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Abstract
Computer vision applications such as object detection have in-
creased manifolds in the medical domain for diagnosis and treat-
ment purposes. Generally, object detection models such as YOLO
(You Only Look Once) involve identifying the correct bounding
box and classifying the objects inside the bounding box. However,
medical imaging object detection is a challenging endeavor, requir-
ing models that are both efficient and extremely accurate in the
face of limited data and expensive annotations. In this paper, we
proposeMin-Max IoU (M2IoU) loss function by introducing a new
min-max-based penalty term in the loss equation, between the pre-
dicted box and the ground truth coordinates. We further compare
the results of several loss functions on the YOLOv8 model trained
on multiple medical datasets and demonstrate that the M2IoU loss
function leads to faster learning and outperforms other existing
loss functions like CIoU and GIoU.
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1 Introduction
Medical imaging forms the foundation of contemporary diagnostic
medicine, facilitating the early identification and precise diagnosis
of various health conditions [8]. Medical imaging differs from typi-
cal object detection tasks by posing distinct challenges, including
significant variability in images, subtle feature distinctions, and
the critical implications of misdiagnosis. These factors demand
not only greater accuracy but also enhanced robustness in models
specifically crafted for this application [7]. Standard object detec-
tion algorithms frequently underperform in medical settings, where
the consequences of false negatives can be particularly severe. This
highlights the necessity for creating specialized methods that are
specifically designed to meet the intricate demands of medical
imaging [4]. The scarcity of annotated medical images, driven by
privacy issues and the expensive nature of expert annotations, adds
complexity to the creation of effective diagnostic tools. This sit-
uation emphasizes the need for efficient and adaptable learning
algorithms in this domain [16]. With the growing complexity of
medical datasets, the accuracy of object detection models is vital
for successful diagnosis and effective treatment planning.

Object Detectionmodels utilize a Bounding Box Regression (BBR)
module to obtain a precise position of the object of interest. In terms
of evaluation for the bounding box regression, Intersection-Over-
Union (IoU) is the most popular metric. IoU is calculated as the
ratio of the intersection of the predicted bounding box and the
ground truth bounding box to the union of the two bounding boxes.
Often, the performance of a fully-trained model depends on the
loss function of the BBR module[2]. These loss functions aim to
bring the predicted bounding box and the ground truth as close to
each other as possible and maximize their overlap.

2 Our Contribution
The anchor points of a bounding box are the two points that iden-
tify a box uniquely. They could be the two diagonally opposite
corners, or a corner and the center of that bounding box. Current
loss functions like Complete Intersection-over-Union (CIoU)[13] do

4041

https://orcid.org/0009-0007-6424-1195 
https://doi.org/10.1145/3627673.3679958
https://doi.org/10.1145/3627673.3679958
https://doi.org/10.1145/3627673.3679958
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679958&domain=pdf&date_stamp=2024-10-21


CIKM ’24, October 21–25, 2024, Boise, ID, USA Anurag Kumar Shandilya et al

not differentiate between the relative position of the two predicted
anchor points and their corresponding ground truth. To accelerate
the learning process, we introduce our min-max distance-based
loss function (M2IoU loss) (c.f. Sec. 4). Here, we treat both anchor
points separately by imposing a higher penalty on the predicted
anchor point that is farther away from its corresponding ground
truth by using a hyperparameter 𝛼 . This leads to faster learning of
the model when trained using our loss function, which ultimately
performs better than the other existing loss functions on medical
datasets. Table 1 shows loss values are consistently higher for the
M2IoU loss function for the different misalignments of the ground
truth and predicted bounding boxes.
The contribution of this paper can be summarized as follows:

Table 1: Illustration of loss values for various loss functions.
Here Ground truth is the green box and Prediction is the red
box

Image Case

L𝐼𝑜𝑈 0.75 0.75 0.95
L𝐺𝐼𝑜𝑈 0.75 0.75 1.19
L𝐷𝐼𝑜𝑈 0.75 0.81 1.1
L𝐶𝐼𝑜𝑈 0.75 0.81 1.1
L𝑀2𝐼𝑜𝑈 0.81 0.94 1.23

(1) We propose a new loss function M2IoU (c.f.section 4 loss), by
introducing a novel hyper-parameter-controlled min-max
penalty term. The primary idea is to assign a higher weight
to the point that is farther away from the corresponding
ground truth to enable quicker learning.

(2) The new penalty term yields better results than existing
loss functions and beats the CIoU loss function with lesser
computations.

3 Related Work
Bounding box regression (BBR) traditionally employed 𝑙𝑛 norm loss
which did not synergize with the IoU metric and is sensitive to scal-
ing issues [15]. To incorporate the distance invariance issue in the
IoU loss function, the generalized intersection over union (GIoU)
loss function was proposed which considers three factors namely
overlap area, union area, and enclosing area [11]. However, it does
not take into account object orientation, which can be a significant
limitation in detecting objects with varied orientations [10]. To
overcome these drawbacks Distance IoU (DIoU) was proposed and
used in YOLOv4 and YOLOv5 [13]. DIoU considers overlap area,
central point distance, and normalized distance between the pre-
dicted and ground truth bounding box. However, it is sensitive to
the aspect ratio, size, and location of the object [14]. Simultaneously
in the same paper as an improvement, CIoU[13] was proposed with
consideration of both, normalized distance and the aspect ratio.
However, CIoU, models aspect ratio in relative terms and not ab-
solute value. Hence it loses its effectiveness when the predicted

bounding box and the ground truth have the same aspect ratio with
different width and height values, which limits the convergence
speed and accuracy [12]. Similarly, [5]introduced a new family of
power IoU losses that have a power IoU term and an additional
power regularization term with a single power parameter 𝛼 .

pagestylefancy fancyhead

4 M2IoU Loss Function
4.1 Formulation
Let the ground truth bounding box 𝐵𝑔𝑡 be represented by (𝑃1, 𝑃2)
where 𝑃1 and 𝑃2 represent the two anchor points that can uniquely
identify the box. Similarly, let (𝑃1, 𝑃2) be the prediction 𝐵 given by
the model. Let D(𝑃,𝑄) denote the Euclidean distance between the
two points 𝑃 and 𝑄 . We define 𝐷2

𝑚𝑖𝑛
and 𝐷2

𝑚𝑎𝑥 in (1a) and (1b).

𝐷2
𝑚𝑖𝑛 =𝑚𝑖𝑛(D2 (𝑃1, 𝑃1),D2 (𝑃2, 𝑃2)) (1a)

𝐷2
𝑚𝑎𝑥 =𝑚𝑎𝑥 (D2 (𝑃1, 𝑃1),D2 (𝑃2, 𝑃2)) (1b)

Let 𝛼 be a hyper-parameter such that 𝛼 ∈ [0, 1]. The M2IoU loss is
described in the (2)

L𝑀2𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝛼𝐷2

𝑚𝑖𝑛
+ (1 − 𝛼)𝐷2

𝑚𝑎𝑥

C2 (2)

C is the diagonal length of the smallest enclosing box covering
the two boxes (or the diagonal length of the convex hull of the
two boxes). When the two boxes are almost aligned, 𝐼𝑜𝑈 ≈ 1, and
𝐷2
𝑚𝑖𝑛

, 𝐷2
𝑚𝑎𝑥 ≈ 0. Thus, L𝑀2𝐼𝑜𝑈 >= 0. When the two boxes are

on the opposite corners of the image (farthest away and 𝐼𝑜𝑈 =

0), 𝐷2
𝑚𝑖𝑛

, 𝐷2
𝑚𝑎𝑥 ≈ C2, and L𝑀2𝐼𝑜𝑈 <= 2. Thus, the M2IoU loss

function is both upper and lower-bounded:

0 <= L𝑀2𝐼𝑜𝑈 <= 2 (3)

4.2 Convergence Simulation Experiment
We perform an experiment outlined in Algorithm ?? to track the
behavior and convergence in case of different loss functions. We
denote ∇L(𝐵, 𝐵𝑔𝑡 ) as the derivative of the loss function with the
predicted coordinates. We represent L(𝐵, 𝐵𝑔𝑡 ) as L for brevity
and, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) represent the 2-D coordinates of the two
anchor points respectively. Thus, in simulation, ∇L is calculated
as shown in eq. 4.

∇L = [ 𝜕L
𝜕𝑥1

,
𝜕L
𝜕𝑦1

,
𝜕L
𝜕𝑥2

,
𝜕L
𝜕𝑦2

] (4)

Using Gradient Descent, prediction 𝑝𝑟𝑒𝑑 is updated with an adap-
tive learning rate 𝜂 (to prevent significant overshoot). The IoU value
(with the ground truth) is plotted at each iteration for each loss
function. Fig. 1 demonstrates that M2IoU loss converges the fastest
and at a higher IoU value amongst all other loss functions.

4.3 Experiment for 𝛼 Value
Hyper-parameter 𝛼 varies from [0, 1]. To impose a higher penalty
on the coordinate that is farther away from the corresponding
ground truth, we take 𝛼 < 0.5 such that the coefficient of 𝐷𝑚𝑎𝑥 ,
1 − 𝛼 is more than the coefficient of 𝐷𝑚𝑖𝑛 , 𝛼 . We choose the BCCD
dataset[3] with the same configuration as mentioned in Table 2 and
train the YOLOv8-x [6] model from scratch for three distinct values
of 𝛼 at 0.05, 0.25, and 0.45 respectively. The training performance
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Figure 1: IoU vs Iterations

is monitored using mean Average Precision-50, mAP50 (IoU at
threshold 50%). The result of 𝛼 = 0.25 shows faster convergence
and best performances as shown in Fig 2. Based on these results
we fix the value of 𝛼 as 0.25 as it produces the best results.

Figure 2: mAP50 metric for 𝛼 simulations

5 Experimental Results
5.1 Datasets
We used three different medical datasets as outlined in Table 2.
The Dental-j1vge is a dental object detection dataset used for the
detection of different classes of teeth like molar, pre-molar, crown,
etc. [1]. The BCCD Dataset contains three different classes, white
blood cells, red blood cells, and platelets, mainly for blood cell
detection [3]. Kvasir Dataset is a Multi-Class Image Dataset for
Computer Aided Gastrointestinal Disease Detection from the Vestre
Viken Health Trust (Norway)[9].

5.2 Methodology
We train the YOLOv8-x [6] model (for 50 epochs) from scratch on
five different loss functions namely, IoU, GIoU, DIoU, CIoU, 𝛼-IoU,
𝛼-GIoU, 𝛼-DIoU, 𝛼-CIoU, and M2IoU loss function for each of the
three datasets. We choose the best model for each loss function
obtained till epochs 10, 20, 30, 40, and 50 to track the learning ability

Table 2: Dataset Configuration

Dataset Train Size Test Size Classes

BCCD 765 109 3
Kvasir 800 200 8

Dental-j1vge 9926 1026 10

of the loss functions. We evaluate these models on the mAP50 and
mAP50-95 (average of 10 mAP across different IoU thresholds =
(AP50 + AP55+ . . . + AP95) / 10) on a randomly sampled subset
of the test data which is not used to update the parameters of the
model in any way. Finally, we compare all the trained models (after
50 epochs) on the Dice Coefficient Score metric defined as twice
the size of the intersection divided by the sum of the sizes of the
two boxes.

a) Ground
Truth

b) IoU c) GIoU d) CIoU e) DIoU

f) 𝛼-IoU g) 𝛼-GIoU h) 𝛼-CIoU i) 𝛼-DIoU j) M2IoU

Figure 3: Predictions of different loss functions.

5.3 Results and Discussions
The results of mAP50 and mAP50-95 values for the training phase
are shown in Tables 3 and 4 respectively.1 M2IoU achieves the
highest metric scores at more than 43% of the landmark epochs
for all the datasets alone, demonstrating its faster learning at each
stage.

The Dice Coefficient Score of the fully trained models, as re-
ported in Table 5, reveals that M2IoU demonstrates competitive
performance. For the Dental-j1vge dataset, M2IoU achieves a dice
score of 0.891, surpassing IoU by 6.07% and the CIoU loss function
by an impressive 6.96%. Although M2IoU scores less than 𝛼-DIoU
on the Kvasir and BCCD datasets, it still performs better than the re-
maining loss functions. It is worth noting that M2IoU outperforms
the CIoU loss function for all three datasets.

The M2IoU loss function’s higher dice coefficient score makes
it suitable for training in settings where high accuracy is required
such as medical object detection. In Fig. 3, for the given ground
truth, we observe that M2IoU performs well by identifying the
precise bounding box over the polyp (polycyst). Most other loss
functions produce incorrect and duplicate predictions, which could
1We embolden the maximum value at each landmark epoch and underline the maxi-
mum value achieved by the M2IoU loss function
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Table 3: mAP50 values on the test set for different loss functions on multiple epochs

Datasets Dental-j1vge BCCD Kvasir

Epochs 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

L𝐼𝑜𝑈 0.638 0.739 0.765 0.837 0.842 0.784 0.882 0.902 0.916 0.930 0.298 0.501 0.633 0.747 0.824
L𝐺𝐼𝑜𝑈 0.686 0.745 0.851 0.866 0.886 0.697 0.876 0.903 0.918 0.926 0.204 0.502 0.649 0.750 0.836
L𝐶𝐼𝑜𝑈 0.691 0.731 0.831 0.870 0.891 0.547 0.883 0.900 0.916 0.928 0.102 0.588 0.655 0.773 0.816
L𝐷𝐼𝑜𝑈 0.687 0.740 0.827 0.873 0.915 0.635 0.857 0.904 0.921 0.931 0.134 0.544 0.691 0.784 0.857
L𝛼−𝐼𝑜𝑈 0.699 0.725 0.793 0.813 0.876 0.755 0.890 0.907 0.919 0.907 0.239 0.644 0.705 0.748 0.825
L𝛼−𝐺𝐼𝑜𝑈 0.635 0.692 0.843 0.857 0.902 0.752 0.888 0.907 0.913 0.915 0.287 0.640 0.714 0.790 0.822
L𝛼−𝐶𝐼𝑜𝑈 0.699 0.702 0.851 0.880 0.916 0.775 0.884 0.903 0.920 0.914 0.253 0.657 0.755 0.796 0.832
L𝛼−𝐷𝐼𝑜𝑈 0.693 0.745 0.819 0.843 0.904 0.774 0.890 0.904 0.909 0.910 0.146 0.662 0.725 0.796 0.831
L𝑀2𝐼𝑜𝑈 0.643 0.728 0.852 0.890 0.927 0.718 0.887 0.904 0.919 0.925 0.305 0.539 0.691 0.799 0.826

Table 4: mAP50-95 values on the test set for different loss functions on multiple epochs

Datasets Dental-j1vge BCCD Kvasir

Epochs 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

L𝐼𝑜𝑈 0.302 0.393 0.416 0.468 0.510 0.420 0.523 0.589 0.616 0.645 0.120 0.276 0.414 0.515 0.590
L𝐺𝐼𝑜𝑈 0.323 0.386 0.461 0.519 0.543 0.344 0.498 0.578 0.627 0.641 0.093 0.293 0.443 0.505 0.581
L𝐶𝐼𝑜𝑈 0.324 0.377 0.458 0.514 0.554 0.248 0.509 0.580 0.616 0.648 0.035 0.327 0.424 0.550 0.593
L𝐷𝐼𝑜𝑈 0.330 0.392 0.447 0.480 0.574 0.276 0.531 0.588 0.616 0.644 0.053 0.324 0.444 0.539 0.621
L𝛼−𝐼𝑜𝑈 0.376 0.442 0.408 0.534 0.538 0.489 0.489 0.528 0.639 0.655 0.090 0.375 0.425 0.496 0.543
L𝛼−𝐺𝐼𝑜𝑈 0.326 0.350 0.471 0.505 0.521 0.521 0.506 0.515 0.611 0.651 0.103 0.367 0.418 0.482 0.532
L𝛼−𝐶𝐼𝑜𝑈 0.319 0.361 0.450 0.541 0.574 0.521 0.585 0.522 0.638 0.651 0.080 0.378 0.449 0.506 0.540
L𝛼−𝐷𝐼𝑜𝑈 0.320 0.379 0.440 0.499 0.555 0.495 0.590 0.510 0.632 0.652 0.054 0.355 0.440 0.498 0.538
L𝑀2𝐼𝑜𝑈 0.327 0.379 0.464 0.539 0.581 0.358 0.550 0.573 0.627 0.637 0.132 0.318 0.451 0.567 0.625

Table 5: Dice Coefficient Scores on test dataset

Dataset Dental-j1vge BCCD Kvasir

L𝐼𝑜𝑈 0.840 0.883 0.771
L𝐺𝐼𝑜𝑈 0.835 0.888 0.783
L𝐶𝐼𝑜𝑈 0.833 0.881 0.765
L𝐷𝐼𝑜𝑈 0.796 0.883 0.800
L𝛼−𝐼𝑜𝑈 0.850 0.831 0.765
L𝛼−𝐺𝐼𝑜𝑈 0.827 0.886 0.683
L𝛼−𝐶𝐼𝑜𝑈 0.845 0.821 0.766
L𝛼−𝐷𝐼𝑜𝑈 0.803 0.893 0.803
L𝑀2𝐼𝑜𝑈 0.891 0.889 0.784

lead to diagnostic errors and compromise the model’s intended
purpose.

5.4 FLOPS comparison with CIoU
Minimizing FLOPS reduces energy consumption, which is an active
area of concern especially in ML Development. Assuming 𝑎𝑡𝑎𝑛(𝑥)
takes 30 FLOPS for a floating decimal 𝑥 , and each of the arithmetic
operations addition, subtraction, division, and multiplication take
1 FLOP each, the CIoU loss function requires 64 more FLOPS on
an average than M2IoU loss per ground-truth prediction pair. Let
𝐵 be the number of candidate bounding boxes generated by the
model after Non-Maximal Suppression (NMS), 𝐷 be the number of

data points used for training and 𝐸 be the total number of training
epochs. Thus, the overall difference in the number of FLOPS, Δ𝐹 is
O(𝐵 ∗ 𝐷 ∗ 𝐸). This number is typically of the order of 106 FLOPS
for training on a few thousand images. Utilizing the M2IoU loss
function in place of CIoU can potentially reduce the computational
burden by three orders of magnitude.

6 Conclusion
In this paper, we introduced a new loss function and metric named
M2IoU. We demonstrated that this newmetric learns faster than the
other loss functions and hence can be very useful in medical object
detection where high accuracy is desirable. It is a better choice in
most of the performance metrics on downstream tasks like object
detection. We also showed an analytical FLOPS comparison with
CIoU and demonstrated that our loss function performs better than
CIoU with fewer computations.

As for future work, we would like to introduce a mechanism/
algorithm to readily fine-tune the value of the hyper-parameter 𝛼
depending on the dataset in hand. We would also like to extend
M2IoU loss to 3-D medical object detection (like 3D MRI).
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