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Abstract

This study presents a comparative analysis
of acoustic perception models in simulating
teacher-learner interaction for second language
(L2) English pronunciation learning, focusing
on Chinese native speakers. Three acoustic per-
ception models are evaluated: an English model
(M1) based on the XLLS-R framework and fine-
tuned on the TIMIT corpus, a non-native model
(M2) also based on XLS-R but fine-tuned on
the L2-ARCTIC corpus, and a Chinese model
(M3) using a sequence-to-sequence architec-
ture with connectionist temporal classification
(CTC) fine-tuned on the AISHELL-1 corpus.
A corpus of seven pseudo-words designed to
challenge Chinese learners of English is used
to assess the models’ performance in captur-
ing the acoustic perception of L2 learners. The
Levenshtein distance between recognised se-
quences and reference sequences for Chinese
and English speakers is employed as an eval-
uation metric, along with the ratio of these
distances. Results show that the non-native
model (M2) outperforms the English (M1) and
Chinese (M3) models in minimising the Lev-
enshtein distance for Chinese speakers and
achieves the lowest ratio, indicating its effec-
tiveness in modelling the acoustic perception
of L2 learners. These findings suggest that in-
corporating non-native speech data in acoustic
perception models can improve the simulation
of teacher-learner interaction in L2 pronuncia-
tion learning.

1 Introduction

Acoustic perception plays a crucial role in second
language (L2) pronunciation learning, as it directly
influences learners’ ability to accurately perceive
and produce sounds in the target language (Mitterer
and Ernestus, 2008). Computational modelling of
L2 acoustic perception offers valuable insights into
the underlying processes and challenges faced by
learners, enabling the development of more effec-
tive language learning technologies and pedagog-

ical approaches. While several approaches have
been proposed for modelling 1.2 acoustic percep-
tion, such as using native speech models (Kanters
et al., 2009; Witt and Young, 2000) or specialised
L2 acoustic models (Franco et al., 2010; Li et al.,
2016), these methods have limitations in capturing
the specific challenges faced by L2 learners from
different first language (L1) backgrounds. Native
speech models may not fully account for the percep-
tual difficulties experienced by L2 learners, while
specialised L2 models often require large amounts
of L2 speech data, which may not be readily avail-
able for all language pairs or proficiency levels.
This study addresses this research gap by inves-
tigating the effectiveness of non-native acoustic
perception models, specifically for Chinese learn-
ers of English. This work advances the state-of-
the-art in computational modelling of L2 acoustic
perception by leveraging self-supervised models
like XLS-R (Baevski et al., 2020) and fine-tuning
them on native and non-native speech data. The
novel approach of focusing on a specific L1 back-
ground (Chinese) allows for a more targeted eval-
uation of the models’ performance and provides
insights into the perceptual patterns of this learner
population. The findings of this study demonstrate
that non-native acoustic perception models outper-
form native and L1-specific models in capturing
the perceptual patterns of Chinese learners of En-
glish. Specifically, the results show that a model
fine-tuned on non-native speech data (L2-ARCTIC
corpus) achieves the lowest Levenshtein distance
and ratio when compared to native English and Chi-
nese models, indicating its effectiveness in mod-
elling the acoustic perception of Chinese L2 learn-
ers. These results have significant implications for
the development of personalised language learning
technologies and inform pedagogical approaches
for L2 pronunciation training. The remainder of
this paper is organised as follows: Section 2 pro-
vides an overview of L2 acoustic perception and



its challenges, followed by a discussion of com-
putational acoustic perception models in Section
3. Section 4 describes the simulation of teacher-
learner interaction, and Section 5 details the imple-
mentation of the acoustic perception models used
in this study. The corpus and evaluation method-
ology are presented in Section 6, followed by the
results and discussion in Section 7. Sections 8 and
9 compare our approach with other methods and
discuss the limitations of the study. Finally, Section
10 concludes the paper and outlines future research
directions.

2 L2 Learners Acoustic Perception

Understanding acoustic perception is crucial in
L2 learning due to its direct influence on produc-
tion (Mitterer and Ernestus, 2008). L2 learners
must learn to perceive and produce sounds that
may not exist or may be articulated differently in
their first language (L.1). Many challenges faced
by L2 learners in accurately perceiving and produc-
ing the sounds of the target language arise from
differences in phonetic systems and phonological
rules between their L1 and the L2. For example,
English speakers learning Chinese may struggle
to distinguish between the contrasting phonemic
tones (Hao, 2012), while Chinese speakers learning
English may have difficulty differentiating between
similar English consonant sounds like /r/ and /1/
(Radant et al., 2009).

Another aspect of acoustic perception is the abil-
ity to perceive and produce correct intonation pat-
terns and stress. Intonation plays a crucial role
in conveying meaning and pragmatic nuances in
speech, and L2 learners need to develop sensitiv-
ity to the intonational contours of the target lan-
guage. Stress patterns also vary across languages,
and learners must learn to identify and reproduce
the appropriate stress patterns to convey meaning
accurately (Liu and Reed, 2021; Braun et al., 2014;
Altmann, 2006).

Furthermore, L2 learners may face challenges
related to the rhythm and timing of speech. Lan-
guages vary in their rhythmic patterns, with some
languages exhibiting syllable-timed rhythm (e.g.,
French, Spanish) and others stress-timed rhythm
(e.g., English) (Barry, 2007; Ordin and Polyan-
skaya, 2015). Various factors influence the de-
velopment of acoustic perception in L2 learners,
including age of learning, exposure to the target
language, individual differences in auditory pro-

cessing abilities, and instructional methods (Saito
et al., 2024). Effective learning strategies for im-
proving acoustic perception in L2 learners include
explicit phonetic instruction, focused listening prac-
tice, auditory discrimination tasks, and feedback
on pronunciation accuracy (Kissling, 2015). Ex-
perimental research methods using psychophysical
techniques to measure L2 acoustic perception in-
volve conducting controlled experiments with hu-
man participants to investigate how they perceive
and process acoustic features of a second language
(Sakai and Moorman, 2018). These methods in-
clude discrimination tasks, wherein participants
are presented with pairs of stimuli (e.g., pairs of
phonemes or words) that differ along some acous-
tic dimension. Subsequently, participants are asked
to indicate whether the stimuli in each pair are the
same or different (Aliaga-Garcia and Mora, 2009;
Zhen and Pratt, 2023). Additionally, ABX tasks
involve presenting participants with three stimuli
(A, B, and X), where A and B are similar stimuli,
and X is either identical to A or B. Participants
are then asked to indicate whether X matches A or
B. This task aids in assessing discrimination abili-
ties while controlling for perceptual biases (Green-
away, 2017; Melnik-Leroy et al., 2022). Despite
the insights provided by experimental research us-
ing psychophysical techniques, these methods have
limitations in fully capturing the complexity of L2
acoustic perception. Various factors influence the
development of acoustic perception in L2 learners,
posing challenges for comprehensive consideration
in experimental settings. Furthermore, experimen-
tal methods employing psychophysical techniques
may require participants to make fine-grained judg-
ments about subtle acoustic differences, demanding
significant cognitive effort and potentially failing
to fully capture participants’ naturalistic percep-
tion of L2 speech (Leow, 2015). Consequently,
researchers have increasingly turned to computa-
tional acoustic perception models to address these
limitations and provide deeper analysis into L2
speech perception.

3 Computational Acoustic Perception
Models

Computational acoustic perception models aim to
replicate how humans perceive and process sound
(Jepsen et al., 2008; Kroger et al., 2009). These
models integrate principles from signal processing
and neuroscience to understand and interpret acous-



tic signals. The computational auditory signal-
processing and perception model (CASP) (Jepsen
et al., 2008) is an adaptation of an earlier model
developed by Dau et al. in 1997 (Dau et al., 1997).
The CASP model includes an outer and middle-
ear transformation, along with a nonlinear cochlear
filtering stage known as the dual resonance nonlin-
ear (DRNL) filterbank, which replaces the linear
gammatone filterbank used in the original model.
The DRNL filterbank better captures the nonlinear
processing that occurs in the human cochlea, allow-
ing for more accurate modelling of auditory per-
ception. Other computational models of auditory
perception, such as those proposed by Meddis and
O’Mard (1997), Zilany and Bruce (2006), and Mao
and Carney (2015), aim to construct comprehen-
sive models that capture essential acoustic features.
These models can be utilised to explore various
aspects of human auditory perception, including
pitch perception, temporal processing, and the per-
ception of complex sounds. In addition to models
specifically designed for auditory perception, many
speech models, such as automatic speech recogni-
tion (ASR) and speech synthesis, employ acoustic
feature models that focus on extracting relevant fea-
tures from acoustic signals crucial for perception.

Recent advancements in self-supervised speech
representation learning (Close et al., 2023; Mo-
hamed et al., 2022) have enabled these models to
autonomously learn to discern acoustic features
and categorise or predict various perceptual at-
tributes without the need for explicit labelling. By
training on large, task-specific corpora, these self-
supervised models can capture rich representations
of speech that are useful for a wide range of down-
stream tasks, including acoustic perception mod-
elling. Furthermore, other work, such as that by
Islam et al. (2023), utilises automatic phoneme
recognition as an acoustic perception model. This
approach leverages the ability of phoneme recog-
nition systems to identify and classify individual
speech sounds, providing a framework for mod-
elling the perception of phonetic units in speech.
The details of this work and its implications for L2
pronunciation learning will be elaborated on in the
following section.

Overall, computational acoustic perception mod-
els offer a powerful tool for understanding and
simulating human auditory perception. By combin-
ing insights from signal processing, neuroscience,
and machine learning, these models can provide
valuable insights into the mechanisms underlying

acoustic perception and inform the development
of more effective strategies for L2 pronunciation
learning.

4 Simulation of Teacher-Learner
Interaction

The system design depicted in Figure 1 presents
the general framework of teacher and learner in-
teraction in English pronunciation learning, as in-
troduced in (Islam et al., 2023), inspired by stud-
ies on speech learning models (Bohn and Munro,
2007; Flege and Bohn, 2021). The system is di-
vided into two parts: the teacher model and the
learner model, each consisting of multiple sub-
models. This work will focus on different imple-
mentations of the acoustic perception model in the
learner model.

Teacher Model
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Figure 1: The model for teacher-learner interaction in
English pronunciation learning by Islam et al. (2023).

4.1 Teacher Model

Inspired by research in teacher modelling (Shadiev
and Yang, 2020; Slavuyj et al., 2015), the teacher
model in Figure 1 simulates an English native
speaker and employs repetition as a teaching strat-
egy. The teacher model is composed of a pro-
nunciation assessment model, which receives the
verbal response from the learner model, assesses
the pronunciation, and sends the score to the feed-
back generator model. The pronunciation assess-
ment model is implemented as Goodness Of Pro-
nunciation (GOP), which was initially introduced
by Kim et al. (1997) and improved by Sudhakara
et al. (2019), using the Kaldi tool (Povey et al.,
2011) trained on the WSJCAMO British English
corpus (Robinson et al., 1995). The learner tracing
model aims to understand how the learner model
engages through the learning process. It is a rule-
based model that takes the score as input, updates
the learner state, and generates feedback based on



the learner state. The corrective feedback synthe-
sizer model generates verbal feedback using an
end-to-end text-to-speech synthesis model, trained
using Fastspeech2 (Ren et al., 2020) with a publicly
available English speech corpus LJ that comprises
13,100 short audio clips by a single speaker (Ito,
2017).

4.2 Learner Model

The learner model in Figure 1 simulates a Chinese-
speaking learner in the early stages of English learn-
ing. As the learner engages with the teacher model,
verbal feedback is perceived and processed into
phonemic transcriptions by an acoustic perception
model, which will be discussed in more detail in
Section 5. The second model is the knowledge
model, which is a rule-based model informed by
the perceived phonemic transcriptions and updated
by a learner knowledge model to generate the re-
sponse. The response synthesizer employs Fast-
speech2 (Ren et al., 2020) trained on the AISHELL-
3 corpus (Shi et al., 2020).

5 Acoustic Perception Model
Implementation

The main goal of the acoustic perception model in
Figure 1 is to emulate the perception of non-native
speakers. This is implemented in the form of phone
recognises trained on different languages, which
are bound to make errors when trying to recognise
the verbal feedback of teachers, in this case, the
feedback from the teacher model in the English
language. These models are built for capturing a
broad spectrum of acoustic features, encompass-
ing phonetic variations, prosodic patterns, intona-
tions, spectral characteristics, temporal dynamics,
and the articulatory differences that exist between
languages, even on identical phonemic representa-
tions.

Word-level automatic speech recognition (ASR)
focuses on recognising entire words, whereas
phoneme-level recogniser focus on recognising
individual phonetic units. Phoneme-level recog-
nises are generally more flexible when dealing with
speech in different languages or with unfamiliar
words, as they operate at a more fundamental level
of linguistic representation. The performance of
these models is evaluated in terms of phone error
rate (PER), which is the percentage of incorrectly
recognised phone sequences in relation to the ref-
erence recognised phone sequences. The use of

phoneme-level recogniser as acoustic perception
models in the simulation of teacher-learner inter-
action offers several advantages. By modelling
perception at the phonetic level, these recogniser
can capture the fine-grained acoustic differences
between the learner’s native language and the tar-
get language. This allows for a more accurate rep-
resentation of the challenges faced by non-native
speakers in perceiving and processing the sounds
of the target language.

Furthermore, by training these recogniser on dif-
ferent languages, the acoustic perception model
can simulate the influence of the learner’s native
language on their perception of the target lan-
guage. This is particularly relevant in the con-
text of Chinese-speaking learners acquiring En-
glish pronunciation, as the phonetic inventories
and phonological rules of these two languages dif-
fer significantly. The incorporation of phoneme-
level recogniser as acoustic perception models in
the learner model enables a more realistic simu-
lation of the perceptual processes involved in L2
pronunciation learning. By capturing the errors and
variations in phonetic perception, this approach can
provide valuable insights into the challenges faced
by non-native speakers and inform the development
of more effective teaching strategies and feedback
mechanisms in the teacher model.

5.1 English Acoustic Perception Model

The English acoustic perception model (M1)
is based on a large-scale pretrained foundation
model called XLS-R, which aims at cross-lingual
speech representation learning and builds upon the
Wav2Vec 2.0 framework (Baevski et al., 2020).
XLS-R has been trained on a diverse corpus en-
compassing 53 languages, totaling 56k hours of
speech data sourced from CommonVoice (Ardila
et al., 2019), BABEL (Roach et al., 1996), and
Multilingual LibriSpeech (Pratap et al., 2020). The
English acoustic perception model is fine-tuned on
the TIMIT corpus (Garofolo et al., 1993), which
is widely used for speech recognition and linguis-
tic research purposes. The TIMIT corpus contains
phoneme-level transcriptions and recordings of 630
speakers from various regions of the United States,
representing a diversity of demographics such as
gender, race, and age. The model obtained a PER
of 7.996%.



5.2 Non-Native Acoustic Perception Model

The architecture of the non-native acoustic percep-
tion model (M 2) is also based on the large-scale
pretrained foundation model XLS-R. However, the
model is now fine-tuned on the L2-ARCTIC cor-
pus, which is specifically tailored for non-native
English speech research (Zhao et al., 2018). The
L2-ARCTIC corpus contains phoneme-level tran-
scriptions and comprises recordings from 24 non-
native speakers of English, originating from diverse
language backgrounds including Hindi, Korean,
Chinese, Spanish, Arabic, and Vietnamese. Within
each language group, recordings are available from
two male and two female speakers, ensuring a bal-
anced representation across genders and languages.
The model achieved a PER of 12.8%.

5.3 Chinese Acoustic Perception Model

The Chinese acoustic perception model (M 3) is
a sequence-to-sequence model with connectionist
temporal classification (CTC) based on a universal
phone recognizer that aims to deploy recognition
with a multilingual (universal) allophone system
(Li et al., 2020). It was trained on data from eleven
languages, including English, Japanese, Chinese,
and Tagalog. The model architecture consists of a
bidirectional Long Short-Term Memory (LSTM)
encoder (Malhotra et al., 2015). The acoustic
model is fine-tuned on AISHELL-1, an open-
source Chinese speech corpus (Bu et al., 2017) con-
taining 400 speakers and over 170 hours of Chinese
speech data. Since AISHELL-1 does not contain
phoneme-level transcriptions, Kaldi (Povey et al.,
2011) speech recognition tools are used to extract
the time alignment to obtain phoneme transcrip-
tions. The corpus with the phoneme transcription
is then used to fine-tune the model (Li et al., 2020).
The model obtained a PER of 22.3%.

These three acoustic perception models, repre-
senting native English, non-native English, and
Chinese perception, offer a diverse set of tools for
simulating and understanding the challenges faced
by learners in perceiving and processing the sounds
of the target language. By incorporating these mod-
els into the learner model of the teacher-learner
interaction framework, researchers can gain valu-
able insights into the perceptual processes involved
in L2 pronunciation learning and develop more
effective teaching strategies and feedback mecha-
nisms.

6 Corpus Description
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Figure 2: The distribution of participant’s age. The age
range from 20 to 40.

6.1 Pseudo-Word Design and Validation

In examining L2 pronunciation perception and pro-
duction, a particular group of seven pseudo-words
was selected to ensure that they were not influenced
by written forms or any prior knowledge of pronun-
ciation. Each word consists of 6-7 phonemes. The
words were created to include phonemes that are
known to be difficult for Chinese learners, such as
N, I, If1, g/, v/, and /8/ (Zhang and Xiao, 2014;
Richards, 2011). Two experienced English pronun-
ciation instructors were consulted to validate the
suitability of the pseudo-words for the study. A
pilot test with five Chinese learners of English was
conducted to ensure that the words were challeng-
ing but not impossible to pronounce. The experi-
mental word list is presented in Table 1 along with
with IPA transcription. '.

6.2 Data Collection

The study involved 240 participants, including 120
Chinese native speakers (ChS) and 120 English na-
tive speakers (EnS). Among them, 150 participants
were aged between 20 and 30, while 90 participants
were aged between 31 and 40. The data collection
process was facilitated through a dedicated website
designed specifically for this purpose.

For each of the seven pseudo-words, participants
listened to the corresponding audio file and selected
the correct answer from three audio options.

'TPA (International Phonetic Alphabet) is a standardised
set of symbols used to represent the sounds of spoken lan-
guage, providing a clear and accurate way to transcribe the
pronunciation of words across different languages.



Table 1: Experimental word list with word ID, pseudo-words, IPA transcription, and comments on the challenging

phonemes marked in the last column.

Word ID | Pseudo-words IPA Comment

w1 RALISAR Ireelisar/ | The inability to distinguish /1/ from /r/ and
/&/ from /ar/.

wa SHEEBINGS flizbn/ | The /{/ and the /g/ sound.

ws BADUNLOT | /baedaniot/ | The final /t/ often becomes a glottal stop [?],
so the word may be recognised when read but
difficult to identify in spoken language.

wy MASIGAN /meesigeen/ | The /e/ sound and the /g/ sound.

ws NAVIKLY /neevikli:/ | The /v/ sound and often use /w/ instead.

We TAGAMAUGH | /teegema:f/ | Words ending in "ugh" are sometimes a diph-
thong (e.g., though /3ou/) but could be the
sound /f/.

wy HICKOMAY | /hikame1/ | The diphthong /er/. The weak vowel /A/ is in
the middle of the word.

6.2.1 Evaluation Metrics

The Levenshtein distance (Levenshtein et al., 1966)
was used to measure the similarity between the
recognised phoneme sequences and the reference
sequences for both ChS and EnS speakers. This
distance calculates the minimum number of single-
character edits (insertions, deletions, or substitu-
tions) required to transform one string into another.
A lower Levenshtein distance indicates a higher
similarity between the sequences.

To compare the models’ performance in relation
to EnS, the ratio of the average Levenshtein dis-
tance for ChS to the average Levenshtein distance
for EnS was calculated. A lower ratio suggests that
the model better captures the acoustic perception
of ChS relative to EnS.
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Figure 3: Occurrence counts of different IPA transcripts
for pseudo-words. Each pair of bars represents the num-
ber of speakers, differentiated by color: skyblue for Chi-
nese speakers (ChS) and lightgreen for English speakers
(EnS). The IPA transcript in bold denotes the correct
answer.

Let M;, Ms, and M3 be the three acoustic per-
ception models to be evaluated. For each pseudo-
word w;, ¢ € 1,2,...,7, the most frequently se-
lected answer among the three options will serve as
the reference sequence, denoted as r;. The Leven-
shtein distance (Levenshtein et al., 1966) between
the recognised sequence by model M, j € 1,2, 3,
for pseudo-word w; and the reference sequence r;
of EnS is calculated as:

1 n
LDChS(Mj, wi) = E Z Cl(Sjk, 7“1‘)
k=1

ey

where n is the number of speakers in ChS, s;y, is
the recognised sequence by model M; for speaker
k in ChS, and d(-,-) is the Levenshtein distance
function. Similarly, the averaged phoneme distance
between the recognised sequence by model M for
pseudo-word w; and the reference sequence of EnS
is calculated as:
m

1
m (5jk:7i)

k=1

LDpns(Mj, w;) = @)

where m is the number of speakers in EnS. The
ratio between the two distances for model A; and
pseudo-word w; is then calculated as:

_ LDcps(Mj, w;)
LDgy,s(Mj,w;)

The average ratio across all pseudo-words for
model M; is:

7
R(Mj) = =Y R(Mj, w;) 4)
=1

|~



The acoustic perception model with the lowest av-
erage ratio R(M;) will be considered the most suit-
able for integration with the simulation model, as
it maximises the similarity with ChS over EnS.

6.2.2 Results

The results demonstrate that the Ms outperforms
M; and M3 models in capturing the perceptual
patterns of Chinese learners of English. Across
all pseudo-words, M achieves the lowest average
Levenshtein distance for Chinese speakers (2.87)
and the lowest ratio (0.69) between the distances
for Chinese and English speakers (Table 3).

A closer examination of the results reveals that
M is particularly effective in modelling the percep-
tion of challenging phonemes for Chinese learners.
For example, in pseudo-word w; (/relisar/), M2
achieves a Levenshtein distance of 0.22 for Chi-
nese speakers, compared to 0.42 for M; and 0.48
for M3 (Tables 2, 3, 4). This suggests that Mo
better captures the difficulty Chinese learners face
in distinguishing between /1/ and /r/ sounds. Simi-
larly, for pseudo-word ws (/naevikli/), My achieves
a distance of 0.33 for Chinese speakers, while M}
and M3 have distances of 0.42 and 0.51, respec-
tively. This indicates that My is more sensitive to
the challenges Chinese learners encounter with the
/vl sound, which is often substituted with /w/.

Across all pseudo-words, My achieves the low-
est average LDcps(M;, w;) of 2.87, compared to
3.56 for M7 and 4.5 for M3. Furthermore, the aver-
age ratio R(M;) provides insight into how well
each model captures the acoustic perception of
Chinese speakers relative to English speakers. A
lower ratio indicates better performance in mod-
elling the acoustic perception of Chinese speakers.
M5 has the lowest ratio at 0.69, followed by M;
at 0.73 and M3 at 0.85. Considering both the aver-
age LDcps(Mj, w;) and the R(M,) ratio, the non-
native acoustic perception model (M3) emerges as
the best choice for simulating the acoustic percep-
tion of Chinese speakers learning English.

7 Comparison with Other Approaches

Several approaches have been proposed for mod-
elling acoustic perception in L2 pronunciation
learning, each with its own strengths and limita-
tions. One common approach is the use of The
goodness of pronunciation algorithm (GOP) trained
on native speech data to evaluate L2 learners’ pro-
nunciations (Kanters et al., 2009; Witt and Young,

Table 2: Performance measures for the English acous-
tic perception model (M). The Levenshtein distances
between the recognised sequences and the reference
sequences for Chinese speakers (ChS) and English
speakers (EnS) are denoted as LD¢ps(Mi,w;) and
LDg,s(My,w;), respectively. The average distances
across all pseudo-words and the ratio R(M;) are also
provided.

Word | LDcps(Mi,w;) LDpys(Mi,w;)

wy 0.42 0.85

wa 0.36 0.75

w3 0.39 0.73

wy 0.63 0.63

ws 0.42 0.57

We 0.73 0.73

wy 0.61 0.61
Average 3.56 4.87
R(My) 0.73

Table 3: Performance measures for the non-native acous-
tic perception model (M5). The Levenshtein distances
between the recognised sequences and the reference
sequences for Chinese speakers (ChS) and English
speakers (EnS) are denoted as LD¢ys(Ms,w;) and
LDg,s(Ms,w;), respectively. The average distances
across all pseudo-words and the ratio R(M>) are also
provided.

Word | LDcps(Ma, w;) LDpys(Ma,w;)

wy 0.22 0.65

wa 0.26 0.52

w3 0.29 0.63

wy 0.51 0.51

ws 0.33 0.58

We 0.61 0.61

wy 0.65 0.65
Average 2.87 4.15
R(M>) 0.69




Table 4: Performance measures for the Chinese acous-
tic perception model (M3). The Levenshtein distances
between the recognised sequences and the reference
sequences for Chinese speakers (ChS) and English
speakers (EnS) are denoted as LDcps(Ms, w;) and
LDg,s(Ms,w;), respectively. The average distances
across all pseudo-words and the ratio R(Ms3) are also
provided.

Word LDChS(Mg, wz) LDEns(Mg, wz)

w1 0.48 0.80

() 0.53 0.75

w3 0.57 0.69

Wy 0.77 0.77

w5 0.51 0.61

We 0.78 0.78

wy 0.86 0.86
Average 4.5 5.26
R(Ms3) 0.85

2000). While this approach provides a straightfor-
ward way to assess pronunciation quality, it may
not fully capture the specific challenges faced by
L2 learners, as it relies on models trained on native
speech patterns.

Another approach is the use of specialised acous-
tic models trained on L2 speech data (Franco et al.,
2010; Li et al., 2016). These models are designed
to capture the specific acoustic characteristics of
L2 learners’ speech and have been shown to im-
prove the performance of pronunciation assessment
systems. However, these models often require a
large amount of L2 speech data, which may not
always be available for all language pairs or profi-
ciency levels. In contrast, our proposed approach
leverages pre-trained, self-supervised models like
XLS-R, which are trained on a large amount of mul-
tilingual speech data. By fine-tuning these models
on smaller amounts of native and non-native speech
data, we can create acoustic perception models that
are better suited to capturing the perceptual chal-
lenges faced by L2 learners.

8 Conclusions

This study demonstrates the importance of con-
sidering non-native speech data when developing
acoustic perception models for simulating teacher-
learner interaction in L2 English pronunciation
learning. By comparing the performance of native
English, non-native, and Chinese acoustic percep-
tion models, it found that the non-native model

My fine-tuned on the L2-ARCTIC corpus outper-
formed the other models in capturing the percep-
tual patterns of Chinese learners of English. This
finding highlights the effectiveness of incorporat-
ing non-native speech data in modelling L.2 acous-
tic perception. The superior performance of the
non-native acoustic perception model has signif-
icant implications for L2 pronunciation teaching
and learning. By incorporating models like M2
into CAPT systems, we can develop more effec-
tive tools that provide targeted feedback to Chinese
learners of English. For instance, when a learner
mispronounces a word containing /1/ or /r/, the sys-
tem can identify the specific error and offer per-
sonalised guidance on how to produce the correct
sound. This can lead to more efficient and engaging
pronunciation practice, as learners receive immedi-
ate and relevant feedback. Future research should
build upon these findings by investigating the per-
formance of non-native acoustic perception models
with a more diverse range of L2 learners, expand-
ing the corpus to include a larger variety of words
and phonemes, and exploring additional evaluation
metrics. Moreover, integrating these acoustic per-
ception models into a complete simulation frame-
work of teacher-learner interaction would provide
a more comprehensive understanding of their im-
pact on L2 pronunciation learning. In conclusion,
this study underscores the potential of non-native
acoustic perception models in advancing compu-
tational modelling of L2 speech perception and
informing the development of effective language
learning technologies. As research in this field con-
tinues to progress, the insights gained from this
work can contribute to creating more adaptive and
personalised tools to support L2 learners in their
pronunciation learning journey.

9 Preserving Anonymity and Ethics

Participants received Participant Information
Sheets and Consent Forms approved by the Univer-
sity Research Ethics Committee. These documents
outlined project details, stressed voluntary partici-
pation, and provided withdrawal options. The uni-
versity ensured secure, anonymous data storage
and transportation, retaining anonymised data for
at least 10 years post-study.

10 Limitations

While this study provides valuable insights into
the effectiveness of different acoustic perception



models for simulating teacher-learner interaction
in L2 English pronunciation learning, there are
several limitations to consider.

First, the study focuses on a specific group of
learners, Chinese native speakers, and the findings
may not generalise to learners from other language
backgrounds. Future research should investigate
the performance of these models with a more di-
verse range of L2 learners.

Second, the corpus used in this study consists
of a limited number of pseudo-words, which may
not fully capture the complexity of English pronun-
ciation. Expanding the corpus to include a larger
variety of words and phonemes could provide a
more comprehensive evaluation of the models’ per-
formance.

Third, the study relies on the Levenshtein dis-
tance as the primary evaluation metric, which may
not fully capture the nuances of acoustic perception.
Incorporating additional metrics, such as phoneme
confusion matrices (Leijon et al., 2015), could pro-
vide a more comprehensive assessment of the mod-
els’ performance.

Finally, the study does not address the integra-
tion of these acoustic perception models into a
complete simulation of teacher-learner interaction.
Future work should investigate how these models
can be incorporated into a larger framework that
includes other components, such as feedback gener-
ation and learner modelling, to provide a more com-
prehensive simulation of L2 pronunciation learn-
ing.
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