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ABSTRACT

Despite remarkable progress, there still exist several limitations in current multi-
view clustering (MVC) techniques. Specially, they generally focus only on the
affinity relationship between anchors and samples, while overlooking that between
anchors. Moreover, due to the lack of data labels, the cluster order is inconsistent
across views and accordingly anchors encounter misalignment issue, which will
confuse the graph structure and disorganize cluster representation. Even worse,
it typically brings variance during forming embedding, degenerating the stability
of clustering results. In response to these concerns, in the paper we propose a
MVC approach named DLA-EF-JA. Concretely, we explicitly exploit the geometric
properties between anchors via self-expression learning skill, and utilize topology
learning strategy to feed captured anchor-anchor features into anchor-sample graph
so as to explore the manifold structure hidden within samples more adequately. To
reduce the misalignment risk, we introduce a permutation mechanism for each view
to jointly rearrange anchors according to respective view characteristics. Besides
not involving selecting the baseline view, it also can coordinate with anchors in
the unified framework and thereby facilitate the learning of anchors. Further,
rather than forming embedding and then performing spectral partitioning, based on
the criterion that samples and clusters should be hard assignment, we manage to
construct the cluster labels directly from original samples using the binary strategy,
not only preserving the data diversity but avoiding variance. Experiments on
multiple publicly available datasets confirm the effectiveness of our DLA-EF-JA.

1 INTRODUCTION

In recent years, multi-view clustering (MVC) is becoming a research hotspot because of its ability to
effectively mine potential patterns hidden in heterogeneous data, and is widespreadly deployed in
various fields such as drug design and finance analysis (Xu et al., 2024; Chen et al., 2023b; Xia et al.,
2022a; Wang et al., 2023b; Wen et al., 2024a; Wang et al., 2022b; Wen et al., 2023b; Xu et al., 2023b).
As a powerful tool in MVC, anchor technique is commonly utilized to filter noise points and decrease
the computing overhead (Li et al., 2023; He et al., 2023; Li et al., 2024b). It first selects a small
number of significant samples to represent overall samples, and then replaces the sample-sample
affinity relationship by building up the anchor-sample relationship (Zhao et al., 2024; Yang et al.,
2022; Nie et al., 2024b). Following this line, a series of prominent works have been successively
proposed. For instance, Kang et al. (2020b) regard the centroids generated by k-means on respective
view as anchors and merge multiple graphs by splicing their left singular vectors. Xia et al. (2022b)
first project samples to perform de-correlation and then select anchors in projection space according
to the sample variance. Wang et al. (2022a) design a hierarchical k-means model to output anchors
and construct sparse similarity using the learned bipartite graph. Huang et al. (2023) leverage three
diversity levels in neighbors to construct anchors and generate graph directly in the early-stage fusion.

Although generating pleasing clustering results from various aspects, current methods usually focus
only on the anchor-sample affinity, and fail to take into account the anchor-anchor characteristics.
This is not reasonable since between anchors, there generally exist informative geometric features.
Overlooking them will not be conductive to constructing discriminative anchors and extracting
the intrinsic similarity among samples. Additionally, due to the fact that clustering tasks do not
involve any data labels, anchors could be misaligned across views, leading to the graph structure
becoming chaotic. Wang et al. (2022c) provide an alignment scheme from the perspectives of
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feature and structure matching, nevertheless, it requires to select the baseline view. Also, the anchor
generation, the anchor transformation, and the graph construction are separated from each other.
These limitations hinder the interaction of view information across different levels and accordingly
weaken the distinctiveness of anchors. Furthermore, the clustering procedure adopted by current
approaches is to first form embedding and then conduct spectral partitioning on it, which causes the
generated clustering results containing non-zero variance, degrading the stability and interpretability.
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Figure 1: The devised DLA-EF-JA framework. It explicitly extracts the geometric characteristics of
anchor-anchor via self-expression learning, and delivers them into the topology learning of anchor-
sample to exploit the manifold structure among samples. It introduces a learnable permutation model
for each view to alleviate the anchor misalignment. Instead of constructing embedding, it directly
learns the cluster indicators via binary learning to avoid introducing variance. These three sub-parts
are all jointly optimized within an unified framework so as to move towards mutual reinforcement.

With these concerns in minds, we design a MVC method termed DLA-EF-JA in this paper, and its
framework is presented in Fig. 1. To be specific, we introduce self-expression learning mechanism to
explore the geometric characteristics between anchors, and integrate them into the topology learning
of anchor-sample graph so as to characterize the manifold structure inside samples more sufficiently.
Then, we associate each view with a permutation model, which is learnable and works jointly with the
anchor generation, to rearrange anchors in their original dimension space according to view-specific
features. Owing to the joint-optimization mechanism in the unified framework, consequently, it does
not involve the selection of baseline view. Further, to eliminate variance, based on the criterion that
one sample should belong to only one cluster, we avoid the formation of embedding and choose to
directly generate cluster indicators from original samples. When the sample belongs to its cluster, we
manage to optimize its indicator as 1 and otherwise 0. In addition to well preserving the data diversity,
this paradigm also can skip the spectral partitioning stage and thereby alleviate the computing burden.
The cluster indicator matrix is shared for all views, which bridges all anchors, permutations and views.
Not only does it play an important role in gathering multi-view information at the cluster-label level,
but provides consensus structure for anchors on different views to force them rearranging towards
correct-matching direction. Subsequently, we give a six-step updating scheme with linear complexity
to optimize the resultant objective loss. Experiments on various benchmark datasets demonstrate that
DLA-EF-JA is effective in grouping multi-view data and owns competitive strengths against multiple
classical MVC approaches. For more clarity, we summary the contributions of this work as below,

1. We explicitly take into account the geometric features between anchors, and successfully integrate
them into the anchor-sample graph through topology learning to exploit the manifold characteristics
hidden within samples more fully for better clustering.

2. We devise a joint-alignment mechanism that not only eliminates the need for selecting the baseline
view but also coordinates well with the generation of anchors.

3. We avoid the formation of embedding by directly learning cluster indicators using a binary strategy,
which effectively clears the variance in clustering results, accordingly highlighting the stability.

4. We provide a six-step optimization scheme with linear complexity for the loss function. Experi-
ments validate the effectiveness of our proposed method from multiple aspects.
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2 RELATED WORK

Based on the fact that each view data typically owns self-unique features and consequently can
compensate for the limitations of other views, multi-view clustering aims at integrating information
from diverse views to obtain more comprehensive and accurate data representation, thereby achieving
superior clustering effect than single-view counterparts (Xu et al., 2023a; Wang et al., 2024; Huang
et al., 2024b; Wen et al., 2023a; Zhang et al., 2019; Tang & Liu, 2022; Fang et al., 2023; Wang
et al., 2023a). Anchor technology is recently introduced into multi-view clustering to increase the
computing efficiency (Shi et al., 2021; Chen et al., 2024). It is intended to replace the full graph with
a small-sized anchor graph by utilizing some discriminative landmarks. Specially, given a multi-view
dataset {Xp ∈ Rdp×n}vp=1 where dp, n and v denote the dimension of data, the number of samples
and the number of views respectively, anchor based multi-view clustering can be formulated as

min
{Z⊤

p 1=1,Zp≥0}v
p=1,Z

⊤1=1,Z≥0

v∑
p=1

∥Xp −ApZp∥2F + η ∥Zp∥2F + γ ∥Zp − Z∥2F , (1)

where Ap ∈ Rdp×m, Zp ∈ Rm×n, η and γ denote the anchor matrix, anchor graph and regularization
hyper-parameters, respectively. The fusion graph Z ∈ Rm×n aims at gathering the information
from different views at the graph level. The non-negative constraints and column sum constraints
guarantee the learned graph to satisfy the similarity requirements. After obtaining Z, the cluster
labels can be received by first constructing embedding on the fusion graph Z and then conducting
spectral partitioning operation on the embedding.

Noticed that the final clustering results are heavily dependent on the quality of Zp while Zp is related
to anchor matrix Ap, consequently, many works focus on the generation way of anchors. For example,
Chen et al. (2023c) utilize tensor learning to investigate the low-rankness within views and employ a
dynamic anchor learning strategy to explore that between views. Yan et al. (2022) integrate anchor
learning and feature learning together, and learn to generate anchors separately. Given the fact that
similar samples typically lie in the same cluster and have homologous characteristics, Li et al. (2022a)
devise an alternative sampling scheme, which is independent of initialization, to generate anchors.
Liu et al. (2024) narrow the distributions of anchors by leveraging the correlation information between
views to enhance their distinction. These methods successfully construct representative anchors from
different perspectives, nevertheless, they generally pay only attention to the relationship between
anchors and samples when constructing anchor graph, while overlooking the influence of geometric
characteristics inside anchors. This could bring about the loss of some informative features. Anchors
on different views also could be misaligned due to the unsupervised property of data, leading to
the confusion of graph structure (Wang et al., 2022c). Moreover, the clustering results outputted
by current methods usually contain variance when partitioning the embedding, which exacerbates
the instability (Zhang et al., 2020a; Zeng et al., 2024; Chen et al., 2023a). In next section, we will
elaborate in detail on the principles of our devised DLA-EF-JA approach to alleviate these issues.

3 METHODOLOGY

To explore the geometric properties between anchors, inspired by subspace reconstruction (Zhang
et al., 2020b; Xia et al., 2022d), we introduce self-expression learning for anchors. To be specific,
we utilize the paradigm ∥Ap −ApSp∥2F to explicitly extract the global structure between anchors.
Especially, due to Sp ∈ Rm×m where m is the number of anchors, solving Sp will take O(m3)
computing overhead, which is almost ignorable against O(m2n) that solving Zp takes since m is far
less than n. Then, to integrate the characteristics of anchor-anchor into anchor-sample so as to exploit
the manifold features inside samples, we adopt the idea of point-point guidance to adjust the anchor
graph. That is, we utilize the element [Sp]i,j to guide [Zp]i,t and [Zp]j,t, i, j = 1, · · · ,m, t = 1, · · ·n,
which can be formulated as

∑m
i,j=1 ∥[Zp]i,: − [Zp]j,:∥22 [Sp]i,j and aims at restricting similar features

to maintain the consistency. At this point, the MVC framework can be formulated as

min
{Zp,Sp}v

p=1

v∑
p=1

∥Xp −ApZp∥2F + λ ∥Ap −ApSp∥2F + β

m∑
i,j=1

∥[Zp]i,: − [Zp]j,:∥22 [Sp]i,j

s.t. Z⊤
p 1 = 1,Zp ≥ 0,S⊤

p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0.

(2)
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Subsequently, to eliminate the anchor misalignment issue, one straightforward idea is to compute the
space similarity between anchor sets and then match anchors according to their distance. However,
multi-view data generally has various dimensions, and accordingly anchors on different views also
have various dimensions. It is typically difficult to directly compute the distance between anchor sets
with diverse dimensions. Although one can project all anchors into a common space to make them
have the same dimension, it can not guarantee the distance similarity after projecting to be consistent
with that before projecting. Additionally, determining the appropriate projection dimension needs
heuristic searching. The projecting operation also could lead to heavy information loss. Consequently,
these strategies are not that sensible. To get rid of this dilemma, considering that the nature of anchor
misalignment is that the order of anchors on different views is not identical, we can alleviate the
misalignment issue by rearranging anchors. In particular, we associate each view with a learnable
permutation matrix Tp ∈ Rm×m to flexibly transform anchors according to the characteristics of
respective view, i.e., ∥Xp −ApTpZp∥2F . The subsequent issue is how to make anchors rearrange
towards the correct matching direction. Next, we solve it and the variance issue concurrently.

Due to variance arising from the construction of embedding, we avoid forming embedding, and
choose to directly learn the cluster indicators. We factorize the anchor graph as a basic coefficient
matrix and a consensus matrix, and utilize binary learning to optimize the consensus matrix. This not
only makes the consensus matrix successfully represent the cluster indicators, but also provides a
common structure for anchors on all views, inducing them rearranging towards the common structure.
Further, since views typically own different levels of importance, we introduce a weighting variable
for each view to automatically measure its contributions. Therefore, our DLA-EF-JA is devised as

min
Ω

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t. α⊤1 = 1,α ≥ 0,B⊤
p Bp = Ik,T

⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m,

k∑
i=1

Ci,j = 1, j = 1, 2, . . . , n,C ∈ {0, 1}k×n,S⊤
p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0,

(3)

where Ω = {Ap ∈ Rdp×m,Bp ∈ Rm×k,Sp ∈ Rm×m,Tp ∈ Rm×m,α ∈ Rv×1,C ∈ Rk×n; p =
1, · · · , v}. The second term aims at capturing the characteristics between anchors. The third term is
the matrix form of point-point guidance, and aims at delivering the characteristics of anchor-anchor
into anchor-sample of the first term, where Ls ∈ Rm×m = Dp−Sp, Dp = diag{

∑m
j=1[Sp]i,j | , i =

1, · · · ,m}. This embedding-free model directly output discrete clustering results via the consensus
cluster indicator matrix C. The vector α plays a role in adjusting the importance between views.

4 SOLVER

We adopt the alternating optimization scheme to minimize the loss function Eq. (3).

Update Ap: The optimization w.r.t Ap in Eq. (3) can be written as

min
Ap

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F . (4)

By using the derivative equal to zero, we can obtain

Ap = α2
vXpE

⊤
p

(
α2

vEpE
⊤
p + λFpF

⊤
p

)−1
, (5)

where Ep ∈ Rm×n = TpBpC, Fp ∈ Rm×m = Tp −TpSp.

Update Tp: The optimization w.r.t Tp in Eq. (3) can be written as

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

s.t. T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m.

(6)

Expanding the objective by trace operation, Eq. (6) can be further equivalently transformed as

min
Tp

Tr
(
T⊤

p GpTp

(
λHp +α2

pMp − 2λS⊤
p

)
− 2α2

pT
⊤
p Jp

)
s.t. T⊤

p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m,
(7)
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where Gp ∈ Rm×m = A⊤
p Ap, Hp ∈ Rm×m = SpS

⊤
p , Mp ∈ Rm×m = BpCC⊤B⊤

p and
Jp ∈ Rm×m = A⊤

p XpC
⊤B⊤

p . Given the characteristics of feasible region, we can obtain the
optimal Tp via traversal searching on the one-hot vectors {ei}mi=1.

Update Bp: The optimization w.r.t Bp in Eq. (3) can be written as

min
Bp

Tr
(
B⊤

p

(
βLs +α2

pQp

)
BpCC⊤ − 2α2

pCX⊤
p ApTpBp

)
s.t. B⊤

p Bp = Ik, (8)

where Qp ∈ Rm×m = T⊤
p A

⊤
p ApTp. Then, we split the feasible region into [Bp]

⊤
:,i[Bp]:,i = 1 and

[Bp]
⊤
:,i[Bp]:,j = 0, i ̸= j. Further, combined with the fact that CC⊤ is a diagonal matrix, Eq. (8)

can be equivalently transformed as

min
[Bp]:,j

[Bp]
⊤
:,j

n∑
i=1

Cj,i

(
βLs +α2

pQp

)
[Bp]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j

s.t. [Bp]
⊤
:,jIm×m[Bp]:,j − 1 = 0,

[[Bp]:,1, [Bp]:,2, · · · , [Bp]:,j−1, [Bp]:,j+1, · · · , [Bp]:,k]
⊤
[Bp]:,j = 0(k−1)×1.

(9)

It is a quadratically constrained quadratic programming and can be solved by current software.

Update Sp: The optimization w.r.t Sp in Eq. (3) can be written as

min
Sp

Tr

(
S⊤
p QpSp + 2

(
−Qp −

β

2λ
Mp

)
Sp

)
s.t. S⊤

p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0. (10)

Noticed that the constraints can be equivalently transformed as Ψ =
{
[Sp]

⊤
:,j1 = 1, 0 ≤

[Sp]:,j , e
⊤
j [Sp]:,j = 0, j = 1, 2, · · · ,m

}
, and therefore Eq. (10) is further converted as

min
Ψ

[Sp]
⊤
:,jQp[Sp]:,j + 2

(
−Qp −

β

2λ
Mp

)
j,:

[Sp]:,j . (11)

It is a quadratic programming and can be easily solved.

Update C: The optimization w.r.t C in Eq. (3) can be written as

min
C

Tr
(
C⊤WC− ZC

)
s.t.

k∑
i=1

Ci,j = 1, j = 1, 2, . . . , n,C ∈ {0, 1}k×n, (12)

where W ∈ Rk×k =
∑v

p=1 α
2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp, Z ∈ Rn×k =

2
∑v

p=1 α
2
pX

⊤
p ApTpBp. The constraints indicate that there is only one non-zero element in each

column of C, and thus we can solve C column by column. Eq. (12) can be further transformed as

min
C:,j

C⊤
:,jWC:,j − Zj,:C:,j s.t.

k∑
i=1

Ci,j = 1,C:,j ∈ {0, 1}k×1. (13)

The item C⊤
:,jWC:,j means that it takes a certain diagonal element of W, and Zj,:C:,j takes a

certain element of Zj,:. Therefore, we can determine the corresponding index of minimum by
l∗ = argminlWl,l − Zj,l, l = 1, 2, · · · , k. Then, the value of C:,j can be obtained by

Ci,j =

{
1, i = l∗,

0, i ̸= l∗, i = 1, 2, · · · , k. (14)

Update α: The optimization w.r.t α in Eq. (3) can be written as

min
α

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F s.t. α⊤1 = 1,α ≥ 0. (15)

Since the item 1
bp

= ∥Xp −ApTpBpC∥2F is a constant for α, the optimal α can be determined via
Cauchy inequality. Thus, we have

αp =
bp∑v
p=1 bp

. (16)

Algorithm 1 summarizes the overall pipeline of our DLA-EF-JA.
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5 COMPLEXITY ANALYSIS

Space complexity The space complexity of DLA-EF-JA is mainly from optimization variables
Ap, Tp, Bp, Sp, C and α, p = 1, 2, · · · , v. According to the fact that Ap ∈ Rdp×m, Tp ∈ Rm×m,
Bp ∈ Rm×k, Sp ∈ Rm×m, C ∈ Rk×n and α ∈ Rv×1, we have that storing them will require
O(dpm), O(m2), O(mk), O(m2), O(nk) and O(1) memory overhead, respectively. Thus, storing
all optimization variables will take O(dm +m2v +mkv + nk) overhead where d represents the
data dimension sum of all views and is independent of the sample size n. Further, since the number
of anchors m is generally greater than or equal to the number of clusters k, we have m2v ≥ mkv.
Besides, considering that m is generally much smaller than n and is also independent of n, we have
that the space complexity of the proposed DLA-EF-JA is O(nk), which is linearly related to the
sample size n.

Time complexity The time complexity of DLA-EF-JA is mainly from the updating of all optimiza-
tion variables. When updating Ap, constructing Ep and Fp will take O(m2k +mkn) and O(m3)
respectively. Constructing the item α2

vEpE
⊤
p +λFpF

⊤
p and solving its inverse will take O(m2n+m3)

and O(m3) respectively. Thus, updating Ap will take O(m2k+mkn+m2n+m3+dpnm+dpm
2).

When updating Tp, constructing Gp, Hp, Mp and Jp will take O(dpm
2), O(m3), O(mkn+m2n)

and O(dpmn+mnk +m2k), respectively. Traversal searching on one-hot vectors will take O(m!).
Thus, updating Tp will take O(dpm

2 + dpmn+m3 +mkn+m2n+m!). When updating Bp, con-
structing Qp and the item CX⊤

p ApTpBp will take O(dpm
2) and O(kndp + kdpm+ km2 + k2m),

respectively. Performing quadratically constrained quadratic programming will take O(m3k). Thus,
updating Bp will take O(dpm

2 + kndp + k2m + m3k). When updating Sp, due to the con-
struction of Qp and Mp having been completed, it only involves the performing of quadratic
programming, which will take O(m3). When updating C, constructing W and Z will take
O(dpm

2+dpmk+dpk
2+km2+k2m) and O(ndpm+nm2+nmk), respectively. Since the value

of C can be determined by comparing the diagonal element of W and the row of Z, updating C will
take O(dpmk + dpk

2 + km2 + k2m+ ndpm+ nm2 + nmk). When updating α, constructing bp
will take O(dpm

2 + dpmk + dpkn). The value of α can be determined by Cauchy inequality, and
thus updating α will O(dpm

2 + dpmk + dpkn). Based on these, we have that updating all Ap, Tp,
Bp, Sp, C and α will take O(mknv+m2nv+ dnm+ dm2 +m!v+m3kv+ knd+ k2mv+ dk2).
Besides, considering that m is usually greater than or equal to k, dp is independent of n, n is largely
greater than m, we can obtain that updating all variables will take O(m2nv + dnm+m!v +m3kv),
which is also linearly related to the sample size n.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Datasets We evaluate the algorithm performance
on the following 7 datasets: DERMATO, CALTE7,
Cora, REU7200, Reuters, CIF10Tra4, FasMNI4V.
Baselines We choose the following 20 classical
MVC methods as the baselines to demonstrate
the effectiveness of DLA-EF-JA: FMR (Li et al.,
2019), PMSC (Kang et al., 2020a), AMGL (Nie
et al., 2016), MSCIAS (Wang et al., 2019), MVSC
(Gao et al., 2015), MLRSSC (Brbić & Kopriva,
2018), MPAC (Kang et al., 2019), MCLES (Chen
et al., 2020), FMCNOF (Yang et al., 2021), ADA-
GAE (Li et al., 2022b), PFSC (Lv et al., 2021),
SFMC (Li et al., 2022a), MSGL(Kang et al., 2022),

Algorithm 1 Our proposed DLA-EF-JA
Input: Multi-view data {Xp}vp=1,

hyper-parameters λ and β.
Output: Discrete cluster indicator matrix C.
Initialize: {Ap,Tp,Bp,Sp}vp=1, C, α.

1: repeat
2: Update Ap via Eq. (5)
3: Update Tp via Eq. (7)
4: Update Bp via Eq. (9)
5: Update Sp via Eq. (11)
6: Update C via Eq. (14)
7: Update αp via Eq. (16)
8: until convergent

FPMVS (Wang et al., 2022d), MFLVC (Xu et al., 2022), UOMVSC (Tang et al., 2023), PGSC(Wu
et al., 2023), OrthNTF(Li et al., 2024c), FMVACC(Wang et al., 2022c), FASTMI(Huang et al., 2023).

Parameter Setup We search the hyper-parameters λ and β in [10−1, 100, 101, 102, 103] and
[2−4, 2−2, 20, 22, 24] respectively. For all competitors, we download their source code and tune the
parameters according to their provided guidelines. Three popular metrics are used to measure the
clustering results. For fairness, we run 20 times and calculate the mean and variance of results.
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Table 1: Clustering result comparison (mean±std). Red and blue denote the top 2 results.
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

NMI(%)

FMR (Li et al., 2019) 79.18(±3.85) 44.81(±0.93) 20.63(±1.21) - - - -
PMSC (Kang et al., 2020a) 86.14(±4.84) 44.93(±0.81) 6.12(±0.67) 4.02(±0.55) - - -
AMGL (Nie et al., 2016) 4.56(±0.72) 44.95(±2.07) 2.74(±0.36) 1.17(±0.00) 1.02(±0.02) - -

MSCIAS (Wang et al., 2019) 80.74(±2.93) 28.36(±1.86) 42.16(±0.47) 5.66(±0.35) 12.98(±0.14) - -
MVSC (Gao et al., 2015) 53.68(±9.10) 37.74(±2.22) - - - - -

MLRSSC (Brbić & Kopriva, 2018) 63.85(±4.83) 12.11(±0.00) 2.47(±0.00) 2.89(±0.75) - - -
MPAC (Kang et al., 2019) 80.50(±0.00) 45.12(±0.00) 23.56(±0.00) 6.56(±0.00) - - -

MCLES (Chen et al., 2020) 28.12(±1.27) 27.33(±0.74) 16.70(±2.10) - - - -
FMCNOF (Yang et al., 2021) 51.10(±4.83) 41.78(±3.22) 5.18(±0.02) 3.21(±0.17) - 11.02(±1.13) 44.82(±2.32)
ADAGAE (Li et al., 2022b) 78.47(±0.37) 39.28(±0.19) 5.23(±0.68) 3.22(±0.27) - - -

PFSC (Lv et al., 2021) 55.85(±2.33) 39.09(±2.55) - - - - -
SFMC (Li et al., 2022a) 38.68(±0.00) 45.10(±0.00) 7.95(±0.00) 12.82(±0.00) 12.20(±0.00) 2.90(±0.00) -

MSGL (Kang et al., 2022) 64.40(±1.21) - - 3.66(±0.03) 20.73(±0.76) 10.69(±0.23) -
FPMVS (Wang et al., 2022d) 81.78(±5.21) 45.00(±1.10) 13.56(±1.67) 5.60(±0.66) 30.23(±3.30) 15.13(±1.16) 58.10(±3.02)

MFLVC (Xu et al., 2022) 81.23(±0.10) 58.74(±0.15) 12.97(±0.14) 3.25(±0.90) - - -
UOMVSC (Tang et al., 2023) 88.24(±0.00) 45.07(±0.00) 21.26(±0.00) 11.17(±0.00) 19.03(±0.00) - -

PGSC (Wu et al., 2023) 66.61(±2.84) 33.95(±3.07) 15.92(±1.08) 4.94(±0.80) 22.16(±0.42) - -
OrthNTF (Li et al., 2024c) 52.33(±0.00) 42.12(±0.00) 39.74(±0.00) 7.43(±0.00) 28.87(±0.00) 11.58(±0.00) 58.83(±0.00)

FMVACC (Wang et al., 2022c) 80.78(±4.44) 38.41(±2.92) 33.50(±2.56) 9.94(±1.54) 28.50(±2.29) 12.86(±0.67) 57.82(±0.93)
FASTMI (Huang et al., 2023) 81.83(±6.01) 45.05(±1.45) 31.21(±2.89) 7.67(±0.56) 29.29(±1.85) 12.85(±0.32) 59.03(±0.41)

Ours 89.97(±0.00) 45.25(±0.00) 43.70(±0.00) 6.25(±0.00) 31.87(±0.00) 15.64(±0.00) 59.21(±0.00)

ACC(%)

FMR (Li et al., 2019) 80.87(±5.92) 39.95(±0.66) 40.54(±1.98) - - - -
PMSC (Kang et al., 2020a) 80.01(±9.96) 49.92(±2.58) 28.84(±0.74) 23.57(±0.48) - - -
AMGL (Nie et al., 2016) 22.75(±0.31) 39.84(±2.06) 14.99(±0.18) 16.78(±0.01) 17.43(±0.05) - -

MSCIAS (Wang et al., 2019) 83.60(±3.85) 43.89(±2.15) 51.64(±2.74) 23.66(±0.42) 34.23(±0.37) - -
MVSC (Gao et al., 2015) 55.69(±8.57) 49.86(±2.26) - - - - -

MLRSSC (Brbić & Kopriva, 2018) 67.53(±5.04) 57.26(±0.00) 31.08(±0.00) 18.62(±0.34) - - -
MPAC (Kang et al., 2019) 81.84(±0.00) 71.64(±0.00) 40.21(±0.00) 24.79(±0.00) - - -

MCLES (Chen et al., 2020) 46.18(±2.15) 40.47(±1.06) 32.03(±2.33) - - - -
FMCNOF (Yang et al., 2021) 62.85(±5.32) 71.98(±5.67) 29.10(±2.74) 22.92(±2.57) - 21.62(±1.83) 41.51(±2.62)
ADAGAE (Li et al., 2022b) 67.88(±0.99) 42.20(±0.94) 23.45(±0.29) 19.43(±1.76) - - -

PFSC (Lv et al., 2021) 52.27(±4.99) 57.87(±5.43) - - - - -
SFMC (Li et al., 2022a) 49.44(±0.00) 67.71(±0.00) 30.50(±0.00) 15.86(±0.00) 25.55(±0.00) 9.98(±0.00) -

MSGL (Kang et al., 2022) 73.46(±0.97) - - 20.78(±0.28) 42.65(±0.21) 22.57(±0.43) -
FPMVS (Wang et al., 2022d) 78.33(±7.05) 61.47(±1.35) 37.12(±2.53) 28.01(±1.20) 51.82(±2.56) 27.12(±0.79) 52.86(±3.35)

MFLVC (Xu et al., 2022) 80.73(±0.47) 43.42(±0.26) 31.02(±0.82) 25.42(±1.47) - - -
UOMVSC (Tang et al., 2023) 77.65(±0.00) 67.10(±0.00) 44.72(±0.00) 23.26(±0.00) 36.28(±0.00) - -

PGSC (Wu et al., 2023) 70.08(±6.07) 52.76(±3.07) 29.19(±2.07) 28.13(±1.88) 42.47(±0.89) - -
OrthNTF (Li et al., 2024c) 82.43(±0.00) 68.84(±0.00) 47.76(±0.00) 23.36(±0.00) 47.96(±0.00) 25.88(±0.00) 53.27(±0.00)

FMVACC (Wang et al., 2022c) 82.92(±8.57) 39.55(±4.46) 51.70(±3.66) 23.48(±1.98) 54.07(±3.72) 25.69(±0.90) 56.88(±3.09)
FASTMI (Huang et al., 2023) 74.13(±3.36) 53.34(±2.84) 47.10(±4.07) 22.95(±0.89) 42.31(±3.17) 25.58(±0.66) 55.44(±2.25)

Ours 85.47(±0.00) 80.66(±0.00) 52.44(±0.00) 26.22(±0.00) 54.26(±0.00) 26.83(±0.00) 57.36(±0.00)

Fscore(%)

FMR (Li et al., 2019) 76.45(±5.48) 45.29(±1.63) 27.83(±1.13) - - - -
PMSC (Kang et al., 2020a) 80.22(±8.10) 51.13(±2.49) 27.48(±0.67) 26.37(±0.63) - - -
AMGL (Nie et al., 2016) 18.27(±0.12) 40.47(±1.57) 24.78(±0.02) 28.51(±0.00) 28.61(±0.00) - -

MSCIAS (Wang et al., 2019) 80.90(±3.07) 42.80(±1.11) 41.84(±1.26) 21.42(±0.36) 33.94(±0.08) - -
MVSC (Gao et al., 2015) 54.52(±9.73) 48.53(±1.96) - - - - -

MLRSSC (Brbić & Kopriva, 2018) 63.90(±4.48) 49.62(±0.00) 28.87(±0.00) 27.69(±0.41) - - -
MPAC (Kang et al., 2019) 81.01(±0.00) 67.25(±0.00) 29.25(±0.00) 24.29(±0.00) - - -

MCLES (Chen et al., 2020) 39.10(±1.37) 36.16(±0.62) 28.95(±0.82) - - - -
FMCNOF (Yang et al., 2021) 56.89(±4.24) 67.43(±5.73) 29.89(±4.82) 21.29(±3.14) - 19.83(±2.77) 36.74(±3.63)
ADAGAE (Li et al., 2022b) 67.74(±0.79) 50.51(±0.41) 23.68(±0.14) 19.61(±1.23) - - -

PFSC (Lv et al., 2021) 55.46(±4.05) 62.75(±7.08) - - - - -
SFMC (Li et al., 2022a) 42.90(±0.00) 65.50(±0.00) 30.20(±0.00) 27.69(±0.00) 34.04(±0.00) 18.13(±0.00) -

MSGL (Kang et al., 2022) 70.39(±0.76) - - 24.59(±0.53) 37.57(±0.27) 16.37(±0.86) -
FPMVS (Wang et al., 2022d) 80.35(±6.83) 62.09(±1.21) 25.36(±1.03) 22.96(±1.16) 42.53(±1.92) 20.31(±0.56) 48.43(±2.66)

MFLVC (Xu et al., 2022) 73.92(±1.63) 52.68(±1.43) 32.41(±1.05) 25.13(±0.67) - - -
UOMVSC (Tang et al., 2023) 79.17(±0.00) 67.85(±0.00) 33.12(±0.00) 28.47(±0.00) 35.23(±0.00) - -

PGSC (Wu et al., 2023) 69.15(±5.23) 55.84(±4.70) 29.29(±1.46) 24.88(±0.32) 38.57(±0.85) - -
OrthNTF (Li et al., 2024c) 78.43(±0.00) 65.63(±0.00) 37.52(±0.00) 24.77(±0.00) 39.68(±0.00) 16.74(±0.00) 47.67(±0.00)

FMVACC (Wang et al., 2022c) 80.15(±7.13) 41.01(±4.20) 38.20(±1.89) 23.79(±0.77) 43.86(±2.61) 17.07(±0.35) 48.78(±1.94)
FASTMI (Huang et al., 2023) 76.98(±5.19) 56.39(±2.93) 35.19(±2.36) 25.94(±1.21) 39.20(±1.81) 14.35(±0.29) 50.21(±1.25)

Ours 87.92(±0.00) 78.12(±0.00) 41.12(±0.00) 28.55(±0.00) 44.84(±0.00) 20.64(±0.00) 51.37(±0.00)

6.2 CLUSTERING RESULTS AND ANALYSIS

We summarize the clustering results in Table 1, and from this table we can conclude that,

1. Overall Effectiveness. Our DLA-EF-JA consistently beats these twenty competitors in terms of
all three metrics on DERMATO, Reuters, CIF10Tra4 and FasMNI4V. Particularly, it makes 6.91%
improvement in Fscore than the second-best approach on DERMATO. In other cases, such as on
Cora, it is still able to provide comparable outcomes. These signals that our DLA-EF-JA is effective
in partitioning multi-view data and can achieve competitive clustering outcomes.
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2. Anchor Suitability. In contrast with PMSC, AMGL, MCLES, FMCNOF, OrthNTF, FMR, PGSC,
etc, which tackle MVC problems using tensor, kernel, latent space, co-training or matrix factorization
means, our DLA-EF-JA using anchor tool can produce better results than them. For instance, on
Cora, it surpasses them in terms of NMI with 38.59%, 42.37%, 27.00%, 42.63%, 43.20%, 23.07%,
42.55%, respectively. These suggest that our adopted anchor means is recommendable.

3. Ample Affinity. Different from FPMVS, FMVACC, FASTMI, SFMC, etc, which concentrate only
on the anchor-sample relationship, DLA-EF-JA also successfully takes anchor-anchor characteristics
into the measuring of overall similarity and accordingly brings performance enhancement. Taking
FASTMI as an example, DLA-EF-JA outperforms it on all of these seven datasets and three metrics,
which reveals that our dual-level affinity strategy can help extract representations more fully.

4. Reliable Stability. The results outputted by our DLA-EF-JA are all not with variance. This mainly
benefits from avoiding the generation of embedding. Not only does the embedding-free property
enhance the stability, but allows the labels to be directly derived from original data, well maintaining
the diversity. Despite non-variance for MPAC, SFMC and Orth, the low-rank constraint could damage
potential graph structure, accordingly weakening their performance.

5. Flexible Alignment. Compared to FMVACC that requires firstly selecting the baseline view
and then performs alignment based on completed anchors, DLA-EF-JA exceeds it with remarkable
margins. For example on CALTE7, DLA-EF-JA receives 6.84%, 41.11%, 37.11% improvement
respectively. This is primarily because our joint-alignment strategy, besides not involving the baseline
view, can also coordinate with the generation of anchors, more flexibly transforming anchors to align.

6. Broader Applicability. Some methods like PMSC, PFSC, MFLVC, AMGL, UOMVSC, MCLES,
PGSC, etc, can not work with large-sized CIF10Tra4 and FasMNI4V due to the intensive complexities
or self-limitations, while our proposed DLA-EF-JA operates normally with its lower complexities and
meanwhile can produce superior clustering outcomes. So, DLA-EF-JA enjoys broader applicability.

Due to the space limit, more conclusions are presented in the Section F of Appendix.
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Figure 2: The running time comparison between algorithms on seven public benchmark datasets.

6.3 RUNNING TIME COMPARISON

To illustrate the efficiency of DLA-EF-JA, we count the running time of each algorithm, and report
the comparison results in Fig. (2). From this figure, we can draw that,

1. MVSC, PFSC, PGSC and MCLES consume significantly more time than others. This is mainly
caused by the subspace strategy they employed, which typically requires constructing large-sized
similarity and needs at least cubic computational overhead.

2. MPAC, PMSC, FMR, MLRSSC, etc, take more time than us, which is mainly because MPAC and
PMSC gather multi-view representations at the partition level, and FMR and MLRSSC utilize the
kernel dependence measure to do data reconstruction.

3. FPMVS, FMVACC, MSGL and SFMC operates slower than us. Possible reasons are that the
connection component constraints and feature matching constraints conducted on anchor graph
induce a large proportion of additional time expenditure.
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4. FMCNOF and FASTMI enjoy slightly faster running speed, the reasons of which could be
that FMCNOF decouples dense optimization matrices by sparse factorization skills and FASTMI
generates base clusterings via fast partitioning on the view-sharing graph.

5. AMGL, MSCIAS, UOMVSC and OrthNTF are generally faster than PMSC, MVSC, PGSC,
MPAC, PFSC, etc, possibly because the former ones alleviate the computing burden of spectral
partitioning and graph mergence via low-rank approximation or non-negative factorization.

6. All algorithms can normally work on DERMATO and CALTE7, while with the increase of sample
size, PFSC, FMR, MCLES, PMSC, MPAC, MSGL, etc, are gradually ineffective, which is mainly
due to the limitations of their innate computing requirement or memory cost.

6.4 ABLATION STUDY

Table 2: The effectiveness of dual-level affinity
Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

NMI SLA 83.97 40.21 6.02 2.53 23.19 15.48 58.13
DLA 89.97 45.25 43.70 6.25 31.87 15.64 59.21

ACC SLA 71.51 49.05 30.35 16.75 47.05 26.69 52.15
DLA 85.47 80.66 52.44 26.22 54.26 26.83 57.36

Fscore SLA 73.79 51.25 30.42 28.54 43.04 17.70 46.77
DLA 87.92 78.12 41.12 28.55 44.84 20.64 51.37

To validate the effectiveness of dual-
level affinity (DLA), we organize rele-
vant ablation experiments and present
the comparison results in Table 2
where SLA denotes the clustering
results of considering only anchor-
sample relation. As seen, our DLA
is coherently better than SLA, which well illustrates that DLA can help achieve superior results.

Table 3: The effectiveness of embedding-free strategy
Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

NMI CE 84.32(±1.32) 40.63(±1.89) 40.02(±2.31) 6.02(±0.68) 26.23(±1.37) 12.22(±0.97) 60.14(±0.36)
EF 89.97(±0.00) 45.25(±0.00) 43.70(±0.00) 6.25(±0.00) 31.87(±0.00) 15.64(±0.00) 59.21(±0.00)

ACC CE 81.33(±1.82) 74.74(±1.73) 48.27(±1.07) 23.46(±0.79) 55.78(±1.62) 22.64(±1.07) 55.03(±0.92)
EF 85.47(±0.00) 80.66(±0.00) 52.44(±0.00) 26.22(±0.00) 54.26(±0.00) 26.83(±0.00) 57.36(±0.00)

Fscore CE 79.67(±2.07) 71.37(±1.13) 35.92(±1.96) 22.82(±1.02) 41.03(±0.93) 19.26(±1.63) 46.86(±0.87)
EF 87.92(±0.00) 78.12(±0.00) 41.12(±0.00) 28.55(±0.00) 44.84(±0.00) 20.64(±0.00) 51.37(±0.00)

Time(s) CE 0.83 9.81 11.53 51.24 892.17 2003.72 3850.35
EF 0.20 3.53 4.07 15.73 330.21 746.76 1193.83

Table 3 summarizes the ablation re-
sults about our embedding-free (EF)
strategy, where CE denotes the clus-
tering results containing embedding.
Evidently, in addition to owning the
ability to generate preferable and sta-
ble clustering results, our EF also en-
joys less time consuming. This indicates that our EF is more suitable for MVC problems.

Table 4: The effectiveness of joint-alignment
Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

NMI UA 82.53 39.55 35.41 3.32 24.77 15.30 56.47
JA 89.97 45.25 43.70 6.25 31.87 15.64 59.21

ACC UA 80.73 76.59 31.65 16.67 45.29 25.91 53.68
JA 85.47 80.66 52.44 26.22 54.26 26.83 57.36

Fscore UA 79.47 72.23 30.69 21.14 42.59 17.90 47.41
JA 87.92 78.12 41.12 28.55 44.84 20.64 51.37

In the paper we adopt a joint-
alignment (JA) strategy to decrease
the mismatching risk. To demonstrate
its effectiveness, we report the abla-
tion results in Table 4, where UA de-
notes the clustering results without in-
volving alignment. It is easy to dis-
cover that JA makes more favorable results than UA, which suggests that our JA is functional.

7 LIMITATIONS

DLA-EF-JA contains hyper-parameters λ and β, which requires additional efforts for fine-tuning.
Thus, designing a non-parametric version can further boost its practicality. Besides, we adopt the
square weighting scheme with linear constraints to measure the contributions between views. Some
other view schemes could be deeply investigated in the future so as to further increase the results.

8 CONCLUSION

In this work, we introduce dual-level affinity, which concurrently considers anchor-sample and
anchor-anchor characteristics, to more fully extract multi-view representations for better clustering.
To reduce the mismatching risk, we adopt a joint-alignment mechanism that does not involve the
selection of baseline view and also can coordinate with the anchor generation. Furthermore, we avoid
forming embedding and directly generate cluster indicators via a binary learning strategy, which
not only effectively eliminates the variance but well preserves original diversity. For the resulting
optimization problem, we provide a solution with linear complexities. Experiments on multiple
public benchmark datasets verify the effectiveness of our proposed DLA-EF-JA. In future work, we
will extend our DLA-EF-JA method to non-parametric scenarios to further enhance its practicality.
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APPENDIX

A NOTATIONS

For more clarity, we summary the utilized symbols and their corresponding meaning, as shown in
Table 5.

Table 5: The description of symbols used in this article

Symbol Meaning

n the number of samples
m the number of anchors
v the number of views
k the number of clusters
dp the data dimension on view p

Xp ∈ Rdp×n the data matrix on view p

Ap ∈ Rdp×m the anchor matrix on view p

Tp ∈ Rm×m the permutation matrix on view p

Bp ∈ Rm×k the basic coefficient matrix on view p

C ∈ Rk×n the cluster indicator matrix
Sp ∈ Rm×m the anchor self-expression matrix on view p

Dp ∈ Rm×m the degree matrix of Sp on view p

α ∈ Rv×1 the view weighting vector
Zp ∈ Rm×n the anchor graph on view p

Ls ∈ Rm×m the Laplacian matrix about Sp

Ep ∈ Rm×n TpBpC

Fp ∈ Rm×m Tp −TpSp

Gp ∈ Rm×m A⊤
p Ap

Hp ∈ Rm×m SpS
⊤
p

Mp ∈ Rm×m BpCC⊤B⊤
p

Jp ∈ Rm×m A⊤
p XpC

⊤B⊤
p

Qp ∈ Rm×m T⊤
p A

⊤
p ApTp

Z ∈ Rn×k 2
∑v

p=1 α
2
pX

⊤
p ApTpBp

W ∈ Rk×k
∑v

p=1 α
2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp

B BRIEF INTRODUCTION OF 20 COMPARISON ALGORITHMS

To demonstrate the strong points of the proposed DLA-EF-JA, we select 20 remarkable MVC
algorithms as baselines. Their brief introduction is as follows,

1. FMR (Li et al., 2019): This method utilizes kernel dependence measure instead of pro-
jecting original samples to enhance the correlation between different views, and highlights
the comprehensiveness of potential representations through subspace reconstruction.

2. PMSC (Kang et al., 2020a): This method merges view information in the level of partition
spaces via ensemble learning, and integrates consensus clustering and graph generation to
maintain the consistence among views.

3. AMGL (Nie et al., 2016): This method assigns a group of weights for all graphs to
increase the diversity automatically, and reformulates conventional spectral partitioning
procedure into a convex problem so as to generate the optimal solution.
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4. MSCIAS (Wang et al., 2019): This method maximizes the dependence between intact
points by constructing an informative affinity matrix, and avoids view information imbalance
by guiding intactness-aware relationship construction using HSIC criterion.

5. MVSC (Gao et al., 2015): This method conducts subspace clustering on each view
concurrently to explore specific characteristics, and employs an indicator matrix that is
shared for all the views to preserve the cluster consistence.

6. MLRSSC (Brbić & Kopriva, 2018): This method generates a common similarity matrix
with low-rank and sparsity properties to learn joint subspace representations, and utilizes
the kernel extension skill to optimize the objective in Hilbert space.

7. MPAC (Kang et al., 2019): This method aligns each partition alternatively using a
permutation matrix to formulate agreement cluster indicator, and performs graph learning
and data partitioning jointly in one common framework to facilitate each other.

8. MCLES (Chen et al., 2020): This method tries to capture global structure by exploring
embedding representations in latent space, and concurrently learns the cluster labels and
similarity matrix without requiring subsequent spectral grouping procedure.

9. FMCNOF (Yang et al., 2021): This method integrates matrix factorization and bipartite
graph construction together to improve the computational cost, and embeds the factor matrix
into cluster matrix to avoid extra k-means operation.

10. ADAGAE (Li et al., 2022b): This method extends graph neural network into data
clustering task, and takes advantages of auto-encoder and weighted graphs to exploit non-
euclidean geometric characteristics and high-level representations.

11. PFSC (Lv et al., 2021): This method finds a common partition by collaboratively learning
multiple basic partitions to improve the robustness to noise, and jointly performs basic
partition generation and unified graph learning to achieve mutual co-evolution.

12. SFMC (Li et al., 2022a): This method coalesces view-specific costs to seek for a joint
graph that is compatible among views, and indicates clusters straightforwardly by employing
connectivity constraint on the joint graph.

13. MSGL (Kang et al., 2022): This method discriminates landmarks by building a dictio-
nary matrix to decrease the cost of graph generation, and discovers a graph with explicit
components to preserve the data manifold.

14. FPMVS (Wang et al., 2022d): This method designs a group of space-guided projection
matrices to alleviate the dimension inconsistency in common space, and determines the
contribution of each individual view to the unified graph in a learnable manner.

15. MFLVC (Xu et al., 2022): This method jointly realizes view-specific reconstruction
objective and semantic consistency objectives by learning diverse levels of representations
in a fusion-free way, and utilizes the common semantics to generate the clustering labels.

16. UOMVSC (Tang et al., 2023): This method unifies the spectral embedding and spectral
discretization via one-pass strategy to alleviate the information loss caused by the two-step
process, and approximates the rank of affinity graph through the inner product of embedding
matrices.

17. PGSC (Wu et al., 2023): This method exploits the connectivity and sparsity of each
similarity graph to achieve the pure graph with a block-diagonal structure, and assigns labels
directly by enforcing it including corresponding connection components.

18. OrthNTF (Li et al., 2024c): This method establishes an orthogonal non-negative tensor
factorization scheme to directly consider the cross-correlation between views, and extracts
complementary information hidden in multi-view samples through tensor regularization.

19. FMVACC (Wang et al., 2022c): This method associates each view with one permutation
matrix to flexibly rearrange all similarity graphs column-wisely, and enhances the accuracy
of graph fusion by utilizing both feature and structure information.

20. FASTMI (Huang et al., 2023): This method achieves multi-stage mergence by build-
ing view-wise relations using random view grouping, and utilizes a graph partitioning
mechanism to generate basic clusterings for each view group.
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C BRIEF INTRODUCTION OF 7 PUBLIC BENCHMARK DATASETS

In experiments, we evaluate the algorithm performance on 7 public benchmark datasets, and their
brief introduction is as follows,

1. DERMATO: This is a skin image dataset and consists of 358 samples. It contains 2 views
and 6 clusters. The feature dimensions on each view are 12 and 22 respectively.

2. CALTE7: This is an object image dataset and consists of 1474 samples. It contains 6 views
and 7 clusters. The feature dimensions on each view are 48, 40, 254, 1984, 512 and 928,
respectively.

3. Cora: This citation network dataset has 2708 samples, and includes 4 views and 7 clusters.
The feature dimensions on each view are 2708, 1433, 2708 and 2708, respectively.

4. REU7200: This document dataset has 7200 samples, and includes 5 views and 6 clusters.
The feature dimensions on each view are 4819, 4810, 4892, 4858 and 4777, respectively.

5. Reuters: This is a news article dataset with 18758 samples, and involves 5 views and 6
clusters. The feature dimensions on each view are 21531, 24892, 34251, 15506 and 11547,
respectively.

6. CIF10Tra4: This is a color image dataset with 50000 samples, and involves 4 views and 10
clusters. The feature dimensions on each view are 944, 576, 512 and 640, respectively.

7. FasMNI4V: This is a fashion product image dataset with 70000 samples, and involves 4
views and 10 clusters. The feature dimensions on each view are 512, 576, 640 and 944,
respectively.

D MORE RELATED WORK

To effectively tackle MVC tasks, Chen et al. (2022) utilize the algebraic property to learn a group
of orthogonal bases for anchors while preserving the scalability, Qiang et al. (2021) iteratively
partition original data into two balanced parts using k-means++ to output informative anchors, Zhang
et al. (2023) integrate anchor selection into the generation of anchor graph in which the number of
connection components is the same as that of clusters to explicitly explore cluster structure, Li et al.
(2024d) devise a pre-defined prior matrix for view-wise anchors to regularize their order and utilize a
graph matching model to handle unpaired data, Yu et al. (2023) combine membership learning and
the construction of anchors to decrease the disagreement between views, and improve the clearness
of cluster grouping via trace norm regularizer, Lao et al. (2024) choose to jointly construct multiple
sets of anchors for basic clusterings so as to form discriminative subspace representations.

Orthogonal to them, Xu et al. (2021b) optimize a view-common variable and view-specific variables
by introducing variational auto encoder into MVC to regulate consecutive visual characteristics
of multiple views, Cui et al. (2024) highlight consistent representations from the perspective of
information theory and decrease the view redundancy by minimizing the representation lower bound,
Zhang et al. (2022) reach to the balance between complementarity and consistency by encoding view
information using an adversarial strategy and utilize a parameter-free loss to complete the formation
of structured representations while avoiding over-fitting, Fu et al. (2024) excavate potential structure
distributions among samples in a generative manner and utilize anchor graphs to guide the learning
process by generating structured spectral embedding using graph convolution network. By virtue of
tensor tool, Li et al. (2024a) orthogonally project anchor graph into a potential label space to explore
the cluster distribution and alleviate the loss of spatial structure information caused by projection
transformation via tensor regularization. Long et al. (2024) form an embedding tensor by stacking
embedding features of all views together to simultaneously explore the inter-view and intra-view
correlations, and utilize the uniformity between semantics by employing an unified constraint to
guarantee the smoothness of embedding.

To enhance the block structure of anchor graph, Qin et al. (2022) integrate multiple similarity matrices
into one by introducing semi-supervised information and concurrently perform self-mapping and
backward encoding via reconstruction. Nie et al. (2024a) conduct number limitations on each cluster
by combining min-cut and size constraints to enhance the flexibility and decrease the parameter
sensitivity, and decompose lower constraints and upper constraints respectively via augmented
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Lagrangian multiplier strategy. Wen et al. (2024b) enhance the robustness by reducing the negative
impact of noisy features and redundant information using feature weighting constraints, and utilize
graph-embedded learning to maintain the structure characteristics. Huang et al. (2022) construct
various metrics by randomizing exponential similarity in metric subspace rather than original space to
improve the diversification of similarity matrices, and probe into the spatial characteristics of clusters
via entropy criteria. Zeng et al. (2023) capture unified semantics by eliminating the discrepancy
across views using the semantically-invariant distribution hidden within views, and alleviate the
impact of defective instances via distribution transformation skills. Other approaches, such as (Lu
et al., 2024; Wang et al., 2021; Tang & Liu, 2022; Xu et al., 2021a; Xia et al., 2022c; Huang et al.,
2024a), have been also well studied.

E DERIVATION DETAILS

In this section, we provide more detailed derivation procedure about the minimization of the loss
function Eq. (3).

Update Ap: When updating Ap, Eq. (3) equivalently becomes

min
Ap

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F . (17)

Due to the independence of views, anchor sets on different views are also independent of each other.
Accordingly, we can equivalently transform Eq. (17) as

min
Ap

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F .

This is an unconstrained optimization problem, and according to the derivative value of zero, we can
obtain

α2
v (ApTpBpC−Xp)

(
C⊤B⊤

p T
⊤
p

)
+ λ (ApTp −ApTpSp)

(
T⊤

p − S⊤
p T

⊤
p

)
= 0

⇒ α2
vApEpE

⊤
p −α2

vXpE
⊤
p + λApFpF

⊤
p = 0

⇒ Ap

(
α2

vEpE
⊤
p + λFpF

⊤
p

)
= α2

vXpE
⊤
p ,

(18)

where Ep ∈ Rm×n = TpBpC, Fp ∈ Rm×m = Tp − TpSp. Tp is a permutation matrix,
and thus is invertible. Further, according to the property of permutation matrix that its inverse is
equal to its transposition, i.e., T−1

p = T⊤
p , we have that T−1

p is also a permutation matrix, and
consequently can be seen as a series of elementary transformation operations. Based on the fact that
elementary transformation does not change the rank of matrix, we have rank(T−1

p Fp) = rank(Fp).
Additionally, rank(T−1

p Fp) = rank(I− Sp). Since Sp is an anchor self-expression matrix and its
diagonal elements are zero, we have rank(I − Sp) = m. That is, its rank is full. Thus, we have
rank(Fp) = m. It is full rank and accordingly is invertible. So, FpF

⊤
p is also invertible. Further, the

eigenvalue of FpF
⊤
p is greater than 0, the eigenvalue of EpE

⊤
p is greater than or equal to 0, and thus

the eigenvalue of (α2
vEpE

⊤
p +λFpF

⊤
p ) is greater than 0. Consequently, the item α2

vEpE
⊤
p +λFpF

⊤
p

is invertible. Based on th above analysis, we can get that Ap = α2
vXpE

⊤
p

(
α2

vEpE
⊤
p + λFpF

⊤
p

)−1
.

Update Tp: When updating Tp, Eq. (3) equivalently becomes

min
Tp

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

s.t. T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m.

(19)

Due to Tp being performed on respective view, we can separately optimize each Tp. Thus, Eq. (19)
can be equivalently written as

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

s.t. T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m.
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After expanding the objective using the trace operation and deleting irrelevant items, we can get

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

⇒ min
Tp

Tr
(
α2

pApTpBpCC⊤B⊤
p T

⊤
p A

⊤
p − 2α2

pA
⊤
p XpC

⊤B⊤
p T

⊤
p + λApTpT

⊤
p A

⊤
p +

λApTpSpS
⊤
p T

⊤
p A

⊤
p − 2λApTpS

⊤
p T

⊤
p A

⊤
p

)
.

(20)

According to the fact that Tp is a permutation matrix, we have TpT
⊤
p = I. Additionally, considering

that
∑k

i=1 Ci,j = 1, j ∈ {1, 2, . . . , n},C ∈ {0, 1}k×n, we have that CC⊤ is a diagonal matrix, and
its diagonal elements are

∑n
j=1 Ci,j , i = 1, 2, · · · k. Further, combined with Bp being orthogonal,

we can obtain Tr
(
BpCC⊤B⊤

p

)
= Tr

(
CC⊤) =∑i,j Ci,j . Based on these analysis, we can get

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

⇒ min
Tp

Tr
(
−2α2

pT
⊤
p A

⊤
p XpC

⊤B⊤
p + λT⊤

p A
⊤
p ApTpSpS

⊤
p +

α2
pT

⊤
p A

⊤
p ApTpBpCC⊤B⊤

p − 2λT⊤
p A

⊤
p ApTpS

⊤
p

)
⇒ min

Tp

Tr
(
λT⊤

p GpTpHp +α2
pT

⊤
p GpTpMp − 2λT⊤

p GpTpS
⊤
p − 2α2

pT
⊤
p Jp

)
⇒ min

Tp

Tr
(
T⊤

p GpTp

(
λHp +α2

pMp

)
− 2λT⊤

p GpTpS
⊤
p − 2α2

pT
⊤
p Jp

)
,

(21)

where Gp ∈ Rm×m = A⊤
p Ap, Hp ∈ Rm×m = SpS

⊤
p , Mp ∈ Rm×m = BpCC⊤B⊤

p , Jp ∈
Rm×m = A⊤

p XpC
⊤B⊤

p . Combined with the feasible region in Eq. 19, we can determine the optimal
solution of Tp via traversal searching using [e1, e2, · · · , ei, · · · , em] where ei is the one-hot vector.
Kindly note that the size of Tp is m×m and m is generally small, performing traversal searching
on Tp will not incur significant computing costs.

Update Bp: When updating Bp, Eq. (3) equivalently becomes

min
Bp

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t. B⊤
p Bp = Ik.

(22)

Since the basic coefficient matrices {Bp}vp=1 on different views are independent of each other, we
can equivalently transform Eq. (22) as

min
Bp

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t. B⊤
p Bp = Ik.

(23)

Expanding the objective and then deleting irrelevant items, we can obtain

min
Bp

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

⇒ min
Bp

Tr
(
α2

pApTpBpCC⊤B⊤
p T

⊤
p A

⊤
p − 2α2

pT
⊤
p A

⊤
p XpC

⊤B⊤
p + βB⊤

p LsBpCC⊤) (24)

Since CC⊤ is diagonal and Bp is orthogonal, we can further have

min
Bp

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

⇒ min
Bp

Tr
(
βB⊤

p LsBpCC⊤ +α2
pB

⊤
p QpBpCC⊤ − 2α2

pT
⊤
p A

⊤
p XpC

⊤B⊤
p

)
⇒ min

Bp

Tr
(
B⊤

p

(
βLs +α2

pQp

)
BpCC⊤ − 2α2

pCX⊤
p ApTpBp

)
,

(25)

where Qp ∈ Rm×m = T⊤
p A

⊤
p ApTp.
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Considering that the feasible region B⊤
p Bp = Ik can be equivalently divided into [Bp]

⊤
:,j [Bp]:,j = 1

and [Bp]
⊤
:,j [Bp]:,i = 0, i = 1, 2, · · · , k, i ̸= j, j = 1, 2, · · · , k, we can solve Bp column by column.

Thus, we have

min
Bp

Tr
(
B⊤

p

(
βLs +α2

pQp

)
BpCC⊤ − 2α2

pCX⊤
p ApTpBp

)
⇒ min

[Bp]:,j
[B⊤

p ]j,:
(
βLs +α2

pQp

)
Bp[CC⊤]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j

⇒ min
[Bp]:,j

[Bp]
⊤
:,j

n∑
i=1

Cj,i

(
βLs +α2

pQp

)
[Bp]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j ,

(26)

where the objective is quadratic. Besides, the constraint [Bp]
⊤
:,j [Bp]:,j = 1 can be equivalently

written as [Bp]
⊤
:,jIm×m[Bp]:,j − 1 = 0. [Bp]

⊤
:,j [Bp]:,i = 0, i = 1, 2, · · · , k, i ̸= j can be written

as [[Bp]:,1, [Bp]:,2, · · · , [Bp]:,j−1, [Bp]:,j+1, · · · , [Bp]:,k]
⊤
[Bp]:,j = 0(k−1)×1. Apparently, the

constraints are also quadratic. Consequently, the optimization problem about Bp can be equivalently
transformed as

min
[Bp]:,j

[Bp]
⊤
:,j

n∑
i=1

Cj,i

(
βLs +α2

pQp

)
[Bp]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j

s.t. [Bp]
⊤
:,jIm×m[Bp]:,j − 1 = 0,

[[Bp]:,1, [Bp]:,2, · · · , [Bp]:,j−1, [Bp]:,j+1, · · · , [Bp]:,k]
⊤
[Bp]:,j = 0(k−1)×1.

This is a QCQP optimization problem, and can be solved in O(m3) computing complexity.

Update Sp: When updating Sp, Eq. (3) equivalently becomes

min
Sp

λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤
p LsBpCC⊤)

s.t. S⊤
p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0.
(27)

Expanding the objective, we have

min
Sp

λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤
p LsBpCC⊤)

⇒ min
Sp

Tr
(
λApTpSpS

⊤
p T

⊤
p A

⊤
p − 2λApTpS

⊤
p T

⊤
p A

⊤
p

+λApTpT
⊤
p A

⊤
p + βB⊤

p DpBpCC⊤ − βB⊤
p SpBpCC⊤)

⇒ min
Sp

Tr
(
λApTpSpS

⊤
p T

⊤
p A

⊤
p − 2λApTpS

⊤
p T

⊤
p A

⊤
p − βB⊤

p SpBpCC⊤)
⇒ min

Sp

Tr
(
λS⊤

p T
⊤
p A

⊤
p ApTpSp − 2λT⊤

p A
⊤
p ApTpSp − βBpCC⊤B⊤

p Sp

)
⇒ min

Sp

Tr
(
λS⊤

p QpSp − 2λQpSp − βMpSp

)
⇒ min

Sp

Tr

(
S⊤
p QpSp + 2

(
−Qp −

β

2λ
Mp

)
Sp

)
,

(28)

where Qp ∈ Rm×m = T⊤
p A

⊤
p ApTp, Mp ∈ Rm×m = BpCC⊤B⊤

p .

Noticed that the feasible region is for each column of Sp, consequently, we can equivalently rewrite the
constraints in the form of columns. That is, we can transform S⊤

p 1 = 1,Sp ≥ 0,
∑m

i=1[Sp]i,i = 0 as
[Sp]

⊤
:,j1 = 1, [Sp]:,j ≥ 0, [Sp]j,j = 0, j = 1, 2, · · · ,m. Further, we can transform [Sp]j,j = 0, j =

1, 2, · · · ,m as e⊤j [Sp]:,j = 0, j = 1, 2, · · · ,m, where ej is the one-hot vector.

Based on these, for the objective function, we can further have

min
Sp

Tr

(
S⊤
p QpSp + 2

(
−Qp −

β

2λ
Mp

)
Sp

)
⇒ min

[Sp]:,j

1

2
[Sp]

⊤
:,jQp[Sp]:,j +

(
−Qp −

β

2λ
Mp

)
j,:

[Sp]:,j .

(29)
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Therefore, the optimization problem about Sp can be equivalently written as

min
[Sp]:,j

1

2
[Sp]

⊤
:,jQp[Sp]:,j +

(
−Qp −

β

2λ
Mp

)
j,:

[Sp]:,j

s.t. [Sp]
⊤
:,j1 = 1, 0 ≤ [Sp]:,j , e

⊤
j [Sp]:,j = 0, j = 1, 2, · · · ,m,

(30)

which is a QP problem, and can be solved within O(m2) computing complexity.

Update C: When updating C, Eq. (3) equivalently becomes

min
C

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t.
k∑

i=1

Ci,j = 1, j = 1, 2, . . . , n,C ∈ {0, 1}k×n.

(31)

For the objective function, we have

min
C

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

⇒ min
C

Tr

(
C⊤

v∑
p=1

α2
pB

⊤
p T

⊤
p A

⊤
p ApTpBpC− 2

v∑
p=1

α2
pX

⊤
p ApTpBpC+ βC⊤

v∑
p=1

B⊤
p LsBpC

)

⇒ min
C

Tr

(
C⊤

(
v∑

p=1

α2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp

)
C− 2

v∑
p=1

α2
pX

⊤
p ApTpBpC

)
⇒ min

C
Tr
(
C⊤WC− ZC

)
,

(32)
where W ∈ Rk×k =

∑v
p=1 α

2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp, Z ∈ Rn×k =

2
∑v

p=1 α
2
pX

⊤
p ApTpBp.

The constraints mean that there is only one non-zero element in each column of C, and consequently
we can optimize C by column. We can get

min
C

Tr
(
C⊤WC− ZC

)
⇒ min

C:,j

C⊤
:,jWC:,j − Zj,:C:,j . (33)

Further, the item C⊤
:,jWC:,j indicates that it takes a diagonal element of W, and Zj,:C:,j indicates

that it takes a element of Zj,:. Thus, we can determine the corresponding index of minimum by
l∗ = argmin

l
Wl,l − Zj,l, l = 1, 2, · · · , k. (34)

Then, the value of C:,j can be determined by assigning Cl∗,j as 1 while assigning other elements of
C:,j as 0.

Update α: When updating α, Eq. (3) equivalently becomes

min
α

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F

s.t. α⊤1 = 1,α ≥ 0.

Considering that the term 1
bp

= ∥Xp −ApTpBpC∥2F is a constant with respect to α, we can solve

α using Cauchy inequality. Specially, we can get that the optimal solution is αp =
bp∑v

p=1 bp
.

F MORE CONCLUSIONS FOR TABLE 1

1. On CALTE7, MFLVC receives better clustering results in NMI, probably because it achieves
reconstruction and consistency by learning features at multiple levels rather than at single
level for each view, and utilizes the consensus semantics shared in all views and semantic
labels to decrease the view-private unfavorable influence.
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2. FPMVS achieves 0.29% increasement in terms of ACC on CIF10Tra4, and possible reasons
are that it employs a group of projectors to maintain the anchor dimension consistency and
extracts consensus multi-view isomeric features by utilizing an unified graph structure with
cluster distribution constraints.

3. On Cora in Fscore, MSCIAS slightly surpasses us with 0.72%, which is mainly because it
enforces encoded similarity to maximally depend on the potential intact-samples through
HSIC criterion and utilizes the local connectivity of intact space to eliminate outliers and
enhance the distinguishability of similarity.

4. For SFMC, it makes preferable results on REU7200 in NMI, main reasons of which could be
that it integrates connectivity constraint into the learning of joint graph to reflect cluster dis-
tribution and adaptively adjusts the graph contributions on different views in self-supervised
weighting way.

G ADDITIONAL ABLATION STUDY

In the paper, rather than treating views equally, we adopt a square weighting scheme to adaptively
combine views together. To validate the effectiveness of this strategy, we conduct the comparison
experiments with equal view weighting (EVW). The results are summarized in Table 6, where AVW
denotes the clustering results based on our adaptive view weighting. Obviously, AVW receives more
desirable results than EVW in most cases, which suggests that the adaptive view weighting strategy
is recommendable. Additionally, we also plot the learned view weights, as shown in Fig. 3. It can be
seen that it indeed assigns different weights to measure the contribution between views.

Table 6: The effectiveness of view weighting
Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

NMI EVW 89.44 42.88 33.06 3.60 29.54 15.20 56.84
AVW 89.97 45.25 43.70 6.25 31.87 15.64 59.21

ACC EVW 84.59 76.73 44.94 16.82 47.84 25.26 52.69
AVW 85.47 80.66 52.44 26.22 54.26 26.83 57.36

Fscore EVW 86.59 71.80 35.36 28.77 42.32 18.03 46.90
AVW 87.92 78.12 41.12 28.55 44.84 20.64 51.37

DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V
0

0.1
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Figure 3: The learned view weights on seven public datasets.

Besides, unlike current techniques generating anchors via random sampling or heuristic searching,
which leads to anchors being separated from subsequent procedures like graph learning and spectral
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construction, we integrate anchors into objective optimization framework to make them able to
interactive with other parts and thereby facilitate each other. To investigate its effectiveness, we
organize corresponding ablation experiment and present the comparison results in Table 7, where HS
denotes the clustering results based on anchors generated by heuristic searching while LA denotes the
results based on our anchor learning. It is easy to observe that LA outperforms HS with noticeable
margins, which illustrates that the anchor learning strategy is functional and can provide more
pleasing clustering results.

Table 7: The effectiveness of anchor learning
Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

NMI HS 69.84 37.95 33.54 1.06 1.43 12.98 47.07
LA 89.97 45.25 43.70 6.25 31.87 15.64 59.21

ACC HS 65.64 64.59 30.24 16.68 27.20 24.08 47.21
LA 85.47 80.66 52.44 26.22 54.26 26.83 57.36

Fscore HS 69.33 61.54 30.40 24.43 35.25 18.03 41.43
LA 87.92 78.12 41.12 28.55 44.84 20.64 51.37

H SINGLE-VIEW SCENARIO COMPARISON

Except for multi-view scenarios, sometimes we also may encounter the datasets containing only one
view. To validate the ability to tackle single view scenarios, we conduct clustering operation on one
view rather than on all views of datasets mentioned earlier. The experimental results are summarized
in Table 8, 9 and 10. From these tables, we can draw that ADAGE, MELVC, OrthNTF and FMVACC
are powerless against single view scenarios, which is mainly because they generally need utilize the
information of other views to help optimize. FMR, PMSC, AMGL, MSCIAS, MVSC, etc, are able to
work properly with single view scenarios, nevertheless, they generally produce inferior clustering
results in most situations. By comparison, besides being able to operate properly on single view
scenarios, our DLA-EF-JA also can generate desirable results. Accordingly, our DLA-EF-JA enjoys
wider serviceability.

Table 8: Single-view experimental results in NMI
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

FMR 76.63(±3.98) 1.38(±0.18) 5.12(±0.17) - - - -
PMSC 80.21(±5.10) 34.04(±0.71) 6.12(±0.83) 1.43(±0.12) - - -
AMGL 3.07(±0.24) 34.34(±1.28) 0.83(±0.02) 0.72(±0.09) 0.89(±0.03) - -

MSCIAS 75.79(±4.77) 35.42(±1.66) 9.45(±0.46) 1.69(±0.27) 1.22(±0.17) - -
MVSC 52.19(±11.98) 25.22(±1.25) - - - - -

MLRSSC 0.54(±0.00) 0.73(±0.00) 0.48(±0.00) 0.56(±0.00) - - -
MPAC 77.69(±0.00) 29.88(±0.00) 9.30(±0.00) 1.29(±0.00) - - -

MCLES 78.19(±3.49) 27.64(±1.87) 8.47(±0.93) - - - -
FMCNOF 42.62(±4.32) 9.42(±1.23) 4.58(±0.79) 1.11(±0.17) - 9.36(±2.32) 32.07(±3.26)
ADAGAE - - - - - - -

PFSC 76.00(±2.45) 32.47(±1.85) - - - - -
SFMC 62.77(±0.00) 27.46(±0.00) 6.01(±0.00) 2.37(±0.00) 1.44(±0.00) 9.44(±0.00) -
MSGL 10.33(±0.74) - - 1.15(±0.08) 1.02(±0.06) 7.64(±0.68) -

FPMVS 77.14(±5.56) 34.02(±1.85) 9.28(±1.64) 2.44(±0.24) 11.73(±3.38) 10.99(±0.82) 53.71(±2.18)
MFLVC - - - - - - -

UOMVSC 77.83(±0.00) 28.86(±0.00) 8.95(±0.00) 2.83(±0.00) 9.45(±0.00) - -
PGSC 69.96(±4.66) 22.46(±2.37) 1.43(±0.32) 2.03(±0.26) 0.92(±0.08) - -

OrthNTF - - - - - - -
FMVACC - - - - - - -
FASTMI 78.85(±2.10) 32.49(±1.29) 9.77(±2.13) 3.03(±0.66) 10.12(±1.58) 13.48(±0.64) 58.14(±1.73)

Ours 80.52(±0.00) 36.59(±0.00) 10.04(±0.00) 2.50(±0.00) 1.37(±0.00) 15.09(±0.00) 61.44(±0.00)

I EFFECTIVENESS IN GATHERING MULTI-VIEW INFORMATION

Compared to single view datasets, multi-view data can provide more comprehensive and detailed
descriptions for the same instance and thereby facilitates more accurate representations for better
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Table 9: Single-view experimental results in ACC
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

FMR 66.50(±5.19) 21.59(±0.49) 24.08(±0.38) - - - -
PMSC 64.83(±8.99) 38.18(±1.81) 27.93(±0.86) 19.24(±0.53) - - -
AMGL 22.09(±0.16) 39.72(±1.35) 14.67(±0.17) 17.00(±0.05) 20.32(±0.27) - -

MSCIAS 64.35(±8.27) 40.63(±2.93) 30.88(±1.30) 19.25(±0.93) 25.38(±1.44) - -
MVSC 57.08(±9.81) 45.54(±2.03) - - - - -

MLRSSC 31.01(±0.00) 50.14(±0.00) 30.21(±0.00) 16.92(±0.00) - - -
MPAC 61.14(±0.00) 41.72(±0.00) 32.48(±0.00) 18.40(±0.00) - - -

MCLES 64.47(±4.27) 46.33(±2.58) 30.47(±1.32) - - - -
FMCNOF 52.51(±4.93) 48.51(±4.22) 24.34(±2.43) 18.67(±2.38) - 19.55(±1.86) 31.52(±2.21)
ADAGAE - - - - - - -

PFSC 63.80(±6.28) 50.62(±4.77) - - - - -
SFMC 65.88(±0.00) 50.24(±0.00) 30.17(±0.00) 15.75(±0.00) 20.53(±0.00) 22.08(±0.00) -
MSGL 29.61(±1.03) - - 17.99(±0.88) 23.83(±0.64) 21.48(±0.57) -

FPMVS 68.46(±7.24) 49.88(±2.19) 32.05(±1.91) 19.55(±0.19) 22.90(±2.15) 22.37(±0.62) 51.97(±3.26)
MFLVC - - - - - - -

UOMVSC 66.26(±0.00) 38.84(±0.00) 30.45(±0.00) 19.29(±0.00) 26.28(±0.00) - -
PGSC 64.94(±7.61) 36.37(±4.52) 31.27(±2.43) 18.07(±0.74) 22.15(±0.62) - -

OrthNTF - - - - - - -
FMVACC - - - - - - -
FASTMI 64.58(±4.53) 37.46(±1.93) 34.52(±1.21) 21.73(±0.91) 21.79(±2.80) 23.21(±1.05) 53.12(±4.21)

Ours 66.76(±0.00) 52.04(±0.00) 35.78(±0.00) 20.06(±0.00) 28.03(±0.00) 25.73(±0.00) 56.92(±0.00)

clustering. To validate the effectiveness of DLA-EF-JA in gathering the information from multiple
views, on the basic of Section H, we conduct clustering individually on each view of multi-view
datasets mentioned earlier and compare the generated single-view clustering results and multi-view
clustering results, as shown in Table 11, where V1 ∼ V6 denote the results based on view 1 ∼ 6
respectively and ‘Ours’ denotes the results based on all views. As seen, multi-view clustering results
outperform single-view counterparts with remarkable margins in most cases, which highlights that
our DLA-EF-JA is able to effectively gather multi-view information for preferable clustering. The
reason of some sub-optimal results could be that the quality of certain views is relatively poor and
disorganize the cluster structure.

Table 10: Single-view experimental results in Fscore
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

FMR 66.40(±4.64) 22.72(±0.15) 19.09(±0.23) - - - -
PMSC 68.06(±8.46) 37.68(±1.18) 27.42(±2.21) 21.34(±1.02) - - -
AMGL 19.17(±0.28) 37.52(±0.89) 24.77(±0.11) 22.53(±0.00) 28.53(±0.21) - -

MSCIAS 67.19(±8.74) 40.65(±3.12) 23.41(±1.52) 21.07(±0.41) 30.72(±0.77) - -
MVSC 55.63(±10.99) 44.64(±2.87) - - - - -

MLRSSC 33.39(±0.00) 50.64(±0.00) 30.40(±0.00) 23.21(±0.01) - - -
MPAC 70.02(±0.00) 41.65(±0.00) 26.10(±0.00) 21.94(±0.00) - - -

MCLES 67.27(±4.69) 48.97(±2.84) 30.34(±1.73) - - - -
FMCNOF 46.98(±3.78) 46.35(±4.21) 20.05(±2.23) 21.68(±2.79) - 17.00(±1.17) 26.54(±1.89)
ADAGAE - - - - - - -

PFSC 68.99(±4.95) 48.47(±3.26) - - - - -
SFMC 60.29(±0.00) 47.32(±0.00) 30.35(±0.00) 20.64(±0.00) 29.04(±0.00) 15.28(±0.00) -
MSGL 31.90(±0.97) - - 22.48(±0.37) 28.97(±0.24) 16.14(±0.32) -

FPMVS 68.31(±6.97) 49.97(±2.50) 26.33(±0.70) 20.33(±1.15) 31.80(±1.64) 17.54(±0.35) 45.93(±2.06)
MFLVC - - - - - - -

UOMVSC 67.90(±0.00) 38.64(±0.00) 24.19(±0.00) 22.78(±0.00) 31.91(±0.00) - -
PGSC 63.05(±6.85) 37.62(±4.23) 25.01(±3.77) 22.53(±1.24) 32.42(±1.53) - -

OrthNTF - - - - - - -
FMVACC - - - - - - -
FASTMI 69.65(±4.79) 39.57(±1.24) 31.67(±1.50) 19.24(±1.49) 30.45(±0.71) 15.35(±0.69) 45.68(±2.35)

Ours 69.70(±0.00) 50.41(±0.00) 32.40(±0.00) 25.26(±0.00) 35.02(±0.00) 17.86(±0.00) 49.77(±0.00)

J TIME OVERHEAD PROPORTION

To further dissect the performance of the proposed DAL-EF-JA, we count the time overhead proportion
of each optimization variable, as shown in Fig. 4. From these figures, we can observe that on CALTE7
and Cora datasets, Bp and Tp occupy most of the overall optimization time, which is mainly because
the number of clusters is slightly larger and accordingly the traversal searching and QCQP searching
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Table 11: Effectiveness in gathering multi-view information

Dataset Metric Clustering Results

V1 V2 V3 V4 V5 V6 Ours

DERMATO
NMI 56.66 80.52 89.97
ACC 60.06 66.76 85.47

Fscore 49.99 69.70 87.92

CALTE7
NMI 17.84 36.59 34.14 48.75 41.74 39.98 45.25
ACC 35.01 52.04 48.71 53.87 39.42 46.40 80.66

Fscore 33.35 50.41 47.41 53.85 48.15 47.42 78.12

Cora
NMI 10.22 10.04 12.24 11.49 43.70
ACC 30.24 35.78 30.17 29.73 52.44

Fscore 30.39 32.40 30.36 29.91 41.12

REU7200
NMI 1.27 2.50 4.81 1.39 1.40 6.25
ACC 21.24 20.06 24.06 19.61 20.83 26.22

Fscore 23.67 25.26 25.41 27.01 24.90 28.55

Reuters
NMI 23.47 1.37 1.10 1.06 20.83 31.87
ACC 46.65 28.03 27.24 27.80 47.62 54.26

Fscore 42.71 35.02 35.24 35.16 43.67 44.84

CIF10Tra4
NMI 10.01 15.09 12.35 12.50 15.64
ACC 21.89 25.73 23.25 22.05 26.83

Fscore 16.46 17.86 15.87 16.34 20.64

FasMNI4V
NMI 49.81 61.44 53.26 54.86 59.21
ACC 41.76 56.92 46.71 52.32 57.36

Fscore 37.26 49.77 42.80 45.04 51.37

consume relatively more time than other parts. On REU7200 and Reuters, the time overhead of
C and α holds a dominant position, possibly because the higher data dimension exacerbates the
computing burden of W, Z and the coefficient bp. When dealing with CIF10Tra4 and FasMNI4V,
the time overhead of updating Tp and C is larger than that of other variables. Possible reasons are
that the cluster number and the feature dimension on these two datasets are relatively larger and
accordingly induces much time overhead. Especially, Tp takes the most time expenditures, which
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Figure 4: The time overhead proportion of different optimization variables.
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is mainly due to the searching on a set of one-hot vectors. Although the time overhead proportion
between optimization variables is diverse in different cases, combined with Fig. 2 we have that the
overall time overhead of our DAL-EF-JA is competitive.

K CONVERGENCE

Besides owing linear complexities, our DLA-EF-JA is also convergent. To demonstrate this point, we
plot the changes in function loss with respective to the number of iterations, as shown in Fig. 5. As
seen, the function loss is monotonically reducing after iterations and gradually reaches to a steady
state, which gives evidence that our DLA-EF-JA is convergent.
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Figure 5: The changes in function loss.
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Figure 6: Sensitivity of the parameters λ and β in terms of NMI.
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L SENSITIVITY

In our DLA-EF-JA method, there involve hyper-parameters λ and β. We conduct fine tuning for
them in [10−1, 100, · · · , 103] and [2−4, 2−2, · · · , 24] respectively. To investigate the sensitivity of
hyper-parameters λ and β, we plot the clustering results under each parameter combination, as shown
in Fig. 6, 7 and 8. It is easy to see that with given β, the clustering results are not dramatically
changed in most cases. So, we can conclude that the proposed DLA-EF-JA is not fairly sensitive to λ.
Moreover, combined with Table 1, we have that within a broad range of parameters, the generated
clustering results are still comparable. Thus, we can summarize that our proposed DLA-EF-JA is
somewhat robust to hyper-parameters.

(a) CALTE7 (b) Cora (c) REU7200

(d) Reuters (e) CIF10Tra4 (f) FasMNI4V

Figure 7: Sensitivity of the parameters λ and β in terms of ACC.

(a) CALTE7 (b) Cora (c) REU7200

(d) Reuters (e) CIF10Tra4 (f) FasMNI4V

Figure 8: Sensitivity of the parameters λ and β in terms of Fscore.
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M POTENTIAL IMPROVEMENT DIRECTIONS

In this work, we generate anchors via learning strategy, nevertheless, we do not explicitly consider
the spatial distribution of anchors. Given the fact that the role of anchors aims at approximately
characterizing the overall samples, generating the anchors that are with similar distributions to original
data could further enhance the clustering performance. Besides, it needs to perform searching on
one-hot vectors when updating the permutation model, which could bring additional computing
overhead, and thus designing other talented solutions will further accelerate its running speed.
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