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Abstract

This study presents a comparative analysis001
of acoustic perception models in simulating002
teacher-learner interaction for second language003
(L2) English pronunciation learning, focusing004
on Chinese native speakers. Three acoustic per-005
ception models are evaluated: an English model006
(M1) based on the XLS-R framework and fine-007
tuned on the TIMIT corpus, a non-native model008
(M2) also based on XLS-R but fine-tuned on009
the L2-ARCTIC corpus, and a Chinese model010
(M3) using a sequence-to-sequence architec-011
ture with connectionist temporal classification012
(CTC) fine-tuned on the AISHELL-1 corpus.013
A corpus of seven pseudo-words designed to014
challenge Chinese learners of English is used015
to assess the models’ performance in captur-016
ing the acoustic perception of L2 learners. The017
Levenshtein distance between recognised se-018
quences and reference sequences for Chinese019
and English speakers is employed as an eval-020
uation metric, along with the ratio of these021
distances. Results show that the non-native022
model (M2) outperforms the English (M1) and023
Chinese (M3) models in minimising the Lev-024
enshtein distance for Chinese speakers and025
achieves the lowest ratio, indicating its effec-026
tiveness in modelling the acoustic perception027
of L2 learners. These findings suggest that in-028
corporating non-native speech data in acoustic029
perception models can improve the simulation030
of teacher-learner interaction in L2 pronuncia-031
tion learning.032

1 Introduction033

Acoustic perception plays a crucial role in second034

language (L2) pronunciation learning, as it directly035

influences learners’ ability to accurately perceive036

and produce sounds in the target language (Mitterer037

and Ernestus, 2008). Computational modelling of038

L2 acoustic perception offers valuable insights into039

the underlying processes and challenges faced by040

learners, enabling the development of more effec-041

tive language learning technologies and pedagog-042

ical approaches. While several approaches have 043

been proposed for modelling L2 acoustic percep- 044

tion, such as using native speech models (Kanters 045

et al., 2009; Witt and Young, 2000) or specialised 046

L2 acoustic models (Franco et al., 2010; Li et al., 047

2016), these methods have limitations in capturing 048

the specific challenges faced by L2 learners from 049

different first language (L1) backgrounds. Native 050

speech models may not fully account for the percep- 051

tual difficulties experienced by L2 learners, while 052

specialised L2 models often require large amounts 053

of L2 speech data, which may not be readily avail- 054

able for all language pairs or proficiency levels. 055

This study addresses this research gap by inves- 056

tigating the effectiveness of non-native acoustic 057

perception models, specifically for Chinese learn- 058

ers of English. This work advances the state-of- 059

the-art in computational modelling of L2 acoustic 060

perception by leveraging self-supervised models 061

like XLS-R (Baevski et al., 2020) and fine-tuning 062

them on native and non-native speech data. The 063

novel approach of focusing on a specific L1 back- 064

ground (Chinese) allows for a more targeted eval- 065

uation of the models’ performance and provides 066

insights into the perceptual patterns of this learner 067

population. The findings of this study demonstrate 068

that non-native acoustic perception models outper- 069

form native and L1-specific models in capturing 070

the perceptual patterns of Chinese learners of En- 071

glish. Specifically, the results show that a model 072

fine-tuned on non-native speech data (L2-ARCTIC 073

corpus) achieves the lowest Levenshtein distance 074

and ratio when compared to native English and Chi- 075

nese models, indicating its effectiveness in mod- 076

elling the acoustic perception of Chinese L2 learn- 077

ers. These results have significant implications for 078

the development of personalised language learning 079

technologies and inform pedagogical approaches 080

for L2 pronunciation training. The remainder of 081

this paper is organised as follows: Section 2 pro- 082

vides an overview of L2 acoustic perception and 083
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its challenges, followed by a discussion of com-084

putational acoustic perception models in Section085

3. Section 4 describes the simulation of teacher-086

learner interaction, and Section 5 details the imple-087

mentation of the acoustic perception models used088

in this study. The corpus and evaluation method-089

ology are presented in Section 6, followed by the090

results and discussion in Section 7. Sections 8 and091

9 compare our approach with other methods and092

discuss the limitations of the study. Finally, Section093

10 concludes the paper and outlines future research094

directions.095

2 L2 Learners Acoustic Perception096

Understanding acoustic perception is crucial in097

L2 learning due to its direct influence on produc-098

tion (Mitterer and Ernestus, 2008). L2 learners099

must learn to perceive and produce sounds that100

may not exist or may be articulated differently in101

their first language (L1). Many challenges faced102

by L2 learners in accurately perceiving and produc-103

ing the sounds of the target language arise from104

differences in phonetic systems and phonological105

rules between their L1 and the L2. For example,106

English speakers learning Chinese may struggle107

to distinguish between the contrasting phonemic108

tones (Hao, 2012), while Chinese speakers learning109

English may have difficulty differentiating between110

similar English consonant sounds like /r/ and /l/111

(Radant et al., 2009).112

Another aspect of acoustic perception is the abil-113

ity to perceive and produce correct intonation pat-114

terns and stress. Intonation plays a crucial role115

in conveying meaning and pragmatic nuances in116

speech, and L2 learners need to develop sensitiv-117

ity to the intonational contours of the target lan-118

guage. Stress patterns also vary across languages,119

and learners must learn to identify and reproduce120

the appropriate stress patterns to convey meaning121

accurately (Liu and Reed, 2021; Braun et al., 2014;122

Altmann, 2006).123

Furthermore, L2 learners may face challenges124

related to the rhythm and timing of speech. Lan-125

guages vary in their rhythmic patterns, with some126

languages exhibiting syllable-timed rhythm (e.g.,127

French, Spanish) and others stress-timed rhythm128

(e.g., English) (Barry, 2007; Ordin and Polyan-129

skaya, 2015). Various factors influence the de-130

velopment of acoustic perception in L2 learners,131

including age of learning, exposure to the target132

language, individual differences in auditory pro-133

cessing abilities, and instructional methods (Saito 134

et al., 2024). Effective learning strategies for im- 135

proving acoustic perception in L2 learners include 136

explicit phonetic instruction, focused listening prac- 137

tice, auditory discrimination tasks, and feedback 138

on pronunciation accuracy (Kissling, 2015). Ex- 139

perimental research methods using psychophysical 140

techniques to measure L2 acoustic perception in- 141

volve conducting controlled experiments with hu- 142

man participants to investigate how they perceive 143

and process acoustic features of a second language 144

(Sakai and Moorman, 2018). These methods in- 145

clude discrimination tasks, wherein participants 146

are presented with pairs of stimuli (e.g., pairs of 147

phonemes or words) that differ along some acous- 148

tic dimension. Subsequently, participants are asked 149

to indicate whether the stimuli in each pair are the 150

same or different (Aliaga-García and Mora, 2009; 151

Zhen and Pratt, 2023). Additionally, ABX tasks 152

involve presenting participants with three stimuli 153

(A, B, and X), where A and B are similar stimuli, 154

and X is either identical to A or B. Participants 155

are then asked to indicate whether X matches A or 156

B. This task aids in assessing discrimination abili- 157

ties while controlling for perceptual biases (Green- 158

away, 2017; Melnik-Leroy et al., 2022). Despite 159

the insights provided by experimental research us- 160

ing psychophysical techniques, these methods have 161

limitations in fully capturing the complexity of L2 162

acoustic perception. Various factors influence the 163

development of acoustic perception in L2 learners, 164

posing challenges for comprehensive consideration 165

in experimental settings. Furthermore, experimen- 166

tal methods employing psychophysical techniques 167

may require participants to make fine-grained judg- 168

ments about subtle acoustic differences, demanding 169

significant cognitive effort and potentially failing 170

to fully capture participants’ naturalistic percep- 171

tion of L2 speech (Leow, 2015). Consequently, 172

researchers have increasingly turned to computa- 173

tional acoustic perception models to address these 174

limitations and provide deeper analysis into L2 175

speech perception. 176

3 Computational Acoustic Perception 177

Models 178

Computational acoustic perception models aim to 179

replicate how humans perceive and process sound 180

(Jepsen et al., 2008; Kröger et al., 2009). These 181

models integrate principles from signal processing 182

and neuroscience to understand and interpret acous- 183
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tic signals. The computational auditory signal-184

processing and perception model (CASP) (Jepsen185

et al., 2008) is an adaptation of an earlier model186

developed by Dau et al. in 1997 (Dau et al., 1997).187

The CASP model includes an outer and middle-188

ear transformation, along with a nonlinear cochlear189

filtering stage known as the dual resonance nonlin-190

ear (DRNL) filterbank, which replaces the linear191

gammatone filterbank used in the original model.192

The DRNL filterbank better captures the nonlinear193

processing that occurs in the human cochlea, allow-194

ing for more accurate modelling of auditory per-195

ception. Other computational models of auditory196

perception, such as those proposed by Meddis and197

O’Mard (1997), Zilany and Bruce (2006), and Mao198

and Carney (2015), aim to construct comprehen-199

sive models that capture essential acoustic features.200

These models can be utilised to explore various201

aspects of human auditory perception, including202

pitch perception, temporal processing, and the per-203

ception of complex sounds. In addition to models204

specifically designed for auditory perception, many205

speech models, such as automatic speech recogni-206

tion (ASR) and speech synthesis, employ acoustic207

feature models that focus on extracting relevant fea-208

tures from acoustic signals crucial for perception.209

Recent advancements in self-supervised speech210

representation learning (Close et al., 2023; Mo-211

hamed et al., 2022) have enabled these models to212

autonomously learn to discern acoustic features213

and categorise or predict various perceptual at-214

tributes without the need for explicit labelling. By215

training on large, task-specific corpora, these self-216

supervised models can capture rich representations217

of speech that are useful for a wide range of down-218

stream tasks, including acoustic perception mod-219

elling. Furthermore, other work, such as that by220

Islam et al. (2023), utilises automatic phoneme221

recognition as an acoustic perception model. This222

approach leverages the ability of phoneme recog-223

nition systems to identify and classify individual224

speech sounds, providing a framework for mod-225

elling the perception of phonetic units in speech.226

The details of this work and its implications for L2227

pronunciation learning will be elaborated on in the228

following section.229

Overall, computational acoustic perception mod-230

els offer a powerful tool for understanding and231

simulating human auditory perception. By combin-232

ing insights from signal processing, neuroscience,233

and machine learning, these models can provide234

valuable insights into the mechanisms underlying235

acoustic perception and inform the development 236

of more effective strategies for L2 pronunciation 237

learning. 238

4 Simulation of Teacher-Learner 239

Interaction 240

The system design depicted in Figure 1 presents 241

the general framework of teacher and learner in- 242

teraction in English pronunciation learning, as in- 243

troduced in (Islam et al., 2023), inspired by stud- 244

ies on speech learning models (Bohn and Munro, 245

2007; Flege and Bohn, 2021). The system is di- 246

vided into two parts: the teacher model and the 247

learner model, each consisting of multiple sub- 248

models. This work will focus on different imple- 249

mentations of the acoustic perception model in the 250

learner model.

Figure 1: The model for teacher-learner interaction in
English pronunciation learning by Islam et al. (2023).

251

4.1 Teacher Model 252

Inspired by research in teacher modelling (Shadiev 253

and Yang, 2020; Slavuj et al., 2015), the teacher 254

model in Figure 1 simulates an English native 255

speaker and employs repetition as a teaching strat- 256

egy. The teacher model is composed of a pro- 257

nunciation assessment model, which receives the 258

verbal response from the learner model, assesses 259

the pronunciation, and sends the score to the feed- 260

back generator model. The pronunciation assess- 261

ment model is implemented as Goodness Of Pro- 262

nunciation (GOP), which was initially introduced 263

by Kim et al. (1997) and improved by Sudhakara 264

et al. (2019), using the Kaldi tool (Povey et al., 265

2011) trained on the WSJCAM0 British English 266

corpus (Robinson et al., 1995). The learner tracing 267

model aims to understand how the learner model 268

engages through the learning process. It is a rule- 269

based model that takes the score as input, updates 270

the learner state, and generates feedback based on 271
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the learner state. The corrective feedback synthe-272

sizer model generates verbal feedback using an273

end-to-end text-to-speech synthesis model, trained274

using Fastspeech2 (Ren et al., 2020) with a publicly275

available English speech corpus LJ that comprises276

13,100 short audio clips by a single speaker (Ito,277

2017).278

4.2 Learner Model279

The learner model in Figure 1 simulates a Chinese-280

speaking learner in the early stages of English learn-281

ing. As the learner engages with the teacher model,282

verbal feedback is perceived and processed into283

phonemic transcriptions by an acoustic perception284

model, which will be discussed in more detail in285

Section 5. The second model is the knowledge286

model, which is a rule-based model informed by287

the perceived phonemic transcriptions and updated288

by a learner knowledge model to generate the re-289

sponse. The response synthesizer employs Fast-290

speech2 (Ren et al., 2020) trained on the AISHELL-291

3 corpus (Shi et al., 2020).292

5 Acoustic Perception Model293

Implementation294

The main goal of the acoustic perception model in295

Figure 1 is to emulate the perception of non-native296

speakers. This is implemented in the form of phone297

recognises trained on different languages, which298

are bound to make errors when trying to recognise299

the verbal feedback of teachers, in this case, the300

feedback from the teacher model in the English301

language. These models are built for capturing a302

broad spectrum of acoustic features, encompass-303

ing phonetic variations, prosodic patterns, intona-304

tions, spectral characteristics, temporal dynamics,305

and the articulatory differences that exist between306

languages, even on identical phonemic representa-307

tions.308

Word-level automatic speech recognition (ASR)309

focuses on recognising entire words, whereas310

phoneme-level recogniser focus on recognising311

individual phonetic units. Phoneme-level recog-312

nises are generally more flexible when dealing with313

speech in different languages or with unfamiliar314

words, as they operate at a more fundamental level315

of linguistic representation. The performance of316

these models is evaluated in terms of phone error317

rate (PER), which is the percentage of incorrectly318

recognised phone sequences in relation to the ref-319

erence recognised phone sequences. The use of320

phoneme-level recogniser as acoustic perception 321

models in the simulation of teacher-learner inter- 322

action offers several advantages. By modelling 323

perception at the phonetic level, these recogniser 324

can capture the fine-grained acoustic differences 325

between the learner’s native language and the tar- 326

get language. This allows for a more accurate rep- 327

resentation of the challenges faced by non-native 328

speakers in perceiving and processing the sounds 329

of the target language. 330

Furthermore, by training these recogniser on dif- 331

ferent languages, the acoustic perception model 332

can simulate the influence of the learner’s native 333

language on their perception of the target lan- 334

guage. This is particularly relevant in the con- 335

text of Chinese-speaking learners acquiring En- 336

glish pronunciation, as the phonetic inventories 337

and phonological rules of these two languages dif- 338

fer significantly. The incorporation of phoneme- 339

level recogniser as acoustic perception models in 340

the learner model enables a more realistic simu- 341

lation of the perceptual processes involved in L2 342

pronunciation learning. By capturing the errors and 343

variations in phonetic perception, this approach can 344

provide valuable insights into the challenges faced 345

by non-native speakers and inform the development 346

of more effective teaching strategies and feedback 347

mechanisms in the teacher model. 348

5.1 English Acoustic Perception Model 349

The English acoustic perception model (M1) 350

is based on a large-scale pretrained foundation 351

model called XLS-R, which aims at cross-lingual 352

speech representation learning and builds upon the 353

Wav2Vec 2.0 framework (Baevski et al., 2020). 354

XLS-R has been trained on a diverse corpus en- 355

compassing 53 languages, totaling 56k hours of 356

speech data sourced from CommonVoice (Ardila 357

et al., 2019), BABEL (Roach et al., 1996), and 358

Multilingual LibriSpeech (Pratap et al., 2020). The 359

English acoustic perception model is fine-tuned on 360

the TIMIT corpus (Garofolo et al., 1993), which 361

is widely used for speech recognition and linguis- 362

tic research purposes. The TIMIT corpus contains 363

phoneme-level transcriptions and recordings of 630 364

speakers from various regions of the United States, 365

representing a diversity of demographics such as 366

gender, race, and age. The model obtained a PER 367

of 7.996%. 368
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5.2 Non-Native Acoustic Perception Model369

The architecture of the non-native acoustic percep-370

tion model (M2) is also based on the large-scale371

pretrained foundation model XLS-R. However, the372

model is now fine-tuned on the L2-ARCTIC cor-373

pus, which is specifically tailored for non-native374

English speech research (Zhao et al., 2018). The375

L2-ARCTIC corpus contains phoneme-level tran-376

scriptions and comprises recordings from 24 non-377

native speakers of English, originating from diverse378

language backgrounds including Hindi, Korean,379

Chinese, Spanish, Arabic, and Vietnamese. Within380

each language group, recordings are available from381

two male and two female speakers, ensuring a bal-382

anced representation across genders and languages.383

The model achieved a PER of 12.8%.384

5.3 Chinese Acoustic Perception Model385

The Chinese acoustic perception model (M3) is386

a sequence-to-sequence model with connectionist387

temporal classification (CTC) based on a universal388

phone recognizer that aims to deploy recognition389

with a multilingual (universal) allophone system390

(Li et al., 2020). It was trained on data from eleven391

languages, including English, Japanese, Chinese,392

and Tagalog. The model architecture consists of a393

bidirectional Long Short-Term Memory (LSTM)394

encoder (Malhotra et al., 2015). The acoustic395

model is fine-tuned on AISHELL-1, an open-396

source Chinese speech corpus (Bu et al., 2017) con-397

taining 400 speakers and over 170 hours of Chinese398

speech data. Since AISHELL-1 does not contain399

phoneme-level transcriptions, Kaldi (Povey et al.,400

2011) speech recognition tools are used to extract401

the time alignment to obtain phoneme transcrip-402

tions. The corpus with the phoneme transcription403

is then used to fine-tune the model (Li et al., 2020).404

The model obtained a PER of 22.3%.405

These three acoustic perception models, repre-406

senting native English, non-native English, and407

Chinese perception, offer a diverse set of tools for408

simulating and understanding the challenges faced409

by learners in perceiving and processing the sounds410

of the target language. By incorporating these mod-411

els into the learner model of the teacher-learner412

interaction framework, researchers can gain valu-413

able insights into the perceptual processes involved414

in L2 pronunciation learning and develop more415

effective teaching strategies and feedback mecha-416

nisms.417

6 Corpus Description 418

Figure 2: The distribution of participant’s age. The age
range from 20 to 40.

6.1 Pseudo-Word Design and Validation 419

In examining L2 pronunciation perception and pro- 420

duction, a particular group of seven pseudo-words 421

was selected to ensure that they were not influenced 422

by written forms or any prior knowledge of pronun- 423

ciation. Each word consists of 6-7 phonemes. The 424

words were created to include phonemes that are 425

known to be difficult for Chinese learners, such as 426

/l/, /r/, /S/, /g/, /v/, and /D/ (Zhang and Xiao, 2014; 427

Richards, 2011). Two experienced English pronun- 428

ciation instructors were consulted to validate the 429

suitability of the pseudo-words for the study. A 430

pilot test with five Chinese learners of English was 431

conducted to ensure that the words were challeng- 432

ing but not impossible to pronounce. The experi- 433

mental word list is presented in Table 1 along with 434

with IPA transcription. 1. 435

6.2 Data Collection 436

The study involved 240 participants, including 120 437

Chinese native speakers (ChS) and 120 English na- 438

tive speakers (EnS). Among them, 150 participants 439

were aged between 20 and 30, while 90 participants 440

were aged between 31 and 40. The data collection 441

process was facilitated through a dedicated website 442

designed specifically for this purpose. 443

For each of the seven pseudo-words, participants 444

listened to the corresponding audio file and selected 445

the correct answer from three audio options. 446

1IPA (International Phonetic Alphabet) is a standardised
set of symbols used to represent the sounds of spoken lan-
guage, providing a clear and accurate way to transcribe the
pronunciation of words across different languages.
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Table 1: Experimental word list with word ID, pseudo-words, IPA transcription, and comments on the challenging
phonemes marked in the last column.

Word ID Pseudo-words IPA Comment
w1 RALISAR The inability to distinguish /l/ from /r/ and

/æ/ from /Ar/.
w2 SHEEBINGS The /S/ and the /g/ sound.
w3 BADUNLOT The final /t/ often becomes a glottal stop [P],

so the word may be recognised when read but
difficult to identify in spoken language.

w4 MASIGAN The /æ/ sound and the /g/ sound.
w5 NAVIKLY The /v/ sound and often use /w/ instead.
w6 TAGAMAUGH Words ending in "ugh" are sometimes a diph-

thong (e.g., though /D@U/) but could be the
sound /f/.

w7 HICKOMAY The diphthong /eI/. The weak vowel /2/ is in
the middle of the word.

6.2.1 Evaluation Metrics447

The Levenshtein distance (Levenshtein et al., 1966)448

was used to measure the similarity between the449

recognised phoneme sequences and the reference450

sequences for both ChS and EnS speakers. This451

distance calculates the minimum number of single-452

character edits (insertions, deletions, or substitu-453

tions) required to transform one string into another.454

A lower Levenshtein distance indicates a higher455

similarity between the sequences.456

To compare the models’ performance in relation457

to EnS, the ratio of the average Levenshtein dis-458

tance for ChS to the average Levenshtein distance459

for EnS was calculated. A lower ratio suggests that460

the model better captures the acoustic perception461

of ChS relative to EnS.462

Figure 3: Occurrence counts of different IPA transcripts
for pseudo-words. Each pair of bars represents the num-
ber of speakers, differentiated by color: skyblue for Chi-
nese speakers (ChS) and lightgreen for English speakers
(EnS). The IPA transcript in bold denotes the correct
answer.

Let M1, M2, and M3 be the three acoustic per- 463

ception models to be evaluated. For each pseudo- 464

word wi, i ∈ 1, 2, ..., 7, the most frequently se- 465

lected answer among the three options will serve as 466

the reference sequence, denoted as ri. The Leven- 467

shtein distance (Levenshtein et al., 1966) between 468

the recognised sequence by model Mj , j ∈ 1, 2, 3, 469

for pseudo-word wi and the reference sequence ri 470

of EnS is calculated as: 471

LDChS(Mj , wi) =
1

n

n∑
k=1

d(sjk, ri) (1) 472

where n is the number of speakers in ChS, sjk is 473

the recognised sequence by model Mj for speaker 474

k in ChS, and d(·, ·) is the Levenshtein distance 475

function. Similarly, the averaged phoneme distance 476

between the recognised sequence by model Mj for 477

pseudo-word wi and the reference sequence of EnS 478

is calculated as: 479

LDEnS(Mj , wi) =
1

m

m∑
k=1

d(sjk, ri) (2) 480

where m is the number of speakers in EnS. The 481

ratio between the two distances for model Mj and 482

pseudo-word wi is then calculated as: 483

R(Mj , wi) =
LDChS(Mj , wi)

LDEnS(Mj , wi)
(3) 484

The average ratio across all pseudo-words for 485

model Mj is: 486

R̄(Mj) =
1

7

7∑
i=1

R(Mj , wi) (4) 487
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The acoustic perception model with the lowest av-488

erage ratio R̄(Mj) will be considered the most suit-489

able for integration with the simulation model, as490

it maximises the similarity with ChS over EnS.491

6.2.2 Results492

The results demonstrate that the M2 outperforms493

M1 and M3 models in capturing the perceptual494

patterns of Chinese learners of English. Across495

all pseudo-words, M2 achieves the lowest average496

Levenshtein distance for Chinese speakers (2.87)497

and the lowest ratio (0.69) between the distances498

for Chinese and English speakers (Table 3).499

A closer examination of the results reveals that500

M2 is particularly effective in modelling the percep-501

tion of challenging phonemes for Chinese learners.502

For example, in pseudo-word w1 (/rælIsAr/), M2503

achieves a Levenshtein distance of 0.22 for Chi-504

nese speakers, compared to 0.42 for M1 and 0.48505

for M3 (Tables 2, 3, 4). This suggests that M2506

better captures the difficulty Chinese learners face507

in distinguishing between /l/ and /r/ sounds. Simi-508

larly, for pseudo-word w5 (/nævIkli/), M2 achieves509

a distance of 0.33 for Chinese speakers, while M1510

and M3 have distances of 0.42 and 0.51, respec-511

tively. This indicates that M2 is more sensitive to512

the challenges Chinese learners encounter with the513

/v/ sound, which is often substituted with /w/.514

Across all pseudo-words, M2 achieves the low-515

est average LDChS(Mj , wi) of 2.87, compared to516

3.56 for M1 and 4.5 for M3. Furthermore, the aver-517

age ratio R̄(Mj) provides insight into how well518

each model captures the acoustic perception of519

Chinese speakers relative to English speakers. A520

lower ratio indicates better performance in mod-521

elling the acoustic perception of Chinese speakers.522

M2 has the lowest ratio at 0.69, followed by M1523

at 0.73 and M3 at 0.85. Considering both the aver-524

age LDChS(Mj , wi) and the R̄(Mj) ratio, the non-525

native acoustic perception model (M2) emerges as526

the best choice for simulating the acoustic percep-527

tion of Chinese speakers learning English.528

7 Comparison with Other Approaches529

Several approaches have been proposed for mod-530

elling acoustic perception in L2 pronunciation531

learning, each with its own strengths and limita-532

tions. One common approach is the use of The533

goodness of pronunciation algorithm (GOP) trained534

on native speech data to evaluate L2 learners’ pro-535

nunciations (Kanters et al., 2009; Witt and Young,536

Table 2: Performance measures for the English acous-
tic perception model (M1). The Levenshtein distances
between the recognised sequences and the reference
sequences for Chinese speakers (ChS) and English
speakers (EnS) are denoted as LDChS(M1, wi) and
LDEnS(M1, wi), respectively. The average distances
across all pseudo-words and the ratio R̄(M1) are also
provided.

Word LDChS(M1, wi) LDEnS(M1, wi)

w1 0.42 0.85
w2 0.36 0.75
w3 0.39 0.73
w4 0.63 0.63
w5 0.42 0.57
w6 0.73 0.73
w7 0.61 0.61

Average 3.56 4.87
R̄(M1) 0.73

Table 3: Performance measures for the non-native acous-
tic perception model (M2). The Levenshtein distances
between the recognised sequences and the reference
sequences for Chinese speakers (ChS) and English
speakers (EnS) are denoted as LDChS(M2, wi) and
LDEnS(M2, wi), respectively. The average distances
across all pseudo-words and the ratio R̄(M2) are also
provided.

Word LDChS(M2, wi) LDEnS(M2, wi)

w1 0.22 0.65
w2 0.26 0.52
w3 0.29 0.63
w4 0.51 0.51
w5 0.33 0.58
w6 0.61 0.61
w7 0.65 0.65

Average 2.87 4.15
R̄(M2) 0.69

7



Table 4: Performance measures for the Chinese acous-
tic perception model (M3). The Levenshtein distances
between the recognised sequences and the reference
sequences for Chinese speakers (ChS) and English
speakers (EnS) are denoted as LDChS(M3, wi) and
LDEnS(M3, wi), respectively. The average distances
across all pseudo-words and the ratio R̄(M3) are also
provided.

Word LDChS(M3, wi) LDEnS(M3, wi)

w1 0.48 0.80
w2 0.53 0.75
w3 0.57 0.69
w4 0.77 0.77
w5 0.51 0.61
w6 0.78 0.78
w7 0.86 0.86

Average 4.5 5.26
R̄(M3) 0.85

2000). While this approach provides a straightfor-537

ward way to assess pronunciation quality, it may538

not fully capture the specific challenges faced by539

L2 learners, as it relies on models trained on native540

speech patterns.541

Another approach is the use of specialised acous-542

tic models trained on L2 speech data (Franco et al.,543

2010; Li et al., 2016). These models are designed544

to capture the specific acoustic characteristics of545

L2 learners’ speech and have been shown to im-546

prove the performance of pronunciation assessment547

systems. However, these models often require a548

large amount of L2 speech data, which may not549

always be available for all language pairs or profi-550

ciency levels. In contrast, our proposed approach551

leverages pre-trained, self-supervised models like552

XLS-R, which are trained on a large amount of mul-553

tilingual speech data. By fine-tuning these models554

on smaller amounts of native and non-native speech555

data, we can create acoustic perception models that556

are better suited to capturing the perceptual chal-557

lenges faced by L2 learners.558

8 Conclusions559

This study demonstrates the importance of con-560

sidering non-native speech data when developing561

acoustic perception models for simulating teacher-562

learner interaction in L2 English pronunciation563

learning. By comparing the performance of native564

English, non-native, and Chinese acoustic percep-565

tion models, it found that the non-native model566

M2 fine-tuned on the L2-ARCTIC corpus outper- 567

formed the other models in capturing the percep- 568

tual patterns of Chinese learners of English. This 569

finding highlights the effectiveness of incorporat- 570

ing non-native speech data in modelling L2 acous- 571

tic perception. The superior performance of the 572

non-native acoustic perception model has signif- 573

icant implications for L2 pronunciation teaching 574

and learning. By incorporating models like M2 575

into CAPT systems, we can develop more effec- 576

tive tools that provide targeted feedback to Chinese 577

learners of English. For instance, when a learner 578

mispronounces a word containing /l/ or /r/, the sys- 579

tem can identify the specific error and offer per- 580

sonalised guidance on how to produce the correct 581

sound. This can lead to more efficient and engaging 582

pronunciation practice, as learners receive immedi- 583

ate and relevant feedback. Future research should 584

build upon these findings by investigating the per- 585

formance of non-native acoustic perception models 586

with a more diverse range of L2 learners, expand- 587

ing the corpus to include a larger variety of words 588

and phonemes, and exploring additional evaluation 589

metrics. Moreover, integrating these acoustic per- 590

ception models into a complete simulation frame- 591

work of teacher-learner interaction would provide 592

a more comprehensive understanding of their im- 593

pact on L2 pronunciation learning. In conclusion, 594

this study underscores the potential of non-native 595

acoustic perception models in advancing compu- 596

tational modelling of L2 speech perception and 597

informing the development of effective language 598

learning technologies. As research in this field con- 599

tinues to progress, the insights gained from this 600

work can contribute to creating more adaptive and 601

personalised tools to support L2 learners in their 602

pronunciation learning journey. 603

9 Preserving Anonymity and Ethics 604

Participants received Participant Information 605

Sheets and Consent Forms approved by the Univer- 606

sity Research Ethics Committee. These documents 607

outlined project details, stressed voluntary partici- 608

pation, and provided withdrawal options. The uni- 609

versity ensured secure, anonymous data storage 610

and transportation, retaining anonymised data for 611

at least 10 years post-study. 612

10 Limitations 613

While this study provides valuable insights into 614

the effectiveness of different acoustic perception 615

8



models for simulating teacher-learner interaction616

in L2 English pronunciation learning, there are617

several limitations to consider.618

First, the study focuses on a specific group of619

learners, Chinese native speakers, and the findings620

may not generalise to learners from other language621

backgrounds. Future research should investigate622

the performance of these models with a more di-623

verse range of L2 learners.624

Second, the corpus used in this study consists625

of a limited number of pseudo-words, which may626

not fully capture the complexity of English pronun-627

ciation. Expanding the corpus to include a larger628

variety of words and phonemes could provide a629

more comprehensive evaluation of the models’ per-630

formance.631

Third, the study relies on the Levenshtein dis-632

tance as the primary evaluation metric, which may633

not fully capture the nuances of acoustic perception.634

Incorporating additional metrics, such as phoneme635

confusion matrices (Leijon et al., 2015), could pro-636

vide a more comprehensive assessment of the mod-637

els’ performance.638

Finally, the study does not address the integra-639

tion of these acoustic perception models into a640

complete simulation of teacher-learner interaction.641

Future work should investigate how these models642

can be incorporated into a larger framework that643

includes other components, such as feedback gener-644

ation and learner modelling, to provide a more com-645

prehensive simulation of L2 pronunciation learn-646

ing.647
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