 - Zeren Tan, Yang Tian, and Jian Li. Glime: general, stable and local lime explanation. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and Alun Preece. Sanity checks for saliency metrics. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 6021–6029, 2020.
 - Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 6388–6421. PMLR, 2023.
 - Jiaxuan Wang, Jenna Wiens, and Scott Lundberg. Shapley flow: A graph-based approach to interpreting model predictions. In *International Conference on Artificial Intelligence and Statistics*, pp. 721–729. PMLR, 2021.
 - Yipei Wang and Xiaoqian Wang. Benchmarking deletion metrics with the principled explanations. In *Forty-first International Conference on Machine Learning*, 2024.

A FAITHFULNESS AND SENSITIVITY METRICS

In explainable AI, the explanations should satisfy several desiderata (Nauta et al., 2023). Two properties often discussed in the literature are faithfulness and sensitivity. Faithfulness (also known as fidelity) is the degree to which an explanation matches the model output behavior. Ideally, more important features would have greater impact on model decisions (Hedström et al., 2023). Sensitivity (also known as robustness or consistency) measures the stability of the attribution for identical inputs (Nauta et al., 2023). A good explanation should be stable, i.e., have lower sensitivity. We can quantify these methods using several metrics, which we discuss below.

A.1 FAITHFULNESS

We consider two traditional metrics of faithfulness: Area over Perturbation Curve (AOPC) (Tomsett et al., 2020) and Iterative Removal of Features (IROF) (Rieger & Hansen, 2020). AOPC measures faithfulness by measuring the area over the curve (AOC) of the change in model output from the original as we replace each feature in the input with the chosen baseline:

$$AOPC = \frac{1}{T+1} \sum_{k=1}^{T} (f(x_R^0) - f(x_R^k))$$
 (7)

Where R is the feature replacement procedure and T is the number of replacements. For classifiers, f is usually the logit or probability of the target class. IROF follows a similar process, except that it works exclusively with probabilities:

$$IROF = \frac{1}{T+1} \sum_{k=1}^{T} \left(p(x_R^k) / p(x_R^0) \right)$$
 (8)

A model is more faithful if it has higher AOPC and lower IROF.

A.2 SENSITIVITY

For sensitivity, we evaluate L_2 -normalized error (Liu et al., 2024) between attributions across several runs and the true value. If the true value is difficult to calculate, we use the average as the proxy.

$$err_{l2} = \frac{1}{|\bar{\beta}|_2^2} \sum_{k=1}^{T} |\beta_k - \bar{\beta}|_2^2$$
 (9)

We also use average pairwise rank correlation and top-K Jaccard distance among multiple evaluations (Nauta et al., 2023).

$$\bar{\rho} = \frac{1}{T - 1} \sum_{k=1}^{T - 1} \rho(\beta_k, \beta_{k+1}) \tag{10}$$

$$\bar{J}_K = \frac{1}{T-1} \sum_{k=1}^{T-1} \left(1 - \frac{|topk(\boldsymbol{\beta}_k) \cap topk(\boldsymbol{\beta}_{k+1})|}{|topk(\boldsymbol{\beta}_k) \cup topk(\boldsymbol{\beta}_{k+1})|} \right)$$
(11)

where L is the number of times the explanation has been evaluated. A method is less sensitive if it has lower L_2 -normalized error, higher correlation, and higher Jaccard index.

A.3 A CONTINUOUS APPROXIMATION OF AOPC

While it is possible to optimize masking probabilities $\{\mathbf{w}\}_{i=1,...,n}$ directly on AOPC, it can be computationally intensive since AOPC is discrete and requires recomputing $f(x_R^k)$ at each optimization

 step. However, we may approximate streamline the optimization by approximating AOPC with the weighted sum of Dynamic Banzhaf values. Assume the special case where the game v is additive. Then, letting T=d:

$$AOPC_{\psi} = \frac{1}{d+1} \sum_{k=1}^{d} \left(v(\mathbf{z}_{R}^{0}) - v(\mathbf{z}_{R}^{k}) \right) = \frac{1}{d+1} \sum_{k=1}^{d} \sum_{j=1}^{k} \psi_{\pi(j)} = \frac{1}{d+1} \sum_{k=1}^{d} \left(d - k + 1 \right) \psi_{\pi(k)}$$
(12)

where $\pi(j)$ is j-th feature based on ranking π . We can approximate $f(\mathbf{z}_R^0) - f(\mathbf{z}_R^k)$ with $\sum_{j=1}^k \psi_{\pi(j)}$ because \mathbf{z} is binary, so removal is equivalent to setting $z_i = 0$. Since $AOPC_{\psi}$ is a continuous function with respect ψ , which in turn is continuous with respect to \mathbf{w} , we can optimize the sum directly using gradient-based methods. In the general case where v is not additive, the difference between AOPC and $AOPC_{\psi}$ is bounded by ϵ_{max} , the maximum difference between $v(\mathbf{z})$ and $\sum_{j,z_j=1} \psi_j$:

$$|AOPC - AOPC_{yb}| < 2\epsilon_{max} \tag{13}$$

Lastly, it should be noted that since we generally cannot compute the Dynamic Banzhaf values ψ analytically, we use the kernelized approximation β_n^* instead. This replacement results in the formula in Equation 6.

B EXPERIMENTAL DETAILS

The XGBoost classifiers in the experiments are trained with default parameters from the xgboost package, while the image classifiers are fine-tuned from IMAGENET10K weight available in the torchvision package. The classification block of the image classifiers consist of 4 linear layers with 20% dropout, batch normalization, and ReLU activation. All training and experiments are performed on Intel(R) Xeon(R) Gold 6342 CPU @ 2.8GHz and NVidia RTX A6000 (48GB). Inputlabel descriptions of the datasets are provided in Table 4.

Table 2: Model details.

Dataset	Model	Package	Acc (%)
Adult	XGBoost	xgboost	87.29
California Housing	XGBoost	xgboost	84.74
Communities and Crime	XGBoost	xgboost	80.75
Imagenette	ResNet101	torchvision	89.81
Imagewoof	ResNet101	torchvision	79.89

Table 3: MLP classification block details.

Block	Layer Type
	DIII
1	ReLU
1	Linear(2048,1024)
1	BatchNorm
2	ReLU
2	Dropout(0.2)
2	Linear(1024,512)
2	BatchNorm
3	ReLU
3	Dropout(0.2)
3	Linear(512,256)
3	BatchNorm
4	ReLU
4	Dropout(0.2)
4	Linear(512,10)

Table 4: Dataset description.

Dataset	Description
Danla Madastina	Towns alient information I shall alient subscribes to a town density
Bank Marketing	Input: client information. Label: client subscribes to a term deposit
Communities and Crime	Input: county information. Label: crime rate is above median
Adult	Input: census information. Label: annual income of above \$50K
Diabetes	Input: county information. Label: crime rate is above median
California Housing	Input: housing factors. Label: housing price is above median
Imagenette	Input: images from 10 classes in Imagenet. Label: class labels

Input: images from 10 dog breeds in Imagenet. Label: class labels

 Imagewoof

C PROOFS

In this section, we present the full proofs for theorems 1 and 2

C.1 PROOF FOR THEOREM 1

Expanding Equation 5, we have:

$$E[(v(\mathbf{z}) - \beta_0 - \boldsymbol{\beta}^T \mathbf{z})^2]$$

$$= E[(v(\mathbf{z}) - \beta_0 - \sum_{i=1}^d \beta_i z_i)^2]$$

$$= E[v^2 - 2v \sum_{i=1}^d \beta_i z_i + \sum_{i=1}^d \sum_{j=1}^d \beta_i z_j \beta_j z_j + \beta_0^2 - 2\beta_0 v + 2\beta_0 \sum_{i=1}^d \beta_i z_i]$$

$$= E[v^2 - 2v \sum_{i=1}^d \beta_i z_i + \sum_{i=1}^d \beta_i^2 z_i^2 + \sum_{i \neq j}^d \beta_i \beta_j z_i z_j + \beta_0^2 - 2\beta_0 v + 2\beta_0 \sum_{i=1}^d \beta_i z_i]$$

$$= E[(1 - d)v^2 + \sum_{i=1}^d (v - \beta_i z_i)^2 + \sum_{i \neq j}^d \beta_i \beta_j z_i z_j + \beta_0^2 - 2\beta_0 v + 2\beta_0 \sum_{i=1}^d \beta_i z_i]$$

$$= (1 - d)E[v^2] + \sum_{i=1}^d E[(v - \beta_i z_i)^2] + \sum_{i \neq j}^d \beta_i \beta_j E[z_i z_j] + \beta_0^2 - 2\beta_0 E[v] + 2\beta_0 \sum_{i=1}^d \beta_i E[z_i]$$

$$= (1 - d)E[v^2] + \sum_{i=1}^d E[(v - \beta_i z_i)^2] + \sum_{i \neq j}^d \beta_i \beta_j E[z_i z_j] + \beta_0^2 - 2\beta_0 E[v] + 2\beta_0 \sum_{i=1}^d \beta_i E[z_i]$$

$$= (1 - d)E[v^2] + \sum_{i=1}^d E[(v - \beta_i z_i)^2] + \sum_{i \neq j}^d \beta_i \beta_j E[z_i z_j] + \beta_0^2 - 2\beta_0 E[v] + 2\beta_0 \sum_{i=1}^d \beta_i E[z_i]$$

$$= (1 - d)E[v^2] + \sum_{i=1}^d E[(v - \beta_i z_i)^2] + \sum_{i \neq j}^d \beta_i \beta_j E[z_i z_j] + \beta_0^2 - 2\beta_0 E[v] + 2\beta_0 \sum_{i=1}^d \beta_i E[z_i]$$

$$= (1 - d)E[v^2] + \sum_{i=1}^d E[(v - \beta_i z_i)^2] + \sum_{i \neq j}^d \beta_i \beta_j E[z_i z_j] + \beta_0^2 - 2\beta_0 E[v] + 2\beta_0 \sum_{i=1}^d \beta_i E[z_i]$$

Since centering sets $E[z_i] = 0$ and $E[z_i z_j] = 0$:

$$\psi = \arg\min_{\beta} [(1 - d)E[v^2] + \sum_{i=1}^{d} E[(v - \beta_i z_i)^2] + \beta_0^2 - 2\beta_0 E[v]] = \arg\min_{\beta} [\sum_{i=1}^{d} E[(v - \beta_i z_i)^2]]$$
(15)

which is equivalent to minimizing ψ_i individually. Taking the derivative for a single ψ_i , we have:

$$\frac{dE[(v-\beta_i z_i)^2]}{d\beta_i} = E[-2z_i(v-\beta_i z_i)] = 0$$

$$\rightarrow \beta_i = E[z_i v] / E[z_i^2]$$
(16)

Since $E[z_i^2] = Var(z_i) = w_i(1 - w_i)$ and $E[z_i v] = w_i(1 - w_i)E[v|z_i = 1 - w_i] + (1 - w_i)(-w_i)E[v|z_i = -w_i]$:

$$\beta_{i} = \frac{w_{i}(1 - w_{i})E[v|z_{i} = 1 - w_{i}] + (1 - w_{i})(-w_{i})E[v|z_{i} = -w_{i}]}{w_{i}(1 - w_{i})}$$

$$= E[v|z_{i} = 1 - w_{i}] - E[v|z_{i} = -w_{i}]$$
(17)

Since $z_i = 1 - w_i$ means feature i is included in the input set S and $z_i = -w_i$ means it is excluded from S, the above equation becomes:

$$\beta_{i} = E[v(i \cup S)] - E[v(S)]$$

$$= \sum_{S \subseteq N \setminus i} [\prod_{j \in S} w_{j} \prod_{j \notin S} (1 - w_{j})][v(S \cup i)] - \sum_{S \subseteq N \setminus i} [\prod_{j \in S} w_{j} \prod_{j \notin S} (1 - w_{j})][v(S)]$$

$$= \sum_{S \subseteq N \setminus i} [\prod_{j \in S} w_{j} \prod_{j \notin S} (1 - w_{j})][v(S \cup i) - v(S)] = \psi_{i}$$
(18)

C.2 PROOF FOR THEOREM 2

 This proof closely follows the convergence of GLIME (Tan et al., 2024). Since Dynamic Banzhaf value is the solution for a linear regression model, we know that:

 $\psi = (Z_n^T Z_n)^{-1} Z_n V_n \tag{19}$

where Z_n is the centered sampled masks and V_n is the corresponding model predictions. Representing $\Sigma_n = Z_n^T Z_n$ and $\Gamma_n = Z_n V_n$, we would like to find the convergence of $\Sigma_n^{-1} \Gamma_n$ to the limit $\Sigma^{-1} \Gamma$.

First, we can find the limit for Σ_n as:

$$\Sigma = \lim_{n \to \infty} \Sigma_n = \lim_{n \to \infty} Z_n^T Z_n = E(Z^T Z) = Var(Z) = diag(\sigma_i^2) = diag(w_i(1 - w_i))$$
 (20)

 $E(Z^TZ)$ is equal to the variance of Z since Z has been centered, i.e., $E(z_i) = 0 \quad \forall i$, which makes $Cov(z_i, z_j) = E(z_i z_j) - E(z_i) E(z_j) = E(z_i z_j)$. Note that $0 \le \sigma_i^2 \le 0.25$ since each mask follows a Bernouilli distribution. We can also bound the values of Σ_n as follows:

$$\hat{\sigma_n^i} = \frac{1}{n} \{ \sum_{k \in S_1} w_i^2 + \sum_{k \in S_2} (1 - w_i)^2 \} \le \frac{1}{n} \sum_{k=1}^n \max(w_i, 1 - w_i)^2$$
 (21)

$$\hat{\sigma_n}^{ij} = \frac{1}{n} \{ \sum_{k \in S_1} w_i w_j + \sum_{k \in S_2} -w_i (1 - w_j)$$

$$+ \sum_{k \in S_3} -(1 - w_i) w_j + \frac{1}{n} \sum_{k \in S_4} (1 - w_i) (1 - w_j) \}$$

$$\leq \frac{1}{n} \sum_{k=1}^n \max(w_i w_j, (1 - w_i) (1 - w_j) \leq 1$$

$$(22)$$

Therefore, all elements of $||\Sigma_n - \Sigma||$ are bounded to [-0.25, 1], and we may apply matrix Hoeffding's inequality with $\sigma^2 = max(\sigma_i^2)$:

$$P(||\Sigma_n - \Sigma||_2 \ge t) \le 2dexp\left(-\frac{nt^2}{8\sigma^2}\right)$$
(23)

 $||\Sigma^{-1}||_F^2$ is simply the sum of inverse of variances $\sum_d 1/\sigma_i^2 = \gamma^2$. Lastly, we may apply Hoeffding's inequality to Γ_n to find:

$$P(||\Gamma_n - \Gamma||_2 \ge t) \le 2dexp\left(-\frac{nt^2}{8M^2d^2}\right)$$
(24)

Following Tan et al. (2024), if we let n be the maximum among $n_1 = 32\gamma^2\sigma^2log(4d/\delta)$, $n_2 = 32\epsilon^-2M^2d^2\gamma^2log(4d/\delta)$, and $n_3 = 32\epsilon^-2M^2\sigma^2d\gamma^4log(4d/\delta)$, we have $P(||\Sigma_n^{-1}\Gamma_n - \Sigma^{-1}\Gamma|| \le 1 - \delta)$.

D TABULATED RESULTS

 The following tables present faithfulness and sensitivity results for 1000 perturbations for datasets with large number of features (Bank Marketing, Communities and Crime, Adult) and 128 perturbations for datasets with small number of features (Diabetes, California Housing). While not reported, the results for smaller number of perturbations are qualitatively similar.

Table 5: Average faithfulness and standard errors for Bank Marketing dataset

Name	Logit AOPC	Probability AOPC	IROF
			_
KBanzhaf	1.3866 ± 0.0004	0.5589 ± 0.0001	0.3578 ± 0.0001
WBanzhaf(0.25)	1.3794 ± 0.0004	0.5551 ± 0.0001	0.3624 ± 0.0001
WBanzhaf(0.75)	1.2479 ± 0.0007	0.5259 ± 0.0002	0.3957 ± 0.0002
KSHAP	1.3831 ± 0.0005	0.5572 ± 0.0001	0.3598 ± 0.0002
Random	1.3074 ± 0.0018	0.5366 ± 0.0005	0.3834 ± 0.0006
BetaShap(16,1)	1.2946 ± 0.0008	0.5317 ± 0.0002	0.3896 ± 0.0003
BetaShap(4,1)	1.3474 ± 0.0008	0.5459 ± 0.0002	0.3730 ± 0.0002
BetaShap(1,4)	1.2433 ± 0.0011	0.5244 ± 0.0003	0.3984 ± 0.0004
BetaShap(1, 16)	1.0320 ± 0.0013	0.4615 ± 0.0004	0.4686 ± 0.0005
DBanzhaf(MoRF)	1.3943 ± 0.0004	0.5605 ± 0.0001	0.3559 ± 0.0001

Table 6: Average faithfulness and standard errors for Communities and Crime dataset

Name	Logit AOPC	Probability AOPC	IROF
KBanzhaf	5.6177 ± 0.0043	0.8763 ± 0.0002	0.0544 ± 0.0002
WBanzhaf(0.25)	5.5966 ± 0.0037	0.8703 ± 0.0002	0.0607 ± 0.0002
WBanzhaf(0.75)	5.1575 ± 0.0104	0.8666 ± 0.0006	0.0641 ± 0.0006
KSHAP	5.3053 ± 0.0092	0.8562 ± 0.0008	0.0746 ± 0.0008
Random	5.4366 ± 0.0114	0.8699 ± 0.0006	0.0610 ± 0.0006
BetaShap(16,1)	5.0147 ± 0.0144	0.8223 ± 0.0015	0.1104 ± 0.0015
BetaShap(4,1)	5.3727 ± 0.0103	0.8508 ± 0.0008	0.0807 ± 0.0009
BetaShap(1,4)	5.4124 ± 0.0111	0.8669 ± 0.0006	0.0639 ± 0.0006
BetaShap(1, 16)	4.8278 ± 0.0179	0.8471 ± 0.0011	0.0845 ± 0.0011
DBanzhaf(MoRF)	5.6284 ± 0.0043	0.8765 ± 0.0002	0.0542 ± 0.0002

Table 7: Average faithfulness and standard errors for Adult dataset

Name	Logit AOPC	Probability AOPC	IROF
KBanzhaf	2.7221 ± 0.0003	0.6432 ± 0.0000	0.2648 ± 0.0001
WBanzhaf(0.25)	2.7230 ± 0.0004	0.6417 ± 0.0001	0.2666 ± 0.0001
WBanzhaf(0.75)	2.6663 ± 0.0007	0.6370 ± 0.0001	0.2718 ± 0.0001
KSHAP	2.7234 ± 0.0004	0.6424 ± 0.0001	0.2656 ± 0.0001
Random	2.6890 ± 0.0013	0.6374 ± 0.0002	0.2712 ± 0.0002
BetaShap(16,1)	2.6800 ± 0.0007	0.6329 ± 0.0002	0.2766 ± 0.0002
BetaShap(4,1)	2.7095 ± 0.0006	0.6385 ± 0.0001	0.2702 ± 0.0001
BetaShap(1,4)	2.6790 ± 0.0008	0.6384 ± 0.0001	0.2706 ± 0.0001
BetaShap(1, 16)	2.5865 ± 0.0013	0.6248 ± 0.0002	0.2859 ± 0.0002
DBanzhaf(MoRF)	2.7246 ± 0.0003	0.6435 ± 0.0000	0.2645 ± 0.0001

Table 8: Average faithfulness and standard errors for Diabetes dataset

Name	Logit AOPC	Probability AOPC	IROF
KBanzhaf	3.5125 ± 0.0045	0.7972 ± 0.0005	0.1745 ± 0.0005
WBanzhaf(0.25)	3.4762 ± 0.0054	0.7881 ± 0.0009	0.1839 ± 0.0010
WBanzhaf(0.75)	3.4157 ± 0.0104	0.7964 ± 0.0010	0.1752 ± 0.0011
KSHAP	3.4892 ± 0.0061	0.7919 ± 0.0011	0.1798 ± 0.0011
Random	3.4324 ± 0.0147	0.7876 ± 0.0020	0.1843 ± 0.0021
BetaShap(16,1)	3.3496 ± 0.0137	0.7596 ± 0.0035	0.2134 ± 0.0036
BetaShap(4,1)	3.4245 ± 0.0101	0.7752 ± 0.0024	0.1972 ± 0.0025
BetaShap(1,4)	3.4372 ± 0.0109	0.7964 ± 0.0010	0.1753 ± 0.0011
BetaShap(1, 16)	3.2732 ± 0.0150	0.7872 ± 0.0016	0.1849 ± 0.0016
DBanzhaf(MoRF)	3.5150 ± 0.0048	0.7970 ± 0.0005	0.1747 ± 0.0005

Table 9: Average faithfulness and standard errors for California Housing dataset

U			\mathcal{C}
Name	Logit AOPC	Probability AOPC	IROF
KBanzhaf	4.4382 ± 0.0007	0.8010 ± 0.0001	0.1280 ± 0.0001
WBanzhaf(0.25)	4.4203 ± 0.0010	0.7983 ± 0.0001	0.1310 ± 0.0001
WBanzhaf(0.75)	4.3462 ± 0.0020	0.7990 ± 0.0001	0.1301 ± 0.0001
KSHAP	4.4308 ± 0.0010	0.8002 ± 0.0001	0.1288 ± 0.0001
Random	4.3765 ± 0.0023	0.7958 ± 0.0002	0.1334 ± 0.0003
BetaShap(16,1)	4.3148 ± 0.0026	0.7825 ± 0.0005	0.1476 ± 0.0005
BetaShap(4,1)	4.3890 ± 0.0016	0.7922 ± 0.0003	0.1373 ± 0.0003
BetaShap(1,4)	4.3873 ± 0.0015	0.7997 ± 0.0001	0.1294 ± 0.0001
BetaShap(1, 16)	4.2640 ± 0.0026	0.7950 ± 0.0002	0.1346 ± 0.0002
DBanzhaf(MoRF)	4.4375 ± 0.0008	0.8010 ± 0.0001	0.1280 ± 0.0001

Table 10: Average sensitivity for Bank Marketing dataset

Name	Jaccard	$ar{ ho}$	L_2 Error
KBanzhaf	0.2236	0.8797	0.0033
WBanzhaf(0.25)	0.2107	0.8782	0.0042
WBanzhaf(0.75)	0.2880	0.8461	0.0106
KSHAP	0.2318	0.8658	0.0071
BetaShap(16,1)	0.0506	0.9645	0.0679
BetaShap(4,1)	0.0592	0.9640	0.0307
BetaShap(1,4)	0.0986	0.9408	0.0285
BetaShap(1, 16)	0.1005	0.9355	0.0637
Random	0.3463	0.7374	0.2073
DBanzhaf(MoRF)	0.2261	0.8765	0.0040

Table 11: Average sensitivity for Communities and Crime dataset

Name	Jaccard	$ar{ ho}$	L_2 Error
KBanzhaf	0.2424	0.8106	0.0389
WBanzhaf(0.25)	0.2315	0.8105	0.0314
WBanzhaf(0.75)	0.4154	0.6459	0.1328
KSHAP	0.4545	0.6052	0.1951
BetaShap(16,1)	0.5472	0.7634	0.9257
BetaShap(4,1)	0.4120	0.8252	0.3002
BetaShap(1,4)	0.4314	0.7914	0.3527
BetaShap(1, 16)	0.5284	0.7458	1.2574
Random	0.4159	0.6722	0.2414
DBanzhaf(MoRF)	0.2523	0.8004	0.0415

Table 12: Average sensitivity for Adult dataset

Name	Jaccard	$ar{ ho}$	L_2 Error
KBanzhaf	0.2030	0.8753	0.0013
WBanzhaf(0.25)	0.2129	0.8678	0.0019
WBanzhaf(0.75)	0.2537	0.8412	0.0097
KSHAP	0.2236	0.8618	0.0033
BetaShap(16,1)	0.0405	0.9682	0.0544
BetaShap(4,1)	0.0408	0.9724	0.0206
BetaShap(1,4)	0.0515	0.9685	0.0190
BetaShap(1, 16)	0.0613	0.9591	0.0584
Random	0.2784	0.7985	0.1110
DBanzhaf(MoRF)	0.2079	0.8717	0.0016

Table 13: Average sensitivity for Diabetes dataset

Name	Jaccard	$ar{ ho}$	L_2 Error
			_
KBanzhaf	0.0815	0.9657	0.0043
WBanzhaf(0.25)	0.0986	0.9569	0.0063
WBanzhaf(0.75)	0.1672	0.9055	0.0272
KSHAP	0.1214	0.9373	0.0093
BetaShap(16,1)	0.0953	0.9009	0.1193
BetaShap(4,1)	0.0901	0.9279	0.0539
BetaShap(1,4)	0.1084	0.9262	0.0455
BetaShap(1, 16)	0.1297	0.9015	0.1113
Random	0.2028	0.8485	0.1373
DBanzhaf(MoRF)	0.0901	0.9601	0.0052

Table 14: Average sensitivity for California Housing dataset

Name	Jaccard	$ar{ ho}$	L_2 Error
KBanzhaf	0.0923	0.9673	0.0024
WBanzhaf(0.25)	0.1248	0.9481	0.0058
WBanzhaf(0.75)	0.2088	0.8833	0.0178
KSHAP	0.1285	0.9442	0.0044
BetaShap(16,1)	0.0859	0.9349	0.1126
BetaShap(4,1)	0.0805	0.9526	0.0466
BetaShap(1,4)	0.1096	0.9435	0.0459
BetaShap(1, 16)	0.1346	0.9165	0.1191
Random	0.2162	0.8698	0.1104
DBanzhaf(MoRF)	0.1186	0.9538	0.0033

E FAITHFULNESS

Additional faithfulness results are visualized in this section.

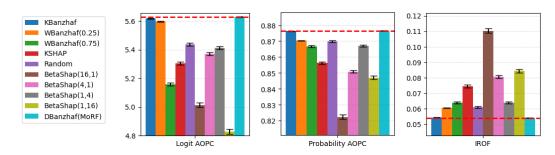


Figure 5: Faithfulness metric visualization for Communities and Crime

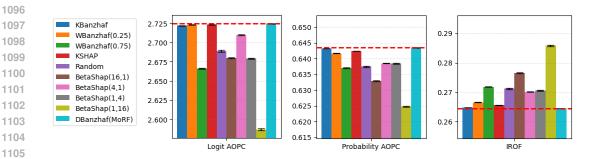


Figure 6: Faithfulness metric visualization for Adult

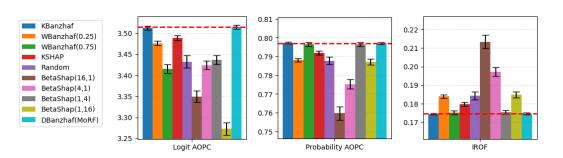


Figure 7: Faithfulness metric visualization for Diabetes.

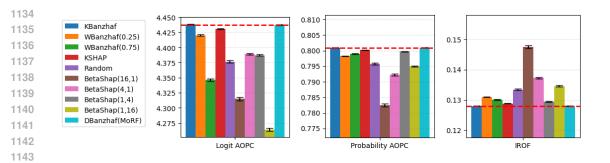


Figure 8: Faithfulness metric visualization to California Housing

F SENSITIVITY

The sensitivity results for all datasets are visualized in this section.

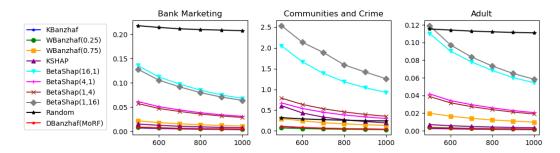


Figure 9: L_2 -normalized error across datasets with large number of features.

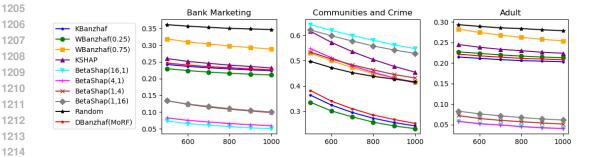


Figure 10: Jaccard distance across datasets with large number of features.



Figure 11: Pairwise correlation across datasets with large number of features.

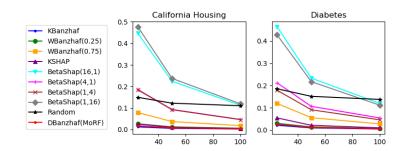


Figure 12: L_2 -normalized error across datasets with small number of features.

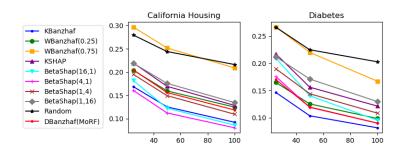


Figure 13: Jaccard distance across datasets with small number of features.

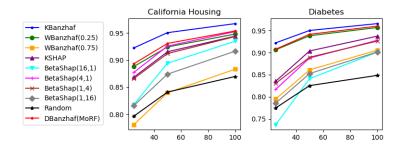


Figure 14: Pairwise correlation across datasets with small number of features.