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Abstract

Despite the success of Large Language Models (LLMs) on various tasks following
human instructions, controlling model generation to follow strict constraints at
inference time poses a persistent challenge. In this paper, we introduce Ctrl-G, a
neuro-symbolic framework that enables tractable and adaptable control of LLM gen-
eration to follow logical constraints reliably. Ctrl-G combines any production-ready
LLM with a Hidden Markov Model (HMM), guiding LLM outputs to adhere to
logical constraints represented as deterministic finite automata. We show that Ctrl-
G, when a TULU2-7B model is coupled with a 2B-parameter HMM, outperforms
GPT4 in text editing: on the task of generating text insertions/continuations follow-
ing logical constraints, our approach achieves over 30% higher satisfaction rate in
human evaluation. When applied to medium-size language models (e.g., GPT2-
large), Ctrl-G also beats its counterparts on standard benchmarks by large margins.
Additionally, as a proof-of-concept study, we use Ctrl-G to assist LLM reasoning
on the GSM benchmark, foreshadowing the application of Ctrl-G, as well as other
constrained generation approaches, beyond traditional language generation tasks.

1 Introduction

LLM HMM 
1. distill

3. inference-time guidance

conditioning on logical constraints…

DFA 

2. constraint specification

❄ ❄

outputs satisfying the constraints

Figure 1: Ctrl-G pipeline; both the LLM
and the HMM are frozen once trained.

Large language models (LLMs) have achieved remarkable
performance on a wide range of challenging language gen-
eration tasks including translation [4, 48, 41], summariza-
tion [49], and open-domain creative generation [45, 38].
Nevertheless, many downstream applications benefit from
fine-grained control of LLMs to follow logical constraints,
e.g., avoid using bad words for detoxification [9, 1] or
inserting text that is coherent with contexts for document
revision [16]. Despite the recent advancement of LLM
finetuning techniques such as instruction-tuning [5, 42, 35]
and preference optimization [28, 33], LLMs still fail to
reliably follow logical constraints [37, 20].

The major difficulty of achieving constrained generation from LLMs lies in the intractability of
conditioning LLMs on logical constraints [34]. One recently proposed framework called GeLaTo [47]
uses tractable generative models, which can be conditioned on logical constraints efficiently, to
guide autoregressive generation from LLMs. Though GeLaTo guarantees that the logical constraints
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 from CtrlG import *

 prefix = “First they defeated a …”
 suffix = “are few humans left …”

 dfa_list = [
   DFA_all_of(“alien mothership”, 
              “far from over”),
   DFA_word_count(25, 30),
 ]
 dfa = DFA_logical_and(dfa_list)

 lp = CtrlGLogitsProcessor(
        dfa, hmm, prefix, suffix)
 llm.generate(logits_processor=lp)

5 lines of code!

“First they've defeated a small 
squad [BLANK] are few humans 
left, and despite their magical 
power, their numbers are 
getting fewer.”

User: given the following 
context, generate infilling text 
for [BLANK] using key phrases 
“alien mothership”, “far from 
over”; generated text must 
contain 25 - 30 words.

“First they've defeated a 
small squad of aliens, then a 
larger fleet of their ships. 
Eventually they've even 
managed to take down the 
alien mothership. But their 
problems are far from over. 
There are few humans left, 
and despite their magical 
power, their numbers are 
getting fewer.”

Figure 2: An example usage of Ctrl-G for text insertion with multiple constraints.

will be satisfied, it only works for the keyword-inclusion constraint. Significantly generalizing the
GeLaTo framework, we propose Ctrl-G (shorthand for controllable generation while mimicking the
keyboard shortcuts Ctrl-C and Ctrl-V) for reliable, scalable and adaptable control of LLMs to
follow logical constraints. Ctrl-G consists of three major steps (see Fig. 1): (1) distillation: given a
LLM, we distill a Hidden Markov Model as its white-box approximation; (2) constraint specification:
we construct a deterministic finite automaton (DFA) to (compactly) represent the desired logical
constraint; (3) inference: we condition the HMM on the DFA-specified constraint and compute this
conditional probability to steer LLM generation towards satisfying the constraint.

Ctrl-G3 has three major advantages compared to its counterparts: (1) the desired logical constraints
are guaranteed to be satisfied [47]; (2) once we have the distilled HMM, it can be applied to arbitrary
constraints without retraining; (3) Ctrl-G works for any constraints specified as DFAs, which can be
easily constructed for various applications by leveraging existing algorithms.

We evaluate Ctrl-G on the task of text editing: in the domain of story writing, we evaluate models’
ability to generate suggestions for text insertions/continuations under combinations of logical con-
straints (e.g. keyphrase inclusion and length control; see Fig. 2). Human evaluation shows that Ctrl-G,
where a TULU2-7B model [13] is combined with a 2B-parameter HMM, outperforms prominent
LLMs including GPT3.5 and GPT4 [27] by over 30% in overall satisfaction rate (i.e., percentage
of the generated text that is not only fluent but also satisfies the constraints). We note that as the
constraints become more complex, while the generation quality of GPT4 declines, Ctrl-G consistently
produces high-quality text, highlighting its strong generalizability to complex constraints. Even when
no constraint is present, Ctrl-G still matches with the generation quality of GPT4 in text insertion.

In addition, we demonstrate the extensive adaptability of Ctrl-G on two commonly used benchmarks:
commonsense generation [18] and text infilling [7]. When applied to variants of the GPT2 models,
Ctrl-G outperforms prior constrained generation approaches by producing outputs of substantially
higher quality while achieving 100% constraint satisfaction.

To further explore the potential of Ctrl-G, as a proof-of-concept, we conduct an empirical study on the
Grade School Math (GSM) benchmark [6]; here, we use Ctrl-G to assist the LLM reasoning process
by enforcing keyphrase-inclusion constraints. Performance improvement suggests the potential of
Ctrl-G in applications of a scope broader than the traditional constrained generation tasks.

2 Preliminaries

In this section, we briefly summarize the background for (logically-)constrained generation and the
basics for Hidden Markov Models. Notations introduced here will be used throughout the paper.

Constrained generation For simplicity, we assume that the lengths of token sequences generated by
LLMs are always bounded by some number n and denote the LLM distribution as plm(x1:n)

4. Given

3Code available at https://github.com/joshuacnf/Ctrl-G.
4Sequences padded to the length of n tokens.
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logical constraint α, our goal is to generate from plm(x1:n | α), which decomposes autoregressively:

plm(x1:n | α) =
∏

t
plm(xt | x<t, α), where plm(xt | x<t, α) ∝ plm(xt | x<t) · plm(α | xt, x<t);

that is, given that we have generated the first t− 1 tokens x<t, we want to generate the next token xt

from plm(xt | x<t) · plm(α | xt, x<t). The first term plm(x | x<t) is just the next-token distribution of
the LLM, but the marginal probability plm(α | xt, x<t), which characterizes how likely the constraint
α will be satisfied in the future, cannot be efficiently computed; specifically,

plm(α | xt, x<t) =
∑

x>t s.t. x1:n satisfies α
p(x>t | xt, x<t);

that is, we need to marginalize over all possible future sequences x>t such that, together with x≤t,
satisfy α. For example, say α is the constraint that the phrase “in the park” must appear at the end of
the generated text; to compute the desired marginal probability, we need to enumerate over all future
token sequences with this phrase at the end, and there are exponentially many of them.

Prior work To solve the problem of constrained generation, one line of work proposes search-based
decoding algorithms like NeuroLogic Decoding [22, 21], which explicitly performs heuristic search
to find high-probability token sequences that would (partially) satisfy the logical constraint; however
such methods scale poorly because the search space grows exponentially with respect to the sequence
length. The other line of works including GeDi [15], FUDGE [44] and NADO [25] train auxiliary
neural classifiers to approximate the intractable term plm(α | xt, x<t); however, they do not guarantee
that the constraints will be satisfied and the classifiers need to be retrained for different constraints.
Some other methods use approximate inference techniques (e.g., sequential Monte Carlo sampling)
to approximate the intractable conditional distributions [30, 11, 17], which provide no guarantee on
the convergence rate and often suffer from the high-variance of sampling.

From GeLaTo to Ctrl-G A recent framework called GeLaTo [47] uses tractable generative models,
in particular, Hidden Markov Models (HMMs), to guide LLM generation to satisfy the given logical
constraints. Specifically, GeLaTo first (1) distills an HMM phmm(x1:n) to approximate the LLM
distribution plm(x1:n) and then (2) computes phmm(α|xt, x<t) as an approximation for plm(α|xt, x<t).
Compared to its counterparts, GeLaTo guarantees that the constraints will be satisfied. Nevertheless,
two major questions remain unanswered, limiting its downstream applications:

• GeLaTo only handles the keyword-inclusion constraint and it is unclear whether phmm(α|xt+1, x1:t)
can be tractably computed for other logical constraints;

• despite the success of GeLaTo on language models at the scale of 0.1 billion parameters, it is
unclear whether the assumption phmm(α | x≤t)≈plm(α | x≤t) would still hold for the more recent
LLMs (e.g., Llama2), which have over 100 times more parameters.

We propose Ctrl-G as a generalization of GeLaTo and give positive answers to both questions.

Hidden Markov Models A Hidden Markov Model (HMM) [32] represents a joint probability
distribution over n observed variables x1:n and n hidden variables z1:n. Specifically, for language
modeling, xt represents the token at position t and zt is the corresponding hidden state; zt takes values
in {1, 2, . . . , h}, where h is the number of hidden states. An HMM models the joint distribution:

p(x1:n, z1:n) = p(x1 | z1) · p(z1) ·
∏

2≤t≤n
p(xt | zt) · p(zt | zt−1);

in particular, the parameters of an HMM are given by the initial probability p(z1), the emission matrix
p(xt|zt) and the transition matrix p(zt+1|zt); the number of parameters of HMMs grows quadratically
with respect to h. To perform inference on HMMs efficiently, we leverage the Markov property:
p(x≥t | zt, x<t)=p(x≥t | zt). For example, we can efficiently compute p(x≤t) =

∑
zt
p(x≤t, zt) by

the following recurrence relation, referred to as the forward algorithm [32]:

p(x≤t, zt)=
∑

1≤zt−1≤h
p(xt | zt) · p(zt | zt−1) · p(x≤t−1, zt−1).

3 Tractable probabilistic reasoning over logical constraints

The Ctrl-G pipeline consists of three steps (Fig. 1): (1) distillation: we train an HMM on samples
drawn from the LLM to minimize their KL-divergence; (2) constraint specification: we construct a
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A B“gets”

“gets” ≠

“cold”

“gets” *

“gets” or “cold” ≠

initial state accept state(s)

C

dfa_graph = { 
“edges”: [ 

(A, A, “gets”),  
(A, B, “gets”), 
(B, A, “gets” or “cold”),  
(B, B, “gets”),  
(B, C, “cold”), 
(C, C, *), 

], 
“initial_state”: A, 
“accept_states”: {C}, 

}

≠
≠

the weather gets cold in winter

AA A B C CC

Accepted by the DFA:

the weather gets warm in winter

AA A B A AA

Rejected by the DFA:

(a) DFA as graph.
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(c) Specifying a DFA for Ctrl-G

Figure 3: Example of a DFA representing the logical constraint that the phrase “gets cold” must
appear in the generated text along with pseudo-code for representing this DFA in Ctrl-G.

(compact) deterministic finite automaton (DFA) M representing the desired logical constraint α (i.e.,
M accepts x1:n if and only if x1:n satisfies α); (3) inference: for each step of the autoregressive
generation from the LLM, we compute phmm(α | xt, x<t) as an approximation for plm(α | xt, x<t)
and then sample the next token from

pctrl-g(xt | x<t, α) ∝ plm(xt | x<t) · phmm(α | xt, x<t); (1)

here, given that α is represented as M,

phmm(α | xt, x<t) =
∑

x>t s.t. M accepts x1:n

phmm(x>t | xt, x<t) (2)

For step (1) (distillation) we follow the procedure proposed by [47], and we describe step (2) and step
(3) in Sec. 3.1 and Sec. 3.2, respectively. In the end of this section, we briefly discuss the distinction
between pure logical reasoning and probabilistic reasoning over constraints.

3.1 Logical constraints as DFAs

Deterministic finite automata (DFAs) [24, 31, 10] are computation models that accept or reject some
given strings. Figure 3a shows an example DFA encoding the constraint that the phrase “gets cold”
must appear: it accepts all strings containing this phrase and rejects the others. The DFA consists
of 3 different states labeled A, B and C, where A is the initial state and C an accept state. The
states are connected by edges marked with sets of words (tokens, to be precise), which fully specify
the transition function of the DFA. A DFA decides whether a given string satisfies the constraint by
consuming it left-to-right while transitioning from state to state accordingly; in the end, the DFA
accepts the string if it is in an accept state. See Figure 3b for an example.
Definition 3.1. A deterministic finite automaton (DFA) is a tuple M=(Q,Σ, δ, q0, F ), where Q is a
finite set of states, Σ a finite set of symbols (i.e., tokens of an LLM), δ :Q×Σ→Q a transition function,
q0 an initial state, and F ⊆Q a set of accept states. A string of tokens w1w2 . . . wn is accepted by
M if there exists a sequence of states q0, q1 . . . qn s.t. δ(qi, wi+1)=qi+1 for 1≤ i≤n, qn∈F .

One question naturally arises: how can we come up with DFA representations for logical constraints?
We first note that in the real world, we can always assume that the lengths of the generated token
sequences are bounded by a constant; hence DFAs can represent any logical constraints defined on
this bounded set and the important question is whether we can do this efficiently. For many common
logical constraints, we can efficiently construct their DFA representations via existing algorithms. For
example, given a string consisting of n tokens, to encode the constraint that the string must appear,
we can construct a DFA of size O(n) by adapting the well-known Knuth–Morris–Pratt (KMP)
algorithm [14] for string matching (e.g., Fig. 3a). One can also easily specify compositional logical
constraints via DFAs by taking their intersection (logical and), union (logical or), complement (logical
negation) or concatenation, which we illustrate throughout the rest of this paper.

3.2 An efficient algorithm for marginalizing HMMs over DFAs

Now assume that we have a constraint α encoded as a DFA M with k states Q = {1, 2, · · · k} and m
edges, and we are given a distilled HMM with h hidden states. To sample the next token from Eq. 1,
we need to compute phmm(α | xt, x<t), which is the marginal probability over all strings accepted by
M (see Eq. 2). In the following, we describe a tractable algorithm for computing this probability.
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In autoregressive generation, M starts from the initial state and transitions according to the transition
function as each new token is generated; we denote the state of M after sampling the first t tokens
x≤t as st. In addition, we use the uppercase St to denote the random variable representing the state
of M after sampling the first t tokens: e.g., Sn ∈ F denotes the event that the token sequence x1:n is
accepted by M. Dropping the subscript “hmm” from phmm(α | xt, x<t), we compute

p(α | xt, x<t) = p(Sn∈F | xt, x<t) = p(Sn∈F, xt, x<t)/p(xt, x<t).

The denominator p(xt, x<t) can be easily computed by the forward algorithm [32]; so we compute

p(Sn∈F, xt, x<t) =
∑

zt
p(Sn∈F | zt, xt, x<t) · p(zt, xt, x<t)

=
∑

zt
p(Sn∈F | zt, st) · p(zt, xt, x<t)

(3)

the first step follows from the law of total probability and the second step follows from the Markov
properties of HMMs and DFAs, as well as the fact that st is fully determined by x≤t. Again, the term
p(zt, xt, x<t) can be computed by the forward algorithm and we reduce the problem to computing
the boxed term. We compute p(Sn ∈F | zt, st) for all 1≤ t≤n, 1≤ zt≤h and 1≤ st≤ k via the
following recurrence relation:

p(Sn∈F | zt, st) =
∑
zt+1

p(zt+1 | zt) ·
∑
st+1

p(Sn∈F | zt+1, st+1) ·
∑

xt+1∈edge(st,st+1)

p(xt+1 | zt+1); (4)

here edge(st, st+1) :={w : δ(st, w)=st+1} denotes the set of tokens w that transition M from st
to st+1. The base case of the recurrence relation is given by p(Sn∈F | zn, sn)=1 if sn ∈ F and 0
otherwise. We refer readers to the appendix for its derivation. Algorithm 1 shows the pseudo-code
for sampling from pctrl-g(x1:n | α) autoregressively, using the recurrence relations above.

Runtime analysis of Algorithm 1. To sample from Ctrl-G, the computation overhead (i.e. in addition
to the LLM inference cost) is dominated by the computation of p(Sn∈F | zt, st) for all t, zt and st
as shown in Eq. 4. Since

∑
xt+1∈edge(st,st+1)

p(xt+1 | zt+1) does not depend on t, we can precompute
and cache their values, resulting a one-time cost of O(mh|Σ|). Then, note that for st, we only
need to consider the st+1 where edge(st, st+1) ̸= ∅. Hence, fixing t and zt, when we compute
p(Sn∈F | zt, st) for all 1≤st≤k, we only need to (1) enumerate through 1≤zt+1≤h and (2) for
each zt+1, we only need to go through each edge exactly once. There are m edges in total, so it
follows that the cost is O(n ·h ·h ·m) = O(nmh2). The total time complexity is O(nmh2+mh|Σ|),
which simplifies to O(nmh2) given that |Σ|<nh in practice.

Theorem 3.2. Given a constraint α represented as a DFA with m edges and an HMM with h hidden
states, the time complexity for sampling a sequence of n tokens from pctrl-g(x1:n | α) is O(nmh2).

3.3 Logical reasoning vs. probabilistic reasoning

Algorithm 1: Ctrl-G: sampling n tokens
Input: DFA M = (Q,Σ, δ, q0, F )

HMM q1, LLM q2.
for t from n to 1 do

pre-compute q1(α | zt, st) by Eq. 4.
end for
initialize s0 := q0, x1:0 := ∅
for t from 1 to n do

compute q1(α | x<t, xt) by Eq. 3.
sample xt∝q1(α | x<t, xt) · q2(xt | x<t)
update x≤t :=x<t ⊕ xt

transition M from st−1 to st :=δ(st−1, xt)
end for
return x1:n

Some recent work as well as open source projects
have proposed to use regular expressions (regex)
to achieve structured generation from LLMs [23,
43, 50]. Regex are equivalent to DFAs in terms
of the logical constraints they can represent, but
the aforementioned approaches only perform pure
logical reasoning over regex, which is not suitable
for many constrained generation tasks. For example,
consider the task of generating a sentence that ends
with the phrase “ in the park”:

• guidance [23] (logical reasoning): silhouette of
suspected ... an heavily secured.in the park

• Ctrl-G (probabilistic reasoning): A man and a
woman are walking in the park
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Table 1: CommonGen results. All methods are applied to the GPT2-large model.
BLEU-4 ROUGE-L CIDEr SPICE Constraint

dev test dev test dev test dev test dev test
supervised - base models trained with full supervision
FUDGE - 24.6 - 40.4 - - - - - 47.0%
A*esque - 28.2 - 43.4 - 15.2 - 30.8 - 98.8%
NADO 30.8 - 44.4 - 16.1 - 32.0 - 88.8% -
GeLaTo 34.0 34.1 46.2 45.9 17.2 17.5 32.2 33.5 100.0% 100.0%
Ctrl-G 35.1 34.4 46.7 46.4 17.4 17.6 32.7 33.3 100.0% 100.0%
unsupervised - base models not trained with keywords as supervision
A*esque - 28.6 - 44.3 - 15.6 - 29.6 - -
NADO 26.2 - - - - - - - - -
GeLaTo 30.3 29.0 44.3 43.8 15.6 15.5 30.2 30.3 100.0% 100.0%
Ctrl-G 32.1 31.5 45.2 44.8 16.0 16.2 30.8 31.2 100.0% 100.0%

Even though both generations end with “ in the park”, it is clear that the output from guidance is not
desirable as it forcefully appends the phrase to some irrelevant text. The reason is that guidance, by
performing pure logical reasoning, only discard the next tokens xt that would make α unsatisfiable,
while the probabilities of the other next tokens remain unchanged; in contrast, Ctrl-G performs
probabilistic reasoning by estimating plm(α | xt, x<t), i.e., we estimate how likely each next token
xt would eventually lead to α being satisfied. Ctrl-G subsumes the other approaches in the sense
that if we set phmm(α | xt, x<t) = 1 for all non-zero values, that is, if we remove all probabilistic
information, then it degenerates to pure logical reasoning.

4 Evaluating Ctrl-G on constrained generation benchmarks

4.1 Commonsense Generation

Following prior work [21, 25], we first evaluate Ctrl-G on the Commonsene Generation (Common-
Gen) benchmark [18]. Each test example of CommonGen provides 3 to 5 concepts (keywords) as
input and the goal is to generate a natural sentence that incorporates all keywords, allowing for any of
their inflections. For example, given “car”, “snow” and “drive” as concepts, both “a man drives a
car on a snow covered road” and “the car drove through the snow” are considered acceptable.

DFA construction For CommonGen, given one keyword, say, “snow”, we adapt the Aho-Corasick
algorithm [2] to construct a DFA enforcing the constraint that at least one of its inflections (e.g.,
“snow”, “snowing” or “snowy”) must appear. To encode the constraint that multiple keywords must
appear, we can simply take the intersection of the individual DFAs [10]; see appendix for an example.

Experiments & results We use the GPT2-large checkpoint (only finetuned for domain adaptation)
released by [47] as our base model and we follow the same pipeline to distill an HMM with 32768
hidden states: we sample 4M examples from the base model and train the HMM for 40 EM steps, each
consisting of 100K examples. We compare Ctrl-G against FUDGE [44], NADO [25], NeuroLogic
A*esque decoding [21] and GeLaTo [47]; GeLaTo uses the same base model as Ctrl-G. The results are
summarized in Table 1, where the Constraint column shows the percentage of the outputs containing
all concepts. Compared to all baselines, Ctrl-G achieves not only 100% constraint satisfaction rate but
also substantially higher generation quality measured by automatic evaluation metrics [29, 19, 40, 3].

Runtime comparison From an algorithmic perspective, GeLaTo only handles keyword constraints
hence it is a special case of Ctrl-G. Nevertheless, Ctrl-G also runs significantly faster than GeLaTo,
as shown in Table 2. The GeLaTo implementation only tensorizes the HMM inference component,
while the component that reasons about the constraints runs sequentially on CPU. In contrast, by
representing DFAs as (weighted) adjacency matrices, Ctrl-G tensorizes the inference procedure for
both HMMs and DFAs and runs on GPUs with full parallelization. Besides, both GeLaTo and Ctrl-G
runs significantly faster than A*esque, which explicitly performs heuristic search.

Generalization to more keywords To evaluate the generalization performance of Ctrl-G, we
construct test examples containing 6 to 9 concepts (CommonGen+): we randomly select 100 examples
with 5 concepts from the dev split of CommonGen, and then augment them with additional keywords

6



Table 2: Time (seconds) of generating one example on CommonGen (dev); # of HMM hidden states
shown in brackets. Beam sizes used by A*esque, GeLaTo and Ctrl-G are 20, 128 and 128.

unsupervised supervised

# of concepts 3 4 5 3 4 5

A*esque 472.9 542.5 613.9 8.5 9.6 11.4
GeLaTo [4096] 69.8±32.3 97.9±39.5 143.0±44.4 49.8±20.8 88.7±30.5 127.6±30.4
Ctrl-G [4096] 1.1±0.3 1.9±0.5 4.6±1.4 1.2±0.4 2.3±0.8 5.7±1.7
Ctrl-G [32768] 4.1±0.9 9.0±2.0 22.3±5.4 4.7±1.6 11.0±3.8 27.6±8.3
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Figure 4: CommonGen+ results; Ctrl-G generalizes well on test examples with more than 5 concepts.

sampled from their reference sentences. As shown in Fig. 4, Ctrl-G achieves 100% constraint
satisfaction rate while preserving high generation quality across all settings.

4.2 Text infilling

We also evaluate Ctrl-G on a text infilling benchmark [7] constructed from the ROC stories corpus [26].
Each test example consists of a short story with some fragments masked out, each of a specified
granularity; the goal is to fill in the masks. Here is an example: “Jill wanted to knit her [WORD] a
sweater. [SENTENCE] She finished [NGRAM] for her boyfriend’s birthday. Jill was [WORD].”

DFA construction The underlying logical constraint for the task of text infilling is similar to that of
CommmonGen. We can view the non-masked parts, e.g., “Jill wanted to knit her” and “a sweater.”
from the example above, as keyphrases, and the task reduces to generating a piece of text such that
all keyphrases appear in the given order. In this setting, given k text fragments, we first construct
M1, . . . ,Mk using the KMP algorithm [14]; then, we concatenate them to represent the constraint
that they must appear in the given order. Though DFA concatenation is intractable in general [46],
we observe that the KMP DFAs can actually be concatenated in linear time. See appendix for details.

Table 3: Text infilling results (BLEU-4/ROUGE-L) across different masking ratios.
BLEU-4 ROUGE-L

mask ratio 13% 21% 32% 40% 13% 21% 32% 40%

ILM 85.2±0.1 76.3±0.1 64.3±0.1 53.8±0.1 90.9±0.2 84.9±0.3 76.3±0.4 68.4±0.5
Ctrl-G 85.4 77.5 66.5 57.2 90.6 85.2 77.0 69.8

diff. +0.2 +1.2 +2.2 +3.4 −0.3 +0.3 +0.7 +1.4

Experiments & results We use the GPT2-small checkpoint (only finetuned for domain adaptation
with no supervision on the task of text infilling) released by [7] as the base model for Ctrl-G and
compare against the ILM model, which is a GPT2-small model trained on this text infilling benchmark
with full supervision. By applying the mask function from [7], we construct 4 test sets with different
masking ratios (i.e., different percentage of masked characters) by changing the hyper-parameters. We
measure the BLEU and ROUGE scores of the completed stories (i.e., including both the masked and
unmasked parts) with respect to the original stories. The ILM model adopts sampling for decoding,
so we run the ILM inference for 10 times to report the means and standard deviations. The results
are summarized in Table 3. Based on [7], ILM is trained on a distribution with a masking ratio of
approximately 15%, explaining why it achieves the best performance on the test set with 13% masking
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ratio. Note that the performance gap between Ctrl-G and ILM improves almost monotonically as the
masking ratio increases, again illustrating the strong generalization performance of Ctrl-G.

5 Scaling up Ctrl-G for interactive text editing

Human-AI collaborative writing has been a long studied topic in the Human-Computer Interac-
tion (HCI) community [12, 36]. One prior work [16] proposed CoAuthor, a graphical user interface
for querying LLMs to generate continuation/insertion suggestions in arbitrary positions of a doc-
ument. However, when using CoAuthor to ask for LLM suggestions, users are unable to specify
their preferences. We propose to extend the CoAuthor system by allowing users to have fine-grained
control over the suggestions generated by LLMs: for example, users can control the topic of the
generated content by instructing LLMs to incorporate certain keyphrases, and they can also ask for
more concise/detailed suggestions by controlling their lengths. For this application, we apply Ctrl-G
to the TULU2-7B model and compare against prominent LLMs including GPT3.5 and GPT4.

5.1 Experiment setup

Dataset construction We construct an evaluation dataset consisting of 800 test examples, each
based on one story passage extracted from the CoAuthor dataset [16]. These stories are jointly
written by humans and the GPT3.5-turbo-instruct model, falling under ten different topics. For each
story, we randomly split it into prefix, infix and suffix; we mask out the infix and view it as a gold
reference. We consider two scenarios when evaluating the models: continuation and insertion.
For continuation, we only provide prefix to the model, and the model is supposed to generate one
suggestion for continuation; for insertion, we provide both prefix and suffix to the model and the
model is required to generate a piece of text that is coherent with both prefix and suffix. Additionally,
we consider imposing combinations of the following two constraints:

• Keyphrase: suggestions should include one to three given keyphrases.
• Word Count: suggestions should contain a to b words where 1≤a≤b≤32.

We consider all combinations of the following settings: insertion or continuation, w/ or w/o keyphrase
constraint, w/ or w/o word-count constraint, resulting in 8 different settings. For each setting, we
sample 100 stories from the CoAuthor dataset and create 100 test examples (e.g., Fig. 2).

Scaling up Ctrl-G We adopt the TULU2-7B [13] model, which is an instruction-tuned variant of
the Llama2 [39] model with 7 billion parameters, as the base model for Ctrl-G. We further finetune
the base model on 3000 examples extracted from the WritingPrompt dataset [8] for the task of
text continuation, following the prompt “Continue the given text:” along with a story prefix. After
finetuning, we use the same prompt to sample 5 million examples from the base model and train an
HMM with 32768 hidden states (approx. 2 billion parameters). Note that for the task of text insertion,
the base model only sees the prefix, while the suffix is incorporated as a part of the constraint α;
i.e., the HMM is fully responsible for guiding the base model to generate a piece of text that will be
coherent with the suffix. For generation, we sample 128 examples from pctrl-g with temperature 0.7
and pick the one with the highest likelihood given by the base model as the final output.

Baselines We compare Ctrl-G against prominent LLMs including the GPT3.5 model and the GPT4
model. To generate output from the GPT models, we adopt the prompt provided by the OpenAI docu-
mentation for text insertion/continuation, with constraints specified in the instructions. See appendix
for the specific prompt templates. In addition to the GPT models, we also compare Ctrl-G against
pure instruction-tuning: specifically, we construct 1000 training examples for the task of text insertion
based on the WritingPrompt dataset and further finetune the TULU2-7B model for text insertion,
following the prompt “Generate the text at [INSERT_TEXT] tag:\n{prefix}[INSERT_TEXT]{suffix}.”
For all baselines, for the purpose of fair comparison, we generate 128 samples for each test example
and select the one with the highest probability as the final output.

Human evaluation To evaluate the quality of the generated outputs, we conduct human evaluation
through the Amazon Mechanical Turk (MTurk) platform. For each test example, we generate the
outputs from TULU2 (prompt only), GPT3.5, GPT4 and Ctrl-G respectively, and ask annotators to
rate their quality on a scale from 1 to 5. For each test example, we present the generated outputs from
all models, along with their original context, to the annotators side-by-side and ask them to evaluate
their quality; specifically, we ask the annotators to answer the following questions:
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Table 4: Evaluation results of interactive text editing. K&W indicates that the model should adhere to
both keyphrase (K) and word count (W) constraints simultaneously. We present the human evaluation
score (Quality), constraint success rate (Success), and overall satisfaction rate (Overall), which
represents the proportion of examples meeting logical constraints with a Quality score above 3.

Continuation Insertion

None K W K&W Avg. None K W K&W Avg.
Quality
TULU2 3.80 3.77 3.87 3.88 3.83 2.68 2.64 2.78 2.74 2.71
GPT3.5 4.40 4.32 4.44 4.36 4.38 2.27 2.22 2.27 2.31 2.27
GPT4 4.48 4.44 4.44 4.26 4.40 3.79 3.33 3.53 3.10 3.44
Ctrl-G 4.13 3.98 4.27 3.96 4.08 3.77 3.56 3.73 3.59 3.67
Success
TULU2 - 35% 33% 1% 23% - 12% 20% 3% 12%
GPT3.5 - 36% 62% 31% 43% - 22% 54% 10% 29%
GPT4 - 56% 55% 59% 57% - 60% 20% 27% 36%
Ctrl-G - 100% 100% 100% 100% - 100% 100% 100% 100%
Overall
TULU2 - 30% 31% 1% 21% - 7% 10% 1% 6%
GPT3.5 - 36% 62% 31% 43% - 0% 5% 2% 2%
GPT4 - 56% 55% 57% 56% - 41% 17% 14% 24%
Ctrl-G - 89% 97% 90% 92% - 76% 78% 82% 79%

• Q1. is the paragraph coherent and grammatically correct?
• Q2. is the paragraph consistent and semantically reasonable?
• Q3. based on your answers to Q1&Q2, what is your rating for the overall quality?

Note that we only ask human annotators to evaluate the coherency and fluency of the generated text
and they are not aware of the required logical constraints. We ask three annotators to evaluate each
output and compute their inter-annotator agreement score. See appendix for more details.

5.2 Results

The evaluation results are summarized in Table 4, showing the quality score,5 constraint satisfaction
rate, and overall satisfaction rate. In particular, the overall satisfaction rate denotes the percentage of
test examples that (1) satisfy the constraint and (2) attain average quality scores>3. For continuation,
in terms of generation quality, GPT4 beats all other models; this is no surprise, as gigantic models like
GPT3.5 (with 175B parameters) and GPT4 have significant advantage in generating high quality text
continuations. However, despite the high generation quality, the success rates for GPT3.5 and GPT4
are relatively low (the highest 59%) while Ctrl-G always satisfy the specified constraints; hence in
terms of the overall satisfaction rate, Ctrl-G beats all baselines by large margins when constraints
are present. For the case of insertion, the “implicit” soft constraint here is that the generated parts
need to be coherent with the given suffix, which is challenging for autoregressive models; in this
case, in terms of pure generation quality, Ctrl-G beats/matches with the performance of GPT4 in all
settings; for insertion, the success rate of all baselines becomes even lower compared to continuation,
while Ctrl-G achieves 100% success rate in all settings. In terms of overall satisfaction rate, Ctrl-G
again beats all baselines. The other observation is that the generation quality of GPT4 decreases as
the logical constraints become more complex, while the generation quality of Ctrl-G stays relatively
consistent across all settings, demonstrating strong generalization performance.

5.3 Runtime analysis

We provide an empirical analysis on the runtime of Ctrl-G, with TULU2-7B as the base model. In
addition to the computation cost of the base LLM, the major cost of Ctrl-G lies in the computation of
phmm(α | x≤ t), with a time complexity of O(nmh2) (Thm. 3.2); here n is the maximum sequence
length, m is the size (i.e. # of edges) of the DFA, and h is the number of HMM hidden states. First,
fixing the sequence length n, we change the size of the DFA and verify that the time for generating
each token scales roughly linearly with respect to the DFA size (Fig. 5 left). Then, fixing a DFA of

5average ratings given to Q3 in human evaluation; see appendix for complete results.
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Figure 5: Runtime analysis of Ctrl-G; Left: the generation time per token scales linearly w/ respect to
DFA size. Right: the generation time per token stays constant w/ respect to sequence length.

size ≈ 900, we change the sequence length n and measure the time for generating each token from
Ctrl-G and the base LLM respectively. The gap between the two lines in Fig. 5 (right) shows the
computation overhead introduced by Ctrl-G, which stays constant with respect to the sequence length.
On the other hand, however, due to the attention mechanism, the time for generating each token from
the base LLM scales linearly with respect to n. Hence, the computation cost will be dominated by
the base model when generating long sequences. The runtime measurements are conducted on an
NVIDIA-A100 GPU with 80GB memory.

6 Perspectives: improving LLM reasoning abilities via logical constraints

In this section, we explore the use of Ctrl-G on a non-traditional constrained generation application.
As a case study, we apply Ctrl-G to assist the reasoning process of the TULU2-7B model on the
grade school math (GSM) benchmark. As we naively apply chain-of-thought prompting, we observe
that for 293 out of the 1319 test examples, the model fails to use all numbers provided in the
problem statement; this leads to a much lower accuracy on the 293 examples compare to that on
the complete test set. For such 293 test examples, we apply Ctrl-G to the TULU2-7B model to
enforce the constraint that all numbers from the problem statement must be generated as part of
the chain-of-thought reasoning process. We sample 16 outputs from the TULU2-7B model and do
a majority vote; with Ctrl-G, the model achieves 28.3% accuracy, which is 3.4% higher than the
marjoity-vote accuracy without Ctrl-G.

Our proof-of-concept study on the GSM benchmark illustrates one potential use case of Ctrl-G beyond
traditional language generation tasks. Specifically, we demonstrate the possibility of “approximating”
soft control (i.e., better reasoning ability in this setting) via logical constraints. For future work,
we motivate the application of Ctrl-G, as well as other constrained generation approaches, on a
broader scope of downstream tasks: e.g., helping LLM detoxification by conditioning on a set of bad
words/phrases not appearing, improving the reasoning ability of LLMs by conditioning on generating
longer reasoning sequences, and controlling the topic of the generated content by conditioning on the
occurrence of certain keyphrases.

7 Conclusion

We propose Ctrl-G, a versatile framework that enables reliable and flexible inference-time control of
LLMs; given any production-ready LLM, Ctrl-G distills an HMM as its approximation and uses it to
guide the LLM to generate outputs that comply with any logical constraints specified as DFAs. We
show that Ctrl-G, where a 7B-parameter TULU2 model is combined with a 2B-parameter HMM,
beats significantly larger LLMs like GPT4 on the task of generating text insertions/continuations
with logical constraints. On commonly used constrained generation benchmarks like CommonGen,
Ctrl-G beats other constrained generation approaches, as well as supervised training, by large margins.
In addition to the dominant paradigm of prompt engineering, our work opens up new avenues for
achieving tractable, reliable and fine-grained inference-time control of LLMs.
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A Derivation of Eq. (4)

p(Sn∈F | zt, st)

=
∑

xt+1,zt+1

p(Sn∈F, xt+1, zt+1 | zt, st)

=
∑

xt+1,zt+1

p(Sn∈F | xt+1, zt+1, zt, st) · p(xt+1, zt+1 | zt, st)

=
∑

xt+1,zt+1

p(Sn∈F | St+1=δ(st, xt+1), zt+1) · p(xt+1 | zt+1) · p(zt+1 | zt)

=
∑
zt+1

∑
st+1

∑
xt+1∈edge(st,st+1)

p(Sn∈F | st+1, zt+1) · p(xt+1 | zt+1) · p(zt+1 | zt)

=
∑
zt+1

p(zt+1 | zt) ·
∑
st+1

p(Sn∈F | zt+1, st+1) ·
∑

xt+1∈edge(st,st+1)

p(xt+1 | zt+1).

B DFA operations
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(c) Concatenation of M1 and M2

Figure 6: An example showing the intersection (logical and) and concatenation of two DFAs.

Proposition B.1. Let M1 be a DFA such that for each accept state s, δ(s, w) goes to a dead state
for all w ∈ Σ. Then M1 can be concatenated with any other DFA M2 by merging the accept states
of M1 with the initial state of M2;

here a dead state denotes a DFA state that is (1) not an accept state and (2) only transitions to itself.
Instead of formally defining what it means by “merging” the initial state of M2 with the accept states
of M1, we refer readers to Figure 3c for such an example.

C Human evaluation

Table 5 presents the aggregated results for all questions from the Human Evaluation. Each question
was answered by three workers, and we compute their inter-annotator agreement. Each worker
evaluated the outputs generated by four different models for the same prefix (and suffix) within
each batch. We converted these evaluations for each batch into rankings and then used the Kendall
Coefficient of Concordance to assess the correlation between the rankings assigned by each worker.
The average coefficient was 0.449, indicating a moderate level of agreement among the annotators.
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Figure 7: Human evaluation interface on Amazon Mechanical Turk.

Table 5: Full human evaluation results.
Continuation Insertion

None K L K&L None K L K&L
Q1. Fluency
TULU2 4.06 3.99 4.20 4.22 2.77 2.77 2.87 2.89
GPT3.5 4.52 4.45 4.58 4.50 2.33 2.34 2.37 2.39
GPT4 4.58 4.50 4.57 4.44 3.91 3.51 3.66 3.23
Ctrl-G 4.31 4.23 4.42 4.22 4.00 3.80 4.02 3.90
Q2. Coherency
TULU2 3.92 3.89 3.95 3.96 2.82 2.84 2.96 2.98
GPT3.5 4.54 4.43 4.55 4.46 2.60 2.48 2.57 2.62
GPT4 4.59 4.54 4.53 4.37 3.90 3.49 3.75 3.32
Ctrl-G 4.23 4.04 4.38 4.05 3.88 3.68 3.78 3.67
Q3. Overall Quality
TULU2 3.80 3.77 3.87 3.88 2.68 2.64 2.78 2.74
GPT3.5 4.40 4.32 4.44 4.36 2.27 2.22 2.27 2.31
GPT4 4.48 4.44 4.44 4.26 3.79 3.33 3.53 3.10
Ctrl-G 4.13 3.98 4.27 3.96 3.77 3.56 3.73 3.59
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Table 6: Prompt templates for querying the GPT3.5 and GPT4 models on the task of text editing.
Continuation:
Below is the opening of a story. Continue the narrative by writing the next few sentences that includes
the specified keywords. Your continuation should naturally follow the themes, tone, and setting
established in the opening. Aim to write a compelling and coherent continuation that could lead
the story forward. Your answer must consist of at least (WordRangeStart) words and no more than
(WordRangeEnd) words. Please make sure to incorporate the given keywords in to your answer.
Keywords: (Keyword).
Story: (Prefix)

Insertion:
Fill in the text at the [INSERT] in the following story with an appropriate sentence that includes the
specified keywords. Feel free to use your knowledge, guesses, or interpretations to craft your answer,
but ensure it is relevant to the context provided by the prefix and suffix. Your answer must consist of
at least (WordRangeStart) words and no more than (WordRangeEnd) words. Please make sure to
incorporate the given keywords in to your answer. Keywords: (Keyword).
Story: (Prefix)[INSERT](Suffix)
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract accurately summarize the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is clearly stated that our proposed method only works for constraints that
can be specified as DFAs.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proof for Theorem 3.2. is given in the main paper and the full derivation of
Equation (4) is presented in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code for reproducing the main results is released on github and the model
checkpoints are released on huggingface hub.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for reproducing the main results is released on github and the model
checkpoints are released on huggingface hub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyper-parameters are given in the released code repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For human evaluation, we computed inter-annotator agreement scores. For the
text infilling experiments, which involve sampling, we reported standard deviation of the
evaluation results over multiple runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The spec of the GPUs used for running our experiments is given.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our application has no non-trivial societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: We do not release risky models or data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The released code repository is well-documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: See appendix for screenshots.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not collect any personal information about the human annotators and
they have never been exposed to any form of risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25


	Introduction
	Preliminaries
	Tractable probabilistic reasoning over logical constraints
	Logical constraints as DFAs
	An efficient algorithm for marginalizing HMMs over DFAs
	Logical reasoning vs. probabilistic reasoning

	Evaluating Ctrl-G on constrained generation benchmarks
	Commonsense Generation
	Text infilling

	Scaling up Ctrl-G for interactive text editing
	Experiment setup
	Results
	Runtime analysis

	Perspectives: improving LLM reasoning abilities via logical constraints
	Conclusion
	Derivation of Eq. (4)
	DFA operations
	Human evaluation

