
Birdie: Advancing State Space Models with a Minimalist Architecture and
Novel Pre-training Objectives

Anonymous ACL submission

Abstract

State Space Models (SSMs) are emerging as001
alternatives to Transformers but struggle with002
tasks needing long-range interactions, such as003
text copying and multi-query associative recall.004
Most improvements in SSMs focus on internal005
architecture rather than exploring diverse pre-006
training objectives. This paper introduces the007
Birdie model, a minimalist SSM architecture,008
with novel pre-training objectives.. Experimen-009
tal evaluations demonstrate that combining this010
minimalist architecture designed with refined011
control over recurrence parameterization with012
pre-training objectives like infilling, copying,013
and deshuffling significantly improves perfor-014
mance in practical generative tasks, achieving015
higher average metric scores and win rates. The016
findings offer valuable insights for optimizing017
SSMs to compete with Transformers.1018

1 Introduction019

Thanks to their scaling properties (Hoffmann et al.,020

2022) and in-context learning (Garg et al., 2023),021

large transformer models are now prominent in nat-022

ural language processing (NLP) and have made023

possible effective performance on natural language024

generation tasks (NLG), including language mod-025

eling, machine translation, and question answer-026

ing (Yue et al., 2022; Xie et al., 2022; Kumar et al.,027

2021). Attention, the key to the success of trans-028

formers, is also their limitation. As the attention029

layer computes similarity scores between all pairs030

of tokens in the input sequence, its computational031

demands grow quadratically with sequence length.032

State Space Models (SSMs) are emerging as033

promising alternatives due to their subquadratic034

time complexity. SSMs belong to a class of dy-035

namic models that represent the state of a system036

at each time step as a linear combination of previ-037

ous states and the input signal. Originally popular038

in control theory and time series analysis, SSMs039

1All code and pre-trained models will be publicly released.

have recently been adapted for discrete data, such 040

as natural language. A flurry of research activity 041

has introduced various SSMs, such as S4 (Gu et al., 042

2022), S5 (Smith et al., 2023), LRU (Orvieto et al., 043

2023), Mamba (Gu and Dao, 2023), Hawk and 044

Griffin (De et al., 2024), and others, as covered in 045

some detail in Section 2. 046

Methodological innovations in SSMs aim to 047

improve performance on long-range dependency 048

tasks. Evaluations show varied success. SSMs 049

demonstrate considerable strength in traditional 050

log-likelihood evaluations, where the objective is 051

to read and choose between multiple predetermined 052

choices for a given question (Gu and Dao, 2023; 053

De et al., 2024). 054

This objective, however, does not capture what 055

a model would generate in a natural chat setting. 056

When it comes to practical, generative tasks, requir- 057

ing a sharp probability distribution, such as long- 058

range interactions, text copying, and multi-query 059

associative recall, SSMs fall short of expectations. 060

For instance, work in (Jelassi et al., 2024) demon- 061

strates that SSMs fall short of transformer-based 062

models on copying and selective tasks. These tasks 063

are critical in NLP, where the ability to maintain 064

and manipulate long-term dependencies is crucial 065

for generating coherent text, following directions, 066

copying sequences, and responding accurately to 067

multiple queries. 068

This paper addresses some of these challenges. 069

It advances SSMs along four main directions. 070

(1) Current SSMs predominantly utilize causal 071

language modeling and ignore the diversity of pre- 072

training objectives. In contrast, the first contribu- 073

tion this paper makes is the design of novel pre- 074

training objective mixtures to bias the model to- 075

wards learning functions for long-range interac- 076

tions, specifically focusing on tasks where SSMs 077

currently underperform compared to Transformer 078

models. We introduce reinforcement learning into 079

the pre-training process. 080
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(2) We demonstrate that pre-training objective081

mixtures can elicit superior performance, contrary082

to current thinking on SSMs. However, figuring083

the right mixture ratios is an important consider-084

ation. A second contribution of this paper is to085

propose a dynamic mixture of pre-training ob-086

jectives via reinforcement learning. Our results087

show that Birdie obtains competitive performance088

against Transformer models with such a dynamic089

mixture and additionally becomes the first SSM to090

solve the outstanding phone retrieval task.091

(3) The paper proposes a novel model, Birdie,092

which implements a generalized SSM architec-093

ture with direct control over the recurrence pa-094

rameterization. This architecture is informed by095

the goal of improving performance in the presence096

of long-range interactions without suffering from097

decaying state intermediates over the sequence098

length; such decay is observed in (Gu et al., 2022;099

Gu and Dao, 2023; De et al., 2024).100

(4) By narrowing themselves in the causal lan-101

guage modeling objective, current research on102

SSMs ignores potentially interesting dynamics be-103

tween pre-training objectives and the model archi-104

tecture. The fourth contribution this paper makes105

is to show the emergence of non-trivial dynam-106

ics resulting from the combination of a minimalist107

SSM architecture in the proposed Birdie model and108

the proposed novel pre-training objectives.109

2 Background and Related Work110

We relate background concepts and related work.111

2.1 SSMs112

SSMs maintain an online state that stores informa-113

tion seen in previous time steps. Due to the state’s114

finite dimensionality, SSMs inherently suffer from115

a limited and fixed memory capacity (Gu and Dao,116

2023; Wen et al., 2024). This balances memory117

efficiency with computational demands of process-118

ing long sequences. Gu and Dao (2023) argue that119

an effective state can be maintained via selective120

gating which is capable of blocking unnecessary in-121

puts to the state. Here we argue that bidirectionality122

is also necessary for maintaining a healthy state in123

terms of intermediate magnitude, as it can help the124

selective mechanisms identify what information to125

maintain. We report improved performance when126

enabling bidirectionality.127

A Brief History of SSMs S4 (Gu et al., 2022)128

was the first popular SSM for NLP that through129

clever reparameterization of the state space matri- 130

ces was able to dynamically maintain information 131

across long context windows with few resources. 132

In S5 Smith et al. (2023) reimplement S4, mov- 133

ing its application from a bank of independent 134

single-input, single-output time-invariant SSMs ap- 135

plied using the fast fourier transform, to a multi- 136

input, multi-output SSM, leveraging efficient paral- 137

lel scans and matching the computational efficiency 138

of S4, while maintaining superior performance on 139

toy tasks measuring long range performance (Smith 140

et al., 2023). Linear Recurrent Units (Orvieto et al., 141

2023) further simplify S5 through linearizing and 142

diagonalizing the recurrence, using better param- 143

eterizations, initializations, and proper normaliza- 144

tion of the forward pass. 145

Later research on SSMs predominantly focuses 146

on the selective mechanism to selectively propagate 147

or forget information along the sequence length di- 148

mension depending on the current token. Mamba 149

and Hawk are two recent SSMS that leverage this 150

selective mechanism. Mamba (Gu and Dao, 2023) 151

integrates selective SSMs into a simplified end-to- 152

end neural network architecture without attention 153

or even MLP blocks. In contrast, Hawk and Grif- 154

fin (De et al., 2024) are inspired by the LRU model 155

but incorporate an LSTM-like gating mechanism; 156

Griffin adds a sliding window attention over Hawk 157

and so is a hybrid model. 158

Linear SSMs Given a length L sequence of 159

vector-valued inputs x1:L ∈ RL×D, a general class 160

of linear SSMs with hidden states h1:L ∈ RL×N 161

and outputs y1:L ∈ RL×D can be computed as 162

hk = Akhk−1 +Bkxk 163

yk = g(hk,xk) 164
165

with state transition matrix Ak ∈ RN×N , input 166

matrix Bk ∈ RN×U and output function g(·) to 167

produce the outputs. Many recent models fall 168

within this framework and are divided into linear 169

time-invariant (LTI) and linear time-varying (LTV) 170

dynamical systems. LTI systems have static dy- 171

namics parameters across time, i.e. Ak = A and 172

Bk = B ∀k, and include recent works in deep 173

SSMs such as S4, S5, and LRU. LTV systems 174

have varying dynamics parameters that may also be 175

data-dependent and include recent methods such 176

as Liquid-S4 (Hasani et al., 2022), Hierarchical 177

GRU (HGRU; Qin et al., 2023), Hawk (De et al., 178

2024) and Mamba (Gu and Dao, 2023) as well 179

as previous works in linear RNNs (Balduzzi and 180
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Ghifary, 2016; Martin and Cundy, 2018; Bradbury181

et al., 2016; Lei et al., 2018). The linear depen-182

dencies between time steps in linear SSMs allow183

for efficient parallelization across the sequence via184

Fast Fourier Transforms (Gu et al., 2022; Fu et al.,185

2023) or parallel scans (Blelloch, 1990; Martin and186

Cundy, 2018; Smith et al., 2023).187

Recent SSMs have demonstrated improve-188

ment in language modeling perplexity and max-189

likelihood evaluations. Hawk holds SOTA perfor-190

mance for attention-free, selective SSMs on com-191

mon max-likelihood evaluations. At its core, Hawk192

is powered by the Real-Gated LRU (RG-LRU), an193

update of the original LRU (Orvieto et al., 2023)194

that add a limited amount of input-dependent gat-195

ing to its a parameterisation. The mathematical196

formulation of the RG-LRU is:197

rt = τ(Waxt)198

it = τ(Wxxt)199

at = acrt200

ht = at ⊙ ht−1 +
√

1− a2t it201202

where the constant c is set to 8. The forget-gate a203

is defined as τ(Λ), with Λ being a learnable param-204

eter. Λ is initialized such that ac is uniformly dis-205

tributed between 0.9 and 0.999. This initialization206

strategy causes at to start "open," forcing elements207

in a sequence to mix together. Notably, when Λ is208

close to these initial values, the input-dependent209

projection rt has minimal influence over the a, lim-210

iting the RG-LRU’s ability to forget previous time211

steps. Under these conditions, the RG-LRU of212

Hawk can be conceptualized as a relatively weaker213

form of a data-dependent LTV system, with an214

LTI system governing the base performance. This215

observation inspires the reparameterization in the216

proposed Birdie model. As detailed in Section 3.1,217

Birdie is a fully data-dependent LTV model.218

2.2 Pre-Training Objectives219

Pre-training "instills" general-purpose knowledge220

and abilities (Raffel et al., 2020). While the de-221

fault choice in NLP for a pre-training objective is222

causal language modeling (CLM), or "next word223

prediction," there are several empirically usable224

alternatives that have been shown to significantly225

improve model performance in settings such as226

general language tasks (Tay et al., 2022, 2023b;227

Anil et al., 2023), code generation (Bavarian et al.,228

2022; Rozière et al., 2024), and multi-modal au-229

dio and vision Transformers (Chen et al., 2023).230

Notably, Reka (Team et al., 2024) 7B and 21B, pre- 231

trained using Mixture-of-Denoisers (MoD), outper- 232

form competing frontier models (ChatGPT/Mistral) 233

in their compute class on many multi-modal tasks. 234

Alternatively to CLM, masked language model- 235

ing (MLM) includes objectives where certain to- 236

kens are replaced with a mask token, and the model 237

must predict the original tokens. In its original con- 238

ception with BERT (Devlin et al., 2019), each mask 239

token represented one obfuscated input token. Span 240

corruption (SC) extends BERT’s MLM objective to 241

generative models. For a given input, several spans 242

of tokens are replaced with unique sentinel tokens. 243

The model then generates the masked tokens and 244

their respective sentinel tokens. 245

Fill-in-the-Middle encompasses elements from 246

both SC and CLM (Bavarian et al., 2022) and fuses 247

them into one objective. Fill-in-the-Middle masks 248

out a large middle span and moves it to the end of 249

the sequence. This objective enforces a standard 250

language modeling loss on all tokens, including the 251

prefix, intended for processing by a fully-causal 252

model. This is a popular training objective, but did 253

not appear helpful during our pilot runs on SSMs 254

(data not shown). 255

Prefix language modeling (PLM) modifies this 256

approach slightly. A loss is specifically not calcu- 257

lated on a prefix and the model is allowed a bidi- 258

rectional view of the context. During pre-training, 259

input sequences are randomly split in two, with the 260

prefix functioning as context and the suffix being 261

the target for the direct loss computation (Raffel 262

et al., 2020). 263

In this paper, we consider the above represen- 264

tative pre-training objectives and integrate them 265

in a mixture-of-denoisers setting. As described 266

in Section 3, we add new objectives and dynamic 267

mixtures to improve SSMs. 268

2.3 Benchmarking SSMs 269

Jelassi et al. (2024) benchmarks two representa- 270

tive NLP models, Mamba (as a SOTA SSM) and 271

Pythia (a decoder-only transformer model) on the 272

same dataset. The paper shows serious deficiencies 273

in SSMs. Two key concerns in NLP include be- 274

ing able to copy text outside of the training length 275

and recall via extracting a phone number from a 276

phonebook. In both scenarios, Jelassi et al. (2024) 277

shows that Pythia outperforms Mamba by a signif- 278

icant margin. Similarly, Hawk and Griffin (Hawk 279

with an added sliding window attention layer) both 280

significantly struggle with the same phone num- 281
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ber recall task. Notably, both Mamba and Hawk282

have been shown to solve synthetic copying (Ar-283

jovsky et al., 2016) and induction head (Olsson284

et al., 2022) tasks, which are designed to measure285

the ability of models to correctly memorize tokens286

and recall them after reading noise. Similarly con-287

trasting differences between synthetic associative288

recall and closer-to-real-world task performance289

are evaluated by Arora et al. (2023). Informed by290

the deficiencies in current SSMs, as demonstrated291

in (Jelassi et al., 2024), to address these issues with292

"real" models (i.e., not a synthetic model trained on293

synthetic data), in this paper we utilize pre-training294

objectives to enable an SSM to learn to manage295

long-range dependencies and copy/retrieve infor-296

mation from earlier in the sequence.297

3 Methods298

3.1 Birdie299

Birdie is defined as follows:300

zt = τ(WKxt) ∈ RN301

ft = σ(Wfxt) ∈ RN302

ht = ft ⊙ ht−1 + zt303

yt = Woutht,304

where σ is the standard logistic sigmoid func-305

tion, xt is a normalized input, and yt is added to a306

residual connection. In particular, Birdie is a gated307

linear RNN. Unlike the Gated Impulse Linear Re-308

current Layer in (Martin and Cundy, 2018), where309

ht = ft ⊙ ht−1 + (1− ft) ∗ zt, Birdie removes the310

coupling between 1− f t ⊙ zt and all bias terms.311

In recent SSM literature, one observes a ten-312

dency to add more terms and couplings to the pa-313

rameterized recurrence equations. In Birdie we314

take the opposite approach, simplifying and de-315

coupling. Partially driven by work in (Tay et al.,316

2023a), which shows that minimalist transformer317

models outperform more complex architectures,318

our intuition in designing Birdie was to investigate319

a core architecture and its dynamics with a variety320

of pre-training objectives.321

Birdie can move information along the sequence322

without numerical decay; that is, data can move323

forward perfectly, for an infinite amount of time.324

In contrast, previous SSMs like S4, S5, MEGA,325

and H3 induce a non-correctable fixed decay dur-326

ing the propagation of information (note: h(t) =327

A ∗ h(t− 1) + Bx(t), where A < 1.0), meaning328

that regardless of what the model has learned, raw329

information cannot physically flow past a certain 330

distance. This does not happen in Birdie. We have 331

empirical evidence that ft reaches 1, and this is 332

prominent during span corruption, shown in Sec- 333

tion 5.3. In Section A.5 we relate additional ob- 334

servations that the parameterizations in Birdie are 335

dynamic, with different pre-training objectives in- 336

ducing different behaviors. This dynamic behavior 337

is observed in the presence of a fixed state, sug- 338

gesting that Birdie is fully utilizing state capacity 339

independent of sequence length. 340

4 Pre-training Objectives and Mixtures 341

Table 1 lists classic and new objectives and mix- 342

tures we investigate. We include pre-training objec- 343

tives and tasks that we hypothesize will enhance an 344

SSMs’ abilities to handle long-range dependencies, 345

potentially improving performance on downstream 346

tasks. Novel pre-training objectives proposed in 347

this table, highlighted in bold font, include: Selec- 348

tive Copying, Full Span Corruption with Deshuf- 349

fling (a fixed-ratio MoD), PT5 (a fixed-ratio MoD 350

over objectives listed in Table 1), and RL-Mod, 351

a dynamic MoD with optimal ratios determined 352

via the proposed reinforcement learning approach 353

described later in this paper. The Selective Copy- 354

ing pre-training objective proposed here is inspired 355

by work in (Olsson et al., 2022), but we note that 356

Olsson et al. (2022) introduce it as a synthetic in- 357

duction head task to guide the design of potentially 358

improved small models. 359

Span Corruption (SC): This is the standard ob- 360

jective from T5, where a span of tokens is corrupted 361

and the model must generate the masked spans, as 362

illustrated in Table 1. It is worth noting that for an 363

SSM, span corruption takes on a significantly more 364

difficult form, since all relevant information must 365

be compressed into a single state, so we include it 366

in the list of pre-training objectives we investigate. 367

In addition, we explore two variations: 368

Full Span Corruption (FSC): The model must 369

generate the entire de-noised sequence. This is sim- 370

ilar to BERT’s MLM task, but the model generates 371

the entire sequence rather than filling in masked 372

tokens in-place. This objective was named BERT- 373

style and was included in an ablation in T5. This 374

tasks the model with maintaining a state where 375

it can simultaneously copy from a context while 376

generating new text conditioned on the context. 377

FSC with Deshuffling (FSC-D): This is a novel 378

variation we introduce in this paper. It builds over 379
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FSC but shuffles the non-corrupted spans so that it380

is more difficult for the model to only pay attention381

to surrounding tokens and so find the right context382

and copy large amounts of text.383

- Text: Bird songs fill the early morning air

Objective Example
CLM In: –

Tgt: Bird songs fill the early morning air

PLM In: Bird songs fill
Tgt: the early morning air

SC In: Bird [mask] the early [mask]
Tgt: songs fill [mask] air [mask]

Deshuffling In: the early [mask] Bird [mask]
Tgt: Bird songs fill the early morning air

Copying In: the early [mask] Bird [mask]
Tgt: Bird songs fill the early morning air

Selective In: the early [mask] Bird [mask]
Copying Tgt: Bird songs fill the early morning air

Mixture of Denoisers (MoD)
FSC In: Bird [mask] the early [mask]

Tgt: Bird songs fill the early morning air

FSC-D In: the early [mask] Bird [mask]
Tgt: Bird songs fill the early morning air

UL2 Fixed-ratio mixture of PLM and SC (Tay et al.,
2023b).

PT5 A new mixture of CLM, PLM, SC, Deshuf-
fling, and Copying at fixed ratios found via
ablations.

RL-MoD A novel dynamic mixture of CLM, PLM, SC,
Deshuffling, Copying, and Selective Copy-
ing at optimal ratios found via reinforcement
learning.

Table 1: CLM: Causal language modeling. PLM: Prefix
language modeling. SC: Span corruption. FSC: Full SC.
FSC-D: FSC with deshuffling. In: input; Tgt: target.
New pre-training objectives and MoDs are bolded.

Deshuffling: The model is given an input se-384

quence with shuffled tokens. The model must385

deshuffle the tokens to recreate the original se-386

quence. We use two variations: one where 50% of387

the input tokens are shuffled, and a second where388

all inputs tokens are shuffled.389

Copying: We include two pre-training tasks that390

do not involve denoising an input, inspired by re-391

cent work (Jelassi et al., 2024) that highlights chal-392

lenges with SSMs in copying tasks. In Copying,393

the model must recreate the input sequence. This394

is a key component of many tasks requiring long-395

range dependencies. We introduce here a novel396

variation, Selective Copying, in which the model397

is given beginnings and endings of spans in the398

context and then must find and copy these spans399

to the output. The model copies specific spans of400

text from the input. This tasks differs from stan-401

dard copying in that not all text is copied and the402

spans to copy are not necessarily found in order in403

the context. This can be seen as an analog to the404

downstream phone book look-up task. 405

4.1 Optimal Mixtures with Objective 406

Sampling via Reinforcement Learning 407

Model architecture and size has a significant effect 408

on pre-training objective performance. As shown 409

in Figure 1 for the selective copying task, we ob- 410

serve that Birdie at 400M parameters achieves ac- 411

curacy only in the high 30%s but reaches 93% at 412

1.4B parameters when trained to only 32B tokens, 413

approaching a nearly 100% accuracy by a 6-layer 414

transformer at 141M parameters. 415

Figure 1: Accuracy on the selective copying task dur-
ing pre-training on a shared validation set from The
Pile (Gao et al., 2020) across Birdie (1.4B and 400M
parameters) and a transformer of 141M parameters.

This suggests that static pre-training objective 416

mixes, like those in BERT and UL2 (Devlin et al., 417

2019; Tay et al., 2023b), may not suit all model 418

architectures. Despite the limited details shared 419

by Team et al. (2024) and (PAL) on their use 420

of curriculum-based techniques, the challenge re- 421

mains in optimally scheduling and adjusting mix- 422

ture rates for varying model configurations, as 423

noted by (Tay et al., 2022). 424

To address this, we propose a dynamic, auto- 425

mated curriculum that adapts pre-training task mix- 426

tures according to the evolving needs of the model 427

and exploits synergies between objectives. Our 428

approach utilizes a critic model, which predicts re- 429

wards for each objective, given past actions and 430

their observed outcomes. 431

Overall, this forms a classic multi-armed bandit 432

framework and is related to a recent Gaussian Pro- 433

cess approach for masking rates in MLM (Urteaga 434

et al., 2023), which we found ineffective for our 435

diverse objectives. We adopt a two-layer Trans- 436

former to directly predict per-objective rewards 437

based on historical data. Our optimization method 438
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is akin to Direct Preference Optimization (DPO)439

(Rafailov et al., 2023), avoiding drawbacks from440

fixed policies and empirically follows the model’s441

drift during training.442

This approach, visualized in Appendix Figure 4,443

shows that training on Full Span Corruption occa-444

sionally boosts Copying and Deshuffling objectives445

to the extent that their sampling can be drastically446

reduced. Interestingly, Span Corruption benefits447

from Selective Copying early in training even with-448

out a direct copying component.449

Mathematically, we define the reward estima-450

tion process as Ri
t = E[r(oit|θt−1)] for i =451

1, 2, . . . , N , where Ri
t is the estimated reward452

for objective i at time step t, r is the reward453

function, oit represents the objective i at time454

step t, and θt−1 denotes the model parameters455

at the previous time step. We then select the456

top M actions with the highest rewards Ot =457

argmaxM{R1
t , R

2
t , . . . , R

N
t }. Finally, at the next458

evaluation step, the model is trained on the selected459

actions: θt = θt−1 + η∇ 1
M

∑
i∈Ot

r(oit|θt−1),460

where η is the learning rate.461

We find our approach consistently improves per-462

formance across all tested pre-training objectives.463

The dynamic MoD resulting from this approach is464

referred to as RL-MoD in our experiments.465

4.2 Experimental Setup466

We carry out three lines of investigation.467

First, we relate a comprehensive compari-468

son that pitches Birdie against transformer-469

based models at various configurations (base470

versus instruction fine tuning, 400M versus471

1.4B parameters, and various pre-training ob-472

jectives) over 14 max-likelihood tasks from the473

EleutherAI LM Harness (https://github.com/474

EleutherAI/lm-evaluation-harness). These475

tasks are listed in Appendix A. Second, we relate a476

detailed analysis over the phone number retrieval477

task, which has been shown to be a particularly478

challenging task for SSMs (Jelassi et al., 2024),479

and we show here Birdie being the first SSM to480

solve this task. Third, we showcase interesting481

dynamics from the combination of a minimalist482

architecture in Birdie and pre-training objectives.483

Pretraining: We train Hawk and Birdie on The484

Pile (Gao et al., 2020) dataset using sequence pack-485

ing and proper masking to prevent sample inter-486

ference. We investigate 400M-parameter mod-487

els trained for 16,000 steps with a batch size of488

260 versus 1.4B-parameters models trained for 489

32,000 steps with a batch size of 520. As in re- 490

cent literature, all models were pre-trained with a 491

sequence length of 2048. Following recommen- 492

dations by Chowdhery et al. (2022), we pre-train 493

slightly over Chinchilla optimal scaling laws (Hoff- 494

mann et al., 2022) – 20-25x tokens per parameter. 495

Instruction Tuning: For 1.4B parameter mod- 496

els, we loosely follow the progressive learning 497

fine-tuning procedure from Orca 2 (Mitra et al., 498

2023) and integrate common instruction-tuning 499

procedures from FLAN (Longpre et al., 2023), 500

Zephyr (Tunstall et al., 2023), and Tulu (Wang 501

et al., 2023). We extend the sequence length to 502

4096 and 8192. More details on pre-training and 503

fine-tuning can be found in Sections A.1-A.2. 504

5 Results 505

We present here our main findings. 506

5.1 Comparative Performance and Ablation 507

Study on Max-likelihood Tasks 508

Table 2 relates the average task accuracy for various 509

model configurations (model architecture - Birdie 510

versus transformer, size – 1.4B versus 400M), ob- 511

jectives (fixed MoD objectives, such as UL2 and 512

PT5, versus our RL-resulting dynamic MoD RL- 513

MoD, and base versus instruction-tuned. Sec- 514

tion A.4 in Appendix A describes each of these 515

tasks as well as relates the performance of each 516

model configuration on each task. 517

Several observations can be made from Table 2. 518

First, in each setting, whether base versus instruc- 519

tion fine-tuned and whether at 1.4B or 400M, 520

Birdie elicits competitive performance. It is worth 521

noting that inclusion of the additional objectives 522

and copying tasks do not hurt average downstream 523

performance: instead, we observe that Birdie train- 524

ing with a mixtures-of-denoisers is always among 525

the top performers. This is an important finding, 526

as current literature on generative SSMs default 527

to CLM as the pre-training objective. Another in- 528

teresting finding suggested by the results in Ta- 529

ble 2 is that RL-MoD elicits the best performance 530

with growing model size. Birdie at 1.4B parame- 531

ters with RL-MoD begins to pulls away from the 532

other models with an average task performance 533

of 2.5% higher than the next model, the attention- 534

based model with CLM. We note that CLM is cur- 535

rently the most popular pre-training objective for 536

Attention-based models in literature. 537

6

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness


Model Objective Avg Task Accuracy

Instruction Tuned, 1.4B
Birdie (RL-MoD) RL-MoD 45.5%
Attention (CLM) CLM 43.0%
Birdie (PT5) PT5 42.5%
Birdie (CLM) CLM 40.9%

Base Models, 1.4B
Birdie (PT5) PT5 41.0%
Birdie (CLM) CLM 40.9%
Birdie (RL-MoD) RL-MoD 40.6%
Attention (CLM) CLM 40.1%

Instruction Tuned, 400M
Birdie (UL2) UL2 40.3%
Attention (UL2) UL2 40.2%
Hawk (PT5) PT5 39.3%
Attention (CLM) CLM 39.2%
Hawk (CLM) CLM 38.4%

Base Models, 400M
Birdie (CLM) CLM 40.3%
Birdie (RL-MoD) RL-MoD 40.1%
Attention (CLM) CLM 39.7%
Birdie (UL2) UL2 39.5%
Birdie (PT5) PT5 39.3%
Attention (UL2) UL2 39.2%
Hawk (PT5) PT5 38.8%
Hawk (CLM) CLM 38.4%

Table 2: Average task accuracy over 14 EleutherAI LM
Harness tasks (listed in Appendix A) for various model
configurations (model architecture, size), objectives,
and base versus instruction-tuned. FLAN-style (Long-
pre et al., 2023) templates and accuracy normalized by
target token length is used. The full chart is in Table 2.

Table 3 relates compute cost between models538

(Birdie 1.4B with RL-MoD, Transformer 1.4B, and539

reference models for Hawk 1.4B and Flash At-540

tention 2 (Dao, 2023) with causal masking), go-541

ing beyond parameter count comparisons. On our542

hardware (Nvidia A100 and Google TPUv3 and543

TPUv4’s), Hawk required significantly more time544

to train as compared Birdie, primarily from its high-545

dimensional 1D convolution operation, so we do546

not fully pre-train it. It is worth noting that Birdie at547

1.4B is the most compute efficient, which can allow548

for practical savings and a longer model training549

for a given compute budget.550

Backend Model GPU
Hrs
(A100)

Sec /
Step

Seq
Length

Tokens
/ sec /
A100

JAX Birdie 1.4B 5,600 3.5 N/A 15,214
JAX Hawk 1.4B 7,680 4.8 N/A 11,093
JAX Transformer 1.4B 10,016 6.3 2048 8,506
Torch Flash Attn. 2 7,011 4.4 2048 12,152

Table 3: Comparison of observed model training speeds.

5.2 Analysis on Phone Number Retrieval551

Inspired by work in (Jelassi et al., 2024), which552

shows that SSMs cannot pull the phone numbers553

out of the textbook, we compare the performance of554

various model configurations on the phone number555

retrieval task. We design a more difficult variant by 556

increasing the number of phone book entries from 557

200 to 800 and using a variety of name formats 558

(more closely resembling a phone book in which 559

names can be more complex than simple first and 560

last names). For example, an entries in (Jelassi 561

et al., 2024) may be "Firstname Lastname 123-456- 562

7890" and may not encaspulate a typical phone 563

book. To improve realism, we generate random 564

names using the most common first and last names 565

of individuals from the US Census. The evaluation 566

is limited to an exact match. 567

Table 4 compares model configurations over 568

growing phone book entries (200–1600) and se- 569

quence length in pre-training (2048 versus 16384). 570

Given Hawk’s compute demands, we only include 571

it at 400M parameters. All are base models lightly 572

fine-tuned for 100 steps (arbitrarily chosen) due to 573

the Transformer’s compute demands. We observe 574

that when trained with RL-MoD, Birdie 1.4B is 575

able to reliably retrieve a phone number during this 576

task, making it the first known SSM to solve this 577

single number retrieval task. 578

In Fig. 2 we dig deeper and show accuracy versus 579

sequence length for the phone number retrieval task. 580

We observe that when trained with RL-MoD, Birdie 581

achieves Attention-class performance on this task, 582

even at the longest sequence lengths tested. In con- 583

trast, Birdie with CLM, the conventional NLP pre- 584

training objective (particularly for SSMs), scores 585

0% accuracy everywhere except on the shortest 586

sequence length. Note that we expect the Trans- 587

former’s performance to return if fine-tuned longer 588

as permitted by a larger computational budget. 589

Figure 2: Phone number retrieval exact match accuracy
versus sequence length for Birdie (with CLM versus
RL-Mod) and a Transformer (with CLM versus UL2) at
400M and 1.4B parameters.

7



Entries: 100 200 400 800
Model Seq. Length: (2048) (4096) (8192) (16384)

1.4B Base Models
Birdie 1.4B (RL-MoD) 93.0% 99.4% 98.1% 96.9%
Transformer 1.4B (CLM) 84.4% 96.9% 95.6% 93.1%
Birdie 1.4B (CLM) 84.4% 0.0% 0.0% 0.0%
Birdie 1.4B (MoD) 88.0% 98.9% 92.0% 91.3%

400M Base Models
Birdie 400M (RL-MoD) 1.8% 0.0% 0.0% 0.0%
Hawk 400M (CLM) 0.0% 0.0% 0.0% 0.0%
Hawk 400M (PT5) 0.0% 0.0% 0.0% 0.0%
Transformer 400M (UL2) 100.0% 100.0% 100.0% 100.0%
Transformer 400M (CLM) 83.9% 98.9% 94.4% 90.0%
Birdie 400M (CLM) 3.4% 0.0% 0.0% 0.0%
Birdie 400M (UL2) 0.0% 0.0% 0.0% 0.0%

Table 4: Exact match accuracy on the phone number retrieval task for various model configurations across different
numbers of entries and sequence lengths. We finetune each model for 100 steps to allow for Transformers to adjust
to new positional encodings and the SSMs to only adjust slightly.

5.3 Architecture-Objectives Dynamics590

During span corruption, we observe the recurrence591

parameterization in Birdie abruptly resets along a592

significant portion of state dimensions at, as shown593

in Figure 3. This shows ft reaching 1 during span594

corruption, perfect data transfer during UL2, and a595

unique relationship between zt and ft during copy-596

ing.597

Figure 3: A sizable portion of the state in later layers
in Birdie can be seen performing lossless data transfer
along the sequence during span corruption tasks. These
intermediates were taken from a 400M Birdie trained
on UL2, running on validation data from The Pile with
span corruption noise applied to them.

6 Conclusion598

This work contributes to the ongoing discourse on599

the enhancement of SSMs. It makes the case that,600

while architectural innovations are undeniably valu-601

able, pre-training objectives can be equally, if not602

more, pivotal in advancing capabilities, especially603

in areas where SSMs traditionally fall short of604

attention-based models. In particular, our findings605

suggest that the conventional CLM pre-training ob-606

jective may not be optimally aligned with the inher- 607

ent strengths and limitations of SSMs. By explor- 608

ing bidirectional pre-training and integrating ob- 609

jectives tailored to improve infilling, copying, and 610

handling of long-range dependencies, we demon- 611

strate the potential for significant performance im- 612

provements. This approach not only reevaluates 613

the role of pre-training in model development but 614

also posits that SSMs can achieve enhanced perfor- 615

mance through careful objective selection, thereby 616

offering a new pathway for SSM enhancement be- 617

yond architectural tweaks. 618

We introduced Birdie, a minimalist SSM model 619

that utilizes these objectives well. Birdie exhibits a 620

dramatic improvement with an RL MoD objective, 621

improving performance greatly on downstream 622

tasks and synthetics like retrieval and copying. 623

Taken altogether, this work presents a com- 624

pelling case for reevaluating the conventional ap- 625

proaches to enhancing SSMs through a focused 626

examination of pre-training objectives. By demon- 627

strating the significant performance gains achiev- 628

able through this lens, we advocate for a broader 629

reconsideration of how SSMs are developed and 630

optimized. The introduction of Birdie serves as a 631

tangible example of the benefits this approach can 632

bring, offering a new direction for future research. 633

We hope that our findings will inspire further explo- 634

ration of pre-training objectives as a critical factor 635

in the advancement of SSMs and their application 636

in solving complex NLP challenges. 637
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7 Limitations638

A consequence of the auto-regressive approach is639

that Birdie must try and determine what informa-640

tion to send forward to be decoded without clear641

knowledge of what exactly is being currently gen-642

erated. Alternatively, a diffusion-based approach643

may enable Birdie’s bidirectional capabilities to644

be leveraged for fetching information relevant to645

the current generation for the decoder. This is in646

contrast to Attention, which can better attend to647

any token at any time.648

While our findings suggest Birdie is the first649

known SSM to solve the long-standing phone num-650

ber retrieval task, interpolating from Birdie’s per-651

formance on the selective copying pre-training per-652

formance, we would expect performance to drop653

when asked to copy more numbers simultaneously.654

This paper shows dynamics between model ar-655

chitecture and pre-training objective results in per-656

formance gains, which is an important first step, but657

further research is needed to explore these dynam-658

ics, especially in the context of longer sequence659

lengths and more diverse task requirements. Model660

scaling is an additional concern. While we are lim-661

ited in terms of compute we can afford on model662

pre-training, potentially different dynamics may663

emerge at very large model sizes and significant664

overtraining, such as grokking. Recent work (Wang665

et al., 2024) suggests that this is an interesting re-666

search direction for advancing language models.667

8 Ethics Statement668

Our research advances an alternative framework to669

the transformer for natural language understanding670

via SSMs. Not relying on attention, SSMs poten-671

tially offer a more sustainable computational frame-672

work, as their compute demands grow only linearly673

with input sequence length. This reduced time com-674

plexity translates into energy and carbon footprint675

savings, directly benefiting our society and open-676

ing the way to sustainable AI models. Academic677

labs and small and medium business enterprises,678

including start-ups, do not have access to the large679

computational resources that the big tech industry680

does. Therefore, advancing SSMs also democra-681

tizes research in LLMs, and in doing so potentially682

increases innovation futher, by allowing more re-683

searchers to participate in scientific advancement.684
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A Appendix1010

A.1 Pretraining1011

We train all models on the same amount of data1012

from The Pile.(Gao et al., 2020)2. The Pile is a1013

collection of several datasets, and includes books,1014

code, web scrapes, emails, and question-answer1015

instruction formatted examples.1016

During all training and finetuning, we always1017

use sequence packing and proper masking for all1018

models, preventing samples from interfering with1019

each other. For Hawk, we add spacing between1020

samples to prevent the Conv1D layer from leaking1021

out information. Models in the 400M class trained1022

for 16,000 steps with a batch size of 260. Models1023

with approximately 1.4B parameters trained for1024

32,000 steps, with a batch size of 520. All models1025

wre pre-trained with a sequence length of 2048.1026

We pre-train on The Pile and train slightly over1027

Chinchilla optimal scaling laws ( 20-25x tokens per1028

parameter), for a maximum of 32B pre-training to-1029

kens for the 1.4B parameter models. We count both1030

context and target tokens as tokens "seen" by the1031

model. This provides a fair comparison among dif-1032

ferent pre-training objectives. This diverges from1033

other approaches, which do not always consider1034

context tokens in their total count of tokens on1035

which the model was trained (Tay et al., 2023b).1036

We use the same hyperparameters for all models,1037

using the same settings, such as learning rates and1038

batch sizes, as models found in Mamba (Gu and1039

Dao, 2023). We augment our Transformer with1040

Llama 2 Long’s positional encodings.1041

A.2 Instruction Tuning1042

For 1.4B parameter models, we largely follow the1043

progressive learning fine-tuning procedure from1044

Orca 2 (Mitra et al., 2023), as immediately jump-1045

ing into relatively difficult, small datasets, such1046

as SlimOrca-Dedup (Lian et al., 2023) ended1047

up hurting performance. We follow common1048

instruction-tuning procedures from FLAN (Long-1049

pre et al., 2023), Zephyr (Tunstall et al., 2023), and1050

Tulu (Wang et al., 2023) with dropout, cosine de-1051

cay learning rate, and no weight decay. We use all1052

training, validation, and test sets as provided by the1053

original authors.1054

We first finetune using the same hyperparameters1055

as in FLAN’s paper, but since we use AdamW and1056

not AdaFactor, we need a different learning rate to1057

2We use the full version of The Pile, last available mid-
2023

compensate for the lack of AdaFactor’s parameter- 1058

scaled updates. We simply use a gentle 3e-4 peak 1059

cosine LR as in Zephyr (Tunstall et al., 2023) over 4 1060

epochs. For FLAN, we extend the sequence length 1061

to 4096 and use a batch size of 20 to keep the 1062

number of tokens per batch equal with the original 1063

publication. A motivation for choosing such a rela- 1064

tively lengthy fine-tuning procedure was to show if 1065

different pre-training objectives maintained differ- 1066

ences between the models after finetuning. Based 1067

on our results, the differences hold. and the models 1068

are discernible. 1069

A.3 Hardware 1070

We present models from 400M to 1.4B parameters. 1071

We train using 5 machines with 4 Nvidia A100 1072

80GB’s each, and also perform some finetuning and 1073

evaluations using TPU V4-32. PT5 was found by 1074

training small 110M Birdie and Attention models 1075

with random mixtures and continously evolving 1076

from there. Birdie exhibited drastically different 1077

performance based on its size, so we ensured that 1078

our ratio worked well for the 1.4B model, also. 1079

This took over 50 iterations of training the 110M 1080

model, which took roughly 5 hours each. 1081

A.4 EleutherAI LM Harness Tasks for 1082

Downstream Performance Evaluation 1083

Table 5 shows the performance over each of the 1084

above tasks for various model configurations. 1085

A.5 Interesting Dynamics in Birdie 1086

Pre-training 1087

The main article relates interesting dynamics re- 1088

garding stop of information flow during span cor- 1089

ruption. Here we relate additional observations that 1090

the parameterizations in Birdie are dynamic, with 1091

different pre-training objectives inducing different 1092

behaviors. Figure 4 shows how the reinforcement 1093

learning adjusts the pretraining objective mixtures 1094

in Birdie 1.4B. 1095

13



EleutherAI LM Har-
ness Downstream Tasks

Description

arc_easy The ’Easy’ portion of a multiple-choice question-answering dataset,
containing questions from science exams from grade 3 to 9 (Clark et al.,
2018).

arc_challenge The Challenge portion of the dataset, containing the more difficult
questions that require reasoning (Clark et al., 2018).

medmcqa A large-scale, Multiple-Choice Question Answering (MCQA) dataset
designed to address real-world medical entrance exam questions (Pal
et al., 2022).

winogrande A large-scale dataset of 44k problems, inspired by the original Winograd
Schema Challenge (WSC) design (Levesque et al., 2012), but adjusted
to improve both the scale and the hardness of the dataset (Sakaguchi
et al., 2019).

wic A large-scale Word in Context dataset based on annotations curated by
experts for generic evaluation of context-sensitive representations (Pile-
hvar and Camacho-Collados, 2018).

sst2 The Stanford Sentiment Treebank, a corpus with fully labeled parse
trees for a complete analysis of the compositional effects of sentiment
in language (Socher et al., 2013).

sciq Crowd-sourced science exam questions about Physics, Chemistry, Bi-
ology, etc, in multiple-choice format with 4 answer options and an
evidence-supporting paragraph for the correct answer for most ques-
tions (Welbl et al., 2017).

qnli The Question-answering Natural Language Inference dataset is auto-
matically derived from the Stanford Question Answering Dataset v1.1
(SQuAD) of question-paragraph pairs, where one of the sentences in
the paragraph (drawn from Wikipedia) contains the answer to the corre-
sponding question (written by an annotator). (Wang et al., 2018).

pubmedqa A Yes/No biomedical question answering dataset collected from
PubMed abstracts (Jin et al., 2019).

mnli Often also referred to as multi-nl, this Multi-Genre Natural Language
Inference (MultiNLI) corpus is a dataset to test sentence understanding;
it offers data from ten distinct genres of written and spoken English–
enabling evaluation on nearly the full complexity of the language and
on cross-genre domain adaptation. (Williams et al., 2018)

mc_taco 13K question-answer pairs that require temporal commonsense compre-
hension on (1) duration of an event, (2) order of events, (3) time when
event occurs, (4) event frequency, and (5) stationarity (whether a state
is maintained for a very long time or indefinitely). (Zhou et al., 2019)

mathqa A large-scale dataset of math word problems (Amini et al., 2019).
copa The Choice Of Plausible Alternatives (COPA) dataset consists of 1000

questions composed of a premise and two alternatives, with the task
being to select the alternative that more plausibly has a causal relation
with the premise (Gordon et al., 2012).

boolq A question answering dataset for Yes/No questions containing 15942
examples; each example is a triplet of (question, passage, answer), with
the title of the page (from google search engine where questions are
collected) as optional additional context (Clark et al., 2019).
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Figure 4: These plots shows how the reinforcement learning adjusts the pretraining objective mixtures in Birdie
1.4B. Objectives are arbitrarily grouped together.
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