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ABSTRACT

Game-theoretic attribution methods approximate target model as a cooperative
game and evaluate feature importance as payoff allocation to the input features.
Most methods use well-known game-theoretic solutions such as the Shapley value
because they satisfy key desirable axioms. However, the strict assumptions of
game theory reduce the flexibility of explanations: in particular, most methods
use fixed coalition sampling distributions, preventing the dynamic alignment of
explanations to user criteria. To address this gap, we introduce Dynamic Banzhaf,
a game-theoretic attribution method that optimizes the masking probability of each
feature to a user-defined objective function. We provide theoretical proof on the
convergence of Dynamic Banzhaf, discuss optimal probability selection, and em-
pirically demonstrate the effect of probability adjustment on the quality of the
explanations in machine learning models. Our results indicate that masking prob-
abilities can be calibrated to improve the alignment of explanations to user criteria,
highlighting the effect of dynamic probability selection in game-theoretic attribu-
tion.

1 INTRODUCTION

Artificial Intelligence (Al) is becoming a ubiquitous tool in many fields owing to its capacity to
reflect complicated patterns in large datasets. However, this capacity is often accompanied by high
model complexity, turning a model into a black box whose prediction process is difficult to inter-
pret. In high-stakes domains like health care or finance (Caruana et al.| 2015} |Grath et al., 2018)),
interpretability is just as important as the accuracy of predictions, and model complexity hinders
the practical adoption of Al in these domains. Explainable Al addresses this challenge by attaching
explanations to the models (Samek, 2017} |Gunning et al., 2019; [Longo et al., [2024).

Among various explanation techniques, feature attribution measures the contribution of input fea-
tures to a model’s prediction (Ribeiro et al., [2016b; |[Lundberg & Leel 2017; [Sundararajan et al.,
2017). In particular, local model-agnostic approaches are popular in explainable Al as they compute
the input importance regardless of target model’s architecture (Ribeiro et al.,[2016a). Game-theoretic
explainable Al is a branch of local model-agnostic attribution that approaches the explanation pro-
cess as a cooperative game, where each feature ¢ is a ‘player’ and the ‘game’ v is a set function that
maps a subset of features (coalition .S) to the model’s output. The feature importance is equivalent to
the ‘payment’ allocated to player i, which is a weighted average of A;v(.S), the change in v caused
by adding i to S. Thus, in game-theoretic explainable Al, the weighting scheme determines the
feature importance.

The Shapley value (Shapleyl, |1953)), which performs an average over all possible permutations of
features by using combinatorial weights, is frequently used in explainable Al because it satisfies
several desirable axioms. It can be approximated by KernelSHAP (Lundberg & Leel 2017), which
performs a weighted linear regression on randomly sampled coalitions. KerneISHAP has been ex-
plored thoroughly in the past literature (Lundberg et al., 2018} |Sundararajan & Najmil, [2020; Chen
et al., 2021; Mosca et al.l 2022). However, Shapley value has several issues due to its weights.
Specifically, it applies much higher weights on either very small or very large subsets, ignoring the
effects of mid-sized subsets. This weighting scheme leads to instabilities in various explanation tasks
that has to be addressed with specific techniques like specialized sampling (Covert & Lee, |[2020). It
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Figure 1: Illustration of Dynamic Banzhaf value. Given a model, a user chooses a goal for the
attribution, such as improving its quality. The user defines relevant criteria and an objective function
that quantifies the criteria, which leads to an optimal feature importance. These values are not known
a priori to the algorithm (Step 1). Dynamic Banzhaf adjusts the weights of the weighted average
to the objective function dynamically. Larger and darker circles represent heavier weights (Step 2).
The attribution values calculated with the calibrated weights become better aligned with the optimal
feature importance (Step 3).

also makes the approximation of the Shapley values numerically unstable (Karczmarz et al., 2022}
Wang & Jial 2023} Liu et al., [2024).

Another solution of cooperative games is the probabilistic values (Dubey & Weber, [1977), which
take the expectation of A;v(.S) by using p(.S), the probability of coalition formation, as the weights.
The Banzhaf value (Banzhaf III [1964) is a specific probabilistic value with uniform p(.S), and has
recently gained attention as an alternative of the Shapley value because it is still axiomatic, more
intuitive, and more stable (Liu et al., 2024). It has been applied in tasks like data valuation (Wang &
Ji1al,2023)) and feature attribution (Liu et al.| 2024).

A key limitation of the Banzhaf value is that it assumes a fixed p(.S) that is only dependent on
the number of coalitions. This strict assumption forces all coalitions to be accounted for equally
in all scenarios. However, different users often prioritize different qualities in their explanations,
which result in different true optimal attribution. The inflexibility of the Banzhaf value implies
that it cannot adapt to these requirements. An ideal attribution method should be able to calibrate
its p(S) to the user’s criteria. For example, consider the simple 3-input model in Figure |1} which
predicts rainfall based on humidity, temperature, and wind. A user has a goal for the attribution,
especially regarding improving certain desiderata. The user chooses the relevant criteria and an
objective function to quantify the criteria (fidelity in the example, which is the alignment between
the importance assigned to a feature and its impact on model prediction (Hedstrom et al.| 2023
Nauta et al.| [2023)). The chosen objective function implies certain optimal attribution values that
are not known to the algorithm a priori (step 1). The feature subset weights p(S) (where larger and
darker circle size indicates heavier weights in the diagram) are adjusted dynamically to optimize the
objective function (step 2). By using these calibrated weights, the final attribution values would be
better aligned with the optimal attribution for the chosen criteria (step 3).

Based on this notion, we introduce Dynamic Banzhaf, which adjusts p(.S) dynamically by optimiz-
ing each feature’s coalition-joining probability (or masking probability) to a user-defined objective
function (step 2 in Figure[T). We show that the attribution values can be computed through a cen-
tered linear regression, prove the convergence rate of Dynamic Banzhaf value, discuss the masking
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probability calibration process, and empirically demonstrate the benefits of masking probability cal-
ibration. Our contributions are as follows:

* We introduce Dynamic Banzhaf, a novel algorithm that efficiently computes axiom-
satisfying attribution using a different masking probability for each feature that is optimized
to meet user-defined attribution criteria.

* We show Dynamic Banzhaf as a linear regression with intercept centered by each feature’s
probability, and its theoretical convergence rate.

* We discuss the process for dynamic calculation of optimal masking probabilities, and em-
pirically demonstrate how using Dynamic Banzhaf improves the quality of the generated
explanations, highlighting the importance of optimized masking probabilities in game-
theoretic attribution.

2 RELATED WORK

2.1 SHAPLEY VALUE-BASED EXPLANATION

Game theory-based explainable Al literature focuses on developing methods that satisfy axiomatic
properties. They are typically based on the Shapley value (Shapley, [1953), which satisfies four
axioms (linearity, dummy, symmetry, and efficiency). The Shapley value is defined as:

1 n—1\"" ,
=1 5 (") BEUD -] <1>

SCN\i

Where N the player set with size n, S is a subset of players, v(S) is a value function. In explainable
Al the features are equivalent to the players, and v maps S to model outputs.

While the Shapley value is too costly to calculate exactly, Lundberg & Lee|(2017) shows that it can
be estimated using a weighted linear regression, a method known as KernelSHAP. This method has
been adapted in many different directions in explainable Al (Mosca et al.}[2022), such as architecture
specialization (Lundberg et al., [2020; (Ghorbani & Zou, [2020; |Wang et al., 2021) or estimation
method improvements (Messalas et al.,[2019;|Covert & Lee,[2020). One issue with the Shapley value
is that its weights are the highest for small or large coalitions, minimizing the effects of intermediate-
sized coalitions. This weighting scheme also makes Shapley approximations numerically unstable
algorithmically (Wang & Jia, 2023} [Liu et al., [2024). Recent works relax some of the axioms to
address these shortcomings. For example, Kwon & Zou| (2022) propose Beta Shapley, which adjust
the Shapley averaging scheme based on a Beta distribution.

2.2 BANZHAF VALUE-BASED EXPLANATION
Another solution of cooperative game theory is the probabilistic values (Dubey & Weber, [1977),

which takes the expectation of the marginal contributions with p(.S), the probability of coalition
formation, as the weights:

$i= > p(S)(SU) —v(S) )

SCN\i

The Banzhaf value (Banzhaf III, |1964) is a specific probabilistic value with uniform p(S):

i =gy D, [(SUD) —v(9)] 3)
SCN\i

Intuitively, the Banzhaf value is the expected marginal contribution assuming all players may join a
coalition with independent probability of w = 0.5. The Banzhaf value has recently gained attention
as an alternative of the Shapley value because it is still axiomatic, more intuitive, and more stable
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(Liu et al., |2024). Furthermore, the two values are similar qualitatively, especially in terms of the
contribution ranks (Freixas et al., 2012} [Karczmarz et al., [2022). KernelBanzhaf |Liu et al.| (2024)
approximates the Banzhaf values using linear regression with mask values set to {-0.5, 0.5}; |[Kar-
czmarz et al.| (2022) uses the Banzhaf value for data valuation; Patel et al.| (2021) uses the Shapley
and the Banzhaf value to select the optimal vocabulary subset for NLP tasks; and |(Chhablani et al.
(2024) utilizes the Banzhaf value to create counterfactuals in graph neural networks. [L1 & Yu|(2024)
generalizes the Banzhaf value to weighted Banzhaf value, which sets p(S) = w!l(1 — w)®~15)
for data valuation. They show that optimal w is dependent on the dataset and model. However, there
has not been any research on computing the Banzhaf values when all features have different weights
in a kernelized manner, or analytic methods for determining optimal w.

3 METHOD

3.1 DEFINITION

Given a set of features N of size |[N| = d, coalition S C N, and value function v(S), let w; be the
probability that feature ¢ joins S. Then, the Dynamic Banzhaf value 1), of player 7 is defined as:

vi= Y [TTw [T0-w) | @SUi)—u(s) 4)
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Intuitively, v; is the expected change in v(.S) given that the probability of coalition formation p(S)
follows a multivariate Bernouilli distribution with parameter w = {w1, wa, ..., wq}. The Banzhaf
value is a special case where w; = 0.5 Vi, while the weighted Banzhaf value is another special
case where w; = a Vi, 0 < a < 1. Inexplainable Al wj is called a masking probability since
a feature is ‘removed’ from a coalition by masking it with other values.

3.2 APPROXIMATION OF DYNAMIC BANZHAF VALUE WITH CENTERED LINEAR
REGRESSION

Once the set of probabilities w is fixed, we can approximate Dynamic Banzhaf value with a centered
linear regression:

Theorem 1 (Dynamic Banzhaf as centered linear regression with intercept). Given z = {0,1}% ~
Ber(w), Dynamic Banzhaf values v is the solution of the centered linear regression:

B34 = argmin Bz[(v(z) — 6o - BT (z—w))?] (5)

The full proof is presented in Appendix

It should be noted that the theorem also holds without an intercept (e.g, (Marichal & Mathonet,
2011)), which is the traditional setup for game-theoretic explainable AI. However, we specify the
inclusion of intercept term because formulations without an intercept is sensitive to vertical shifts
like subtraction of a baseline value. Another benefit of including the intercept is that in terms of
implementation, we do not need to center z to approximate the Dynamic Banzhaf values since
centering does not affect the feature coefficients of a linear model with intercept.

We can derive the convergence guarantee of the linear regression approximation of Dynamic
Banzhaf value as follows.

Theorem 2 (Convergence of Dynamic Banzhaf). Let Z, = {z; — w}hi=1,..n and V,, =
{v(z)}iz1,....n be n samples from z; = {0,1}% ~ Ber(w) and the corresponding evaluations of
v. Let B} be the coefficient of centered linear regression on Z,, and V,,. Then, given constants 9,
€, and M > 0, B} converges to 1 with probability 1 — 6 (i.e., P(|B) — ¥]2 <€) < 1—9) for
n = Q(e2M?*0%d®y*0g(4/9))), where 0? = maz(w;(1 —w;)), v* = Zle 1/(wi (1 —w;)), and
lv(z)] < M.

The full proof is presented in Appendix [C] Intuitively, the theorem states that the convergence error
(e) decreases with larger number of samples (n); lower maximum value function magnitude (M);
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lower maximum variance of the feature masks (2); and lower sum of feature mask precisions ((y?).
In particular, with all else held constant, the solution converges the fastest when o2y* is minimized,
which occurs when w; = 0.5 Vi, i.e., the regular Banzhaf value.
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Figure 2: Convergence experiment between Lo error and o2y* for random masking probabilities
and models generated from the specified seeds across different input dimensions. The relation is
approximately linear across all seeds and input dimensions as expected from Theorem 2.

We demonstrate the linearity between ¢2 and 0?y* Theorem [2] through a toy experiment (Figure
. Each subplot presents Lo error estimates versus o2y* for a quadratic model with 4 to 7 input
features, with model parameters, inputs and w randomly generated using the specified seed. All
values are calculated with 1000 perturbations. The relationship is approximately linear as expected,
indicating that the convergence holds.

3.3 CALCULATING OPTIMAL MASKING PROBABILITIES

Theorems |1| and [2] assume that masking probabilities {w}izl,__w are known. In real world, the
optimal w can vary widely depending on the qualities that a user expects from an attribution. These
qualities are usually some desiderata of explanations (Nauta et al. 2023)), such as faithfulness —
the degree to which an explanation matches the model output behavior (Hedstrom et al.|, [2023) —
and sensitivity — the stability of the attribution for identical inputs (Nauta et al., 2023)). Once the
user specifies an objective function L(w) that quantifies the chosen quality, Dynamic Banzhaf can
calibrate w to optimize L(w). For continuous L(w), we can perform gradient descent to compute
w. For some L(w), the optimal w may be found theoretically: for example, for ¢ from Theorem
the optimal probabilities are w; = 0.5 Vi.

In the experiments, we demonstrate this idea by setting L(w) to a continuous approximation of the
Area over Perturbation Curve (AOPC) (Tomsett et al., 2020), a measure of explanation fidelity that
calculates the area over the curve (AOC) of the change in model output from the target input as we
replace each feature in the input with the chosen baseline. The approximation is as follows:

d
1
k=1

where 37 (k) is the k-th highest value in 3}, the Dynamic Banzhaf value estimate from the cen-
tered linear regression. The idea is to approximate the change from replacing each feature with the
corresponding estimated Dynamic Banzhaf value. The metric and its continuous approximation are

discussed in Appendix

Since 3;; is the coefficient of a weighted linear regression and therefore has an analytic solution with
respect to w, we can compute the gradient of AOPCg: using the chain rule for gradient descent
optimization of w.
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4 EXPERIMENT

In this section, we demonstrate the effect of calibrating masking probabilities through two experi-
ments. Firstly, we apply Dynamic Banzhaf value using approximated AOPC objective function from
Section [3.3]and compare it against popular baseline methods to quantitatively evaluate the impact of
dynamic masking probability adjustments on common metrics. In the second experiment, we inves-
tigate the intuitive meaning behind masking probabilities by assigning fixed probabilities across an
image by location (center or periphery) and measuring the effect on explanation fidelity.

4.1 SETUP

Algorithms. We use the following algorithms for the experiments:

 KernelBanzhaf (K Banzhaf) (Liu et al.l|2024): equivalent to setting w; = 0.5  Vi.

» Weighted Banzhaf with probability oo (W Banzhaf(«)): equivalent to setting w; = V4.
We use o« of 0.25 and 0.75 to test the effect of uniform « at different levels.

» KernelSHAP (Lundberg & Lee, 2017) (K.SHAP): linear regression approximation of
Shapley value.

* Beta Shapley (Kwon & Zou, 2022) (BetaShap(a, 8)): this method uses the Beta distri-
bution to compute the coalition weights of marginal contributions. We adapt the original
data valuation method to feature attribution task. We use («, 8) of (16,1), (4,1), (1,4), and
(1,16) following the original paper.

* Dynamic Banzhaf (D Banzhaf): We optimize w; based on continuous approximation of
logit AOPC (referred to as D Banzhaf(MoRF)).

Models and datasets. We train XGBoost classifiers for several real world tabular datasets (Bank
Marketing (Moro & Cortez, 2014), Communities and Crime (Redmond, 2002), Adult Census
(Becker & Kohavi, [1996), Diabetes (Kahn), and California Housing (Pace & Barry, [1997)). We
use the default settings provided by the training package. Each model is trained on an random 80%
split of the corresponding dataset. We also train modified ResNet101 classifiers on Imagenette and
Imagewoof datasets (Howard & Gugger, 2020). Details on the models and hardware, as well as
simple input-label descriptions of the datasets are provided in Appendix [B]

Evaluation. We evaluate the faithfulness of the attributions using AOPC with predicted class’s logit
(Logit AOPC) and probability (Probability AOPC), as well as Iterative Removal of Features (IROF)
(Rieger & Hansen, 2020). Higher AOPC and lower IROF represents greater fidelity. It should be
noted that while there are discussions on biases with these metrics (Hooker et al.,[2019; Rong et al.
2022; |Wang & Wang, [2024), they are still widely used in explainable Al literature for evaluation
and it is outside of the scope of the study to discuss their limitations.

We evaluate the sensitivity of the attributions using Lo-normalized error following Liu et al.[(2024),
average pairwise rank correlation, and top-K Jaccard index. For The last metric, we set K to 5 for
Adult and Diabetes datasets, and the minimum between 20 and half of the number of features for
the rest of the datasets. Detailed descriptions of all metrics are provided in Appendix

Settings. For the California Housing and Diabetes datasets, which have only d = 7 features, we
generate explanations with sample size equal to 25%, 50%, and 100% of 2¢ = 128. For the rest of
the tabular datasets, we use 500 to 1000 perturbations at 100 intervals to evaluate the explanations.
The attribution is performed across 40 different seeds between 0 and 800. The replacement value for
masking is a random instance in the opposite class. For image datasets, we use a baseline of 0 with
a fixed seed of 0. The images are segmented into 64 square segments. All evaluations are performed
on the remaining 20% test split.

4.2 FAITHFULNESS AND SENSITIVITY ANALYSIS
4.2.1 FAITHFULNESS

The faithfulness evaluations on Bank Marketing dataset are shown in Figure[3] The complete results
are reported Appendix [D] and [E] in both table and graph format. Across the datasets, we observe
several patterns:
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Figure 3: Faithfulness results for Bank Marketing dataset. The red line marks the level of
DBanzhaf(MoRF') (rightmost bar). For all three measures, DBanzhaf(MoRF') makes sta-
tistically significant improvements in fidelity.

» The average faithfulness is generally the highest for DBanzhaf(MoRF). For several
datasets, the difference is statistically significant compared to the standard error.

* The only times where D Banzhaf(MoRF') shows non-significant difference in fidelity is
when it shows comparable performance to K Banzhaf. For such scenarios, it is likely
w; = 0.5 Vi is optimal or near-optimal probabilities already.

* For other methods, the ranks can vary across dataset and metric. However, Banzhaf variants
(effectively special cases of DBanzhaf) tend to outperform non-Banzhaf methods most
of the time.

* Using random w; (Random) results in degraded performance. This decrease in fidelity
suggests that randomly choosing masking probabilities is worse than using a fixed proba-
bility across all features for fidelity in terms of the chosen metrics.

Overall, these results indicate that we can achieve greater average faithfulness by optimizing w on
continuous approximation of AOPC, highlighting the importance of careful feature-wise adjustment
of masking probabilities to align with user criteria.

4.2.2 SENSITIVITY
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Figure 4: Lo-normalized error over n across different datasets. We see that K Banzhaf generally
achieves the lowest sensitivity, followed closely by W Banzha f(«) and DBanzhaf(MoRF).

The Lo-normalized error for datasets with large number of features (Bank Marketing, Communities
and Crime, and Adult) is presented in Figure[d] Other results (including other metrics and the results
for Diabetes and California Housing datasets) are reported in Appendix [D] and [F} We observe the
following patterns:

* KBanzhaf tends to achieve the lowest sensitivity in terms of Lo-normalized error among
all Banzhaf variants across almost all datasets, which supports Theorem [2]
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Table 1: Average faithfulness for Dynamic Banzhaf value with masking probability focus placed on
image center versus image periphery.

Name Logit AOPC Probability AOPC IROF
DBanzhaf(Center) 5.0321 0.7224 0.2049
DBanzhaf(Periph) 4.8623 0.7154 0.2113

(a) Imagenette

Name Logit AOPC Probability AOPC IROF
DBanzhaf(Center) 5.2139 0.7388 0.1413
DBanzhaf(Periph) 5.0047 0.7310 0.1482

(b) Imagewoof

* DBanzhaf(MoRF) shows low sensitivity as well, performing nearly as good as
K Banzhaf in most scenarios. In contrast, Random performs poorly in all scenarios,
showing a clear difference between random and proper w; selection.

* KSHAP achieves lower sensitivity than W Banzhaf(0.75) in most datasets, while
BetaSH AP all have significantly higher Lo-normalized errors.

* The results using other sensitivity metrics generally agree with the trends in Lo-normalized
error with some variations. Most notably, for Jaccard distance and correlation, BetaShap
variants can sometimes outperform the Banzhaf variants.

Overall, the results indicate that while Banzhaf variants approach their actual values in a more
stable manner (lower Ly-normalized error), the ranking stability can vary (mixed Jaccard distance
and average pairwise rank correlation). Combined with the fidelity evaluation, we can surmise that:

* KBanzhaf (setting w; = 0.5 Vi) is generally the best for sensitivity in terms of Lo-
normalized error.

* On average, DBanzhaf(MoRF) can provide more accurate (or at least equivalently ac-
curate) attribution compared to other Banzhaf variants at the cost of slight deterioration in
sensitivity.

* Using random w; performs worst in terms of sensitivity. Combined with the prior two
points, this result again highlights the importance of methodical mask probability adjust-
ment: arbitrarily chosen w can be detrimental to attribution quality, while carefully cali-
brated probabilities can improve those properties.

* BetaShap variants are ’consistently less right’ - they sometimes have lower sensitivity
than Banzhaf variants, but still have lower average fidelity.

4.3 UNDERSTANDING THE ROLE OF MASKING PROBABILITIES IN FIDELITY

In this section, we apply two different w; between the center and periphery of images in the im-
age datasets to investigate the information captured by w;. Specifically, we compare the faithful-
ness of explanations depending on the location of high and low w; in the image. For each image,
we divide the image into 64 equally sized segments. Using wp;q;, = 0.7 (high probability) and
Wiow = 0.3 (low probability), we set the masking probability of either the center 4 x 4 segments
(DBanzhaf(Center)) or the periphery segments (D Banzha f(Periph)) to we,. The opposite
set of segments are set to wy;q5,. Comparing the faithfulness between the two setups, we find that
DBanzhaf(Center) has higher average fidelity than D Banzha f(Periph) (Table[l). Given that
many instances in the image datasets have their objects at the center of the image, this result implies
that a higher overlap between the object and low w; tends to result in more faithful attributions on
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average. In other words, w; seems to act as ’prior information regarding feature importance’: by
assigning lower w; to clearly important features (the objects of an image), they are removed more
frequently so that more accurate ranking can be computed for the remaining inputs.

5 CONCLUSION

In this paper, we present Dynamic Banzhaf, an axiomatic feature attribution method that computes
feature importance with each feature having a unique probability of joining a coalition (i.e., the
feature masking probability). We prove that Dynamic Banzhaf values can be computed through a
centered linear regression and derive the theoretical convergence given a set of masking probabili-
ties. We also discuss calculating optimal probabilities through continuous objective functions that
represent user criteria. We optimize the probabilities of Dynamic Banzhaf on a continuous approx-
imation of a faithfulness metric, and compare its performance in terms of fidelity and sensitivity
against other game-theoretic attribution methods. We find that Dynamic Banzhaf value meets or
beats most baseline methods in terms of average fidelity across all datasets with minimal degra-
dation in sensitivity. These results indicate the importance of adjusting masking probabilities with
appropriate objective function to improve the quality of explanations in machine learning.

Given that game-theoretic explainable Al is becoming important for other tasks such as data valu-
ation, it may be interesting to see if we can generalize Dynamic Banzhaf to different applications.
In particular, discovering appropriate objective functions for different tasks and metrics could help
users gain greater understanding into a model’s behavior. Another interesting future research direc-
tion would be extending this work to other data, especially for those that need to reflect the original
data probability in the masking process.
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A FAITHFULNESS AND SENSITIVITY METRICS

In explainable Al the explanations should satisfy several desiderata (Nauta et al.,|2023)). Two prop-
erties often discussed in the literature are faithfulness and sensitivity. Faithfulness (also known as
fidelity) is the degree to which an explanation matches the model output behavior. Ideally, more
important features would have greater impact on model decisions (Hedstrom et al., 2023). Sensitiv-
ity (also known as robustness or consistency) measures the stability of the attribution for identical
inputs (Nauta et al.|[2023). A good explanation should be stable, i.e., have lower sensitivity. We can
quantify these methods using several metrics, which we discuss below.

A.1 FAITHFULNESS

We consider two traditional metrics of faithfulness: Area over Perturbation Curve (AOPC) (Tomsett
et al., 2020) and Iterative Removal of Features (IROF) (Rieger & Hansen, 2020). AOPC measures
faithfulness by measuring the area over the curve (AOC) of the change in model output from the
original as we replace each feature in the input with the chosen baseline:

T
AOPC = Z f(@h) (7)
k:l

Where R is the feature replacement procedure and 7' is the number of replacements. For classifiers,
f is usually the logit or probability of the target class. IROF follows a similar process, except that it
works exclusively with probabilities:

(®)

H
B
=X

1
IROF = ——
T
k=1

A model is more faithful if it has higher AOPC and lower IROF.

A.2 SENSITIVITY

For sensitivity, we evaluate Lo-normalized error (Liu et al.|[2024) between attributions across several
runs and the true value. If the true value is difficult to calculate, we use the average as the proxy.

9

We also use average pairwise rank correlation and top- K Jaccard distance among multiple evalua-
tions (Nauta et al.,[2023).

Errig =

T-1

Z (B> Brt1) (10)

]|
H

Y

TT-1

= ( |topk(Br) N topk(ﬁkﬂn)
- |topk(Br) U topk(Br+1)]

k=

where L is the number of times the explanation has been evaluated. A method is less sensitive if it
has lower Ly-normalized error, higher correlation, and higher Jaccard index.

A.3 A CONTINUOUS APPROXIMATION OF AOPC

While it is possible to optimize masking probabilities {w};—; ., directly on AOPC, it can be com-
putationally intensive since AOPC is discrete and requires recomputing f (%) at each optimization

12
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step. However, we may approximate streamline the optimization by approximating AOPC with the
weighted sum of Dynamic Banzhaf values. Assume the special case where the game v is additive.
Then, letting T" = d:

d d k d
1
AOPO#, = 7d—|—1 Z(’U(Z%)*U ZZ w(j) = Z d k’+1 ’lﬁﬂ(k)
= k: Jj=1 k:
(12)

where 7(j) is j-th feature based on ranking 7. We can approximate f(z%)— f(z%) with 2521 V()
because z is binary, so removal is equivalent to setting z; = 0. Since AOPCy, is a continuous
function with respect 1), which in turn is continuous with respect to w, we can optimize the sum
directly using gradient-based methods. In the general case where v is not additive, the difference
between AOPC and AOPCY, is bounded by €44, the maximum difference between v(z) and

Zj,2j:1 wj:

|[AOPC — AOPCy| < 2€maus (13)
Lastly, it should be noted that since we generally cannot compute the Dynamic Banzhaf values

1) analytically, we use the kernelized approximation 3; instead. This replacement results in the
formula in Equation [6]
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B EXPERIMENTAL DETAILS

The XGBoost classifiers in the experiments are trained with default parameters from the xgboost
package, while the image classifiers are fine-tuned from IMAGENET 10K weight available in the
torchvision package. The classification block of the image classifiers consist of 4 linear layers
with 20% dropout, batch normalization, and ReLU activation. All training and experiments are
performed on Intel(R) Xeon(R) Gold 6342 CPU @ 2.8GHz and NVidia RTX A6000 (48GB). Input-

label descriptions of the datasets are provided in Table 4]

Table 2: Model details.
Dataset Model Package

Acc (%)

Adult XGBoost xgboost
California Housing XGBoost xgboost
Communities and Crime ~ XGBoost xgboost
Imagenette ResNetl01 torchvision
Imagewoof ResNet101 torchvision

Table 3: MLP classification block details.

Block Layer Type

RelLU
Linear(2048,1024)
BatchNorm
RelLU
Dropout(0.2)
Linear(1024,512)
BatchNorm
ReLU
Dropout(0.2)
Linear(512,256)
BatchNorm
RelLU
Dropout(0.2)
Linear(512,10)

A APRLWLWWLWWLWWNDORPODNODND ===

Table 4: Dataset description.

Dataset Description

87.29
84.74
80.75
89.81
79.89

Bank Marketing Input: client information. Label: client subscribes to a term deposit
Communities and Crime Input: county information. Label: crime rate is above median
Adult Input: census information. Label: annual income of above $50K
Diabetes Input: county information. Label: crime rate is above median
California Housing Input: housing factors. Label: housing price is above median
Imagenette Input: images from 10 classes in Imagenet. Label: class labels
Imagewoof Input: images from 10 dog breeds in Imagenet. Label: class labels
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C PROOFS

In this section, we present the full proofs for theorems 1 and 2

C.1 PROOF FOR THEOREM 1

Expanding Equation[5] we have:

El(v(z) — fo — B2)?]

d
—Bo— Y Bizi)’]
i=1

d d d d
= E[v* — 2v Z Bizi + Z Z BiziBizj + B3 — 2B0v + 20 Z Bizi

i=1 i=1 j—l i=1

d d
= E[’UZ - 2v Zﬁlzz + Z + Z /Bzﬁjzlzj + BO — 2B9v + 2p Z 5zzz
=1 =1

1#]
d
= B[(1-dv?+ > (v - Biz)? + Z BiB;zizi + B2 — 2B0v + 280 Z Bizi]
i=1 i#j i=1
d d ’ d

= (1= d)ER’]+ Y El(v - Bizi)*) + Y BiBjElzizi) + B3 — 280E[v] + 280 Y BiElzi]

i=1 i#j i=1 (14)
Since centering sets E[z;] = 0 and E[z;z;] = 0:
d d

P =arg Hllain[(l —d)E[?) + ; E[(v — Bizi)?] + B2 — 2B0E[v]] = arg rrgn[; E[(v — Biz)?]]
15)

which is equivalent to minimizing ¢; individually. Taking the derivative for a single 1;, we have:

dE[(v — Biz;)?
W = E[—in(’U — 5,,%)] =0 (16)

— Bi = E[zv]/E[%]]

Since E[z2] = Var(z) = wi(1 — w;) and E[z;v] = wi(1 — wy)E[v]z; = 1 — w;] + (1 —
w;)(—w;)Ev]z; = —w;l:

wi(1 —w;)Ew|z; =1 —w;] + (1 — w;)(—w;) Ev|z; = —w;]

B =

w; (1 —w;) (17)
= Ev|zi =1 —w;] — Ev|z = —w;]
Since z; = 1 — w; means feature ¢ is included in the input set S and z; = —w; means it is excluded

from S, the above equation becomes:

i = E[v(iUS)] - E[v(S)]

Z ijnl—w] v(S U1)) Z ijH ) [v(S)]

SCN\i j€S  j¢S SCN\i jeS  j¢S (18)

= > [(Iw]la [p(SUi) —v(S)] = s

SCN\i j€S  j¢s

15



Under review as a conference paper at ICLR 2026

C.2 PROOF FOR THEOREM 2

This proof closely follows the convergence of GLIME (Tan et al.,|2024). Since Dynamic Banzhaf
value is the solution for a linear regression model, we know that:

= (22,2, (19)

where Z,, is the centered sampled masks and V, is the corresponding model predictions. Represent-
ing ¥, = Zg Zpand Iy, = Z,V,,, we would like to find the convergence of X, 17, to the limit
Do

First, we can find the limit for X2, as:

Y= lim ¥, = lim Zr 7, =E(Z'2) =Var(Z) = diag(c}) = diag(w;(1 —w;))  (20)
n o0

n—oo
E(ZT Z) is equal to the variance of Z since Z has been centered, i.e., E(z;) =0 Vi, which makes

Cov(z;, 2j) = E(zizj) — E(2;)E(z;) = E(zizj). Note that 0 < o7 < 0.25 since each mask
follows a Bernouilli distribution. We can also bound the values of ¥,, as follows:

,{Zw _|_Z 1—w)?} < = Zma,x wi, 1 — w;)? 21D

keS, keSs
7, “:—{Z ww; + Z —w;(
keS: keSs
1
+) —(1—wi)w; + — (1 —wi) (1 —wy)} (22)
keSs keSy

1 n
fz z(wwj, (1 —w;)(1—w;) <1
k=1

3

Therefore, all elements of ||%,, — X|| are bounded to [—0.25, 1], and we may apply matrix Hoeffd-
ing’s inequality with 0% = max(o?):

nt?
P(Hzn - E||2 > t) < 2d€xp _— (23)
802

|[Z71]%. is simply the sum of inverse of variances ), 1/07 = ~*. Lastly, we may apply Hoeffd-
ing’s inequality to I';, to find:

nt?

Following [Tan et al.| (2024), if we let n be the maximum among n; = 32y202%log(4d/5), ny =
32¢ 2M?d*~%log(4d/$), and n3 = 32¢~2M?20?dy*log(4d/§), we have P(||X, 1T, — S71T|| <
1—96).
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D TABULATED RESULTS

The following tables present faithfulness and sensitivity results for 1000 perturbations for datasets
with large number of features (Bank Marketing, Communities and Crime, Adult) and 128 perturba-
tions for datasets with small number of features (Diabetes, California Housing). While not reported,
the results for smaller number of perturbations are qualitatively similar.

Table 5: Average faithfulness and standard errors for Bank Marketing dataset

Name Logit AOPC Probability AOPC IROF
KBanzhaf 1.3866 £ 0.0004  0.5589 + 0.0001 0.3578 £ 0.0001
W Banzhaf(0.25) 1.3794 £ 0.0004 0.5551 +0.0001 0.3624 + 0.0001
W Banzhaf(0.75) 1.2479 £ 0.0007  0.5259 £ 0.0002 0.3957 £ 0.0002
KSHAP 1.3831 £0.0005 0.5572 £ 0.0001 0.3598 + 0.0002
Random 1.3074 £ 0.0018  0.5366 + 0.0005 0.3834 + 0.0006
BetaShap(16,1) 1.2946 £ 0.0008  0.5317 +0.0002 0.3896 + 0.0003
BetaShap(4,1) 1.3474 £ 0.0008  0.5459 £ 0.0002 0.3730 = 0.0002
BetaShap(1,4) 1.2433 £0.0011  0.5244 + 0.0003 0.3984 + 0.0004
BetaShap(1,16) 1.0320 £ 0.0013  0.4615 + 0.0004 0.4686 + 0.0005

DBanzhaf(MoRF) 1.3943 £0.0004 0.5605 + 0.0001 0.3559 = 0.0001

Table 6: Average faithfulness and standard errors for Communities and Crime dataset
Name Logit AOPC Probability AOPC IROF

KBanzhaf 5.6177+£0.0043  0.8763 = 0.0002 0.0544 + 0.0002
W Banzhaf(0.25) 5.5966 + 0.0037  0.8703 = 0.0002 0.0607 = 0.0002
W Banzhaf(0.75) 5.1575£0.0104 0.8666 = 0.0006 0.0641 £ 0.0006

KSHAP 5.3053 £0.0092  0.8562 + 0.0008 0.0746 = 0.0008
Random 5.4366 £ 0.0114  0.8699 + 0.0006 0.0610 + 0.0006
BetaShap(16,1) 5.0147 £0.0144  0.8223 +£0.0015 0.1104 £ 0.0015
BetaShap(4,1) 5.3727 £0.0103  0.8508 + 0.0008 0.0807 = 0.0009
BetaShap(1,4) 54124 £0.0111  0.8669 * 0.0006 0.0639 + 0.0006
BetaShap(1,16) 4.8278 £0.0179 0.8471 £0.0011 0.0845 £ 0.0011

DBanzhaf(MoRF) 5.6284 +0.0043 0.8765 + 0.0002 0.0542 + 0.0002

Table 7: Average faithfulness and standard errors for Adult dataset
Name Logit AOPC Probability AOPC IROF

K Banzhaf 27221 £ 0.0003  0.6432 = 0.0000 0.2648 = 0.0001
W Banzhaf(0.25) 2.7230 £ 0.0004 0.6417 + 0.0001 0.2666 + 0.0001
W Banzhaf(0.75) 2.6663 £ 0.0007 0.6370 = 0.0001 0.2718 £ 0.0001

KSHAP 2.7234 £ 0.0004 0.6424 +0.0001 0.2656 = 0.0001
Random 2.6890 £ 0.0013  0.6374 + 0.0002 0.2712 £ 0.0002
BetaShap(16,1) 2.6800 £ 0.0007  0.6329 = 0.0002 0.2766 = 0.0002
BetaShap(4,1) 2.7095 £ 0.0006  0.6385 +0.0001 0.2702 + 0.0001
BetaShap(1,4) 2.6790 £ 0.0008 0.6384 + 0.0001 0.2706 = 0.0001
BetaShap(1,16) 2.5865 £0.0013  0.6248 = 0.0002 0.2859 + 0.0002

DBanzhaf(MoRF) 2.7246 +0.0003 0.6435 + 0.0000 0.2645 = 0.0001
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Table 8: Average faithfulness and standard errors for Diabetes dataset

Name Logit AOPC Probability AOPC IROF
KBanzhaf 3.5125 £0.0045 0.7972 £ 0.0005 0.1745 £ 0.0005
W Banzhaf(0.25) 3.4762 £ 0.0054 0.7881 + 0.0009 0.1839 £ 0.0010
W Banzhaf(0.75) 3.4157 £0.0104 0.7964 £ 0.0010 0.1752 £ 0.0011
KSHAP 3.4892 +0.0061 0.7919 + 0.0011 0.1798 £ 0.0011
Random 3.4324 £0.0147 0.7876 + 0.0020 0.1843 + 0.0021
BetaShap(16,1 3.3496 £ 0.0137  0.7596 + 0.0035 0.2134 £ 0.0036
BetaShap(4,1) 3.4245 £0.0101  0.7752 £ 0.0024 0.1972 £ 0.0025
BetaShap(1,4) 3.4372 £0.0109 0.7964 +0.0010 0.1753 £ 0.0011
BetaShap(1,16 3.2732 £0.0150 0.7872 £ 0.0016 0.1849 £ 0.0016
DBanzhaf(MoRF) 3.5150£0.0048 0.7970 £ 0.0005 0.1747 £ 0.0005

Table 9: Average faithfulness and standard errors for California Housing dataset

Name Logit AOPC Probability AOPC IROF
KBanzhaf 4.4382 +£0.0007 0.8010 +0.0001 0.1280 = 0.0001
W Banzha f(0.25) 4.4203 £0.0010  0.7983 + 0.0001 0.1310 £ 0.0001
W Banzhaf(0.75) 4.3462 £ 0.0020  0.7990 + 0.0001 0.1301 £ 0.0001
KSHAP 4.4308 £0.0010 0.8002 £ 0.0001 0.1288 = 0.0001
Random 4.3765 £ 0.0023  0.7958 + 0.0002 0.1334 £ 0.0003
BetaShap(16,1 4.3148 £0.0026  0.7825 + 0.0005 0.1476 £ 0.0005
BetaShap(4,1) 4.3890 £ 0.0016  0.7922 £ 0.0003 0.1373 £ 0.0003
BetaShap(1,4) 4.3873 £0.0015 0.7997 + 0.0001 0.1294 + 0.0001
BetaShap(1,16 4.2640 £ 0.0026  0.7950 £ 0.0002 0.1346 + 0.0002
DBanzhaf(MoRF) 4.4375+0.0008 0.8010 + 0.0001 0.1280 = 0.0001

Table 10: Average sensitivity for Bank Marketing dataset

Name Jaccard p L5 Error
KBanzhaf 0.2236  0.8797 0.0033
W Banzhaf(0.25) 0.2107  0.8782 0.0042
W Banzha f(0.75) 0.2880  0.8461 0.0106
KSHAP 0.2318  0.8658 0.0071
BetaShap(16,1) 0.0506  0.9645 0.0679
BetaShap(4,1) 0.0592  0.9640 0.0307
BetaShap(1,4) 0.0986  0.9408 0.0285
BetaShap(1,16) 0.1005  0.9355 0.0637
Random 0.3463  0.7374 0.2073
DBanzhaf(MoRF) 0.2261  0.8765 0.0040
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Table 11: Average sensitivity for Communities and Crime dataset
Name Jaccard p Ly Error

KBanzha f 0.2424  0.8106 0.0389
W Banzhaf(0.25) 0.2315 0.8105 0.0314
W Banzhaf(0.75) 0.4154  0.6459 0.1328

KSHAP 0.4545 0.6052 0.1951
BetaShap(16,1) 0.5472 0.7634 0.9257
BetaShap(4,1) 0.4120 0.8252  0.3002
BetaShap(1,4) 0.4314 0.7914 0.3527
BetaShap(1,16) 0.5284 0.7458 1.2574
Random 0.4159 0.6722 0.2414

DBanzhaf(MoRF) 0.2523 0.8004 0.0415

Table 12: Average sensitivity for Adult dataset

Name Jaccard p L5 Error

KBanzhaf 0.2030  0.8753 0.0013
W Banzhaf(0.25) 0.2129 0.8678 0.0019
W Banzha f(0.75) 0.2537 0.8412  0.0097

KSHAP 0.2236 0.8618  0.0033
BetaShap(16,1) 0.0405 0.9682  0.0544
BetaShap(4,1) 0.0408 0.9724  0.0206
BetaShap(1,4) 0.0515 0.9685 0.0190
BetaShap(1,16) 0.0613 0.9591 0.0584
Random 0.2784  0.7985 0.1110

DBanzhaf(MoRF) 0.2079 0.8717 0.0016

Table 13: Average sensitivity for Diabetes dataset

Name Jaccard p L5 Error

K Banzhaf 0.0815 0.9657 0.0043
W Banzha f(0.25) 0.0986 0.9569 0.0063
W Banzha f(0.75) 0.1672  0.9055 0.0272

KSHAP 0.1214  0.9373  0.0093
BetaShap(16,1) 0.0953 0.9009 0.1193
BetaShap(4,1) 0.0901 0.9279  0.0539
BetaShap(1,4) 0.1084 09262 0.0455
BetaShap(1,16) 0.1297 0.9015 0.1113
Random 0.2028 0.8485 0.1373

DBanzhaf(MoRF) 0.0901 0.9601  0.0052
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Table 14: Average sensitivity for California Housing dataset

Name Jaccard p L5 Error

K Banzhaf 0.0923 0.9673  0.0024
W Banzhaf(0.25) 0.1248 0.9481 0.0058
W Banzha f(0.75) 0.2088 0.8833 0.0178

KSHAP 0.1285 0.9442  0.0044
BetaShap(16,1) 0.0859 0.9349 0.1126
BetaShap(4,1) 0.0805 0.9526 0.0466
BetaShap(1,4) 0.1096 0.9435 0.0459
BetaShap(1,16) 0.1346 0.9165 0.1191
Random 0.2162 0.8698 0.1104

DBanzhaf(MoRF) 0.1186 0.9538  0.0033
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E FAITHFULNESS

Additional faithfulness results are visualized in this section.
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Figure 5: Faithfulness metric visualization for Communities and Crime
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Figure 6: Faithfulness metric visualization for Adult
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Figure 7: Faithfulness metric visualization for Diabetes.
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F SENSITIVITY

The sensitivity results for all datasets are visualized in this section.
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Figure 9: Lo-normalized error across datasets with large number of features.
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Figure 10: Jaccard distance across datasets with large number of features.
Bank Marketing Communities and Crime Adult
—— KBanzhaf 0.95 4 M 0.8 ;ﬁw
—e— WBanzhaf(0.25) W 0.95 *./,,o—“"
WBanzhaf(0.75) 0.90 1
—&— KSHAP 071 0.90 4
Betashap(16.1) .o | ;__,-__.——-—n——-—ﬂ .
—— BetaShap(4,1) ’ 056 1
—— BetaShap(1,4) 0.80 4 ’ 0.85 ﬁ
—4— BetaShap(1,16) :
—+— Random 0.5 1
—— DBanzhaf(MoRF) 0.757 '___.____.__._.._-—-—t 0.80 ‘____4__.——|-——t'—*__"’
600 800 1000 600 800 1000 500 800 1000

Figure 11: Pairwise correlation across datasets with large number of features.
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Figure 12: Ly-normalized error across datasets with small number of features.
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Figure 14: Pairwise correlation across datasets with small number of features.
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