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Abstract
Detecting deviant language such as sexism, or001
nuanced language such as metaphors or sar-002
casm, is crucial for enhancing the safety, clar-003
ity, and interpretation of social interactions.004
While existing classifiers deliver strong results005
on these tasks, they often come with signifi-006
cant computational cost and high data demands.007
In this work, we propose Class Distillation008
(ClaD), a novel training paradigm that targets009
the core challenge: distilling a small, well-010
defined target class from a highly diverse and011
heterogeneous background. ClaD integrates012
two key innovations: (i) a loss function in-013
formed by the structural properties of class014
distributions, based on Mahalanobis distance,015
and (ii) an interpretable decision algorithm opti-016
mized for class separation. Across three bench-017
mark detection tasks – sexism, metaphor, and018
sarcasm – ClaD outperforms competitive base-019
lines, and even with smaller language mod-020
els and orders of magnitude fewer parame-021
ters, achieves performance comparable to sev-022
eral large language models. These results023
demonstrate ClaD as an efficient tool for prag-024
matic language understanding tasks that require025
gleaning a small target class from a larger het-026
erogeneous background.027

1 Introduction028

The widespread adoption of social media and the029

polarized nature of online discourse have ampli-030

fied the need for improved communication dynam-031

ics, fostering research aimed at promoting safety032

and mutual respect. A critical part of this ef-033

fort involves detecting complex linguistic phenom-034

ena such as figurative speech – such as sarcasm035

and metaphor (Riloff et al., 2013; Oraby et al.,036

2016; Ghosh et al., 2020; Ge et al., 2023) – as037

well as harmful language like aggression or sex-038

ism (Safi Samghabadi et al., 2020; Samory et al.,039

2021). These tasks present significant urgency and040

challenges due to the nuances of figurative speech041

and the variability of deviant language.042

Figure 1: The minority target class representing de-
viant language ( ) versus a highly diverse and hetero-
geneous non-target class of everything else ( ). This
t-SNE (van der Maaten and Hinton, 2008) visualization
(where lighter shades indicate instances located further
away in 3-D) displays a representative sample from the
“Call me sexist but . . . ” corpus (Samory et al., 2021).

Most prior research (see §6) has approached 043

these tasks as traditional binary classification prob- 044

lems, utilizing ground truth labels provided in vari- 045

ous datasets. Despite varying degrees of success, 046

this formulation has overlooked a crucial common- 047

ality: the objective in such tasks is often to isolate 048

a minority target class, characterized more by its 049

pragmatic function in natural language than its se- 050

mantics, from the much larger and incredibly di- 051

verse negative class encompassing everything else. 052

The complexities arising from the somewhat nebu- 053

lous dichotomy,1 alongside the diverse and hetero- 054

geneous nature of the predominant non-target class, 055

can be gleaned from Figure 1. In this context, ac- 056

curate binary classification proves challenging due 057

to the immense linguistic diversity encompassed 058

1There is a sizeable body of legal and linguistic scholarship
on the boundaries of unwarranted and figurative language.
See, for example, Rosenfeld (2002); Kiska (2012); Kasparian
(2013); Athanasiadou (2024).
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Fi
gu

ra
tiv

e
f1) My alarm clock makes sure I love every Monday

morning!
f2) My alarm clock makes sure that I dread every Mon-

day morning!
f3) My alarm clock always wakes me up on Monday

mornings.
f4) A white carpet is a great choice when you have messy

kids.My alarm clock always wakes me up on Monday
mornings.

f5) A white carpet is an engaging choice when you have
messy kids, if you take extra care.My alarm clock
always wakes me up on Monday mornings.

f1
0.47∼ f2 f1

0.91∼ f3 f2
0.62∼ f3 f4

0.78∼ f5

D
ev

ia
nt d1) A female astronaut, because they need sandwiches up

there.
d2) An astronaut needs sandwiches up there.

d1
0.76∼ d2

Table 1: Instances of figurative (fi, sarcasm detection)
and deviant (di, sexism detection) language. Similarity
scores are based on the stsb-roberta-large cross-
encoder model fine-tuned on the STS benchmark intro-
duced by Cer et al. (2017). These scores reveal a deeper
problem: a target class instance ( ) may be highly dis-
similar to several non-target instances ( ) while also
being very similar to other non-target instances.

within the non-target category.2 The model must059

be adept at learning a complex decision boundary060

without succumbing to overfitting on the training061

corpus. As such, the most effective solutions often062

employ sophisticated deep neural models or ensem-063

ble methods, which (a) demand large amounts of064

training data, (b) require significant computational065

resources for training and inference, (c) lack inter-066

pretability, and (d) depend on careful regularization067

and hyperparameter tuning.068

Since the target class has a well-defined func-069

tion in terms of natural language pragmatics, we070

conjecture that a detailed study of the target and071

non-target class distributions will reveal structural072

differences that can be leveraged to design a model073

training paradigm better suited for class distillation074

(ClaD, discussed in §2), and therefore, superior in075

terms of (a) inferring test instances of the target076

class, (b) the demands it places on computational077

resources during training, and (c) interpretability.078

We test this conjecture on multiple tasks and bench-079

mark datasets (§3), starting with statistical anal-080

yses to glean the structural properties and dis-081

2The target class exhibits rich syntactic and semantic varia-
tions while serving a specific pragmatic function, whereas the
non-target class presents even greater semantic variety with no
common pragmatic function. E.g., instances of sexism specif-
ically discriminate on the basis of sex, while the non-target
class is unified only by the absence of such hostility.

tributional differences between the target and 082

non-target classes (§3.1). With these insights, we 083

develop novel contrastive loss functions derived 084

from Mahalanobis (1936) distance (§4.1), which 085

leverage intra-class covariance to contrast the tar- 086

get class against the diverse and heterogeneous 087

collection of negative samples. We then introduce 088

an interpretable decision algorithm based on the 089

normalized squared Mahalanobis distance (§4.2) 090

to identify target instances. 091

Our results (§5) demonstrate superior inference 092

and resource efficiency across all tasks. We raise 093

two vital questions in §5.2, investigating how 094

small language models with ClaD, given limited 095

task-specific training, compares to LLMs in low- 096

resource transfer learning. We also examine the ex- 097

tent to which increasing LLM size improves perfor- 098

mance with identical training data. Recent findings, 099

such as those from DeepSeek (Liu et al., 2024; Guo 100

et al., 2025), underscore the need for such empha- 101

sis on economical training and efficient inference. 102

Further, we present ablation experiments to discern 103

(1) the impact of our decision algorithm, (2) the 104

effect of our novel loss function, and (3) whether 105

traditional one-class classification is comparable to 106

ClaD with Mahalanobis contrast. 107

2 ClaD: A Whiteboard Discussion 108

Class Distillation (ClaD) is a specialized training 109

paradigm for binary classification, emphasizing the 110

separation of a distinct category from a diverse 111

and often disproportionately larger non-target back- 112

ground. Non-target instances frequently include 113

expressions that are semantically similar to the tar- 114

get class, while also encompassing elements with 115

no syntactic, semantic, or pragmatic resemblance 116

to each other. This dual challenge leads to sig- 117

nificant ambiguity and overlap, making accurate 118

classification particularly difficult. 119

The predicament is not specific to a single task, 120

as Table 1 shows with instances from figurative (sar- 121

casm) and deviant (sexism) language use. These 122

examples highlight the limitations of relying solely 123

on simple prompting with large language models 124

for effective inference, as decisions are easily con- 125

founded by the diversity of the non-target class. 126

Further, we show in §5.3 that applying straightfor- 127

ward semantic similarity measures fails to capture 128

the nuanced characteristics defining the target class. 129

Drawing insight from Figure 1, the target in- 130

stances are not uniformly distributed across the fea- 131
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ture space; rather, they appear to form a structured132

subset that can be viewed as a manifold within a133

higher-dimensional space. To better understand the134

shape and properties of this manifold, we analyze135

the structural and distributional characteristics of136

the target and non-target classes, which provides137

foundational insights into the class geometries and138

informs our formulation of novel loss functions (§139

4.1) and ClaD’s decision algorithm (§4.2).140

A visual approach to unveiling the distributional141

characteristics is relegated to Appendix A, while142

our systematic analysis of the datasets and target143

class’ geometric properties is presented next.144

3 Tasks and Datasets145

We concentrate on three tasks for our analyses and146

experiments: two types of figurative language (sar-147

casm and metaphors) and one form of deviant lan-148

guage (sexism), utilizing a dedicated benchmark149

corpus for each to illustrate that the patterns we150

uncover and the class distillation paradigm we pro-151

pose are broadly applicable across such tasks.152

1. Sarcasm Headlines (SH) is a curated dataset153

comprising professionally crafted headlines from154

The Onion and HuffPost (Misra and Arora, 2019,155

2023). Notably free of spelling errors and infor-156

mal language, it offers high-quality labels and self-157

contained headlines. Compared to social media158

datasets, it is a clean and reliable resource that pre-159

cludes the need to worry about spurious data corre-160

lations arising from viral social media trends (Gu-161

rurangan et al., 2018; Bender et al., 2021).162

2. Trope Finder (TroFi) (Birke and Sarkar, 2006)163

is built to distinguish between literal and non-literal164

verb usage. It leverages the ’88-’89 Wall Street165

Journal (WSJ) Corpus and enhances it with Word-166

Net, databases of idioms and metaphors, and tags167

from advanced taggers. TroFi improves metaphor168

detection by minimizing unverified literal uses and169

addressing the scarcity of non-literal instances.170

3. Call Me Sexist But . . . (CMSB) is an innova-171

tive corpus designed to detect sexism, comprising172

tweets that explicitly use the titular phrase to voice173

potential sexism (Samory et al., 2021). It is en-174

hanced with synthetic adversarial modifications to175

challenge machine learning models.176

3.1 Statistical Tests of Normality177

To systematically analyze the geometric properties178

of target class representations, we evaluate the nor-179

mality of the embedding distributions in reduced180

Model Class Empirical normality test statistics

HZ Anderson-Darling
d1 d2 d3

Task + Corpus: Metaphor detection on TroFi

BERT { Metaphor 5.14 1.53 2.59 1.96
Other 5.93 1.83 1.71 3.40

SimCSE{ Metaphor 4.32 2.83 2.11 0.70
Other 5.19 2.94 2.79 1.54

Task + Corpus: Sarcasm detection on Sarcasm Headlines

BERT { Sarcasm 29.94 13.67 10.14 24.99
Other 33.24 13.87 23.95 5.76

SimCSE{ Sarcasm 21.49 19.00 16.38 23.68
Other 24.82 12.21 32.65 42.99

Task + Corpus: Sexism detection on Call Me Sexist But

BERT { Sexism 7.48 0.97 1.79 9.27
Other 34.08 6.70 40.34 23.96

SimCSE{ Sexism 6.38 2.34 2.99 2.08
Other 21.21 17.07 1.77 9.11

Table 2: Empirical results on how well the target and
non-target classes fit (a) multivariate normality, using
the Henze-Zirkler (HZ) statistic, and (b) univariate nor-
mality on the three t-SNE dimensions d1, d2, d3, using
the Anderson-Darling statistic. For both tests, larger
numbers indicate greater deviation from normality.

dimensionality space. Specifically, we apply the 181

Henze and Zirkler (HZ) (1990) test to assess mul- 182

tivariate normality across three t-SNE dimensions 183

for BERT and SimCSE,3 examining three prag- 184

matic language detection tasks: metaphor, sarcasm, 185

and sexism. We complement this with Anderson 186

and Darling (AD) (1952) tests to evaluate univari- 187

ate normality along individual dimensions. The 188

results (Table 2) offer a rigorous statistical char- 189

acterization of the manifold structure, beyond the 190

Q-Q plot inspections shown in Appendix A. 191

The HZ tests consistently show lower values 192

for target data (metaphor, sarcasm, and sexism) 193

compared to non-target data, indicating that target 194

data are closer to a multivariate normal distribution 195

compared to their non-target counterparts. This 196

is further supported by the results of the AD tests 197

along each dimension. Reduced deviation from the 198

theoretical distribution suggests that the target data 199

3We analyze distributional properties (not downstream per-
formance) using BERT and SimCSE as foundational bidi-
rectional Transformer and contrastive sentence embedding
models, respectively. Their selection aligns with established
probing protocols prioritizing consistency and transferabil-
ity across tasks (Reimers and Gurevych, 2019; Rogers et al.,
2021; Gao et al., 2021). Findings generalize to architectures
like ALBERT and DistilBERT, while rare outliers (GPT-2
and Phi) reflect pretraining misalignment (Ethayarajh, 2019),
rather than methodological drawbacks.
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exhibits a more homogeneous manifold structure.200

In contrast, the non-target data manifests greater201

diversity and complexity. Thus, in line with the ar-202

gument presented earlier with illustrative examples203

(§2), it is indeed less likely that the they possess204

discernible common traits beyond their opposition205

to the target class. Hence, we hypothesize that a206

loss function ought to be designed primarily around207

the target class. The consistency and regularity of208

the target class’ distribution provide a more reli-209

able foundation for learning stable predictors, in210

contrast to the somewhat more chaotic diversity211

observed in the distribution of the non-target class.212

4 Training and Inference213

Mahalanobis (1936) distance is ideal for data ap-214

proximating a multivariate normal distribution, as215

it accounts for the manifold structure of the tar-216

get class, rendering the distance measure scale-217

invariant. By incorporating the variance and corre-218

lations among variables, it accurately reflects the219

underlying distribution of the data and thereby im-220

proves discrimination in detecting non-target in-221

stances by robust identification of outliers, reducing222

false positives.4 Accordingly, we explore Maha-223

lanobis distance in formulating the loss function.224

4.1 Mahalanobis Loss225

Let X = {xi},Y = {yj} denote n target and m226

non-target training samples (resp.). Further, let227

f : X ∪ Y 7→ Rd denote a representation function228

mapping these instances to d dimensions. For a229

given instance x ∈ X , we randomly select x+ ∈230

X \{x}, and y− ∈ Y . These random selections are231

employed to learn a representation that minimizes232

(maximizes) the similarity between x and y− (x+).233

We achieve this with Mahalanobis loss:234

LMAH =
1

|X |
∑
x∈X

simMAH(x, y
−)

simMAH(x, x+) + simMAH(x, y−)
(1)235

where simMAH(x, y) is defined using the covariance236

matrix Σ of the set {f(xi)}237
simMAH(x, y) =238

exp

{
− (f(x)− f(y))TΣ−1(f(x)− f(y))

d

}
.239

240 Alternatively, Mahalanobis mean loss uses the241

mean µ of {f(xi)}:242

LMAH,µ = − 1

|X |
∑

(x,y−)∈X

[
log

(
simMAH(µ, x)

)
+ log

(
1− simMAH(µ, y

−)
)]
.

(2)243

4Reducing false positives in these tasks is particularly im-
portant in several applications. For example, in social media
moderation, so as to not penalize users for innocuous remarks.

Algorithm 1 Mahalanobis β-decision algorithm
Require: New instance X = X∗

Xn+1 ← X∗

µ̂← 1
n+1

∑n+1
i=1 Xi

Compute Σ̂ as the sample covariance matrix of
X1, . . . , Xn+1

d2n+1(µ̂, Σ̂)← (Xn+1 − µ̂)T Σ̂−1(Xn+1 − µ̂)

T ← n+1
n2 d2n+1(µ̂, Σ̂)

Compute the critical value vβ for Beta
(
d
2
, n−d−1

2

)
if T < vβ then

X ← 1 ▷ Target class
else

X ← 0 ▷ Non-target class

end if

It maximizes the similarity between a target in- 244

stance x and the mean representation of the target 245

class (making the class more compact), and min- 246

imizes the similarity between a negative example 247

y− and the mean (increasing inter-class margin). 248

4.2 Inference and Decision Algorithm 249

The inference task is, fundamentally, identical to 250

that of any supervised binary classifier: ascertain if 251

a test instance belongs to the target class. Given rep- 252

resentations {x1,x2, . . . ,xn} with sample mean µ̂ 253

and covariance matrix Σ adhering to a multivari- 254

ate normal distribution, the squared Mahalanobis 255

distance for a specific observation xi is given by 256

d2i (µ̂,Σ) = (xi − µ̂)TΣ−1(xi − µ̂), (3) 257

which follows the Beta distribution (Wilks, 1962; 258

Ververidis and Kotropoulos, 2008): 259

n

(n− 1)2
d2i (µ̂,Σ) ∼ Beta

(
d

2
,
n− d− 1

2

)
(4) 260

This insight informs the design of the Mahalanobis 261

β-decision algorithm (Algorithm 1), to test an in- 262

stance for class membership by comparing its nor- 263

malized squared Mahalanobis distance to critical 264

values of the corresponding Beta distribution.5 265

5 Experiments and Results 266

We empirically evaluate6 ClaD across two chal- 267

lenging categories of language understanding tasks: 268

detecting figurative (metaphor and sarcasm) and 269

harmful (sexism) language. ClaD leverages the Ma- 270

halanobis mean loss, LMAH,µ (Eq. 2), to fine-tune 271

pretrained embeddings, followed by inference with 272

the Mahalanobis β-decision algorithm (Alg. 1). 273

5The critical threshold value is determined based on devel-
opment data, ensuring optimal calibration for inference.

6Appendix B contains implementation details (§5.1-§5.2).
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(a) Figurative language: sarcasm detection using the Sarcasm Headlines (SH) corpus (Misra and Arora, 2023).

(b) Figurative language: metaphor detection using the Trope Finder (TroFi) corpus (Birke and Sarkar, 2006).

(c) Deviant language: sexism detection using the Call me sexist but . . . (CMSB) corpus (Samory et al., 2021).

Figure 2: Comparison of ClaD across three detection tasks (from top to bottom) – (a) sarcasm, (b) metaphors,
and (c) sexism – against four transfer learning baseline results where Transformer-based models are fine-tuned on
task-specific data: (from left to right) ALBERT, DistilBERT, SimCSE, and XLNet.

ClaD is benchmarked against two modern274

language model paradigms: (a) specialized en-275

coder(-decoder) architectures optimized for lan-276

guage understanding: SimCSE (Gao et al., 2021),277

ALBERT (Lan et al., 2020), DistilBERT (Sanh278

et al., 2019), and XLNet (Yang et al., 2019),7279

and (b) large language models (LLMs), primarily280

decoder-only architectures distinguished by their281

scale. We evaluate all models on 80/10/10 splits for282

train/dev/test, primarily focusing on the false posi-283

tive rate (FPR) and F1 score for the target class.8284

5.1 Comparison with Encoder-based Models285

Figure 2 illustrates ClaD’s distinctive advantage:286

achieving performance competitive with or supe-287

rior to these established models in just one training288

epoch. In contrast, transfer learning with these289

models typically requires 3-5 epochs to attain sim-290

ilar metrics across all three tasks. ClaD’s rapid291

7DeBERTa (He et al., 2021) performs much like ALBERT.
So, for architectural diversity, we include XLNet instead.

8Reducing false positives in these tasks is particularly im-
portant in several applications such as social media modera-
tion, so as to not penalize users for innocuous remarks

convergence yields substantial computational sav- 292

ings without compromising detection quality. For 293

instance, in sarcasm detection, ClaD achieves a 294

lower FPR after one epoch than most baselines do 295

after five.9 Similar patterns emerge across all tasks 296

and metrics, where ClaD’s single-epoch training 297

matches or outperforms multi-epoch training of 298

the transfer-learning baseline models. The results 299

suggest that ClaD’s geometric approach enables ef- 300

ficient adaptation to task-specific features, a finding 301

further supported by our ablation study (§5.3). 302

5.2 Comparison with Large Language Models 303

Next, we evaluate ClaD against a suite of recent 304

large language models (LLMs): OPT, GPT, Phi, 305

Llama, Mistral, Qwen, and Falcon. As ClaD is a 306

training paradigm, and not a model, these evalua- 307

tions are geared to answer two research questions: 308

Q1. Is limited task-specific ClaD-training with 309

9Only XLNet marginally surpasses ClaD after epoch 2,
with a difference of 0.036. A bootstrap analysis reveals this as
statistically insignificant: ClaD’s FPR (8.87%) is well within
the 95% CI (5.05%, 9.93%) of XLNet’s mean FPR.
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(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 3: Comparison of 5-shot evaluation of a suite of nine large language models (left to right): Llama2, Llama3,
Phi2, Phi3, Mistral-7B, Falcon, Qwen2, GPT-2, and OPT, against ClaD’s single-epoch training (rightmost).

small language models better than low-310

resource transfer-learning with LLMs?311

Q2. With identical training data, how much larger312

are the LLMs (if any) that outperform ClaD-313

training with small language models?314

Against all LLMs in zero-shot (Appendix C) and315

few-shot scenarios (discussed next), ClaD demon-316

strates consistently superior performance.317

Few-shot Classification: As shown in Figure 3,318

ClaD retains its substantial advantage over few-shot319

classification (five instances) with LLMs, which320

achieve markedly lower F1 scores: from 0.0%321

(GPT-2) to 64.2% (Qwen-2) on SH; 0.0% (GPT-322

2) to 72.6% (Falcon) on TroFi, and 0.0% (Falcon)323

to 25.6% (OPT) on CMSB. Models exhibit dis-324

tinct characteristics in each task: for example, in325

metaphor detection, GPT-2, Llama2, and Phi3 com-326

pletely avoid positive predictions, while Falcon327

predicts aggressively with perfect recall. The most328

dramatic changes are seen in deviant language de-329

tection, with more models completely avoiding the330

target class (Falcon, Qwen2, and GPT-2). OPT,331

on the other hand, exhibits perfect recall. Despite332

accuracy ranges similar to zero-shot, models show333

more extreme precision-recall trade-offs, with AUC334

scores stalled near 0.5 and persistently high FPR.335

LLMs thus exhibit notable limitations and vari-336

ability across all tasks, likely stemming from insuf-337

ficient feature learning in low-resource scenarios338

(reflected in the AUC stagnation), causing them to339

fall back on their pretrained biases, particularly for340

subtle, context-dependent linguistic cues. The er-341

ratic behavior changes between zero- and few-shot342

settings also suggest unstable optimization paths,343

possibly due to the large parameter count in these344

models, stochasticity of gradient updates, and in-345

sufficient regularization.346

Low-resource Training: We extend our analy-347

sis to low-resource training (with 100 instances348

provided to the LLMs) to examine whether this 349

limited increase in data improves decision stabil- 350

ity, precision-recall trade-offs, and task adaptation. 351

ClaD’s single-epoch training continues to outper- 352

form all LLMs in terms of both F1 score and FPR, 353

except in metaphor detection. There, although GPT- 354

2, Falcon, and OPT report lower FPRs for the first 355

two epochs, their F1 scores are nearly zero as they 356

completely avoid false positives (which comes at 357

the cost of failing to avoid any positives). Figure 4 358

reveals clear patterns across model scales: while 359

the smaller XLNet-based ClaD achieves superior 360

performance within one epoch, larger models like 361

Llama3 (8B parameters) require multiple epochs 362

to reach their peak performance (e.g., 77.6% F1 363

at epoch 6 for sarcasm detection). Model size 364

significantly impacts learning trajectories: large 365

models (7B-8B parameters) show rapid initial im- 366

provements, mid-size models (2B-4B parameters) 367

plateau early with suboptimal performance, and 368

smaller models (124M-350M parameters) struggle 369

to learn effectively. Sexism detection remains the 370

most challenging task, with all LLMs showing con- 371

servative labeling of the target class and an inability 372

to learn from limited data. In sarcasm detection, 373

the only task where LLMs perform significantly 374

better than chance, FPR correlates inversely with 375

model size, ranging from 15.4% (Llama3, epoch 8) 376

to 48.1% (GPT-2, epoch 10). 377

Identical Task-specific Training Data: To ad- 378

dress our second research question, we compare 379

ClaD’s single-epoch training with smaller models 380

against the suite of LLMs (Figure 5).10 381

The relationship between model size and per- 382

formance varies significantly across tasks. While 383

larger models (7-8B parameters) generally perform 384

well in sarcasm detection (F1: 0.96-0.97), this 385

advantage diminishes in metaphor detection (F1: 386

10OPT markedly underperformed across all tasks and eval-
uation metrics, and is thus excluded in the comparison.
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(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 4: Comparison of ClaD across the three detection tasks against nine large language models (LLMs) in a
limited data regime. The LLMs are trained on 100 instances over 10 epochs. Results shown for the target class are:
(top) the F1 scores; and (bottom) the false positive rates (FPR) for the best-performing LLM.

(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 5: Comparison of ClaD across the three detection tasks against LLMs, with identical training data: all models
utilize the entire training set for a single epoch. F1 scores (top) show ClaD being competitive with most LLMs, and
outperforming a few others, while false positive rates (FPR) (bottom) show ClaD remaining superior to the LLMs.

0.71-0.81) and almost disappears in sexism detec-387

tion, where many smaller models achieve competi-388

tive performance. This suggests that larger models389

do not consistently translate to better performance390

across various language understanding tasks.391

More often than not, performance improves with392

increased model size, but with diminishing returns.393

A striking pattern emerges in the false positive rates,394

however: while larger models show very low FPR395

in sarcasm detection (∼ 0.03), their FPR varies396

widely in other tasks, sometimes performing worse397

than smaller models. Particularly interesting is398

deviant language (sexism) detection, where even399

the largest models struggle with high FPR. The400

consistent performance of XLNet-based ClaD, with401

only 110M params, especially in maintaining lower402

FPR across tasks while remaining competitive on403

F1 scores, suggests that efficiency derived from a404

geometric understanding eclipses model size.405

5.3 Ablation Experiments406

We conduct systematic ablation experiments to407

evaluate the individual contributions of ClaD’s408

core components: the novel loss function, the de- 409

cision algorithm, and the Mahalanobis contrast 410

mechanism. We present comparisons using Sim- 411

CSE as the base model, as it achieved the lowest 412

false positive rate in sarcasm detection.11 The im- 413

pact of our novel loss function is evident in Ta- 414

ble 3. Compared to standard loss functions in 415

task-specific fine-tuning, F1 scores improve by 416

26.5%, 6%, and 13% for sarcasm, metaphor, and 417

sexism detection, respectively (with correspond- 418

ing proportionate decreases seen in FPR: 24.6%, 419

39.1%, and 15.3%). On the other hand, replac- 420

ing our β-decision algorithm with a 3-layer fully 421

connected feed-forward network for classification 422

results in the F1 scores dropping by 58.5%, 80.8%, 423

and 46.0% on these tasks, respectively. Finally, 424

we show in Appendix D that traditional one-class 425

classification and anomaly detection methods do 426

not perform well in these pragmatic language tasks 427

where the minority target class requires gleaning 428

from a large heterogeneous non-target majority. 429

11ClaD (XLNet) reports marginally better F1, and experi-
ments with XLNet as the base model yield similar results.
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Acc ↑ Pr ↑ FPR ↓ F1 ↑

Sarcasm detection on Sarcasm Headlines
LMAH + β-decision 0.896 0.931 0.009 0.885
LCOSINE + β-decision 0.492 0.479 0.255 0.620
LMAH + MLP 0.521 0.482 0.209 0.300

Metaphor detection on TroFi
LMAH + β-decision 0.794 0.857 0.167 0.808
LCOSINE + β-decision 0.675 0.667 0.558 0.748
LMAH + MLP 0.433 0.000 0.000 0.000

Sexism detection on Call Me Sexist But
LMAH + β-decision 0.928 0.870 0.012 0.696
LCOSINE + β-decision 0.832 0.433 0.165 0.566
LMAH + MLP 0.134 0.134 1.000 0.236

Table 3: Ablation study comparing ClaD’s compo-
nents: LMAH (our Mahalanobis contrast loss), LCOSINE

(the standard cosine similarity loss), and β-decision (Al-
gorithm 1). The combination of LMAH + β-decision
achieves superior performance across all metrics, par-
ticularly in reducing false positive rates (FPR) while
maintaining high F1 and target-class precision.

6 Related Work430

Extensive research aims to model pragmatic lan-431

guage nuances for respectful communication,432

advancing the identification of figurative lan-433

guage (Chakrabarty et al., 2022; Saakyan et al.,434

2022; Wachowiak and Gromann, 2023; Lai and435

Nissim, 2024) and deviant content (Fortuna and436

Nunes, 2018; Yin and Zubiaga, 2021; Guest et al.,437

2021; Bose and Su, 2022). Most leverage BERT-438

based supervised learning: e.g., BERT-BiLSTM for439

hate speech (Bose and Su, 2022), dual BERT mod-440

els for metaphors (Wan et al., 2021), and BERT-441

LSTM for sarcasm (Kumar and Anand, 2020). En-442

hancements include syntactic (Wan et al., 2020)443

or semantic (Zhou et al., 2021) feature integration444

and multi-task frameworks (Safi Samghabadi et al.,445

2020). However, generalization remains limited,446

and ensemble methods (Lemmens et al., 2020; Gre-447

gory et al., 2020) trade interpretability for computa-448

tional cost. Our Class Distillation (ClaD) paradigm449

addresses these gaps via an interpretable decision450

algorithm and novel loss function.451

ClaD shares similarities with one-class classi-452

fication, which detects anomalies by focusing on453

the target class. Common methods include one-454

class SVM (Schölkopf et al., 2001; Noumir et al.,455

2012), DeepSVDD (Ruff et al., 2018), and adver-456

sarial one-class classifiers (Sabokrou et al., 2018),457

but they often struggle with domain generalization,458

overfitting, and nuanced data – key challenges in 459

pragmatic language tasks. ClaD, leveraging Maha- 460

lanobis contrast, effectively addresses these issues, 461

demonstrated by ablation results in Appendix D. 462

LLMs like GPT-2 (Radford et al., 2019), Phi- 463

2 (Javaheripi et al., 2023), and OPT (Zhang et al., 464

2022) excel in text classification but are compu- 465

tationally expensive (Wang et al., 2023). Some, 466

like GPT-3, reportedly struggle with nuanced tasks 467

like metaphor detection (Wachowiak and Gromann, 468

2023), while others face reasoning limitations and 469

token constraints in in-context learning (Sun et al., 470

2023). Unlike recent efforts to address these issues, 471

ClaD combines Mahalanobis contrast with smaller 472

models, to efficiently learning task manifolds. 473

7 Conclusion 474

This work challenges a fundamental implicit as- 475

sumption in modern NLP: that scale (in models, 476

pretraining data, or fine-tuning) guarantees supe- 477

rior downstream performance. Through rigorous 478

empirical analysis, we demonstrate that our geo- 479

metrically grounded training paradigm surpasses 480

state-of-the-art LLMs by significant margins in low- 481

data regimes, achieving superior results in a single 482

epoch where larger models plateau after several. 483

Notably, ClaD matches or exceeds the performance 484

of models nearly two orders of magnitude larger, 485

even with identical task-specific training. 486

Our findings align with broader trends toward ef- 487

ficiency, spurred by DeepSeek’s compute-optimal 488

scaling (Liu et al., 2024; Guo et al., 2025), and 489

reveal a novel insight: architectural minimalism, 490

coupled with geometric alignment to task mani- 491

folds, can unlock capabilities previously thought to 492

require massive scale. While recent work optimizes 493

how to scale, we demonstrate that whether to scale 494

depends critically on data geometry. ClaD’s in- 495

novations – manifold-aware training, Mahalanobis 496

contrast, and the decision algorithm – prove that for 497

nuanced language understanding tasks, modeling 498

latent structure trumps brute-force scaling. 499

Our work does not negate scaling, but expands 500

the efficiency frontier, showing that geometric prin- 501

ciples can supplant scale and provide a complemen- 502

tary pathway for real-world applications. As AI 503

research increasingly prioritizes efficiency along- 504

side performance – whether through scaling laws, 505

sparsity, or geometric learning – our findings po- 506

sition the geometric understanding of data as a 507

foundational pillar of sustainable NLP. 508
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Limitations509

While our proposed Class Distillation (ClaD)510

paradigm demonstrates consistently strong perfor-511

mance and efficiency across sarcasm, metaphor,512

and sexism detection tasks – outperforming smaller513

Transformer models with equal training, and LLMs514

with in limited resouce settings – several limitations515

should be acknowledged. First, although we tested516

ClaD on diverse tasks encompassing figurative and517

deviant language, the chosen benchmarks (Sarcasm518

Headlines, TroFi, and CMSB) may not fully cap-519

ture the richness of real-world scenarios, and more520

domain-specific or multilingual tasks could present521

additional linguistic and cultural nuances not ad-522

dressed in our current evaluation. Whether our ap-523

proach can be generalized to specialized domains524

like legal or clinical tasks also remains to be seen.525

Second, ClaD relies on the ability of the target class526

manifold to be modeled as a multivariate normal527

distribution. While our experiments suggest that528

training can nudge embeddings closer to a normal529

manifold, this assumption may not hold univer-530

sally: certain representations or highly imbalanced531

corpora may exhibit multimodal or heavy-tailed532

distributions that deviate substantially from nor-533

mality, potentially affecting performance. Third, al-534

though ClaD’s fast convergence leads to significant535

computational savings compared to multi-epoch536

fine-tuning, maintaining a dynamically updated co-537

variance matrix in the Mahalanobis distance com-538

putation can be memory-intensive for very large539

datasets. Further advances in this line of research540

will likely require more memory-efficient approxi-541

mations or low-rank updates.542

These limitations may be addressed by exploring543

alternative distributional assumptions (e.g., Gaus-544

sian mixtures) to accommodate more complex em-545

bedding spaces, conducting broader evaluations546

across languages and task domains, and developing547

lightweight variants of Mahalanobis-based training548

to reduce the memory overhead. They have the549

potential to further enhance ClaD’s versatility and550

impact in real-world applications.551

Ethics Statement552

This work adheres to ethical standards in NLP re-553

search by ensuring transparency, reproducibility,554

and fairness in our experiments. Our study does555

not involve human subjects or sensitive data, and all556

datasets used are publicly available with appropri-557

ate licenses. While our findings highlight efficiency558

gaps in large-scale language models, we acknowl- 559

edge that their broader societal impacts, including 560

biases and potential misuse, require further investi- 561

gation. We encourage responsible deployment of 562

our proposed methods and emphasize the need for 563

continued ethical scrutiny in model development 564

and evaluation. 565
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(a) BERT embeddings for
the target class, sexism.

(b) BERT embeddings for
the negative class.

(c) SimCSE embeddings for
the target class, sexism.

(d) SimCSE embeddings for
the negative class.

Figure 6: Q-Q (quantile-quantile) plots to assess the
goodness-of-fit of target and non-target classes in the
CMSB corpus for sexism detection. Shown here are the
first t-SNE dimensions of pretrained BERT-base (a and
b) and SimCSE (c and d) embeddings.

A A Visual Approach to Goodness-of-Fit890

in Target Class Distributions891

Our aim is to unveil the distributional properties892

shared across diverse datasets and tasks, where893

identifying the minority target class amidst a894

spectrum of heterogeneous linguistic expressions895

(with no common pragmatic language function) is896

paramount. It is well known, however, that there897

are challenges to such analyses regardless of the898

manifold structure. As the number of dimensions899

increase, the volume of space grows exponentially900

and tests based on density estimation or empiri-901

cal distance measures can struggle to maintain ac-902

curacy due to the increased sparsity and spread903

of data points.12 Statistical tests also suffer from904

reduced power in higher dimensions. Moreover,905

estimating the covariance matrix becomes prob-906

lematic in higher dimensions (for instance, due to907

ill-conditioned or singular matrices).908

To mitigate these problems, we reduce the num-909

ber of dimensions using t-SNE (van der Maaten910

and Hinton, 2008).13 The Quantile-Quantile (Q-911

12The “curse of dimensionality” strikes again, as Bellman
(1957) presciently described this exponential increase in prob-
lem complexity with growing number of dimensions.

13We also experiment with dimensionality reduction by
means of studying anisotropy (Ethayarajh, 2019) and dom-

Q) plots of the first latent dimension are shown 912

in Figure 6, for visual assessment of adherence to 913

a normal distribution. For the sake of brevity, we 914

present only the Q-Q plots for sexism detection 915

using two language models, BERT (Devlin et al., 916

2019) and SimCSE (Gao et al., 2021), as similar 917

patterns were observed for the other tasks. 918

B Configuration 919

Baseline Models: Four baseline models were 920

fine-tuned – SimCSE, ALBERT, XLNet, and Dis- 921

tilBERT – on three datasets using a consistent set 922

of configurations. The models were trained with a 923

per-device batch size of 16 for both training (up to 924

5 epochs) and evaluation (at the end of each epoch). 925

The learning rate is set to 1× 10−5 for all models, 926

with 50 warm-up steps and a weight decay of 0.01. 927

For tokenization, inputs were padded and truncated 928

to a maximum sequence length of 512. We used 929

the Adam optimizer for parameter updates. 930

Few-shot and Low-resource Experiments: We 931

conducted fine-tuning experiments for the clas- 932

sification models under both few-shot and low- 933

resource scenarios. In the few-shot setting, we 934

used 5 training samples, while in the low-resource 935

setting, we used 100 training samples. Train- 936

ing was conducted up to 10 epochs. We se- 937

lected a variety of mainstream LLMs: Falcon, 938

GPT-2, Llama2, Llama3, Mistral-7B, OPT, Phi2, 939

Phi3, and Qwen2. These models are loaded 940

via the AutoModelForSequenceClassification 941

module provided by HuggingFace Transformers. 942

To train the models with limited computational 943

resources, we employed 4-bit quantization (e.g., 944

nf4) in conjunction with Low-Rank Adaptation 945

(LoRA) (Hu et al., 2022) for efficient parameter 946

tuning. Specifically, we set the LoRA rank (r) to 16 947

and the LoRA scaling factor (lora_alpha) to 8 (32 948

for GPT-2), with a dropout rate (lora_dropout) of 949

0.05 (0.1 for GPT-2). For optimization, Hugging- 950

Face Trainer was used with its default settings, 951

with cross-entropy loss adopted for binary classifi- 952

cation. The learning rate was set to 5× 10−5, the 953

weight decay set to 0.01, and the batch sizes were 954

24 for training and 6 for validation (per device). 955

inant dimensions as defined by Timkey and van Schijndel
(2021), as well as with principal component analysis (Pearson,
1901; Hotelling, 1936). In each case, the results of the statis-
tical tests of manifold structure are nearly identical. So, for
conciseness, we omit the details of these other approaches.
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(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 7: Comparison of zero-shot evaluation of a suite of nine large language models (left to right): Llama2,
Llama3, Phi2, Phi3, Mistral-7B, Falcon, Qwen2, GPT-2, and OPT, against ClaD’s single-epoch training (rightmost).

(a) Sarcasm detection (SH) (b) Metaphor detection (TroFi)) (c) Sexism detection (CMSB)

Figure 8: Scatter plots of squared Mahalanobis distance for three test datasets before and after training. Red and
blue indicate the target and non-target classes, respectively.

Zero-shot Experiments: The Transformer li-956

brary’s AutoModelForSequenceClassification957

API is used. This API automatically adds a linear958

classification head on top of the model’s pooled959

output, enabling it to be handled as logits for classi-960

fication tasks. Specifically, for binary classification,961

the output consists of 2D logits, representing the962

likelihood of the input belonging to either class.963

This approach focuses on classification, as opposed964

to letting a LLM generate its answer (e.g., 1 or 0) in965

response. To guide the classification, the following966

prompt is prepended to every input:967

Please identify if the following text is an968
example of <task-word>. Reply with 1 if it969
exhibits <task-word>, and 0 otherwise:970
<input sentence>971

where the placeholder <task-word> is replaced972

by the specific task of interest (i.e., sarcasm,973

metaphor, sexism), and <input sentence> is the974

text being classified. This enables the model to975

classify the input sentence based on the particular976

task while maintaining the flexibility to adapt to977

various tasks by simply changing the task-word.978

Class Distillation Experiments: We used a slid- 979

ing window mechanism (window size: 100 × batch 980

size for small datasets, and expanded to 500 × batch 981

size for large datasets, update frequency: batch 982

size) to efficiently update the Mahalanobis distance 983

parameters (mean and covariance matrix) during 984

training by incrementally processing batch data 985

and computing statistics using the latest model- 986

generated embeddings, dynamically adapting the 987

parameters while maintaining computational effi- 988

ciency. We use batch sizes of 16 for the sarcasm 989

detection and metaphor tasks, and 40 for the sexism 990

detection task. 991

C Zero-shot classification 992

Converting LLM logits to probabilities via softmax, 993

we observe that ClaD’s single-epoch training sub- 994

stantially outperforms zero-shot predictions (shown 995

in Figure 7. While this is perhaps unsurprising, the 996

magnitude of improvement is notable: F1 score 997

improvements range from +27.0% (vs. Falcon) to 998

+90.9% (vs. GPT-2) on SH, +10.8% (vs. Qwen2) 999

to +83.2% (vs. OPT) on TroFi, and +46.9% (vs. 1000

Mistral) to +74.1% (vs. OPT) on CMSB. In sar- 1001
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Acc Pr FPR F1

Sarcasm detection on Sarcasm Headlines
Mahalanobis β-decision 0.580 0.557 0.100 0.547
One-class SVM 0.494 0.465 0.494 0.473
Isolation Forest 0.472 0.472 0.998 0.641
Autoencoder 0.530 0.517 0.046 0.099

Metaphor detection on TroFi
Mahalanobis β-decision 0.678 0.680 0.500 0.741
One-class SVM 0.614 0.602 0.814 0.734
Isolation Forest 0.614 0.610 0.737 0.721
Autoencoder 0.578 0.575 0.942 0.724

Sexism detection on Call Me Sexist But
Mahalanobis β-decision 0.134 0.134 1.000 0.236
One-class SVM 0.602 0.141 0.364 0.206
Isolation Forest 0.135 0.133 0.996 0.234
Autoencoder 0.827 0.121 0.051 0.066

Table 4: Comparing Mahalanobis β-decision (Algo-
rithm 1) and standard outlier detection methods (One-
class SVM, Isolation Forest, and Autoencoder), demon-
strating that the former achieves higher F1 scores and
lower false positive rates (FPR) across most tasks.

casm detection, LLMs perform near-randomly (ac-1002

curacies: 0.47-0.53, AUC ≈ 0.5), with models ei-1003

ther aggressively over-predicting (Falcon, Llama2,1004

Llama3: recall ≥ 0.91, but very low precision) or1005

being overly conservative (GPT-2, Phi3: extremely1006

low recall with moderate precision). Metaphor de-1007

tection shows modest improvements (accuracies:1008

0.43-0.57, max. AUC: 0.56), though extreme be-1009

haviors persist: Falcon, Qwen2 and Mistral favor1010

recall over precision, while Llama2 do the oppo-1011

site. Sexism detection reveals poor adaptation to1012

class imbalance, with extremely high FPR (≥ 83%)1013

across all LLMs. Some models also exhibit task-1014

specific inconsistencies, such as GPT-2 alternating1015

between conservative and aggressive predictions in1016

sarcasm and metaphor detection, respectively.1017

D Comparing Anomaly Detection1018

Methods1019

Additionally, Table 4 shows that treating deviant or1020

figurative language merely as “out of the ordinary”1021

is insufficient. We compare our β-decision algo-1022

rithm against traditional anomaly detection meth-1023

ods like isolation forest (IF) (Liu et al., 2008, 2010),1024

autoencoders (Chalapathy and Chawla, 2019), and1025

one-class SVM (Noumir et al., 2012) – all on the1026

same pretrained model – and further demonstrate1027

the necessity of an inference algorithm based on1028

an understanding of the target class manifold. Our1029

novel decision algorithm (Algorithm 1) achieves 1030

superior F1 scores across all tasks, with one excep- 1031

tion: IS performs better on sarcasm detection. How- 1032

ever, this happens at the expense of significantly 1033

higher FPR and lower target-class precision. 1034

E Mahalanobis Contrast and Separability 1035

Training with our Mahalanobis mean loss function, 1036

LMAH,µ (Equation 2) has a significant impact on 1037

classification, evident in the results presented in 1038

our ablation experiments subsection 5.3. Here, we 1039

add visualizations of class separability, using the 1040

squared Mahalanobis distance (Equation 3). Fig- 1041

ure 8 presents scatter plots of squared Mahalanobis 1042

distance for the three test datasets before and after 1043

training, where the target and non-target class in- 1044

stances are shown in red and blue, respectively. It 1045

is clearly demonstrated that training with our Ma- 1046

halanobis loss function leads to a distinct increase 1047

in class separability. 1048
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