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Abstract

State Space Models (SSMs) are emerging as
alternatives to Transformers but struggle with
tasks needing long-range interactions, such as
text copying and multi-query associative recall.
Most improvements in SSMs focus on internal
architecture rather than exploring diverse pre-
training objectives. This paper introduces the
Birdie model, a minimalist SSM architecture,
with novel pre-training objectives.. Experimen-
tal evaluations demonstrate that combining this
minimalist architecture designed with refined
control over recurrence parameterization with
pre-training objectives like infilling, copying,
and deshuffling significantly improves perfor-
mance in practical generative tasks, achieving
higher average metric scores and win rates. The
findings offer valuable insights for optimizing
SSMs to compete with Transformers.'

1 Introduction

Thanks to their scaling properties (Hoffmann et al.,
2022) and in-context learning (Garg et al., 2023),
large transformer models are now prominent in nat-
ural language processing (NLP) and have made
possible effective performance on natural language
generation tasks (NLG), including language mod-
eling, machine translation, and question answer-
ing (Yue et al., 2022; Xie et al., 2022; Kumar et al.,
2021). Attention, the key to the success of trans-
formers, is also their limitation. As the attention
layer computes similarity scores between all pairs
of tokens in the input sequence, its computational
demands grow quadratically with sequence length.

State Space Models (SSMs) are emerging as
promising alternatives due to their subquadratic
time complexity. SSMs belong to a class of dy-
namic models that represent the state of a system
at each time step as a linear combination of previ-
ous states and the input signal. Originally popular
in control theory and time series analysis, SSMs
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have recently been adapted for discrete data, such
as natural language. A flurry of research activity
has introduced various SSMs, such as S4 (Gu et al.,
2022), S5 (Smith et al., 2023), LRU (Orvieto et al.,
2023), Mamba (Gu and Dao, 2023), Hawk and
Griffin (De et al., 2024), and others, as covered in
some detail in Section 2.

Methodological innovations in SSMs aim to
improve performance on long-range dependency
tasks. Evaluations show varied success. SSMs
demonstrate considerable strength in traditional
log-likelihood evaluations, where the objective is
to read and choose between multiple predetermined
choices for a given question (Gu and Dao, 2023;
De et al., 2024).

This objective, however, does not capture what
a model would generate in a natural chat setting.
When it comes to practical, generative tasks, requir-
ing a sharp probability distribution, such as long-
range interactions, text copying, and multi-query
associative recall, SSMs fall short of expectations.
For instance, work in (Jelassi et al., 2024) demon-
strates that SSMs fall short of transformer-based
models on copying and selective tasks. These tasks
are critical in NLP, where the ability to maintain
and manipulate long-term dependencies is crucial
for generating coherent text, following directions,
copying sequences, and responding accurately to
multiple queries.

This paper addresses some of these challenges.
It advances SSMs along four main directions.

(1) Current SSMs predominantly utilize causal
language modeling and ignore the diversity of pre-
training objectives. In contrast, the first contribu-
tion this paper makes is the design of novel pre-
training objective mixtures to bias the model to-
wards learning functions for long-range interac-
tions, specifically focusing on tasks where SSMs
currently underperform compared to Transformer
models. We introduce reinforcement learning into
the pre-training process.



(2) We demonstrate that pre-training objective
mixtures can elicit superior performance, contrary
to current thinking on SSMs. However, figuring
the right mixture ratios is an important consider-
ation. A second contribution of this paper is to
propose a dynamic mixture of pre-training ob-
jectives via reinforcement learning. Our results
show that Birdie obtains competitive performance
against Transformer models with such a dynamic
mixture and additionally becomes the first SSM to
solve the outstanding phone retrieval task.

(3) The paper proposes a novel model, Birdie,
which implements a generalized SSM architec-
ture with direct control over the recurrence pa-
rameterization. This architecture is informed by
the goal of improving performance in the presence
of long-range interactions without suffering from
decaying state intermediates over the sequence
length; such decay is observed in (Gu et al., 2022;
Gu and Dao, 2023; De et al., 2024).

(4) By narrowing themselves in the causal lan-
gu%e modeling objective, current research on
SSMs ignores potentially interesting dynamics be-
tween pre-training objectives and the model archi-
tecture. The fourth contribution this paper makes
is to show the emergence of non-trivial dynam-
ics resulting from the combination of a minimalist
SSM architecture in the proposed Birdie model and
the proposed novel pre-training objectives.

2 Background and Related Work

We relate background concepts and related work.

2.1 SSMs

SSMs maintain an online state that stores informa-
tion seen in previous time steps. Due to the state’s
finite dimensionality, SSMs inherently suffer from
a limited and fixed memory capacity (Gu and Dao,
2023; Wen et al., 2024). This balances memory
efficiency with computational demands of process-
ing long sequences. Gu and Dao (2023) argue that
an effective state can be maintained via selective
gating which is capable of blocking unnecessary in-
puts to the state. Here we argue that bidirectionality
is also necessary for maintaining a healthy state in
terms of intermediate magnitude, as it can help the
selective mechanisms identify what information to
maintain. We report improved performance when
enabling bidirectionality.

A Brief History of SSMs S4 (Gu et al., 2022)
was the first popular SSM for NLP that through

clever reparameterization of the state space matri-
ces was able to dynamically maintain information
across long context windows with few resources.
In S5 Smith et al. (2023) reimplement S4, mov-
ing its application from a bank of independent
single-input, single-output time-invariant SSMs ap-
plied using the fast fourier transform, to a multi-
input, multi-output SSM, leveraging efficient paral-
lel scans and matching the computational efficiency
of S4, while maintaining superior performance on
toy tasks measuring long range performance (Smith
et al., 2023). Linear Recurrent Units (Orvieto et al.,
2023) further simplify S5 through linearizing and
diagonalizing the recurrence, using better param-
eterizations, initializations, and proper normaliza-
tion of the forward pass.

Later research on SSMs predominantly focuses
on the selective mechanism to selectively propagate
or forget information along the sequence length di-
mension depending on the current token. Mamba
and Hawk are two recent SSMS that leverage this
selective mechanism. Mamba (Gu and Dao, 2023)
integrates selective SSMs into a simplified end-to-
end neural network architecture without attention
or even MLP blocks. In contrast, Hawk and Grif-
fin (De et al., 2024) are inspired by the LRU model
but incorporate an LSTM-like gating mechanism;
Griffin adds a sliding window attention over Hawk
and so is a hybrid model.

Linear SSMs Given a length L sequence of
vector-valued inputs x3.7, € REXD o general class
of linear SSMs with hidden states h;.;, € REXN
and outputs y;.7, € REXD can be computed as

h; = Aph;_1 + Bixy
yi = g(hy, x;)

with state transition matrix A, € RY*Ninput
matrix Bx € RV*U and output function g(-) to
produce the outputs. Many recent models fall
within this framework and are divided into linear
time-invariant (LT1) and linear time-varying (LTV)
dynamical systems. LTI systems have static dy-
namics parameters across time, i.e. Ay = A and
B, = B V&, and include recent works in deep
SSMs such as S4, S5, and LRU. LTV systems
have varying dynamics parameters that may also be
data-dependent and include recent methods such
as Liquid-S4 (Hasani et al., 2022), Hierarchical
GRU (HGRU; Qin et al., 2023), Hawk (De et al.,
2024) and Mamba (Gu and Dao, 2023) as well
as previous works in linear RNNs (Balduzzi and



Ghifary, 2016; Martin and Cundy, 2018; Bradbury
et al., 2016; Lei et al., 2018). The linear depen-
dencies between time steps in linear SSMs allow
for efficient parallelization across the sequence via
Fast Fourier Transforms (Gu et al., 2022; Fu et al.,
2023) or parallel scans (Blelloch, 1990; Martin and
Cundy, 2018; Smith et al., 2023).

Recent SSMs have demonstrated improve-
ment in language modeling perplexity and max-
likelihood evaluations. Hawk holds SOTA perfor-
mance for attention-free, selective SSMs on com-
mon max-likelihood evaluations. At its core, Hawk
is powered by the Real-Gated LRU (RG-LRU), an
update of the original LRU (Orvieto et al., 2023)
that add a limited amount of input-dependent gat-
ing to its a parameterisation. The mathematical
formulation of the RG-LRU is:

r; = 7(Wo%y)
it = T(Wxxt)
a; =a“"

h; =a, ®h;_1 + /1 —a%i,

where the constant c is set to 8. The forget-gate a
is defined as 7(A), with A being a learnable param-
eter. A is initialized such that a¢ is uniformly dis-
tributed between 0.9 and 0.999. This initialization
strategy causes a; to start "open," forcing elements
in a sequence to mix together. Notably, when A is
close to these initial values, the input-dependent
projection r; has minimal influence over the a, lim-
iting the RG-LRU’s ability to forget previous time
steps. Under these conditions, the RG-LRU of
Hawk can be conceptualized as a relatively weaker
form of a data-dependent LTV system, with an
LTI system governing the base performance. This
observation inspires the reparameterization in the
proposed Birdie model. As detailed in Section 3.1,
Birdie is a fully data-dependent LTV model.

2.2 Pre-Training Objectives

Pre-training "instills" general-purpose knowledge
and abilities (Raffel et al., 2020). While the de-
fault choice in NLP for a pre-training objective is
causal language modeling (CLM), or "next word
prediction," there are several empirically usable
alternatives that have been shown to significantly
improve model performance in settings such as
general language tasks (Tay et al., 2022, 2023b;
Anil et al., 2023), code generation (Bavarian et al.,
2022; Roziere et al., 2024), and multi-modal au-
dio and vision Transformers (Chen et al., 2023).

Notably, Reka (Team et al., 2024) 7B and 21B, pre-
trained using Mixture-of-Denoisers (MoD), outper-
form competing frontier models (ChatGPT/Mistral)
in their compute class on many multi-modal tasks.

Alternatively to CLM, masked language model-
ing (MLM) includes objectives where certain to-
kens are replaced with a mask token, and the model
must predict the original tokens. In its original con-
ception with BERT (Devlin et al., 2019), each mask
token represented one obfuscated input token. Span
corruption (SC) extends BERT’s MLM objective to
generative models. For a given input, several spans
of tokens are replaced with unique sentinel tokens.
The model then generates the masked tokens and
their respective sentinel tokens.

Fill-in-the-Middle encompasses elements from
both SC and CLM (Bavarian et al., 2022) and fuses
them into one objective. Fill-in-the-Middle masks
out a large middle span and moves it to the end of
the sequence. This objective enforces a standard
language modeling loss on all tokens, including the
prefix, intended for processing by a fully-causal
model. This is a popular training objective, but did
not appear helpful during our pilot runs on SSMs
(data not shown).

Prefix language modeling (PLM) modifies this
approach slightly. A loss is specifically not calcu-
lated on a prefix and the model is allowed a bidi-
rectional view of the context. During pre-training,
input sequences are randomly split in two, with the
prefix functioning as context and the suffix being
the target for the direct loss computation (Raffel
et al., 2020).

In this paper, we consider the above represen-
tative pre-training objectives and integrate them
in a mixture-of-denoisers setting. As described
in Section 3, we add new objectives and dynamic
mixtures to improve SSMs.

2.3 Benchmarking SSMs

Jelassi et al. (2024) benchmarks two representa-
tive NLP models, Mamba (as a SOTA SSM) and
Pythia (a decoder-only transformer model) on the
same dataset. The paper shows serious deficiencies
in SSMs. Two key concerns in NLP include be-
ing able to copy text outside of the training length
and recall via extracting a phone number from a
phonebook. In both scenarios, Jelassi et al. (2024)
shows that Pythia outperforms Mamba by a signif-
icant margin. Similarly, Hawk and Griffin (Hawk
with an added sliding window attention layer) both
significantly struggle with the same phone num-



ber recall task. Notably, both Mamba and Hawk
have been shown to solve synthetic copying (Ar-
jovsky et al., 2016) and induction head (Olsson
et al., 2022) tasks, which are designed to measure
the ability of models to correctly memorize tokens
and recall them after reading noise. Similarly con-
trasting differences between synthetic associative
recall and closer-to-real-world task performance
are evaluated by Arora et al. (2023). Informed by
the deficiencies in current SSMs, as demonstrated
in (Jelassi et al., 2024), to address these issues with
"real" models (i.e., not a synthetic model trained on
synthetic data), in this paper we utilize pre-training
objectives to enable an SSM to learn to manage
long-range dependencies and copy/retrieve infor-
mation from earlier in the sequence.

3 Methods
3.1 Birdie

Birdie is defined as follows:
z; = 7(WEx,) e RV
fi = o(W'x;) e RN
hy =f,0h;1 + 2
yt = Why,

where o is the standard logistic sigmoid func-
tion, x; is a normalized input, and y; is added to a
residual connection. In particular, Birdie is a gated
linear RNN. Unlike the Gated Impulse Linear Re-
current Layer in (Martin and Cundy, 2018), where
h, =f, ©hy_1 + (1 — f}) * z;, Birdie removes the
coupling between 1 — f; ® z; and all bias terms.

In recent SSM literature, one observes a ten-
dency to add more terms and couplings to the pa-
rameterized recurrence equations. In Birdie we
take the opposite approach, simplifying and de-
coupling. Partially driven by work in (Tay et al.,
2023a), which shows that minimalist transformer
models outperform more complex architectures,
our intuition in designing Birdie was to investigate
a core architecture and its dynamics with a variety
of pre-training objectives.

Birdie can move information along the sequence
without numerical decay; that is, data can move
forward perfectly, for an infinite amount of time.
In contrast, previous SSMs like S4, S5, MEGA,
and H3 induce a non-correctable fixed decay dur-
ing the propagation of information (note: h(t) =
A xh(t —1) + Bx(t), where A < 1.0), meaning
that regardless of what the model has learned, raw

information cannot physically flow past a certain
distance. This does not happen in Birdie. We have
empirical evidence that f; reaches 1, and this is
prominent during span corruption, shown in Sec-
tion 5.3. In Section A.5 we relate additional ob-
servations that the parameterizations in Birdie are
dynamic, with different pre-training objectives in-
ducing different behaviors. This dynamic behavior
is observed in the presence of a fixed state, sug-
gesting that Birdie is fully utilizing state capacity
independent of sequence length.

4 Pre-training Objectives and Mixtures

Table 1 lists classic and new objectives and mix-
tures we investigate. We include pre-training objec-
tives and tasks that we hypothesize will enhance an
SSMs’ abilities to handle long-range dependencies,
potentially improving performance on downstream
tasks. Novel pre-training objectives proposed in
this table, highlighted in bold font, include: Selec-
tive Copying, Full Span Corruption with Deshuf-
fling (a fixed-ratio MoD), PT5 (a fixed-ratio MoD
over objectives listed in Table 1), and RL-Mod,
a dynamic MoD with optimal ratios determined
via the proposed reinforcement learning approach
described later in this paper. The Selective Copy-
ing pre-training objective proposed here is inspired
by work in (Olsson et al., 2022), but we note that
Olsson et al. (2022) introduce it as a synthetic in-
duction head task to guide the design of potentially
improved small models.

Span Corruption (SC): This is the standard ob-
jective from TS5, where a span of tokens is corrupted
and the model must generate the masked spans, as
illustrated in Table 1. It is worth noting that for an
SSM, span corruption takes on a significantly more
difficult form, since all relevant information must
be compressed into a single state, so we include it
in the list of pre-training objectives we investigate.
In addition, we explore two variations:

Full Span Corruption (FSC): The model must
generate the entire de-noised sequence. This is sim-
ilar to BERT’s MLLM task, but the model generates
the entire sequence rather than filling in masked
tokens in-place. This objective was named BERT-
style and was included in an ablation in T5. This
tasks the model with maintaining a state where
it can simultaneously copy from a context while
generating new text conditioned on the context.

FSC with Deshuffling (FSC-D): This is a novel
variation we introduce in this paper. It builds over



FSC but shuffles the non-corrupted spans so that it
is more difficult for the model to only pay attention
to surrounding tokens and so find the right context
and copy large amounts of text.

- Text: Bird songs fill the early morning air

Objective Example
CLM In: —

Tgt: Bird songs fill the early morning air
PLM In: Bird songs fill

Tgt: the early morning air
SC In: Bird [mask] the early [mask]
Tgt: songs fill [mask] air [mask]
In: the early [mask] Bird [mask]
Tgt: Bird songs fill the early morning air

Deshuffling

Copying In: the early [mask] Bird [mask]
Tgt: Bird songs fill the early morning air

Selective In: the early [mask] Bird [mask]

Copying Tgti Bird songs fill the early morning air

Mixture of Denoisers (MoD)
FSC In: Bird [mask] the early [mask]

Tgt: Bird songs fill the early morning air

FSC-D In: the early [mask] Bird [mask]
Tgtl Bird songs fill the early morning air

UL2 Fixed-ratio mixture of PLM and SC (Tay et al.,
2023b).

PT5 A new mixture of CLM, PLM, SC, Deshuf-
fling, and Copying at fixed ratios found via
ablations.

RL-MoD A novel dynamic mixture of CLM, PLM, SC,

Deshuffling, Copying, and Selective Copy-
ing at optimal ratios found via reinforcement
learning.

Table 1: CLM: Causal language modeling. PLM: Prefix
language modeling. SC: Span corruption. FSC: Full SC.
FSC-D: FSC with deshuffling. In: input; Tgt: target.
New pre-training objectives and MoDs are bolded.

Deshuffling: The model is given an input se-
quence with shuffled tokens. The model must
deshuffle the tokens to recreate the original se-
quence. We use two variations: one where 50% of
the input tokens are shuffled, and a second where
all inputs tokens are shuffled.

Copying: We include two pre-training tasks that
do not involve denoising an input, inspired by re-
cent work (Jelassi et al., 2024) that highlights chal-
lenges with SSMs in copying tasks. In Copying,
the model must recreate the input sequence. This
is a key component of many tasks requiring long-
range dependencies. We introduce here a novel
variation, Selective Copying, in which the model
is given beginnings and endings of spans in the
context and then must find and copy these spans
to the output. The model copies specific spans of
text from the input. This tasks differs from stan-
dard copying in that not all text is copied and the
spans to copy are not necessarily found in order in
the context. This can be seen as an analog to the

downstream phone book look-up task.

4.1 Optimal Mixtures with Objective
Sampling via Reinforcement Learning

Model architecture and size has a significant effect
on pre-training objective performance. As shown
in Figure 1 for the selective copying task, we ob-
serve that Birdie at 400M parameters achieves ac-
curacy only in the high 30%s but reaches 93% at
1.4B parameters when trained to only 32B tokens,
approaching a nearly 100% accuracy by a 6-layer
transformer at 141M parameters.
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Figure 1: Accuracy on the selective copying task dur-
ing pre-training on a shared validation set from The
Pile (Gao et al., 2020) across Birdie (1.4B and 400M
parameters) and a transformer of 141M parameters.

This suggests that static pre-training objective
mixes, like those in BERT and UL2 (Devlin et al.,
2019; Tay et al., 2023b), may not suit all model
architectures. Despite the limited details shared
by Team et al. (2024) and (PAL) on their use
of curriculum-based techniques, the challenge re-
mains in optimally scheduling and adjusting mix-
ture rates for varying model configurations, as
noted by (Tay et al., 2022).

To address this, we propose a dynamic, auto-
mated curriculum that adapts pre-training task mix-
tures according to the evolving needs of the model
and exploits synergies between objectives. Our
approach utilizes a critic model, which predicts re-
wards for each objective, given past actions and
their observed outcomes.

Overall, this forms a classic multi-armed bandit
framework and is related to a recent Gaussian Pro-
cess approach for masking rates in MLM (Urteaga
et al., 2023), which we found ineffective for our
diverse objectives. We adopt a two-layer Trans-
former to directly predict per-objective rewards
based on historical data. Our optimization method



is akin to Direct Preference Optimization (DPO)
(Rafailov et al., 2023), avoiding drawbacks from
fixed policies and empirically follows the model’s
drift during training.

This approach, visualized in Appendix Figure 4,
shows that training on Full Span Corruption occa-
sionally boosts Copying and Deshuffling objectives
to the extent that their sampling can be drastically
reduced. Interestingly, Span Corruption benefits
from Selective Copying early in training even with-
out a direct copying component.

Mathematically, we define the reward estima-
tion process as R = E[r(oi|0;_1)] for i =
1,2,..., N, where Rf; is the estimated reward
for objective ¢ at time step ¢, r is the reward
function, o} represents the objective i at time
step t, and 6;_; denotes the model parameters
at the previous time step. We then select the
top M actions with the highest rewards O; =
argmaxy{ R}, RZ, ..., RN}. Finally, at the next
evaluation step, the model is trained on the selected
actions: 0, = 6,1 + NV >ico, r(0f]0:-1),
where 7 is the learning rate.

We find our approach consistently improves per-
formance across all tested pre-training objectives.
The dynamic MoD resulting from this approach is
referred to as RL-MoD in our experiments.

4.2 Experimental Setup

We carry out three lines of investigation.
First, we relate a comprehensive compari-
son that pitches Birdie against transformer-
based models at various configurations (base
versus instruction fine tuning, 400M versus
1.4B parameters, and various pre-training ob-
jectives) over 14 max-likelihood tasks from the
EleutherAl LM Harness (https://github.com/
EleutherAI/lm-evaluation-harness). These
tasks are listed in Appendix A. Second, we relate a
detailed analysis over the phone number retrieval
task, which has been shown to be a particularly
challenging task for SSMs (Jelassi et al., 2024),
and we show here Birdie being the first SSM to
solve this task. Third, we showcase interesting
dynamics from the combination of a minimalist
architecture in Birdie and pre-training objectives.

Pretraining: We train Hawk and Birdie on The
Pile (Gao et al., 2020) dataset using sequence pack-
ing and proper masking to prevent sample inter-
ference. We investigate 400M-parameter mod-
els trained for 16,000 steps with a batch size of

260 versus 1.4B-parameters models trained for
32,000 steps with a batch size of 520. As in re-
cent literature, all models were pre-trained with a
sequence length of 2048. Following recommen-
dations by Chowdhery et al. (2022), we pre-train
slightly over Chinchilla optimal scaling laws (Hoff-
mann et al., 2022) — 20-25x tokens per parameter.

Instruction Tuning: For 1.4B parameter mod-
els, we loosely follow the progressive learning
fine-tuning procedure from Orca 2 (Mitra et al.,
2023) and integrate common instruction-tuning
procedures from FLAN (Longpre et al., 2023),
Zephyr (Tunstall et al., 2023), and Tulu (Wang
et al., 2023). We extend the sequence length to
4096 and 8192. More details on pre-training and
fine-tuning can be found in Sections A.1-A.2.

5 Results

We present here our main findings.

5.1 Comparative Performance and Ablation
Study on Max-likelihood Tasks

Table 2 relates the average task accuracy for various
model configurations (model architecture - Birdie
versus transformer, size — 1.4B versus 400M), ob-
jectives (fixed MoD objectives, such as UL2 and
PTS5, versus our RL-resulting dynamic MoD RL-
MoD, and base versus instruction-tuned. Sec-
tion A.4 in Appendix A describes each of these
tasks as well as relates the performance of each
model configuration on each task.

Several observations can be made from Table 2.
First, in each setting, whether base versus instruc-
tion fine-tuned and whether at 1.4B or 400M,
Birdie elicits competitive performance. It is worth
noting that inclusion of the additional objectives
and copying tasks do not hurt average downstream
performance: instead, we observe that Birdie train-
ing with a mixtures-of-denoisers is always among
the top performers. This is an important finding,
as current literature on generative SSMs default
to CLM as the pre-training objective. Another in-
teresting finding suggested by the results in Ta-
ble 2 is that RL-MoD elicits the best performance
with growing model size. Birdie at 1.4B parame-
ters with RL-MoD begins to pulls away from the
other models with an average task performance
of 2.5% higher than the next model, the attention-
based model with CLM. We note that CLM is cur-
rently the most popular pre-training objective for
Attention-based models in literature.
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Model Objective  Avg Task Accuracy
Instruction Tuned, 1.4B
Birdie (RL-MoD)  RL-MoD 45.5%
Attention (CLM) CLM 43.0%
Birdie (PT5) PT5 42.5%
Birdie (CLM) CLM 40.9%
Base Models, 1.4B
Birdie (PTS) PT5 41.0%
Birdie (CLM) CLM 40.9%
Birdie (RL-MoD) RL-MoD 40.6%
Attention (CLM) CLM 40.1%

Instruction Tuned, 400M

Birdie (UL2) UL2 40.3%
Attention (UL2) UL2 40.2%
Hawk (PTS) PT5 39.3%
Attention (CLM) CLM 39.2%
Hawk (CLM) CLM 38.4%
Base Models, 400M
Birdie (CLM) CLM 40.3%
Birdie (RL-MoD)  RL-MoD 40.1%
Attention (CLM) CLM 39.7%
Birdie (UL2) UL2 39.5%
Birdie (PT5) PT5 39.3%
Attention (UL2) UL2 39.2%
Hawk (PTS) PTS 38.8%
Hawk (CLM) CLM 38.4%

Table 2: Average task accuracy over 14 EleutherAl LM
Harness tasks (listed in Appendix A) for various model
configurations (model architecture, size), objectives,
and base versus instruction-tuned. FLAN-style (Long-
pre et al., 2023) templates and accuracy normalized by
target token length is used. The full chart is in Table 2.

Table 3 relates compute cost between models
(Birdie 1.4B with RL-MoD, Transformer 1.4B, and
reference models for Hawk 1.4B and Flash At-
tention 2 (Dao, 2023) with causal masking), go-
ing beyond parameter count comparisons. On our
hardware (Nvidia A100 and Google TPUv3 and
TPUv4’s), Hawk required significantly more time
to train as compared Birdie, primarily from its high-
dimensional 1D convolution operation, so we do
not fully pre-train it. It is worth noting that Birdie at
1.4B is the most compute efficient, which can allow
for practical savings and a longer model training
for a given compute budget.

Backend Model GPU Sec/  Seq Tokens
Hrs Step  Length / sec /
(A100) A100
JAX Birdie 1.4B 5,600 35 N/A 15,214
JAX Hawk 1.4B 7,680 4.8 N/A 11,093
JAX Transformer 1.4B 10,016 6.3 2048 8,506
Torch Flash Attn. 2 7,011 4.4 2048 12,152

Table 3: Comparison of observed model training speeds.

5.2 Analysis on Phone Number Retrieval

Inspired by work in (Jelassi et al., 2024), which
shows that SSMs cannot pull the phone numbers
out of the textbook, we compare the performance of
various model configurations on the phone number

retrieval task. We design a more difficult variant by
increasing the number of phone book entries from
200 to 800 and using a variety of name formats
(more closely resembling a phone book in which
names can be more complex than simple first and
last names). For example, an entries in (Jelassi
et al., 2024) may be "Firstname Lastname 123-456-
7890" and may not encaspulate a typical phone
book. To improve realism, we generate random
names using the most common first and last names
of individuals from the US Census. The evaluation
is limited to an exact match.

Table 4 compares model configurations over
growing phone book entries (200-1600) and se-
quence length in pre-training (2048 versus 16384).
Given Hawk’s compute demands, we only include
it at 400M parameters. All are base models lightly
fine-tuned for 100 steps (arbitrarily chosen) due to
the Transformer’s compute demands. We observe
that when trained with RL-MoD, Birdie 1.4B is
able to reliably retrieve a phone number during this
task, making it the first known SSM to solve this
single number retrieval task.

In Fig. 2 we dig deeper and show accuracy versus
sequence length for the phone number retrieval task.
We observe that when trained with RL-MoD, Birdie
achieves Attention-class performance on this task,
even at the longest sequence lengths tested. In con-
trast, Birdie with CLM, the conventional NLP pre-
training objective (particularly for SSMs), scores
0% accuracy everywhere except on the shortest
sequence length. Note that we expect the Trans-
former’s performance to return if fine-tuned longer
as permitted by a larger computational budget.

Phone Number Retrieval Performance
100.0%

80.0%

J=CmBirdie 1.4B (RL-MoD)
letBirdie 1.4B (CLM)
-©-Transformer 1.4B (CLM)
jslsTransformer 400M (UL2)

60.0%

40.0%

Exact Match Accuracy

20.0%

0.0%

ry A

2048 8192 16384

4096

Sequence Length (tokens)

Figure 2: Phone number retrieval exact match accuracy
versus sequence length for Birdie (with CLM versus
RL-Mod) and a Transformer (with CLM versus UL2) at
400M and 1.4B parameters.



Entries: 100

200 400 800

Model Seq. Length:  (2048)  (4096)  (8192)  (16384)
1.4B Base Models
Birdie 1.4B (RL-MoD) 93.0% 99.4% 98.1% 96.9%
Transformer 1.4B (CLM) 84.4% 96.9% 95.6% 93.1%
Birdie 1.4B (CLM) 84.4% 0.0% 0.0% 0.0%
Birdie 1.4B (MoD) 88.0% 98.9% 92.0% 91.3%
400M Base Models
Birdie 400M (RL-MoD) 1.8% 0.0% 0.0% 0.0%
Hawk 400M (CLM) 0.0% 0.0% 0.0% 0.0%
Hawk 400M (PT5) 0.0% 0.0% 0.0% 0.0%
Transformer 400M (UL2)  100.0% 100.0% 100.0% 100.0%
Transformer 400M (CLM) 83.9% 98.9% 94.4% 90.0%
Birdie 400M (CLM) 3.4% 0.0% 0.0% 0.0%
Birdie 400M (UL2) 0.0% 0.0% 0.0% 0.0%

Table 4: Exact match accuracy on the phone number retrieval task for various model configurations across different
numbers of entries and sequence lengths. We finetune each model for 100 steps to allow for Transformers to adjust
to new positional encodings and the SSMs to only adjust slightly.

5.3 Architecture-Objectives Dynamics

During span corruption, we observe the recurrence
parameterization in Birdie abruptly resets along a
significant portion of state dimensions at, as shown
in Figure 3. This shows f; reaching 1 during span
corruption, perfect data transfer during UL2, and a
unique relationship between z; and f; during copy-

ing.

Figure 3: A sizable portion of the state in later layers
in Birdie can be seen performing lossless data transfer
along the sequence during span corruption tasks. These
intermediates were taken from a 400M Birdie trained
on UL2, running on validation data from The Pile with
span corruption noise applied to them.

o Percentage of state where ft ~=1.0 and 7 ~= 0.0
16

0.14

012

6 Conclusion

This work contributes to the ongoing discourse on
the enhancement of SSMs. It makes the case that,
while architectural innovations are undeniably valu-
able, pre-training objectives can be equally, if not
more, pivotal in advancing capabilities, especially
in areas where SSMs traditionally fall short of
attention-based models. In particular, our findings
suggest that the conventional CLM pre-training ob-

jective may not be optimally aligned with the inher-
ent strengths and limitations of SSMs. By explor-
ing bidirectional pre-training and integrating ob-
jectives tailored to improve infilling, copying, and
handling of long-range dependencies, we demon-
strate the potential for significant performance im-
provements. This approach not only reevaluates
the role of pre-training in model development but
also posits that SSMs can achieve enhanced perfor-
mance through careful objective selection, thereby
offering a new pathway for SSM enhancement be-
yond architectural tweaks.

We introduced Birdie, a minimalist SSM model
that utilizes these objectives well. Birdie exhibits a
dramatic improvement with an RL. MoD objective,
improving performance greatly on downstream
tasks and synthetics like retrieval and copying.

Taken altogether, this work presents a com-
pelling case for reevaluating the conventional ap-
proaches to enhancing SSMs through a focused
examination of pre-training objectives. By demon-
strating the significant performance gains achiev-
able through this lens, we advocate for a broader
reconsideration of how SSMs are developed and
optimized. The introduction of Birdie serves as a
tangible example of the benefits this approach can
bring, offering a new direction for future research.
We hope that our findings will inspire further explo-
ration of pre-training objectives as a critical factor
in the advancement of SSMs and their application
in solving complex NLP challenges.



7 Limitations

A consequence of the auto-regressive approach is
that Birdie must try and determine what informa-
tion to send forward to be decoded without clear
knowledge of what exactly is being currently gen-
erated. Alternatively, a diffusion-based approach
may enable Birdie’s bidirectional capabilities to
be leveraged for fetching information relevant to
the current generation for the decoder. This is in
contrast to Attention, which can better attend to
any token at any time.

While our findings suggest Birdie is the first
known SSM to solve the long-standing phone num-
ber retrieval task, interpolating from Birdie’s per-
formance on the selective copying pre-training per-
formance, we would expect performance to drop
when asked to copy more numbers simultaneously.

This paper shows dynamics between model ar-
chitecture and pre-training objective results in per-
formance gains, which is an important first step, but
further research is needed to explore these dynam-
ics, especially in the context of longer sequence
lengths and more diverse task requirements. Model
scaling is an additional concern. While we are lim-
ited in terms of compute we can afford on model
pre-training, potentially different dynamics may
emerge at very large model sizes and significant
overtraining, such as grokking. Recent work (Wang
et al., 2024) suggests that this is an interesting re-
search direction for advancing language models.

8 Ethics Statement

Our research advances an alternative framework to
the transformer for natural language understanding
via SSMs. Not relying on attention, SSMs poten-
tially offer a more sustainable computational frame-
work, as their compute demands grow only linearly
with input sequence length. This reduced time com-
plexity translates into energy and carbon footprint
savings, directly benefiting our society and open-
ing the way to sustainable AI models. Academic
labs and small and medium business enterprises,
including start-ups, do not have access to the large
computational resources that the big tech industry
does. Therefore, advancing SSMs also democra-
tizes research in LLMs, and in doing so potentially
increases innovation futher, by allowing more re-
searchers to participate in scientific advancement.
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A Appendix

A.1 Pretraining

We train all models on the same amount of data
from The Pile.(Gao et al., 2020)>. The Pile is a
collection of several datasets, and includes books,
code, web scrapes, emails, and question-answer
instruction formatted examples.

During all training and finetuning, we always
use sequence packing and proper masking for all
models, preventing samples from interfering with
each other. For Hawk, we add spacing between
samples to prevent the Conv1D layer from leaking
out information. Models in the 400M class trained
for 16,000 steps with a batch size of 260. Models
with approximately 1.4B parameters trained for
32,000 steps, with a batch size of 520. All models
wre pre-trained with a sequence length of 2048.

We pre-train on The Pile and train slightly over
Chinchilla optimal scaling laws ( 20-25x tokens per
parameter), for a maximum of 32B pre-training to-
kens for the 1.4B parameter models. We count both
context and target tokens as tokens "seen" by the
model. This provides a fair comparison among dif-
ferent pre-training objectives. This diverges from
other approaches, which do not always consider
context tokens in their total count of tokens on
which the model was trained (Tay et al., 2023b).

We use the same hyperparameters for all models,
using the same settings, such as learning rates and
batch sizes, as models found in Mamba (Gu and
Dao, 2023). We augment our Transformer with
Llama 2 Long’s positional encodings.

A.2 Instruction Tuning

For 1.4B parameter models, we largely follow the
progressive learning fine-tuning procedure from
Orca 2 (Mitra et al., 2023), as immediately jump-
ing into relatively difficult, small datasets, such
as SlimOrca-Dedup (Lian et al., 2023) ended
up hurting performance. We follow common
instruction-tuning procedures from FLAN (Long-
pre et al., 2023), Zephyr (Tunstall et al., 2023), and
Tulu (Wang et al., 2023) with dropout, cosine de-
cay learning rate, and no weight decay. We use all
training, validation, and test sets as provided by the
original authors.

We first finetune using the same hyperparameters
as in FLAN’s paper, but since we use AdamW and
not AdaFactor, we need a different learning rate to

2We use the full version of The Pile, last available mid-
2023
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compensate for the lack of AdaFactor’s parameter-
scaled updates. We simply use a gentle 3e-4 peak
cosine LR as in Zephyr (Tunstall et al., 2023) over 4
epochs. For FLAN, we extend the sequence length
to 4096 and use a batch size of 20 to keep the
number of tokens per batch equal with the original
publication. A motivation for choosing such a rela-
tively lengthy fine-tuning procedure was to show if
different pre-training objectives maintained differ-
ences between the models after finetuning. Based
on our results, the differences hold. and the models
are discernible.

A.3 Hardware

We present models from 400M to 1.4B parameters.
We train using 5 machines with 4 Nvidia A100
80GB’s each, and also perform some finetuning and
evaluations using TPU V4-32. PT5 was found by
training small 110M Birdie and Attention models
with random mixtures and continously evolving
from there. Birdie exhibited drastically different
performance based on its size, so we ensured that
our ratio worked well for the 1.4B model, also.
This took over 50 iterations of training the 110M
model, which took roughly 5 hours each.

A.4 EleutherAI LM Harness Tasks for
Downstream Performance Evaluation

Table 5 shows the performance over each of the
above tasks for various model configurations.

A.5 Interesting Dynamics in Birdie
Pre-training

The main article relates interesting dynamics re-
garding stop of information flow during span cor-
ruption. Here we relate additional observations that
the parameterizations in Birdie are dynamic, with
different pre-training objectives inducing different
behaviors. Figure 4 shows how the reinforcement
learning adjusts the pretraining objective mixtures
in Birdie 1.4B.



EleutherAI LM Har-
ness Downstream Tasks

Description

arc_easy

The *Easy’ portion of a multiple-choice question-answering dataset,
containing questions from science exams from grade 3 to 9 (Clark et al.,
2018).

arc_challenge

The Challenge portion of the dataset, containing the more difficult
questions that require reasoning (Clark et al., 2018).

medmcqa

A large-scale, Multiple-Choice Question Answering (MCQA) dataset
designed to address real-world medical entrance exam questions (Pal
et al., 2022).

winogrande

A large-scale dataset of 44k problems, inspired by the original Winograd
Schema Challenge (WSC) design (Levesque et al., 2012), but adjusted
to improve both the scale and the hardness of the dataset (Sakaguchi
et al., 2019).

wic

A large-scale Word in Context dataset based on annotations curated by
experts for generic evaluation of context-sensitive representations (Pile-
hvar and Camacho-Collados, 2018).

sst2

The Stanford Sentiment Treebank, a corpus with fully labeled parse
trees for a complete analysis of the compositional effects of sentiment
in language (Socher et al., 2013).

sciq

Crowd-sourced science exam questions about Physics, Chemistry, Bi-
ology, etc, in multiple-choice format with 4 answer options and an
evidence-supporting paragraph for the correct answer for most ques-
tions (Welbl et al., 2017).

qnli

The Question-answering Natural Language Inference dataset is auto-
matically derived from the Stanford Question Answering Dataset v1.1
(SQuAD) of question-paragraph pairs, where one of the sentences in
the paragraph (drawn from Wikipedia) contains the answer to the corre-
sponding question (written by an annotator). (Wang et al., 2018).

pubmedqa

A Yes/No biomedical question answering dataset collected from
PubMed abstracts (Jin et al., 2019).

mnli

Often also referred to as multi-nl, this Multi-Genre Natural Language
Inference (MultiNLI) corpus is a dataset to test sentence understanding;
it offers data from ten distinct genres of written and spoken English—
enabling evaluation on nearly the full complexity of the language and
on cross-genre domain adaptation. (Williams et al., 2018)

mc_taco

13K question-answer pairs that require temporal commonsense compre-
hension on (1) duration of an event, (2) order of events, (3) time when
event occurs, (4) event frequency, and (5) stationarity (whether a state
is maintained for a very long time or indefinitely). (Zhou et al., 2019)

mathqa

A large-scale dataset of math word problems (Amini et al., 2019).

copa

The Choice Of Plausible Alternatives (COPA) dataset consists of 1000
questions composed of a premise and two alternatives, with the task
being to select the alternative that more plausibly has a causal relation
with the premise (Gordon et al., 2012).

boolq

A question answering dataset for Yes/No questions containing 15942
examples; each example is a triplet of (question, passage, answer), with
the title of the page (from google search engine where questions are
collected) as optional additional context (Clark et al., 2019).
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Figure 4: These plots shows how the reinforcement learning adjusts the pretraining objective mixtures in Birdie
1.4B. Objectives are arbitrarily grouped together.
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