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Abstract

Generative Adversarial Networks (GANs) are powerful generative models but often suffer
from mode mixture and mode collapse. We propose a three-phase characterization of GAN
training: fitting, refining, and collapsing, where mode mixture and mode collapse are treated
as inter-connected. Inspired by the particle model interpretation of GANs, we leverage the
discriminator gradient to analyze particle movement and the generator gradient, specifically
“steepness,” to quantify the severity of mode mixture by measuring the generator’s sensitiv-
ity to changes in the latent space. Using these theoretical insights into evolution of gradients,
we design a specialized metric that integrates both gradients to detect the transition from
refining to collapsing. This metric forms the basis of an early stopping algorithm, which
stops training at a point that balances sample quality and diversity. Experiments on syn-
thetic and real-world datasets, including MNIST, Fashion MNIST, and CIFAR-10, validate
our theoretical findings and demonstrate the effectiveness of the proposed algorithm.

1 Introduction

Generative Adversarial Networks (GANs) serve as a popular technique for unsupervisedly learning generative
models of structured and complicated data (Goodfellow et al., 2014; Nowozin et al., 2016; Arjovsky et al.,
2017; Goodfellow, 2017; Li et al., 2017; Nguyen et al., 2017; Ghosh et al., 2018). GANs typically involve a
generator that generates samples resembling real samples, and a discriminator that differentiates between real
and generated samples. Through adversarial training, the generator learns to produce increasingly realistic
samples, while the discriminator enhances its ability to distinguish them, resulting in refined models.

One of the primary challenges in training GANs is fine-tuning the interactive dynamics between the generator
and the discriminator. If these dynamics are not well-aligned, several problematic behaviors can arise. Among
the most common issues are mode collapse (Goodfellow, 2017) and mode mixture (An et al., 2020). Mode
collapse occurs when the generator produces limited varieties of samples, collapsing to very few modes, while
mode mixture involves blending distinct modes, resulting in unrealistic or ambiguous outputs. Numerous
GAN variants have been proposed to address mode collapse (Nowozin et al., 2016; Arjovsky et al., 2017;
Li et al., 2017; Nguyen et al., 2017; Ghosh et al., 2018), alongside theoretical insights (Sun et al., 2020;
Becker et al., 2022). For mode mixture, research has focused on mitigation strategies, particularly within
the framework of optimal transport (Lei et al., 2019; An et al., 2020; Gu et al., 2021).1

Despite extensive research on GAN training, current studies share two common limitations: (i) mode collapse
and mode mixture are typically treated as separate, independent issues, and (ii) mode collapse is viewed as
an indicator of complete training failure. In contrast, we propose a three-phase characterization of GAN
training, where mode mixture and mode collapse are understood as interconnected phases rather than isolated
issues, and where mode collapse does not necessarily signify complete failure. Instead, mode collapse may
emerge in the later stages of a converging GAN, with early stopping serving as a way to obtain refined and
diverse outputs.

To illustrate this characterization, we train the Non-Saturating GAN (NSGAN) (Goodfellow et al., 2014) on
a 3-dimensional Gaussian mixture dataset and MNIST (LeCun et al., 1998), recording generated samples

1For a more comprehensive literature review, please refer to appendix A.
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as shown in fig. 1. In the first row, the orange dots represent real samples drawn from the Gaussian
mixture, while the blue dots show generated samples. Initially, the generated samples cluster near the
origin (subfigure 1). As training progresses, these samples diffuse, eventually covering the modes of the real
distribution (subfigure 2). Subsequently, they are drawn closer to individual modes and the lines connecting
them (subfigure 3). Finally, the generated samples exhibit an unexpected collapse: as training continues,
the samples collapse into fewer modes, with the number of modes halving every several epochs until only
one remains (subfigure 4–6). This phenomenon, seldom addressed in existing literature, challenges the
conventional view that mode collapse signifies GAN training failure. In fact, terminating GAN training
at a carefully chosen point can result in a diverse set of samples. In the second row, we map both real
MNIST images and generated images into a common 3-dimensional space using UMAP (Uniform Manifold
Approximation and Projection) (McInnes et al., 2018), where we observe a similar phenomenon.

Figure 1: The real and generated samples by training NSGAN on a 3-dimensional Gaussian mixture dataset
and MNIST. First row: Gaussian mixture dataset. Orange: Real samples. Blue: Generated samples.
Epochs from left to right: 0, 15, 60, 450, 850, 980. Initially, the generated samples cluster near the origin,
then spread out and occupy the space covered by real modes. However, instead of becoming more refined,
they eventually collapse to part of the modes. Second row: MNIST embedded in a 3-dimensional
space. Colored: Real samples. Black: Generated samples. Epochs (Batches) from left to right: 0(0), 0(8),
0(32), 0(64), 32(0), 47(0). Similar phenomenon has been observed.

Generalizing these observations, we propose a three-phase characterization of GAN training: fitting, refining,
and collapsing. Our main tool for analyzing these phases is the study of gradient dynamics, as gradients of
the discriminator and generator functions with respect to their inputs provide insight into how generated
samples evolve. Table 1 provides an overview of each phase. Identifying the transition from the refining
to collapsing phase is crucial, as stopping training at this point can balance sample quality and diversity:
stopping too early yields unrealistic samples, while stopping too late leads to reduced diversity.

Table 1: An overview of the three phases: fitting, refining, and collapsing, which includes a brief description
and the roles of discriminator and generator gradients.

Fitting Refining Collapsing

Description Particles move in the direc-
tion of modes, covering the
space that envelopes the
majority of the modes.

Particles converge toward the
modes, reducing their spread
and mitigating mode mixture.

Particles near mode bound-
aries are pushed away, eventu-
ally leading to mode collapse.

Discriminator
gradient

Guides particles from the
initial noise prior toward
regions close to the modes.

Causes generator gradient to
increase in magnitude.

Pushes particles near mode
boundaries away with signif-
icant force and magnitude.

Generator
gradient

Gradually increases as par-
ticles move from the noise
prior toward the modes.

Measures how the generator
maps nearby points in the la-
tent space to distant points in
the output space, providing a
quantitative measurement of
mode mixture severity.

Drops in magnitude as parti-
cles near mode boundaries are
pushed away and concentrate
around fewer modes.
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Our contributions can be summarized as follows:

• We propose a three-phase characterization of GAN training: fitting, refining, and col-
lapsing in sections 3 to 5, where mode mixture and mode collapse are treated as inter-
connected. Notably, we highlight the under-explored idea that mode collapse (i.e., the collapsing
phase) may emerge in the later stages of a converging GAN (i.e., the refining phase).

• We employ gradient-based tools to analyze each phase, using the discriminator gradient
which guides particle movement and the generator gradient, termed “steepness,” to
quantify mode mixture severity. Specifically, we employ the discriminator gradient to study the
fitting phase, the generator gradient for the refining phase, and both gradients jointly to characterize
the collapsing phase. These tools are detailed in section 2.

• We develop an early stopping algorithm to optimize GAN training by detecting the
transition from refining to collapsing. The early stopping algorithm, outlined in section 5.3,
uses a metric based on discriminator and generator gradients. By intrinsically capturing GAN
training dynamics without direct dependence on generated or real images, it identifies a stopping
point where sample quality and diversity are well balanced, as empirically demonstrated in section 6.

2 Technical Preliminaries and Basic Assumptions

In this section, we provide the technical preliminaries and basic assumptions. We begin with an overview
of the gradient dynamics in section 2.1, focusing on how the generator and discriminator gradients shape
the behavior of generated samples across the three phases, as summarized in table 1. In section 2.2, we
present an interpretation of GANs as particle models, where the discriminator gradient guides the movement
of generated samples as particles. In section 2.3, we introduce the concept of steepness, derived from
the generator gradient, to quantify the severity of mode mixture. Finally, in section 2.4, we outline the
assumptions we make regarding the real data distribution and the noise prior.

2.1 An Overview of Gradient Dynamics in GANs

In this work, the main tools we use to analyze the proposed three phases of GAN training are the generator
and discriminator gradients. To clarify, we consider gradients as derivatives of the generator and discriminator
functions with respect to their inputs, rather than with respect to network parameters. In section 2.2,
we interpret the divergence GANs as particle models, where generated samples are viewed as particles,
each moving based on a function of the discriminator’s gradient. During the fitting phase, this gradient
guides particles from the initial noise prior towards regions near the modes. In the refining phase, however,
understanding the severity of mode mixture requires a broader, more global perspective, as mode mixture is a
property of the entire distribution rather than of individual particles. To address this, in section 2.3, we define
steepness based on the generator’s gradient. Steepness quantifies how the generator maps nearby points in
the latent space to potentially distant points in the output space, providing a measure of mode mixture
severity that enables a quantitative analysis of this phenomenon. The collapsing phase is characterized by
two distinctive behaviors. From a particle perspective, certain particles near the mode boundaries start to
“escape” from these modes, a phenomenon we analyze using the discriminator’s gradient. From a global
perspective, generated particles begin to concentrate around only a few modes. We use the generator’s
gradient to characterize this concentration effect, giving a comprehensive view of the collapsing phase.

2.2 Discriminator Gradient: Guiding Particle Movement

Divergence GANs such as Vanilla GAN (Goodfellow et al., 2014), NSGAN (Goodfellow et al., 2014) and
f -GAN (Nowozin et al., 2016) can be interpreted as particle models (Gao et al., 2019; Johnson & Zhang,
2019; Franceschi et al., 2023; Huang & Zhang, 2023; Yi et al., 2023). This paper focuses on the NSGAN for
its practicality and conciseness. And we outline the methodology for other Divergence GANs in appendix H.
The pseudocode of NSGAN as a particle model is presented in algorithm 1, which is fundamentally grounded
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Algorithm 1 Interpretation of Non-Saturating GAN as a Particle Model (c.f. (Yi et al., 2023))
Require: The discriminator dω and the generator gθ, the noise prior pz, batch size m > 0, step size s > 0

1: for number of training iterations do
2: Train the discriminator dω as in (Goodfellow et al., 2014).
3: Sample zi’s from the noise prior pz(z).
4: Generate particles Zi = gθ(zi), (1 ≤ i ≤ m).
5: Update the particles Ẑi = Zi + s · ∇dω(Zi)/dω(Zi), (1 ≤ i ≤ m).
6: Apply the stop gradient operator to Ẑi and update gθ by descending ∇θ

1
m

∑m
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2.

7: end for

in the work of Yi et al. (2023). This interpretation is essentially equivalent to the original NSGAN (Yi et al.,
2023, theorem 3.2). Accordingly, we refer to the generated samples as particles throughout this paper.
Unless otherwise stated, we assume the discriminator is optimal,2 i.e., d∗(x) = pdata(x)/

(
pdata(x) + pg(x)

)
,

as established by Goodfellow et al. (2014) (we omit the subscript ω for brevity hereafter). Consequently,
the vector field ∇d(x)/d(x) that guides particle movement can be reformulated in terms of the density ratio
r(x) = pdata(x)/pg(x) as

∇d∗(x)
d∗(x) = ∇r(x) · 1

r(x)(1 + r(x)) .

2.3 Generator Gradient: Measuring Mode Mixture Severity

In addition to the discriminator’s role in guiding particle movement, the generator’s gradient provides a
measure of mode mixture severity. As described in algorithm 1, a particle x near a mode is updated in the
direction of ∇d∗(x)/d∗(x), typically pointing towards the closest mode (see section 3). However, between
adjacent modes, critical points exist where nearby particles are pushed apart in opposite directions. During
training, two close latent points z1 and z2 may map to outputs gθ(z1) and gθ(z2) that are far apart. This
behavior reflects high sensitivity in the generator’s mapping, indicated by a large spectral norm of the
Jacobian of gθ. This motivates the concept of steepness (see definition 2.1), which quantifies the generator’s
sensitivity across the latent space. Higher steepness corresponds to regions where small differences in latent
points produce large separations in the output space, mitigating the severity of mode mixture. Importantly,
this definition is invariant under orthogonal coordinate transformations, ensuring that steepness Sg captures
intrinsic properties of the generator’s mapping.
Definition 2.1. Let g : Rn → Rn be continuously differentiable. The steepness of g at a point x, denoted by
Sg(x), is defined as the spectral norm of the Jacobian of g at x:

Sg(x) = ∥Jg(x)∥2.

2.4 Assumptions on Real Data and Noise Prior

The probability distributions of real-world datasets are often modeled as linear combinations of Dirac mea-
sures that remain fixed throughout GAN training (Sun et al., 2020; Becker et al., 2022). However, this
modeling approach may not fully capture the reality of training, as neural networks typically process data in
small batches. Consequently, the distribution of data can vary significantly from batch to batch. To better
represent this variability, we apply kernel density estimation with a Gaussian kernel Kσ(·, ·) with covariance
matrix σ2In to smooth discrete datasets into continuous probability distributions.
Assumption 2.1. Let x1, x2, . . . , xN ∈ Rn, where the xi’s are in ascending order if n = 1. We assume
that the real data distribution has the following probability density function

pdata(x) = 1
N

N∑
i=1

Kσ(x, xi) := 1
N

N∑
i=1

1
(2πσ2)n/2 · exp

(
− ∥x − xi∥2

2
2σ2

)
,

Optionally, we may assume a separation condition parameter ∆ > 0, such that min1≤i<j≤N ∥xi − xj∥2 ≥ ∆.
2 For the sake of completeness, we also provide an analysis of a class of suboptimal discriminators in appendix D.
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We make the following assumption on the noise prior pz(z) for reasons in appendix B.
Assumption 2.2. Let n be the dimension of real samples. We assume that the noise prior pz ∼ N (0, In)
is an n-dimensional standard Gaussian distribution.

3 The First Phase of GAN Training — Fitting

We begin with the first phase of GAN training: fitting. Roughly speaking, fitting refers to the process
where the particles progressively spread to cover the space that envelopes the majority of the modes. The
dynamics of this process are driven by the discriminator gradient, which guides particles toward the modes.
To analyze and visualize this evolution, we employ a multi-scale approach to model real-world distributions
using two configurations with different scales. For consistency with section 1, the 3-dimensional Gaussian
mixture dataset serves as the foundation. To simplify visualization, we introduce two minor adjustments: (i)
the 3-dimensional distribution is projected onto the xy-plane, and the corresponding marginal distribution
is analyzed; and (ii) the covariance matrix of each Gaussian component is adjusted to 0.1I to enhance the
observable effects. These two configurations are detailed in sections 3.1 and 3.2.

3.1 Model 1: The Modes are Clustered

We first examine the scenario where the modes are clustered, a configuration commonly observed in real-
world datasets at a local level. For example, in MNIST, the handwritten digits 1 and 7 exhibit similar
features, and their modes are closely located (see appendix E for a visualization). In this subsection, we
analyze three representative stages of GAN training: (i) initialization, where particles are concentrated near
the origin, (ii) a stage where particles cover all the modes, and (iii) a stage where particles cover only a
single mode.

For initialization, we assume that pg equals the Gaussian distribution N ([0, 0], 0.2I2) and

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2).

The update vector field ∇d∗(x)/d∗(x) is shown in the first subfigure of fig. 2. Particles are drawn towards
the nearest modes, with vector lengths (intensity of attraction) positively correlated with their distances
from the modes. 3

Next, we examine the scenario where the particles have covered all the modes. Here, pg follows a uniform
distribution over [−2, 2]× [−2, 2]. The update vector field ∇d∗(x)/d∗(x) is illustrated in the second subfigure
of fig. 2. Particles close to mode centers tend to remain stationary, while those farther away are updated
towards the nearest mode. 3

Lastly, we analyze the situation where particles cover only a single mode. Assume pg ∼ N ([1, 1], I2), so that
the particles cover the mode centered at (1, 1). The third subfigure of fig. 2 illustrates ∇d∗(x)/d∗(x). Here,
discriminator values differ significantly across the modes: the covered mode has the lowest value, while the
farthest mode has the highest. The vector field’s intensity peaks near unoccupied modes and diminishes near
crowded ones, ensuring that particles approaching an unoccupied mode are strongly attracted to it. 3

3.2 Model 2: The Modes are Far Apart

In this subsection, we investigate the case where the modes are far apart. From a global perspective, real-
world datasets often exhibit this structure, especially in datasets with multiple categories. For instance, the
modes of dogs and trucks in CIFAR-10 (Krizhevsky et al., 2009) are significantly separated due to the stark
differences in their visual appearances (see appendix E for a visualization).

To analyze this scenario, we assume the following distributions:

pdata ∼ 1
4N ([3, 3], 0.1I2) + 1

4N ([3, −3], 0.1I2) + 1
4N ([−3, 3], 0.1I2) + 1

4N ([−3, −3], 0.1I2),

3 Please refer to appendix C for the corresponding theoretical results.
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Figure 2: The vector field ∇d∗(x)/d∗(x) and the values of the discriminator in different models. First:
Model 1 at initialization. Second: Model 1 with particles covering all modes. Third: Model 1 with
particles covering only one mode. Fourth: Model 2.

and pg ∼ N ([3, 3], 3I2). The vector field ∇d∗(x)/d∗(x) for this case is visualized in the last subfigure of fig. 2.
Unlike Model 1, where particles are strongly attracted towards nearby modes, here we observe a general weak-
ening of the vector field’s intensity near all modes. This weakened attraction poses challenges for particles
to move towards unoccupied modes and increases the likelihood of stagnation or nonconvergence 3, where
the training process fails to advance beyond the fitting phase. These challenges often are often attributed to
unfavorable network initialization or imbalanced training between the generator and discriminator. Given
their infrequency in practice, we will not delve deeper into this topic.

4 The Second Phase of GAN Training — Refining

This section focuses on the refining phase of GAN training, where generated samples become more refined,
reducing mode mixture by decreasing the overlap between modes. In section 4.1, we show that to map pz

to the multimodal distribution pdata, the generator g must exhibit significant steepness. Using the update
field of particle movement, we derive the formula for the evolution of generator steepness during training
and present quantitative results on how steepness impacts the severity of mode mixture in section 4.2.

4.1 Steepness of Measure-Preserving Maps

In this subsection, we analyze the steepness of the optimal generator function g that satisfies g#pz = pdata.
Beginning with the 1-dimensional case, we provide a complete characterization of measure-preserving maps.
Let Φ(x) and Ψ(x) denote the cumulative distribution functions (CDFs) of N (0, 1) and pdata(x), respectively.
Any measure-preserving map g can be expressed as g = Ψ−1 ◦ h ◦ Φ, where h is a measure-preserving map of
the uniform distribution U(0, 1) on (0, 1). Among the infinitely many possible choices of h, the identity map
holds particular significance. In this case, the corresponding g represents the optimal transport map from pz

to pdata under the Wasserstein distance with strictly convex cost functions (Santambrogio, 2015), including
the widely-used 2-Wasserstein distance as a specific example. For a visualization of generator functions g
corresponding to different pdata, please refer to appendix I.
Theorem 4.1. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with n = 1 and
separation condition parameter ∆ = 6σ. Let Φ(x) and Ψ(x) denote the cumulative distribution functions
(CDFs) of N (0, 1) and pdata(x), respectively. Define g(x) := Ψ−1(Φ(x)). Then, there exists a point x∗ ∈ R
such that the steepness of g at x∗ satisfies:

Sg(x∗) ≥ min
1≤i≤N−1

σ · exp
( (xi+1 − xi)2

8σ2

)
· exp(−q2),

where q is the (1 − 1/N)th quantile of the standard Gaussian distribution.

We conclude that the steepness Sg is influenced by the distance between adjacent modes in 1-dimensional
cases. This property extends to higher dimensions, as demonstrated in theorem 4.2, which provides an
explicit lower bound for Sg. The bound exhibits exponential growth with increasing Euclidean distance
∥λx̄ − xi∥2 and with decreasing variance σ2. Consequently, when the modes are widely separated or when
the standard deviation σ is small, Sg becomes significantly large.
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Figure 3: Left: Generator functions g with varying steepness at x = 0. Right: The density plot of
pg = g#pz, with pdata ∼ 0.5N (−8, 1)+0.5N (8, 1). The shaded areas represent the severity of mode mixture.
Generator functions with larger steepness exhibit less severe mode mixture. Quantitative results are detailed
in theorem 4.4.

Theorem 4.2. Assume that the real data distribution pdata(x) satisfies assumption 2.1, and that the noise
prior pz(z) is the truncated Gaussian Nr(0, In) defined on the n-dimensional ball Br(0). Without loss of
generality, suppose xi ̸= 0 for all 1 ≤ i ≤ N . Let g : Br(0) → Rn be a continuously differentiable, piecewise
injective function satisfying g#pz = pdata. Then, there exists a point x∗ ∈ Rn such that the steepness Sg(x∗)
satisfies Sg(x∗) ≥ M , where

M = δ · σ ·
√

2π · max
λ∈[0,2]

min
1≤i≤N

exp
(∥λx̄ − xi∥2

2
2nσ2

)
.

Here, x̄ =
∑N

i=1 xi/N is the mean of the mode centers, and δ = exp(−r2/2)/
√

2π accounts for the truncation
of the Gaussian distribution.

4.2 Evolution of the Generator’s Steepness

We leverage insights from particle dynamics to derive how the steepness of the generator evolves during
training. Theorem 4.3 provides a recurrence relation for the steepness kt of the generator g at x = 0 under
the assumption that the optimal generator exhibits sufficiently large steepness k∗.
Theorem 4.3. Assume that pdata ∼ N (0, k2

∗In) and that the discriminator is optimal, i.e., the discriminator
consistently provides the precise moving direction for the particle. Then kt, the steepness of g at x = 0 at
discrete time step t satisfies

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

,

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In).

Next, we present quantitative results that illustrate how the steepness of the generator impacts the severity
of mode mixture, as detailed in theorem 4.4. Figure 3 provides a visual example for the case where N = 2
and x1 = −x2 = 8. In the right subfigure, shaded areas represent the areas associated with mode mixture
severity. Our observations indicate that generators with larger steepness reduce the severity of mode mixture,
a finding consistent with theorem 4.4.
Theorem 4.4. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with n = 1 and
separation condition parameter ∆ = 6σ. Furthermore, assume that the generator function g is increasing
and satisfies supx∈R Sg(x) ≤ k. Additionally, assume that

g−1
(xi + xi+1

2

)
= Φ−1

(
Ψ

(xi + xi+1

2

))
,
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where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
and Ψ(x) is the CDF of the distribution pdata(x). Then, the probability that the particles fall into the interval

N−1⋃
i=1

[xi + 3σ, xi+1 − 3σ],

which indicates mode mixture, is at least
N−1∑
i=1

(
Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
+ xi+1 − xi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
− xi+1 − xi − 3σ

2k

))
.

5 The Third Phase of GAN Training — Collapsing

In this section, we examine the collapsing phase, where the diversity of generated samples deteriorates
as they concentrate around fewer modes. This phase typically emerges at the end of the refining phase,
when generated samples closely approximate the real data. We investigate the underlying mechanisms of
collapsing, highlighting the role of discriminator gradients in driving particle dynamics in section 5.1 and its
relationship to generator steepness in section 5.2. Building on these insights, we introduce a practical early
stopping algorithm in section 5.3 to stop GAN training at the critical transition from refining to collapsing,
thereby mitigating mode collapse and preserving diversity.

5.1 Collapsing Induced by Discriminator Gradients

In this section, we analyze the role of the discriminator gradient ∥∇d(x)/d(x)∥2 in the collapsing phase.
Collapsing typically occurs at the end of the refining phase, where generated samples closely approximate
real data. Unlike the optimal discriminator in Vanilla GAN, which assigns uniform values of 0.5 to both
real and generated samples at convergence, the optimal discriminator in NSGAN exhibits a more nuanced
behavior. It assigns values near 0.5 at the central regions of the modes, values close to 0 in regions with
scarce real data, and gradually transitions between these extremes.

This behavior arises from two key mechanisms. First, recall that the optimal discriminator in NSGAN can
be expressed as d∗(x) = pdata(x)/

(
pdata(x) + pg(x)

)
(Goodfellow et al., 2014). At the central regions of a

mode, pg(x) ≈ pdata(x), resulting in d∗(x) ≈ 0.5. In regions far from the modes, pdata(x) ≈ 0. Due to the
smoothing effect of pg(x), which spreads probability mass beyond the support of pdata, pg(x) remains finite.
Consequently, d∗(x) approaches 0. Second, the smoothing effect of pg(x) plays a critical role in shaping
the transition between these extremes. Unlike pdata, which is sharply concentrated within the modes, pg(x)
spreads probability mass more broadly, partly due to the mode mixture effects. Please refer to appendix G
for empirical evidence. To better characterize the behavior of particle movement, we adopt a locally linear
approximation of the discriminator, detailed in assumption 5.1.
Assumption 5.1. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with separation
condition parameter ∆ = 8σ. We assume that at the end of the refining phase where generated samples
closely resemble real samples, the discriminator d(x) is of the form

d(x) =


1
2 − 1

8σ
· ∥x − xi∥2, x ∈ B4σ(xi),

0, otherwise.

We compute ∥∇d(x)/d(x)∥2 to analyze gradient behavior near the mode boundaries. For a point x̃ located
r away from xi, i.e., ∥x̃ − xi∥2 = r, we derive ∥∇d(x̃)/d(x̃)∥2 = 1/(4σ − r). As r approaches 4σ, the sharp
increase in ∥∇d(x)/d(x)∥2 indicates that particles near these regions experience disproportionately large
updates. This disrupts the equilibrium established during the refining phase, pushing particles away from
the boundaries and possibly into neighboring modes. As a result, generated samples begin to concentrate
around fewer modes, reducing diversity and triggering mode collapse. Monitoring ∥∇d(x)/d(x)∥2 provides
a clear signal of this transition, motivating the early stopping algorithm proposed in section 5.3 to prevent
mode collapse and preserve sample diversity.
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5.2 A Local Analysis of Steepness

The steepness of the generator is a crucial metric for understanding its mapping behavior, particularly
during the collapsing phase of GAN training. A significant drop in steepness often signals mode collapse,
where generated samples lose diversity and concentrate around fewer modes. By studying steepness, we gain
insights into how updates to the generator affect its ability to maintain diverse outputs. This motivates the
need for a rigorous analysis of steepness dynamics and its connection to discriminator gradients, which is
the focus of this subsection.

The discriminator gradients and the generator gradients are intrinsically connected through the particle
update rule described in algorithm 1. This relationship, which governs how updates to particles propagate
through the generator, is formally captured in theorem 5.1.
Theorem 5.1. Following the notations in algorithm 1, assume that after the update step, the generator is
optimal in the sense that gθ′(zi) = Ẑi. Further assume there are infinitely many particles and that the step
size s > 0 is sufficiently small. Then, the Jacobian Jgθ′ (z) of the updated generator gθ′ satisfies

Jgθ′ (z) = Jgθ
(z) + s · ∇x

(∇dω

dω

)(
gθ(z)

)
· Jgθ

(z),

where ∇x(∇dω/dω)(x) is the Jacobian of the vector field ∇dω/dω evaluated at x.

Building on this relationship, we focus on a local analysis of the generator’s steepness near the collapsing
mode. Specifically, we analyze how the steepness evolves after a single update during the collapsing phase.
Our findings reveal that steepness decreases significantly within the mode’s surrounding neighborhood, in-
dicating a reduced ability of the generator to separate latent points and maintain output diversity. This
behavior provides a clear and complementary signal for detecting the beginning of mode collapse when com-
bined with monitoring the discriminator gradient ∥∇d(x)/d(x)∥2. While the discriminator gradient offers an
external perspective on particle dynamics, steepness provides an intrinsic measure of how well the generator
preserves the geometric structure of the latent space. By jointly monitoring these metrics, the early stopping
algorithm proposed in section 5.3 can more robustly stop training before collapsing occurs.
Theorem 5.2. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with separation
condition parameter ∆ = 8σ. Suppose the current generator is gθ, and the current discriminator d(x)
satisfies the linear model assumption 5.1 near a certain mode xi, specifically d(x) = 1/2 − ∥x − xi∥2/(8σ)
for all x ∈ B4σ(xi). Under the same conditions as in theorem 5.1, the steepness of the updated generator
gθ′ satisfies

Sgθ′ (z) ≤
(

1 − s

(4σ − r)2

)
· Sgθ

(z),

for all latent vectors z such that gθ(z) ∈ B2σ(xi), where r = ∥gθ(z) − xi∥2, provided that the step size
s < (4σ − r)2 is sufficiently small.

5.3 The Early Stopping Algorithm

Based on the theoretical results, we propose an early stopping algorithm to stop GAN training before
collapsing occurs. This algorithm monitors two critical metrics: the discriminator gradient ∥∇d(x)/d(x)∥2,
which signals large updates near mode boundaries, and the generator steepness Sg(x), which reflects the
generator’s ability to map latent vectors diversely. Training is terminated if either the discriminator gradient
exceeds a predefined threshold or the generator steepness exhibits a significant proportional drop compared
to its previous value. Please refer to algorithm 2 for the pseudocode.

The algorithm involves three key ingredients. (i) Two thresholds are introduced: kd/(2σ) for the discriminator
gradient and kg for the generator steepness. The value of ∥∇d(x)/d(x)∥2 at x located 2σ away from certain
mode accounts for the 1/(2σ), while kd is set proportional to the distance between adjacent modes. The
underlying rationale is that when ∥∇d(x)/d(x)∥2 is small relative to inter-mode distances, generated samples
deviating from the modes can be re-attracted. However, as ∥∇d(x)/d(x)∥2 approaches inter-mode distances,
particles gravitate toward alternate modes, risking collapse. The other threshold kg detects proportional
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Algorithm 2 Early Stopping of GANs (with Discriminator Gradient and Generator Steepness)
Require: A GAN model including a generator gθ and a discriminator dω, thresholds kd > 0 and kg < 0,

the number of modes m ≥ 1, the number of warm-up iterations Nw

1: for each training iteration do
2: Train the discriminator dω and the generator gθ as in algorithm 1.
3: Compute the (1 − 1/m)th quantile of ∥∇dω/dω∥2 for the current batch. Let this value be qd.
4: Compute the mean steepness Scurrent

g across the batch and calculate the proportional drop compared
to the previous iteration as ∆Sg = (Scurrent

g − Sprev
g )/Sprev

g .
5: if (qs > ks/(2σ) or ∆Sg < kg) and current iteration > Nw then
6: break
7: end if
8: Update Sprev

g = Scurrent
g .

9: end for
10: return The best-performing model from earlier checkpoints.

drops in generator steepness, defined as ∆Sg = (Scurrent
g − Sprev

g )/Sprev
g . (ii) The (1 − 1/m)th quantile of

∥∇d(x)/d(x)∥2 is computed for each batch, where m represents the number of modes. This choice presumes
that once a specific mode begins collapsing, it signifies the start of the GAN transitioning into the collapsing
phase. (iii) A warm-up period of Nw iterations prevents premature stopping during the fitting phase by
ignoring initial metric fluctuations.

6 Experiments

In this section, we present the experimental results. All codes will be made public upon publication.

6.1 Verifying Fitting and Refining

We empirically verify the existence of the fitting and refining phases in real-world datasets. Our experiments
focus on MNIST and Fashion MNIST due to the clear separability of their modes. Detailed results, including
those for Fashion MNIST, are provided in appendix G, with experimental settings and rationale detailed
in appendix F.

Methodology. We train NSGAN on MNIST and analyze the generated images using a classification
network q(x). Here, x is an image tensor, and q(x) outputs a 10-dimensional vector (p0, p1, . . . , p9), where
pi ∈ [0, 1] represents the likelihood of x being classified as digit i. For each batch, we count the pairs (i, j)
where both pi and pj exceed 10−2. Such occurrences, visualized in heatmaps in fig. 4, indicate that the
corresponding image exhibits characteristics of both modes i and j, which we interpret as mode mixture.
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Figure 4: The logarithm of the occurrence of pairings (i, j) plus 1 in a batch of size 256. Epochs from left
to right: 0, 1, 2, 4, 8. At initialization, the noise prior results in few nonzero entries. As training progresses,
more entries appear, indicating that generated samples spread across the mode space, i.e., the fitting phase.
Off-diagonal entries signal mode mixture, which decreases over time, validating the refining phase. However,
mode mixture persists even after refining. Annotated heatmaps can be found in appendix G.
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Results. At the beginning of training, the heatmap shows few nonzero entries, primarily due to the initial
noise prior, which generates similar outputs across samples. As training progresses, more entries appear,
reflecting the fitting phase, where generated samples spread to cover the space containing the modes. Off-
diagonal entries, which indicate mode mixture, initially increase but decrease in magnitude during the refining
phase as the generator reduces overlap between modes. But mode mixture persists even at the end of the
refining phase. These observations align with the theoretical analysis in sections 3 and 4.

6.2 Early Stopping

We present the results of applying early stopping (algorithm 2) to 3-dimensional Gaussian mixture, MNIST,
Fashion MNIST, and CIFAR-10. Detailed experimental settings are provided in appendix F.

Early stopping. We train NSGAN on each dataset and record ∥∇d(x)/d(x)∥2 at each epoch until reach-
ing the maximum specified epochs. The thresholds for early stopping are determined by kd/(2σ) for the
discriminator gradient and kg = −0.5 for the generator steepness, where kd represents the estimated dis-
tance between two modes and σ is the estimated standard deviation of the data distribution. To evaluate
the effectiveness of early stopping, we continue training beyond the stopping point to observe the sample
quality both before and after this threshold is crossed. The experimental results are shown in fig. 5. Before
the stopping point, the generated samples are diverse and realistic. After the stopping point, however, the
samples either collapse to a few modes or oscillate between different modes, significantly reducing diversity
and quality.
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Figure 5: Experimental results of early stopping. The figures in each column, from left to right, represent the
results for the following datasets: Gaussian mixture, MNIST, Fashion MNIST, and CIFAR-10, respectively.
In the first row, the blue lines are ∥∇d(x)/d(x)∥2 and the red circled ones show the steepness. In the second
row, the generated images before and after early stopping are displayed at intervals of a few epochs. The
images highlighted with red frames are the most realistic among those shown before the stopping points.
Consistently across all experiments, before the stopping point, the generated samples are diverse and realistic.
After the stopping point, however, the samples either collapse into a few modes or oscillate between different
modes, resulting in a significant reduction in diversity and quality.

Comparison with FID score and duality gaps. In the evaluation of GAN performance, the metrics
used can generally be classified into two categories: domain-specific and domain-agnostic. To comprehen-
sively assess our proposed approach, we selected the FID score (Heusel et al., 2017) as a representative of
domain-specific metrics, focusing on the quality of the generated images, and duality gaps (Grnarova et al.,
2019; Sidheekh et al., 2021) to represent domain-agnostic metrics that evaluate the optimization process.
In fig. 6, we demonstrate that steepness closely aligns with the FID score, as steepness decreases sharply while
the FID score surges, both signaling the collapsing phase. This correlation effectively guides training termi-
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nation, reducing the need for extra checkpoints. Additionally, in appendix G, we compare ∥∇d(x)/d(x)∥2
with the FID score and show its partial alignment with the perturbed duality gap. The combined use of
our two proposed metrics offers enhanced sensitivity and reliability in detecting mode collapse compared to
existing approaches.
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Figure 6: The tendency of steepness and FID score for MNIST, Fashion MNIST and CIFAR-10, from left
to right. Blue for the steepness and red circled for the FID score. A consistent pattern is observed: the
steepness initially increases and stabilizes. Subsequently, whenever the steepness decreases significantly, the
FID score nearly concurrently escalate to high values, signifying a notable deterioration in sample quality.
Please refer to appendix G for comparison between ∥∇d(x)/d(x)∥2 and the FID score.

Validating the early stopping metric. As a by-product, our discussion in section 5 supports the es-
tablished practice of adding noise to the discriminator to stabilize GAN training (Wieluch & Schwenker,
2019). This stabilization mitigates disproportionately large ∥∇d(x)/d(x)∥2 values near mode boundaries
which contributes to mode collapse. Conversely, observing ∥∇d(x)/d(x)∥2 in this noised setting validates
the effectiveness of our metric. Specifically, prior to the 54th epoch, the noise-free model generally exhibits
larger values compared to the noised model. At the 54th epoch, the noise-free model collapses, with the
value tending toward zero. Meanwhile, the noised model maintains stable values, as shown in fig. 7.

1004 101 102 10314 101 102 103 10424 101 102 10334 10 1 100 101 10244 101 102 103 10454

Figure 7: Histograms of the values of ∥∇d(x)/d(x)∥2 and their 90th percentile across epochs. Red for the
model with noise and blue for the model without noise. The noise-free GAN collapses at the 54th epoch.
Preceding that, the noised model nearly always exhibits lower ∥∇d(x)/d(x)∥2 values compared to its noise-
free counterpart. Post that, this relationship reverses. Notably, in the noise-free model, ∥∇d(x)/d(x)∥2
tends towards zero, contributing to this observed divergence. See appendix G for additional results.

7 Conclusion

In this work, we proposed a three-phase characterization of GAN training: fitting, refining, and collapsing,
where mode mixture and mode collapse are treated as interconnected phenomena. We demonstrated that
mode collapse can emerge in the later stages of a converging GAN and emphasized the importance of early
stopping to balance sample diversity and quality. Using gradient dynamics, we analyzed how the discrim-
inator gradient guides the movement of particles (generated samples) towards modes, while the generator
gradient quantifies the severity of mode mixture by measuring how closely the generator maps nearby points
in the latent space to distinct points in the output space. These insights allowed us to track the evolution
of generated samples across phases. Our findings, validated through synthetic and real-world datasets, chal-
lenge conventional views on mode collapse and lay the groundwork for future research into improving GAN
training stability and performance. For additional discussions, please refer to appendix J.
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Roadmap. The appendix is organized as follows:

• Appendix A presents an in-depth review of the literature, covering generative models, practical
considerations and theoretical understandings of GANs, the relationship between GANs and particle
models, and phased processes in diffusion models.

• Appendix B explains the rationale behind the choice of the latent dimension in assumption 2.2.

• Appendix C provides proofs for all the theorems, propositions, and additional theoretical results not
included in the main text, which include

– Equivalence of NSGAN with its particle model interpretation (appendix C.1)
– Properties of particle update dynamics — the general result (appendix C.2)
– Properties of particle update dynamics — the data-dependent results (appendix C.3)
– Characterization of measuring-preserving maps (appendix C.4)
– Steepness of measure-preserving map in 1-dimension (appendix C.5)
– Steepness of measure-preserving maps in higher dimensions (appendix C.6)
– Evolution of steepness (appendix C.7)
– Quantitative results on how steepness impacts the severity of mode mixture (appendix C.8)
– Local Analysis of Steepness at Collapsing (appendix C.9)

• Appendix D explores a class of suboptimal discriminators, complementing the theory of their optimal
counterparts.

• Appendix E visualizes the distances between modes in datasets such as MNIST, Fashion MNIST,
and CIFAR-10.

• Appendix F outlines the detailed settings for the experiments described in section 6.

• Appendix G presents additional experimental results, including an analysis of the optimal discrim-
inator’s behavior in practical settings, verification of the fitting and refining phases, a comparison
with duality gaps, and an evaluation of the effectiveness of the early stopping metric after applying
techniques to mitigate mode collapse.

• Appendix H discusses how the analyses in this work can be extended to other divergence GANs.

• Appendix I provides visualizations of generator functions under different settings to offer intuition
for section 4.

• Appendix J shares additional intuitions and implications.

A Additional Literature Review

In this section, we provide a detailed literature review.

Generative models. Learning the generative model based on large amounts of data is a fundamental
task in machine learning and statistics. Popular techniques include Variational Autoencoders (Kingma &
Welling, 2014; Chen et al., 2017; Razavi et al., 2019; Child, 2021; Simkus & Gutmann, 2024), Generative
Adversarial Networks (Goodfellow et al., 2014; Radford et al., 2016; Arjovsky et al., 2017; Gulrajani et al.,
2017; Nguyen et al., 2017; Ghosh et al., 2018; Lin et al., 2018; Brock et al., 2019; Karras et al., 2020),
flow-based generative models (Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2019; Grathwohl
et al., 2019), autoregressive models (Van den Oord et al., 2016; Van Den Oord et al., 2016), energy-based
models (Xie et al., 2018; Gao et al., 2021), diffusion models (Ho et al., 2020; Song et al., 2021; Karras et al.,
2022), and other variants (Srivastava et al., 2018; Sun et al., 2022). Among these models, GANs’ ability for
rapid sampling, unsupervised feature learning and broad applicability makes them the primary focus of this
study.
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Practical considerations of GANs. In the realm of GANs, mode collapse (Goodfellow, 2017) is ar-
guably one of the major challenges which has received a lot of attention. It refers to the situation where the
generator produces samples on only a few modes instead of the entire data distribution. The issue of mode
collapse has been addressed mainly from three perspectives: modifying the network architecture, designing
new objective functions and using normalization techniques. Regarding the network architecture, existing
approaches involve increasing the number of generator (Ghosh et al., 2018) or discriminator (Nguyen et al.,
2017), using joint architectures (Larsen et al., 2016). From the objective function side, various metrics
such as the Wasserstein distance (Arjovsky et al., 2017), f -divergence (Nowozin et al., 2016), least squares
distance (Mao et al., 2017), maximum mean discrepancy (Li et al., 2017) are employed. Normalization tech-
niques such as batch normalization (Ioffe & Szegedy, 2015), layer normalization (Ba et al., 2016) and spectral
normalization (Miyato et al., 2018) have also achieved superb empirical performance. Mode mixture (Lei
et al., 2019) is another troublesome phenomenon in which the generated samples fall outside the real dis-
tribution and are thus unrealistic. Existing approaches include picking generated samples using a rejection
sampling method (Tanielian et al., 2020), or generating samples with discontinuous optimal transport rather
than deep neural networks (Lei et al., 2019; An et al., 2020; Gu et al., 2021).

Theoretical understandings of GANs. Another line of research approaches mode collapse and mode
mixture by developing theoretical understandings for better analyzing and optimizing GAN training. These
researches fall into two categories: landscape analysis and dynamic analysis. Landscape analysis is static
because it examines the results of GAN training; it ignores the interaction between the discriminator and
generator during training. For instance, Sun et al. (2020) analyzed the landscape of a family of GANs called
separable-GAN. They proved that the landscape of separable-GAN has exponentially many bad basins, all of
which are deemed as mode-collapse. No et al. (2021) demonstrated that Wasserstein GAN with an infinitely
broad generator has no spurious stationary points by modeling both the generator and the discriminator
using random feature theory. Lei et al. (2019) used results from optimal transport theory to account for
mode mixture. Dynamic analysis, on the other hand, considers how the discriminator and generator interact.
Franceschi et al. (2022) considered GANs from the perspective of Neural Tangent Kernel (NTK). Becker
et al. (2022) suggested the “Isolated Points Model” to explain the causes of GANs’ instability. Another
dynamical way of modeling GANs is to regard it as a particle model (Huang & Zhang, 2023; Franceschi
et al., 2023). This kind of modeling is used in conjunction with Fokker–Planck equation theories by Huang
& Zhang (2023) to demonstrate the convergence of GANs to the global stationary point.

Relationship between GANs and particle models. There has been an emerging trend in recent years
to conceptualize GANs as particle models. We present the interpretation of NSGAN as a particle model
in algorithm 1, which is fundamentally grounded in the work of Yi et al. (2023). Their framework rethinks
Divergence GANs from the perspective of differential equations, interpreting the evolution of generated
samples as particle flows guided by vector fields derived from the discriminator’s gradients. Huang & Zhang
(2023) examined a similar interpretation of vanilla GAN, but did not specifically discuss NSGAN. Gao et al.
(2019) used a variational gradient flow approach to analyze GANs, without placing much emphasis on the
connection to particle models. Franceschi et al. (2023) unified GANs within the context of particle models
and interpreted GANs as “interactive particle models.”

Phased processes in diffusion models. Recently, analogous phase transition phenomena, akin to those
elucidated in our paper, have been uncovered in diffusion models. For example, Biroli et al. (2024) showed
that the generative process in diffusion models undergoes a “speciation” transition, revealing data structure
from noise, followed by a “collapse” transition, converging dynamics to memorized data points, akin to
condensation in a glass phase. Sclocchi et al. (2024) found that the backward diffusion process acting after
a time t is governed by a phase transition at some threshold time, where the probability of reconstructing
high-level features suddenly drops and the reconstruction of low-level features evolves smoothly across the
whole diffusion process. Li & Chen (2024) studied properties of critical windows that are are narrow time
intervals in sampling during which particular features of the final image emerge.
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B Choice of Latent Dimension

In this section, we provide the rationale behind our choice of the latent dimension in assumption 2.2. At the
population level, Yi et al. (2023) demonstrated that NSGAN minimizes the f -divergence Df (pdata∥pg) with

f(u) = −(u + 1) log u

u + 1 + u(1 − 2 log 2) − 1.

Let µ and ν be mutually singular measures on Rn, Yang et al. (2022) proved that

Df (µ∥ν) = f(0) + f∗(0) > 0,

where f∗ stands for the Fenchel conjugate of f . If the latent dimension is less than n, then gθ#pz is
supported on a low-dimensional manifold, so that gθ#pz and ν will be mutually singular. Thus there is
always a positive gap in f -divergence between gθ#pz and ν. In other words, gθ#pz cannot approximate ν
well even if the GAN model has been trained perfectly. To prevent such inherent misalignment, we assume
that the latent dimension always equals n. Combined with the continuous data augmentation of real-world
datasets, we assume that the noise prior pz(z) is an n-dimensional standard Gaussian distribution, denoted
as N (0, In), where n is the dimension of real samples.

C Proofs to Theorems

Here, we aggregate all the theorems presented in the paper and furnish proofs for some of them.

C.1 Equivalence of NSGAN with Its Particle Model Interpretation

Corollary C.1 ((Yi et al., 2023)). The update of gθ via applying the stop gradient operator to Ẑi and
descending the gradient

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2

in algorithm 1 is equivalent to descending the gradient

−∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
in the original formulation of NSGAN.

Proof. We prove by directly computing the gradient using the chain rule. In fact, we have

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2 = 2

m

m∑
i=1

∇θgθ(zi)⊤ ·
(
gθ(zi) − Ẑi

)
= − s

m

m∑
i=1

∇θgθ(zi)⊤ · ∇dω(Zi)
dω(Zi)

= −s∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
.

Note that in the first equation, we implicitly use the fact that ∇θẐi = 0 due to the assumption that the stop
gradient operator is applied to Ẑi.

C.2 Properties of Particle Update Dynamics — The General Result

Theorem C.1. Assume that the discriminator is optimal, i.e., d∗(x) = pdata(x)/(pdata(x) + pg(x)). De-
note r(x) = pdata(x)/pg(x). At a point x where r(x) ≈ 0, x is updated following approximately ∇ log

(
r(x)

)
.

Conversely, when r(x) ≫ 1, x is updated following approximately ∇
(

− 1/r(x)
)
.

19



Under review as submission to TMLR

Proof. We rewrite ∇d(x)/d(x) in terms of r(x):

∇d(x)
d(x) = −pdata(x)∇pg(x) + pg(x)∇pdata(x)

(pdata(x) + pg(x))pdata(x)

= ∇
(pdata(x)

pg(x)

)
· pg(x)2

pdata(x)(pdata(x) + pg(x))

= ∇r(x) · 1
r(x)(1 + r(x)) .

When r(x) ≈ 0, we have
1

r(x)(1 + r(x)) ≈ 1
r(x) .

As a result,
∇d(x)
d(x) ≈ ∇ log r(x).

When r(x) ≫ 1, we have
1

r(x)(1 + r(x)) ≈ 1
r(x)2 .

Consequently,
∇d(x)
d(x) ≈ ∇

(
− 1

r(x)

)
.

We hereby outline the implications of this theorem. The value of log
(
r(x)

)
changes dramatically as x

decreases from 1 to 0, leading to correspondingly large magnitudes of ∥∇ log
(
r(x)

)
∥2 when r(x) ≈ 0. This

indicates that in the regions where pg(x) significantly exceeds pdata(x), particles are propelled towards distant
points. Conversely, ∇

(
− 1/r(x)

)
changes more gradually with increasing x, resulting in smaller magnitudes

of ∥∇
(

− 1/r(x)
)
∥2 when r(x) ≫ 1. In such regions where pg(x) is lower than pdata(x), particles tend to

remain relatively stationary. These align with our observations in section 3.

C.3 Properties of Particle Update Dynamics — The Data-Dependent Results

Proposition C.1. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2)

and that pg ∼ N ([0, 0], 0.2I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given
by

∇r(x) · 1
r(x)(1 + r(x)) ,

where
r(x) = 1

2
∑

(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
and

∇r(x) = −5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.
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Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

For pg(x) which is normally distributed with mean [0, 0] and covariance 0.2I2, we have

pg(x) = 1
0.4π

· exp
(

− 2.5(x2
1 + x2

2)
)
.

Combining the above results, we have

r(x) = 1
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
.

Next, we compute ∇r(x):

∇r(x) = 1
2

∑
(a,b)∈{(±1,±1)}

∇ exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
.

For each term exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
, its gradient is:

∇ exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
= − 5 exp

(
− 2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

Thus,

∇r(x) = −5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 2.5
(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards two times the centers of the four modes, which are (2, 2), (2, −2),
(−2, 2), and (−2, −2). Due to the exponential decay property of the exponential function, the influence of
these vectors diminishes rapidly with distance. Consequently, the vector field is predominantly influenced
by the mode in the same quadrant as x. Specifically, if we assume without loss of generality that x lies in
the first quadrant, the vector field will be approximately [2 − x1, 2 − x2]⊤, up to a scaling factor.

Proposition C.2. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2)

and that pg ∼ U
(
[−2, 2] × [−2, 2]

)
. Let x = [x1, x2]. Then the vector field that governs particles’ update is

given by
∇r(x) · 1

r(x)(1 + r(x)) ,
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where
r(x) = 20

π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

· 1x∈[−2,2]×[−2,2]

and
∇r(x) = −200

π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
· 1x∈[−2,2]×[−2,2].

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

For pg(x) which is uniformly distributed, we have

pg(x) = 1
16 · 1x∈[−2,2]×[−2,2].

Combining the above results,

r(x) = 20
π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

· 1x∈[−2,2]×[−2,2].

Now, we compute ∇r(x):

∇r(x) = 20
π

∑
(a,b)∈{(±1,±1)}

∇ exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

1x∈[−2,2]×[−2,2].

For each term exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

, its gradient is:

∇ exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

= −10 exp
(

− 5
(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
.

Thus,

∇r(x) = −200
π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
· 1x∈[−2,2]×[−2,2].

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards the centers of the four modes, which are (1, 1), (1, −1), (−1, 1),
and (−1, −1). Due to the exponential decay property of the exponential function, the influence of these
vectors diminishes rapidly with distance. Consequently, the vector field is predominantly influenced by the
mode in the same quadrant as x. Specifically, if we assume without loss of generality that x lies in the first
quadrant, the vector field will be approximately [1 − x1, 1 − x2]⊤, up to a scaling factor.
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Proposition C.3. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2)

and that pg ∼ N ([1, 1], I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given by

∇r(x) · 1
r(x)(1 + r(x)) ,

where

r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

and

∇r(x) = −45
2 ·

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) x1 − 10a − 1

9
x2 − 10b − 1

9

 .

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

For pg(x) which is normally distributed with mean [1, 1] and covariance I2, we have

pg(x) = 1
2π

· exp
(

− 0.5
(
(x1 − 1)2 + (x2 − 1)2))

.

Combining the above results, we have

r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

.

Next, we compute ∇r(x):

∇r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

∇ exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

.

For each term on the right-hand side, its gradient is:

∇ exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

= − 9 · exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) [

x1 − (10a − 1)/9
x2 − (10b − 1)/9

]
.
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Thus,

∇r(x) = −45
2 ·

∑
(a,b)∈{(±1,±1)}

exp
(

− 9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) x1 − 10a − 1

9
x2 − 10b − 1

9

 .

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards (1, 1), (−11/9, 1), (1, −11/9), and (−11/9, −11/9), respectively.
Due to the exponential decay property of the exponential function, the influence of these vectors diminishes
rapidly with distance. Consequently, the vector field is predominantly influenced by the mode in the same
quadrant as x. Specifically, if we assume without loss of generality that x lies in the first quadrant, the
vector field will be approximately [1 − x1, 1 − x2]⊤, up to a scaling factor.

Proposition C.4. Assume that

pdata ∼ 1
4N ([3, 3], 0.1I2) + 1

4N ([3, −3], 0.1I2) + 1
4N ([−3, 3], 0.1I2) + 1

4N ([−3, −3], 0.1I2)

and that pg ∼ N ([3, 3], 3I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given by

∇r(x) · 1
r(x)(1 + r(x)) ,

where

r(x) = 15
4

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

and

∇r(x) = −145
4 ·

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) x1 − 30a − 3

29
x2 − 30b − 3

29

 .

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

Here, µ ∈ {[3, 3], [3, −3], [−3, 3], [−3, −3]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±3,±3)}

exp
(

− 5
(
(x1 − a)2 + (x2 − b)2))

.
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For pg(x) which is normally distributed with mean [3, 3] and covariance 3I2, we have

pg(x) = 1
6π

· exp
(

− 1
6

(
(x1 − 3)2 + (x2 − 3)2))

.

Combining the above results, we have

r(x) = 15
4

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

.

Next, we compute ∇r(x):

15
4

∑
(a,b)∈{(±3,±3)}

∇ exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

.

For each term on the right-hand side, its gradient is:

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

=

− 29
3 exp

(
− 29

6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) [

x1 − (30a − 3)/29
x2 − (30b − 3)/29

]
.

Thus,

∇r(x) = −145
4 ·

∑
(a,b)∈{(±3,±3)}

exp
(

− 29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) x1 − 30a − 3

29
x2 − 30b − 3

29

 .

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of
the vectors originating from x and pointing towards (27/29, 27/29), (−33/29, 27/29), (27/29, −33/29),
and (−33/29, −33/29), respectively. Due to the exponential decay property of the exponential function,
the influence of these vectors diminishes rapidly with distance. Consequently, the vector field is predomi-
nantly influenced by the mode in the same quadrant as x. Specifically, if we assume without loss of generality
that x lies in the first quadrant, the vector field will be approximately [27/29 − x1, 27/29 − x2]⊤, up to a
scaling factor. Regarding the term 1 + r(x) in the denominator, we observe that its magnitude is large when
x is far from the coordinates x1 = 0, x2 = 0, and the centers of the modes. This increased magnitude
compared to the scenario in proposition C.3 explains the overall weakening of the attraction intensity near
all the modes.

C.4 Characterization of Measuring-Preserving Maps

Lemma C.1 ((Durrett, 2019)). Let X be a random variable taking values on R and let FX(x) be its CDF.
Then

F −1
X

(
U(0, 1)

)
∼ X

and
FX(X) ∼ U(0, 1),

where U(0, 1) denotes the uniform distribution on (0, 1).
Theorem C.2. Let Φ(x) denotes the cumulative distribution function (CDF) of N (0, 1) and let Ψ(x) be
that of pdata(x). If g satisfies g#pz = pdata, then g = Ψ−1 ◦ h ◦ Φ, where h is a measure-preserving map
of U(0, 1), i.e., the uniform distribution on (0, 1).
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Proof. We only need to show that Ψ◦g ◦Φ−1 is a measure-preserving map of U(0, 1). In fact, by lemma C.1,
we have

(Ψ ◦ g ◦ Φ−1)#U(0, 1) = (Ψ ◦ g)#pz = Ψ#pdata = U(0, 1).

C.5 Steepness of Measure-Preserving Map in 1-Dimension

Theorem C.3. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with n = 1 and
separation condition ∆ = 6σ. Let Φ(x) and Ψ(x) denote the cumulative distribution functions (CDFs) of
N (0, 1) and pdata(x), respectively. Define g(x) := Ψ−1(Φ(x)). Then, there exists a point x∗ ∈ R such that
the steepness of g at x∗ satisfies:

Sg(x∗) ≥ min
1≤i≤N−1

σ · exp
( (xi+1 − xi)2

8σ2

)
· exp(−q2),

where q is the (1 − 1/N)th quantile of the standard Gaussian distribution.

Proof. Instead of computing the derivative of g, we compute that of g−1. By the formula for the derivative
of inverse functions, we have that for any y ∈ R,

(g−1)′(y) = Ψ′(y)
Φ′

(
Φ−1(Ψ(y))

)
= 1

Nσ

N∑
i=1

exp
(

− (y − xi)2

2σ2

)
· exp

( (Φ−1(Ψ(y))2

2

)
≤ max

1≤i≤N−1

1
Nσ

· N · exp
(

− (xi+1 − xi)2

8σ2

)
· exp

( (Φ−1(Ψ((xi + xi+1)/2)))2

2

)
≤ max

1≤i≤N−1

1
σ

· exp
(

− (xi+1 − xi)2

8σ2

)
· exp(q2).

where q is the (1 − 1/N)th quantile of the standard Gaussian distribution. Again, by the formula for the
derivative of inverse functions, there exists x∗ ∈ R such that

Sg(x∗) ≥ min
1≤i≤N−1

σ · exp
( (xi+1 − xi)2

8σ2

)
· exp(−q2).

C.6 Steepness of Measure-Preserving Maps in Higher Dimensions

The standard result in (Durrett, 2019) specifically addresses the case of lemma C.2 where K = 1. And it
can be straightforwardly extended to encompass any K.
Lemma C.2 ((Durrett, 2019)). Let X ∼ ρ(x)dx be a n-dimensional random vector. Let D ⊂ Rn sat-
isfy P(X ∈ D) = 1. Assume that the map

φ : D =
K⊎

k=1
Di → Rn

satisfies the following requirements: for each 1 ≤ k ≤ K, φ := φ|Dk
is injective and its inverse function is

continuously differentiable. Then the probability density function of Y = φ(X) is

ρY (y) =
K∑

k=1
ρX

(
φ−1(y)

)
·
∣∣ det

(
Jφ−1

k
(y)

)∣∣ · 1φ(Dk)(y).

Equivalently, for any x ∈ D,

ρY (φ(x)) =
K∑

k=1
ρX(x) · | det(Jφ(x))|−1 · 1φ(Dk)(φ(x)).
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Theorem C.4. Assume that the real data distribution pdata(x) satisfies assumption 2.1, and that the noise
prior pz(z) is the truncated Gaussian Nr(0, In) defined on the n-dimensional ball Br(0). Without loss of
generality, suppose xi ̸= 0 for all 1 ≤ i ≤ N . Let g : Br(0) → Rn be a continuously differentiable, piecewise
injective function satisfying g#pz = pdata. Then, there exists a point x∗ ∈ Rn such that the steepness Sg(x∗)
satisfies Sg(x∗) ≥ M , where

M = δ · σ ·
√

2π · max
λ∈[0,2]

min
1≤i≤N

exp
(∥λx̄ − xi∥2

2
2nσ2

)
.

Here, x̄ =
∑N

i=1 xi/N is the mean of the mode centers, and δ = exp(−r2/2)/
√

2π accounts for the truncation
of the Gaussian distribution.

Proof. Let Dk (1 ≤ k ≤ K) be a partition of Br(0) such that for each 1 ≤ k ≤ K, g|Dk
is injective. We

regard g as the composition of two functions g := g2 ◦ g1. Here, g1 : Br(0) → (0, 1)n satisfies

g1(x) = g1(x1, x2, . . . , xn) = (Φr(x1), Φr(x2), . . . , Φr(xn)),

where Φr(·) is the cumulative density function of the 1-dimensional standard Gaussian distribution truncated
in (−r, r). It is straightforward to show that the derivative of Φr has a positive lower bound, say,

δ := 1√
2π

exp
(

− r2

2

)
.

Thus | det Jg1(x)| ≥ δn for any x ∈ Br(0).

By lemma C.1, g1#pz = π, where π is the uniform distribution on (0, 1)n. In the rest of the proof, we direct
our focus to g2 : (0, 1)n → Rn, which satisfies g2#π = pdata(x). Because g2 = g ◦ g−1

1 and g is injective on
Di (1 ≤ i ≤ N), we conclude that g2 is injective on g1(Dk) (1 ≤ k ≤ K). By applying lemma C.2 to g2 and
g1(Dk) (1 ≤ k ≤ K), we deduce that for y ∈ (0, 1)n,

pdata(g2(y)) =
K∑

k=1

1
| det(Jg2(y))| · 1g2(g1(Dk))(g2(y)) ≥

K∑
k=1

1
| det(Jg2(y))| · 1g1(Dk)(y) = 1

| det(Jg2(y))| .

Let BR(0) be the n-dimensional open ball centered at the origin with radius R = 2 · max1≤i≤N ∥xi∥2. We
consider the point y0 satisfying

g2(y0) = arg max
x∈BR(0)

min
1≤i≤N

∥x − xi∥2.

If there are many of them, we randomly pick one. Let x̄ =
∑N

i=1 xi/N . For this y0, we have

pdata(g2(y0)) ≤ f̂(λx̄) = 1
N

N∑
i=1

1
(2πσ2)n/2 · exp

(
− ∥λx̄ − xi∥2

2
2σ2

)
for any λ ∈ [0, 2].

Hence
| det(Jg2(y0))| ≥ pdata(g2(y0))−1 ≥ (2πσ2)n/2 · min

1≤i≤N
exp

(∥λx̄ − xi∥2
2

2σ2

)
.

Recall that we have | det(Jg1(g2(y0)))| ≥ δn, where δ = 1√
2π

exp
(

− r2

2

)
.

Combine the above results and we have

| det(Jg(y0))| = | det(Jg2(y0)) det(Jg1(g2(y0)))| ≥ (
√

2πσδ)n · min
1≤i≤N

exp
(∥λx̄ − xi∥2

2
2σ2

)
.
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If Sg(y0) < M , then by the property that the determinant of a matrix is bounded above by the nth power
of its spectral norm, we have

| det(Jg(y0))| < Mn.

However, substituting the expression for M into this inequality leads to a contradiction with the previously
derived bounds. Therefore, we conclude that the assumption Sg(y0) < M is invalid. Let x∗ = y0, which
completes the proof.

We remark that by choosing λ = 1, the lower bound becomes

M = δ · σ ·
√

2π · min
1≤i≤N

exp
(∥x̄ − xi∥2

2
2nσ2

)
,

which provides a useful baseline as it directly relates the bound to the distance between the mean of all
modes, x̄, and individual modes, offering an interpretable measure of steepness.

C.7 Evolution of Steepness

Theorem C.5. Assume that pdata ∼ N (0, k2
∗In) and that the discriminator is optimal, i.e., the discriminator

consistently provides the precise moving direction for the particle. Then kt, the steepness of g at x = 0 at
discrete time step t satisfies

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

,

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In).

Proof. Let φ(x) be the probability density function of the n-dimensional standard Gaussian distribution

φ(x) = 1
(2π)n/2 · exp

(
− 1

2x⊤x
)

.

Then the probability density function of N (0, k2In) is φ(x/k)/k. Let xt = ktx0 denotes the position of
the particle at time t. Here, kt represents the steepness of the generator function at x = 0. We investigate
the evolution of the particle subject to the vector field given by ∇d(x)/d(x). Assuming the discriminator is
optimal, this process is governed by the following explicit formula (Yi et al., 2023):

xt+1 = xt + s · ∇r(xt)
r(xt)(r(xt) + 1) , t = 1, 2, . . . , T.

Here, s denotes the step size, T is the maximum time, and

r(x) = φ(x/k∗)/k∗

φ(x/kt)/kt

is the ratio of the probability density function of pdata and pg. By the formula of φ(x), we deduce
that ∇φ(x) = −φ(x)x. Below we compute ∇r(x) by the chain rule:

∇r(x) = kt

k∗
· ∇φ(x/k∗) · φ(x/kt) − φ(x/k∗)∇φ(x/kt)

φ(x/kt)2

= kt

k∗
·
( 1

k2
t

− 1
k2

∗

)φ(x/k∗)
φ(x/kt)

· x.

Using xt = ktx0, we derive the following recurrent formula for {kt}T
t=0:

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

.
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C.8 Quantitative Results on How Steepness Impacts the Severity of Mode Mixture

Theorem C.6. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with n = 1 and
separation condition ∆ = 6σ. Furthermore, assume that the generator function g is increasing and satisfies
supx∈R Sg(x) ≤ k. Additionally, assume that

g−1
(xi + xi+1

2

)
= Φ−1

(
Ψ

(xi + xi+1

2

))
,

where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
and Ψ(x) is the CDF of the distribution pdata(x). Then, the probability that the particles fall into the interval

N−1⋃
i=1

[xi + 3σ, xi+1 − 3σ],

which indicates mode mixture, is at least

N−1∑
i=1

(
Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
+ xi+1 − xi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
− xi+1 − xi − 3σ

2k

))
.

Proof. Given x ∼ N (0, 1), we need to calculate the probability that

x ∈
N−1⋃
i=1

[g−1(xi + 3σ), g−1(xi+1 − 3σ)].

Since g−1(
(xi + xi+1)/2

)
is identical to its optimal counterpart, it suffices to analyze how g−1(xi + 3σ) and

g−1(xi+1 − 3σ) deviate from this value. In other words, we only need to compute the maximum value of
g−1(xi +3σ) and the minimum value of g−1(xi+1 −3σ), as the probability that a standard Gaussian variable
falls within an interval decreases with respect to its left endpoint and increases with respect to its right
endpoint. Using the property that supx∈R Sg(x) ≤ k, we have:

g−1(xi + 3σ) ≤ g−1
(xi + xi+1

2

)
− xi+1 − xi − 3σ

2k
,

and
g−1(xi+1 − 3σ) ≥ g−1

(xi + xi+1

2

)
+ xi+1 − xi − 3σ

2k
.

By summing over all intervals, we derive that the probability that particles fall into

N−1⋃
i=1

[xi + 3σ, xi+1 − 3σ]

is at least
N−1∑
i=1

(
Φ

(
g−1

(xi + xi+1

2

)
+ xi+1 − xi − 3σ

2k

)
− Φ

(
g−1

(xi + xi+1

2

)
− xi+1 − xi − 3σ

2k

))

=
N−1∑
i=1

(
Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
+ xi+1 − xi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(xi + xi+1

2

))
− xi+1 − xi − 3σ

2k

))
.

Note that for the case that N = 2 and −x1 = x2 = x, this probability simplifies to

Φ
(2x − 3σ

2k

)
− Φ

(
− 2x − 3σ

2k

)
.
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C.9 A Local Analysis of Steepness at Collapsing

Theorem C.7. Following the notations in algorithm 1, assume that after the update step, the generator is
optimal in the sense that gθ′(zi) = Ẑi. Further assume there are infinitely many particles and that the step
size s > 0 is sufficiently small. Then, the Jacobian Jgθ′ (z) of the updated generator gθ′ satisfies

Jgθ′ (z) = Jgθ
(z) + s · ∇x

(∇dω

dω

)(
gθ(z)

)
· Jgθ

(z),

where ∇x(∇dω/dω)(x) is the Jacobian of the vector field ∇dω/dω evaluated at x.

Proof. By the algorithm, particles are updated as

Ẑ = Z + s · ∇dω(Z)
dω(Z) , where Zi = gθ(z).

Assuming the generator is optimal after the update, the new generator satisfies

gθ′(z) = Ẑ = gθ(z) + s · ∇dω(gθ(z))
dω(gθ(z)) .

Differentiating both sides with respect to z, we obtain

Jgθ′ (z) = Jgθ
(z) + s · ∇z

(∇dω(gθ(z))
dω(gθ(z))

)
.

Applying the chain rule to compute the Jacobian of the velocity field:

∇z

(∇dω(gθ(z))
dω(gθ(z))

)
= ∇x

(∇dω

dω

)(
gθ(z)

)
· Jgθ

(z),

where ∇x(∇dω/dω)(x) is the Jacobian of the vector field evaluated at x.

Theorem C.8. Assume that the real data distribution pdata(x) satisfies assumption 2.1 with separation
condition ∆ = 8σ. Suppose the current generator is gθ, and the current discriminator d(x) satisfies the linear
model assumption 5.1 near a certain mode xi, specifically d(x) = 1/2 − ∥x − xi∥2/(8σ) for all x ∈ B4σ(xi).
Under the same conditions as in theorem 5.1, the steepness of the updated generator gθ′ satisfies

Sgθ′ (z) ≤
(

1 − s

(4σ − r)2

)
· Sgθ

(z),

for all latent vectors z such that gθ(z) ∈ B2σ(xi), where r = ∥gθ(z) − xi∥2, provided that the step size
s < (4σ − r)2 is sufficiently small.

Proof. Given the discriminator’s linear behavior near the mode xi, expressed as

d(x) = 1
2 − 1

8σ
· ∥x − xi∥2,

for x ∈ B2σ(xi), the gradient and Hessian (where the Hessian specifically refers to ∇2 log d(x)) of d(x) are:

∇d(x) = − y

8σr
, ∇x

(∇d(x)
d(x)

)
= − I

r(4σ − r) + yy⊤

r3(4σ − r) − yy⊤

r2(4σ − r)2 ,

where r = ∥x−xi∥2 and y = x−xi. Denoting the Hessian by H, the updated generator’s Jacobian satisfies

Jgθ′ (z) = (I + sH) · Jgθ
(z).

By the submultiplicative property of the spectral norm, we have

Sgθ′ (z) = ∥Jgθ′ (z)∥2 ≤ ∥I + sH∥2 · ∥Jgθ
(z)∥2 = ∥I + sH∥2 · Sgθ

(z).
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Next, we analyze ∥I + sH∥2. Since yy⊤ is rank-1 with the only nonzero eigenvalue r2, the eigenvalues of
H are

− 1
r(4σ − r) (multiplicity n − 1), − 1

r(4σ − r) + 4σ − 2r

r(4σ − r)2 (multiplicity 1).

The eigenvalues of I + sH are therefore

1 − s

r(4σ − r) (multiplicity n − 1), 1 − s

r(4σ − r) + s(4σ − 2r)
r(4σ − r)2 (multiplicity 1).

Since I + sH is a symmetric matrix, the spectral norm of I + sH is the largest eigenvalue

∥I + sH∥2 = 1 − s

r(4σ − r) + s(4σ − 2r)
r(4σ − r)2 = 1 − s

(4σ − r)2 ,

where we implicitly use the condition that the step size s < (4σ − r)2, so that I + sH is positive definite.
Substituting back, we obtain

Sgθ′ (z) ≤
(

1 − s

(4σ − r)2

)
· Sgθ

(z),

as required.

D Analysis of a Class of Suboptimal Discriminators

D.1 The Class of Suboptimal Discriminators

In this section, we analyze a class of suboptimal discriminators that can be expressed as

d̂ω(x) = pdata(x)
pdata(x) + f(r(x)) · pg(x) ,

where r(x) = pdata(x)/pg(x) represents the density ratio, and f is a scalar function. The optimal discrim-
inator, as established by Goodfellow et al. (2014), corresponds to the case where f ≡ 1. This formulation
naturally arises from the training process of the discriminator, which effectively functions as a binary clas-
sifier distinguishing between real and generated data. During training, gradient descent approximates the
density ratio r(x), and deviations from the true value are captured by the function f(r(x)).

The term f(r(x)) quantifies the error in the estimation of the density ratio. Specifically, the suboptimal
discriminator can be rewritten as:

d̂ω(x) = 1
1 + f(r(x)) ·

(
pdata(x)/pg(x)

)−1 = 1
1 +

(
r(x)/f(r(x))

)−1 .

This highlights the role of f(r(x)) as a measure of deviation from the optimal case. When f(r(x)) = 1, the
discriminator achieves optimality, perfectly distinguishing between real and generated samples. However,
deviations from f(r(x)) = 1 reflect imperfections in the discriminator, introducing bias or error into the
classification process. Such a modeling allows us to analyze and understand the behavior of suboptimal
discriminators and their impact on the overall performance of GANs.

D.2 The Influence of the Suboptimal Discriminator to the Vector Field

In this subsection, we investigate the influence of the suboptimal discriminator on the vector field that
governs the movement of particles. This analysis complements the discussion in section 3.
Proposition D.1. Assume that f ∈ C2(0, +∞). Then, at a point x where pdata(x)pg(x) > 0, the cosine
of the angle θ between the suboptimal vector ∇d̂ω(x)/(2d̂ω(x)) and the optimal vector ∇d∗(x)/(2d∗(x)) is
given by

cos θ =
〈
∇d̂ω(x), ∇d∗(x)

〉∥∥∇d̂ω(x)
∥∥

2

∥∥∇d∗(x)
∥∥

2

= sign
(f(r(x))

r(x) − f ′(r(x))
)

.

Consequently, there exists δ > 0 that depends on f such that whenever r(x) < δ, the two vectors are in the
same direction.
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Proof. To calculate the angle between two vectors, we can ignore their scalar coefficients. Therefore, we only
need to determine the angle between ∇d̂ω(x) and ∇d∗(x). Using the results derived in theorem C.1, this
calculation reduces to finding the angle between

−pdata(x)∇pg(x) + pg(x)∇pdata(x)

and
− pdata(x)∇

(
α(x) · pg(x)

)
+

(
α(x) · pg(x)

)
∇pdata(x)

= α(x)
(

− pdata(x)∇pg(x) + pg(x)∇pdata(x)
)

− pdata(x)pg(x)∇α(x),

where α(x) = f(r(x)). We use the same technique and divide both vectors by the scalar pdata(x)pg(x)α(x).
By applying the chain rule, we only need to compute the angle between

−∇ log pg(x) + ∇ log pdata(x) = ∇ log r(x)

and
∇ log r(x) − ∇ log α(x).

We proceed with the final calculations:

cos θ = ⟨∇ log r(x), ∇ log(r(x)/f(r(x)))⟩
∥∇ log r(x)∥2∥∇ log(r(x)/f(r(x)))∥2

.

For the numerator, we have ∇ log r(x) = ∇r(x)/r(x), and

∇ log f(r(x)) = f ′(r(x))
f(r(x)) · ∇r(x),

implying that ∇ log r(x) and ∇ log(r(x)/f(r(x))) are both parallel to ∇r(x). Therefore,

cos θ = sign
( 1

r(x) − f ′(r(x))
f(r(x))

)
= sign

(f(r(x))
r(x) − f ′(r(x))

)
.

By the continuity of f ′′, there exists ε > 0 such that for x ∈ [0, ε), we have |f ′′(x)| < M . As a result, for x
such that r(x) < δ := min

(
ε,

√
2f(0)/M

)
, we have

cos θ = sign
(
f(r(x)) − r(x)f ′(r(x))

)
= sign

(
f(0) + r(x)2f ′′(ξ)/2

)
= 1

for some ξ ∈ (0, r(x)), where we use Taylor’s expansion with the Lagrange remainder.

We now briefly discuss the implications of proposition D.1. Firstly, this proposition considers f ≡ 1 as a
special case, in which cos θ = 1 for any choice of x. Secondly, although the proposition seems to hold only
for x where r(x) is small, this is sufficient for our purposes. In this subsection, we are focusing on the fitting
phase, where r(x) is typically small for x ∼ pg(x). Finally, it may seem counter-intuitive that the vector
field of the suboptimal discriminator aligns perfectly with that of the optimal discriminator. However, it is
important to note that while the directions of these two vector fields may be the same, their magnitudes can
differ. We choose not to delve further into this topic because the magnitudes can be adjusted by varying the
step sizes.

D.3 The Influence of the Suboptimal Discriminator to the Evolution of Steepness

In this subsection, we investigate the influence of the suboptimal discriminator on the evolution of steepness.
This analysis complements the discussion in section 4.
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Proposition D.2. Assume that pdata ∼ N (0, k2
∗In) and that the discriminator is suboptimal and takes the

form
d̂ω(x) = pdata(x)

pdata(x) + f(r(x)) · pg(x) ,

where r(x) = pdata(x)/pg(x), and f is a function measuring the deviation of d̂ω(x) from the optimal dis-
criminator. Then kt, the steepness of g at x = 0 at discrete time step t satisfies

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· f(r(ktx0)) − r(ktx0)f ′(r(ktx0))

r(ktx0) + f(r(ktx0)) ,

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In) and

r(ktx0) = ktφ(ktx0/k∗)
k∗φ(x0) .

Proof. Let φ(x) be the probability density function of the n-dimensional standard Gaussian distribution

φ(x) = 1
(2π)n/2 · exp

(
− 1

2x⊤x
)

.

Then the probability density function of N (0, k2In) is φ(x/k)/k. Let xt = ktx0 denotes the position of the
particle at time t. Here, kt represents the steepness of the generator function. We investigate the evolution
of the particle subject to the vector field given by ∇d̂ω(x)/d̂ω(x), which can be written in terms of r(x) as

xt+1 = xt + s ·
(
f(r(xt)) − r(xt)f ′(r(xt))

)
∇r(xt)

r(xt)
(
r(xt) + f(r(xt))

) , t = 1, 2, . . . , T.

By the formula of φ(x), we deduce that ∇φ(x) = −φ(x)x. Below we compute ∇r(x) by the chain rule:

∇r(x) = kt

k∗
· ∇φ(x/k∗) · φ(x/kt) − φ(x/k∗)∇φ(x/kt)

φ(x/kt)2

= kt

k∗
·
( 1

k2
t

− 1
k2

∗

)
· φ(x/k∗)

φ(x/kt)
· x.

Using xt = ktx0, we derive the following recurrent formula for {kt}T
t=0:

kt+1 = kt + s
( 1

k2
t

− 1
k2

∗

)
· f(r(ktx0)) − r(ktx0)f ′(r(ktx0))

r(ktx0) + f(r(ktx0)) ,

where
r(ktx0) = ktφ(ktx0/k∗)

k∗φ(x0) .

Note that this proposition considers f ≡ 1 as a special case, leading to the same conclusion as in theorem 4.3.

E Disparity Among Modes Across Different Datasets

E.1 MNIST

Preprocessing. We first transform the images in MNIST by sequentially resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 8.
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Figure 8: Frobenius distances between different modes in MNIST. The tensor of the modes are approximated
by taking the average of image tensors that share the same label.

E.2 Fashion MNIST

Preprocessing. We first transform the images in Fashion MNIST by first resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 9.
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Figure 9: Frobenius distances between different modes in Fashion MNIST. The tensor of the modes are
approximated by taking the average of image tensors that share the same label.

E.3 CIFAR-10

Preprocessing. We first transform the images in CIFAR-10 by sequentially resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].
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Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 10.
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Figure 10: Frobenius distances between different modes in CIAFR-10. The tensor of the modes are approx-
imated by taking the average of image tensors that share the same label.

F Detailed Experimental Settings

All codes will be made public upon publication.

F.1 Verifying Fitting and Refining

Methodology. We demonstrate that the phases of fitting and refining exist in real-world datasets. To
do this, we use a classification network q(x) that takes an image tensor x as an input and outputs a 10-
dimensional vector,

(p0, p1, . . . , p9),

where each pi ∈ [0, 1] denotes the likelihood of x corresponding to the ith category (e.g., the 1st category in
MNIST corresponds to the handwritten digit 1 and the 2nd category in Fashion MNIST represents pullovers).
Our focus gravitates towards those pi’s that exhibit significant magnitudes. For discernibility, a threshold τ
is set to 10−2. In other words, if pi > 10−2, then there is a notable probability that x belongs to the
ith category. Empirical observations suggest that seldom do more than three pi’s surpass the designated
threshold. Hence, for any x, we may pair (i, j) when both pi and pj exceed τ . By pairing, the intuition is
that such x potentially resides between modes i and j. In scenarios where only a single pi surpasses τ , i is
paired with itself, implying that the x predominantly belongs to the ith category. We count the occurrences
of the pairings (i, j) (0 ≤ i, j ≤ 9) in a batch of size 256 and visualize them with heatmaps in fig. 4, fig. 12 and
fig. 13. In these figures, the value of the entry (i, j) represents the logarithmically transformed occurrence
frequency of pair (i, j) within a batch, adjusted by one, thereby mitigating the impact of dominant diagonal
values on the colorbar.

Classification networks. We use the MNIST classification network in MNIST classification network and
the Fashion MNIST classification network in Fashion MNIST classification network.
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Number of training runs. We conducted our experiments at least 50 times and consistently observed
similar patterns across all trials. Therefore, we randomly selected two of these experiments to present in this
paper.

F.2 Early Stopping

Early stopping on 3-dimensional Gaussian mixture. In this part, our codes borrow heavily from
NSGAN. Both the generator and the discriminator are implemented as full-connected neural networks with
SGD optimizers. Now we elaborate on how to calculate the thresholds defined in algorithm 2. The dis-
criminator threshold is given by kd/(2σ). We set kd = 2, the distance between two nearest modes in the
3-dimensional Gaussian mixture dataset. For σ, it equals

√
0.0125 in our setting. Therefore the threshold is

kd/(2σ) = 2/(2 ×
√

0.0125) ≈ 8.9.

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 50.

Early stopping on MNIST. In this part, our generator and discriminator architectures borrow heavily
from NSGAN on MNIST. Both the generator and the discriminator are implemented as convolutional neural
networks with Adam optimizers. Now we elaborate on how to calculate the threshold defined in algorithm 2.
The discriminator threshold is given by kd/(2σ). We set kd = 33.7, the distance between two farthest modes
in MNIST (please refer to appendix E). For σ, we first compute the population variance of the images from
each label, arriving at 10 values. Then we compute their average value, and divide this value by 64 × 64 × 1,
i.e., the total number of dimensions. Therefore the threshold is

kd/(2σ) = 33.7/(2 ×
√

0.33/642) ≈ 1877.

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 20.

Early stopping on Fashion MNIST. In this part, our generator and discriminator architectures borrow
heavily from NSGAN on Fashion MNIST. Both the generator and the discriminator are implemented as
convolutional neural networks with Adam optimizers. Now we elaborate on how to calculate the threshold
defined in algorithm 2. The discriminator threshold is given by kd/(2σ). We set kd = 48.1, the distance
between two farthest modes in Fashion MNIST (please refer to appendix E). For σ, we first compute the
population variance of the images from each label, arriving at 10 values. Then we compute their average
value, and divide this value by 64 × 64 × 1, i.e., the total number of dimensions. Therefore the threshold is

kd/(2σ) = 48.1/(2 ×
√

0.33/642) ≈ 2679.

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 50.

Early stopping on CIFAR-10. In this part, our generator and discriminator architectures borrow heav-
ily from NSGAN on CIFAR-10. Both the generator and the discriminator are implemented as convolutional
neural networks with Adam optimizers. Now we elaborate on how to calculate the threshold defined in al-
gorithm 2. The discriminator threshold is given by kd/(2σ). We set kd = 38.0, the distance between two
farthest modes in CIFAR-10 (please refer to appendix E). For σ, we first compute the population variance
of the images from each label, arriving at 10 values. Then we compute their average value, and divide this
value by 64 × 64 × 3, i.e., the total number of dimensions. Therefore the threshold is

kd/(2σ) = 38.0/(2 ×
√

0.23/(642 × 3)) ≈ 4391.

We set the generator threshold kg = −0.5. As for the warm-up training iteration parameter Nw, we set it
to 50.
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Number of training runs. On all of the datasets mentioned above, we conducted our experiments at
least 100 times. We observed similar patterns across all trials, although the point at which the GANs
collapsed varied. Therefore, we choose to present those that collapsed before a certain threshold to ensure
consistency in our reported results. It is important to note that the generated samples eventually collapsed
in our experiments, either sooner or later, without contradicting the findings in our paper.

G Additional Experimental Results

G.1 The Behavior of an Optimal Discriminator

In this subsection, we elaborate on the optimal discriminator’s behavior outlined in section 5.1. We consider
the following synthetic dataset

pdata ∼ 1
4N ([1, 1], 0.0125I2) + 1

4N ([1, −1], 0.0125I2) + 1
4N ([−1, 1], 0.0125I2) + 1

4N ([−1, −1], 0.0125I2),

and train the discriminator until optimal. We plot the values of the optimal discriminator in fig. 11. We
observe that the discriminator values are close to 0.5 in the central regions of the modes and vanish in the
regions far from the modes. Between them, the discriminator values smoothly change from 0.5 to 0.
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Figure 11: The values of the optimal discriminator. The discriminator values are close to 0.5 in the central
regions of the modes (i.e., [±1, ±1]) and vanish in the regions far from the modes. Between them, the
discriminator values smoothly change from 0.5 to 0.

G.2 Verifying Fitting and Refining

Annotated heatmaps for MNIST. We verify the existence of fitting and refining on MNIST. Annotated
heatmaps are employed to track the evolution of pairings (i, j) occurrence within batches of size 256. The
values depicted in these heatmaps represent the logarithm of occurrence counts plus 1, with darker colors
indicating higher values. Each heatmap includes epoch numbers ranging from 0 to 38 displayed at the bottom.
Initially, the heatmap has few nonzero entries, indicating limited sample diversity during the fitting phase.
As training advances, more entries became nonzero, reflecting a broader distribution of generated samples
across the mode space. Notably, the values of off-diagonal entries signifies the severity of mode mixture,
which gradually decrease over the course of training, validating the refining phase. However, the issue of
mode mixture persists even at the end of refining. By the 36th epoch, the heatmap only has two nonzero
entries, suggesting the collapsing phase, where the generated samples become less diverse and concentrate
around few modes. These observations provide empirical evidence for our proposed three phases of GAN
training.
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Figure 12: Annotated heatmaps for verifying fitting and refining in MNIST. The values are the logarithm
of the occurrence of pairings (i, j) plus 1 in a batch of size 256. Darker colors indicate higher values. The
epochs, ranging from 0 to 38, are displayed at the bottom of each heatmap. Initially, there are few nonzero
entries, suggesting limited sample diversity. As training progresses, more entries become nonzero, indicating
wider sample distribution across mode space, which corresponds to the fitting phase. Off-diagonal entries
reflect mode mixture, which diminishes over training, confirming the refining phase. Remarkably, mode
mixture persists even at the closure of the refining phase. Note that by the 36th epoch, only two entries
remain nonzero, indicating the collapsing phase.

Verifying fitting and refining in Fashion MNIST. We verify the existence of fitting and refining
in Fashion MNIST using annotated heatmaps. The heatmap values are the logarithm of pairings (i, j)
occurrence plus 1 in batches of size 256, with darker colors indicating higher values. Each epoch is divided
into 5 collections of batches, denoted as e, b where e is the epoch and b is the batch collection within the
epoch. Initially, there are only two nonzero entries, which suggests limited sample diversity. As training
progresses, more entries become nonzero, indicating a broader sample distribution across the mode space
during the fitting phase. Notably, unlike MNIST, the phases of fitting and refining in Fashion MNIST occur
quickly, evidenced by the rapid stabilization of off-diagonal values. It is important to note that the large
values in some off-diagonal entries do not necessarily imply severe mode mixture. For example, “T-shirt”,
“Pullover”, and “Shirt” are frequently confused in Fashion MNIST classification tasks.

38



Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 4.8 3.0

0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.1 0.0

0.0 0.0 0.0 0.0 1.4 0.0 2.8 0.0 1.4 1.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.2 0.0 1.1 0.0 3.6

3.5 1.6 2.8 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.8

4.8 1.1 1.4 0.0 0.7 0.0 0.7 0.0 3.1 0.0

3.0 0.0 1.1 0.0 0.0 3.6 0.0 1.8 0.0 1.6

0, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.1 0.0 0.0 1.1 0.0 0.0 3.7 0.0 4.7 3.0

0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

1.1 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.8 1.1 3.2

3.7 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 1.1

4.7 0.0 0.0 0.0 0.0 1.1 0.7 0.0 4.4 0.0

3.0 0.0 0.7 0.7 0.0 3.2 0.0 1.1 0.0 0.0

0, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 4.4 3.1

0.0 3.7 0.0 1.6 0.0 0.0 1.8 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.7

0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.7 0.7 3.4

3.8 1.8 2.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0

0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.6 0.0 2.6

4.4 0.0 0.0 0.0 0.0 0.7 1.4 0.0 3.7 0.0

3.1 0.7 0.7 0.0 0.0 3.4 0.0 2.6 0.0 1.1

0, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.2 0.7 0.0 0.7 0.7 0.0 3.6 0.0 4.4 3.0

0.7 3.6 0.0 0.0 0.0 0.0 1.6 0.0 0.7 0.7

0.0 0.0 1.1 0.0 1.1 0.0 2.6 0.0 0.0 0.7

0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.7 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.6 1.1 3.4

3.6 1.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.6

4.4 0.7 0.0 0.0 0.0 1.1 0.0 0.0 4.2 0.0

3.0 0.7 0.7 0.7 0.0 3.4 0.0 1.6 0.0 1.9

0, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 4.6 2.3

0.0 3.4 0.0 1.4 0.0 0.0 2.1 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.7 0.7

0.0 1.4 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 2.9 1.4 3.5

3.6 2.1 2.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 1.6

4.6 0.0 0.7 0.0 0.0 1.4 0.7 0.0 3.0 0.0

2.3 0.7 0.7 0.7 0.0 3.5 0.0 1.6 0.0 2.2

1, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 1.6 0.0 0.0 3.8 0.0 3.8 2.6

0.0 3.9 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.7

0.0 0.0 1.6 0.0 2.6 0.0 3.0 0.0 0.0 0.0

1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 2.8 1.6 3.2

3.8 1.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.8 0.0 1.6 0.0 2.2

3.8 0.0 0.0 0.0 0.7 1.6 0.0 0.0 3.2 0.0

2.6 0.7 0.0 0.7 0.0 3.2 0.0 2.2 0.0 2.8

1, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.7 0.0 1.1 0.0 0.0 3.8 0.0 4.0 1.9

0.7 3.5 0.0 1.9 0.0 0.0 1.4 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.7 0.0 3.2 0.0 0.0 1.1

1.1 1.9 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 0.0 2.6 0.7 3.5

3.8 1.4 3.2 0.0 0.0 0.0 1.9 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 2.6

4.0 0.7 0.0 0.0 0.0 0.7 0.7 0.0 3.6 0.0

1.9 0.0 1.1 0.0 0.0 3.5 0.0 2.6 0.0 2.8

1, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.1 0.0 0.0 3.6 0.0 4.1 2.3

0.0 3.9 0.0 1.9 0.0 0.0 1.4 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0

1.1 1.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.3 0.0 2.5 1.6 3.0

3.6 1.4 3.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 2.1

4.1 0.0 0.0 0.0 0.0 1.6 0.7 0.0 3.3 0.0

2.3 0.7 0.0 0.7 0.0 3.0 0.0 2.1 0.0 3.3

1, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 1.1 0.0 1.1 0.0 0.0 3.6 0.0 3.7 1.9

1.1 4.0 0.0 1.9 0.0 0.0 1.1 0.0 0.0 0.0

0.0 0.0 1.9 0.0 1.8 0.0 3.2 0.0 0.0 0.0

1.1 1.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 2.7 1.8 3.4

3.6 1.1 3.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 1.1 0.0 2.6

3.7 0.0 0.0 0.0 0.0 1.8 0.7 0.0 3.7 0.0

1.9 0.0 0.0 0.0 0.0 3.4 0.0 2.6 0.0 3.4

1, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.7 0.0 1.4 0.0 0.0 4.0 0.0 3.8 1.8

0.7 4.3 0.0 1.6 0.7 0.0 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.1 0.0 3.3 0.0 0.0 0.0

1.4 1.6 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.7 1.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 2.3 1.6 2.9

4.0 1.1 3.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.3 0.0 1.1 0.7 1.9

3.8 0.0 0.0 0.0 0.7 1.6 0.7 0.7 3.5 0.0

1.8 0.0 0.0 0.0 0.0 2.9 0.0 1.9 0.0 2.7

2, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 1.1 0.0 0.0 3.8 0.0 3.5 1.4

0.0 4.2 0.0 1.1 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.9 0.0 3.6 0.0 0.0 0.0

1.1 1.1 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.1 0.0 2.5 0.0 3.0

3.8 0.7 3.6 0.0 0.0 0.0 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.5 0.0 3.6 0.0 2.8

3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0

1.4 0.0 0.0 0.0 0.0 3.0 0.0 2.8 0.0 3.8

2, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.1 0.0 0.0 1.8 0.0 0.0 4.0 0.0 3.4 2.3

0.0 4.0 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 2.1 0.0 3.6 0.0 0.7 1.1

1.8 0.7 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.7 0.7 2.9

4.0 1.4 3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 2.2 0.0 1.9

3.4 0.0 0.7 0.0 0.7 0.7 0.7 0.0 3.4 0.0

2.3 0.0 1.1 0.7 0.0 2.9 0.0 1.9 0.0 2.4

2, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.4 0.7 0.0 3.9 0.0 3.5 1.1

0.0 3.9 0.0 1.8 0.0 0.0 1.4 0.0 0.0 1.1

0.0 0.0 1.9 0.0 2.4 0.0 3.5 0.0 0.7 0.0

1.4 1.8 0.0 2.7 0.0 0.0 0.7 0.0 0.0 0.0

0.7 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.7 0.7 2.8

3.9 1.4 3.5 0.7 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 2.2

3.5 0.0 0.7 0.0 0.7 0.7 0.7 0.0 2.8 0.0

1.1 1.1 0.0 0.0 0.0 2.8 0.0 2.2 0.0 3.6

2, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.1 0.0 0.0 4.2 0.0 3.6 1.6

0.0 3.9 0.0 1.4 0.0 0.0 0.7 0.0 0.0 0.7

0.0 0.0 1.9 0.0 1.1 0.0 3.4 0.0 0.0 0.0

1.1 1.4 0.0 2.6 0.0 0.0 0.7 0.0 0.0 0.7

0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.8 0.0 2.9 0.0 2.8

4.2 0.7 3.4 0.7 0.0 0.0 1.1 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 1.1

3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0 3.2 0.0

1.6 0.7 0.0 0.7 0.0 2.8 0.0 1.1 0.0 3.2

2, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.7 0.0 1.6 0.0 0.0 3.0 0.0 3.4 1.9

0.7 3.9 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0

0.0 0.0 1.1 0.0 1.4 0.0 3.6 0.0 0.0 0.0

1.6 0.0 0.0 1.6 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.4 0.0 3.4

3.0 1.8 3.6 0.7 0.0 0.0 1.1 0.0 1.1 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 1.6 0.0 2.8

3.4 0.0 0.0 0.0 0.0 0.0 1.1 0.0 4.4 0.0

1.9 0.0 0.0 0.0 0.0 3.4 0.0 2.8 0.0 3.3

3, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 0.7 0.7 0.0 3.7 0.0 3.7 2.1

0.0 3.9 0.0 1.4 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 1.6 0.0 1.8 0.0 3.3 0.0 0.0 0.0

0.7 1.4 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0

0.7 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 3.7 0.0 2.9 1.1 3.1

3.7 1.6 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 2.5

3.7 0.0 0.0 0.0 0.0 1.1 0.0 0.0 3.7 0.0

2.1 0.0 0.0 0.0 0.7 3.1 0.0 2.5 0.0 2.6

3, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.4 0.7 0.0 1.1 0.0 0.0 4.1 0.0 3.6 1.8

0.7 3.9 0.0 1.6 0.0 0.0 0.7 0.0 0.7 0.7

0.0 0.0 0.0 0.0 1.4 0.0 3.3 0.0 0.0 0.0

1.1 1.6 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.1 0.0 2.6

4.1 0.7 3.3 0.0 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 1.6 0.7 1.4

3.6 0.7 0.0 0.0 0.0 0.0 0.0 0.7 2.9 0.0

1.8 0.7 0.0 0.0 0.0 2.6 0.0 1.4 0.0 3.6

3, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.4 0.0 0.0 3.9 0.0 3.8 1.1

0.0 3.8 0.0 1.6 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.4 0.0 3.4 0.0 0.0 0.0

1.4 1.6 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.9 0.0 2.4 1.4 2.6

3.9 1.6 3.4 0.0 0.0 0.0 1.9 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 2.6

3.8 0.0 0.0 0.0 0.0 1.4 0.7 0.0 3.8 0.0

1.1 0.0 0.0 0.7 0.0 2.6 0.0 2.6 0.0 2.9

3, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 1.6 0.0 0.0 3.8 0.0 3.6 1.9

0.0 4.0 0.0 1.8 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 1.1 0.0 1.1 0.0 3.0 0.0 0.0 0.7

1.6 1.8 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.8 0.0 2.6 1.6 2.8

3.8 0.7 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.9 0.0 1.9

3.6 0.0 0.0 0.0 0.0 1.6 0.0 0.0 3.4 0.0

1.9 0.0 0.7 0.0 0.0 2.8 0.0 1.9 0.0 3.4

3, 4

Figure 13: Annotated heatmaps for verifying fitting and refining in Fashion MNIST. The labels 0 to 9 mean
“T-shirt/top”, “Trouser”, “Pullover”, “Dress”, “Coat”, “Sandal”, “Shirt”, “Sneaker”, “Bag”, and “Ankle
boot”, respectively. The values are the logarithm of the occurrence of pairings (i, j) plus 1 in a batch of size
256. Darker colors indicate higher values. Each epoch is equally divided into 5 collection of batches. The
label “e, b” at the bottom of each heatmap denotes the bth collection within the eth epoch. Therefore, the
heatmaps displayed are for the first 4 epochs only. Initially, the few nonzero entries indicate limited sample
diversity. As training progresses, more entries became nonzero, reflecting a broader sample distribution
across the mode space, which corresponds to the fitting phase. Unlike MNIST, the phases of fitting and
refining in Fashion MNIST take place rapidly because the off-diagonal values stabilize quickly. It is important
to note that the large values of some off-diagonal entries do not necessarily imply severe mode mixture; for
instance, “T-shirt”, “Pullover”, and “Shirt” are often confused in Fashion MNIST classification tasks.

G.3 Comparison with the FID score

We present a comparison between ∥∇d(x)/d(x)∥2 and the FID score in fig. 14, complementing the analysis
in section 6, where the steepness was compared with the FID score. The primary goal is to evaluate how
well ∥∇d(x)/d(x)∥2 aligns with the FID score in detecting the deterioration of sample quality during GAN
training. For MNIST, the stopping point is primarily triggered by the steepness dropping below the threshold,
leading to a lack of a concurrent rapid increase in both ∥∇d(x)/d(x)∥2 and the FID score. In contrast, for
Fashion MNIST and CIFAR-10, when ∥∇d(x)/d(x)∥2 exceeds its threshold, the FID score escalate almost
simultaneously. This alignment highlights the ability of ∥∇d(x)/d(x)∥2 to capture significant deterioration
in sample quality, making it a reliable metric for detecting the collapsing phase.
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Figure 14: The tendency of ∥∇d(x)/d(x)∥2 and FID score for MNIST, Fashion MNIST, and CIFAR-10,
presented from left to right. Blue for ∥∇d(x)/d(x)∥2 and red circled for the FID score. For MNIST, since
the stopping point is primarily triggered by steepness dropping below the threshold, we do not observe a
concurrent rapid increase in ∥∇d(x)/d(x)∥2 and the FID score. In contrast, for Fashion MNIST and CIFAR-
10, when ∥∇d(x)/d(x)∥2 surges past its threshold, the FID score escalate almost simultaneously, indicating
a substantial degradation in sample quality.

G.4 Comparison with the Duality Gaps

We compare our metrics, ∥∇d(x)/d(x)∥2 and steepness, with the duality gap (Grnarova et al., 2019), along
with its improved counterpart, the perturbed duality gap (Sidheekh et al., 2021). We first briefly introduce
the two metrics, and then show the results in fig. 15.

Duality gap. The duality gap is an optimization concept that measures the difference between the pri-
mal and dual forms of a problem. In GANs, it quantifies the suboptimality of the current generator and
discriminator. For parameters (θg, θd) at a given iteration, the duality gap is defined as:

DG(θg, θd) = max
θ′

d
∈Θd

F (θg, θ′
d) − min

θ′
g∈Θg

F (θ′
g, θd),

where Θd and Θg are the parameter spaces for the discriminator and generator, respectively, and F is the
objective function of the Vanilla GAN: F (θg, θd) = Ex∼pdata [log d(x)] +Ez∼pz [log(1 − d(g(z)))]. In practice,
Grnarova et al. (2019) proposed to estimate the duality gap through the following steps:

1. Train the GAN to iteration t, obtaining parameters (θt
g, θt

d).

2. Find the worst-case discriminator and generator by optimizing one while keeping the other fixed:

θworst
d ≈ arg max

θ′
d

∈Θd

F (θt
g, θ′

d), θworst
g ≈ arg min

θ′
g∈Θg

F (θ′
g, θt

d).

3. Estimate the duality gap as: DG(θt
g, θt

d) ≈ F (θt
g, θworst

d ) − F (θworst
g , θt

d).

Perturbed duality gap. The perturbed duality gap, introduced by Sidheekh et al. (2021), improves upon
the standard duality gap by more effectively distinguishing between Nash and non-Nash critical points.
This metric performs local perturbations to the parameters (θt

g, θt
d) with Gaussian noise before the second

optimization step, helping the model escape from saddle points. This ensures the subsequent optimization
does not get stuck in suboptimal regions.

Experimental results. We compare ∥∇d(x)/d(x)∥2 and the steepness with the vanilla and perturbed
duality gaps across three datasets: MNIST, Fashion MNIST, and CIFAR-10, as shown in fig. 15. In the
first row, ∥∇d(x)/d(x)∥2 is plotted alongside the duality gaps. In the second row, the steepness is compared
against the duality gaps. Prior to the collapsing, ∥∇d(x)/d(x)∥2 exhibits a similar trend with the perturbed
duality gap. After collapsing, the vanilla duality gap drops to zero, mirroring the behavior of steepness.
In contrast, the perturbed duality gap oscillates, making it difficult to pinpoint the beginning of collapse.
These results demonstrate the robustness of our metrics, which consistently and clearly detect the collapsing
phase,
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Figure 15: The first row compares ∥∇d(x)/d(x)∥2 with the duality gaps for MNIST, Fashion MNIST, and
CIFAR-10, from left to right. The second row compares the steepness with the duality gaps for the same
datasets. Blue represents our metrics, while red solid and red dotted represent the vanilla and perturbed
duality gaps, respectively. Prior to the collapsing, ∥∇d(x)/d(x)∥2 exhibits a similar trend with the perturbed
duality gap. After collapsing, the vanilla duality gap often drops to zero, mirroring the behavior of steepness,
while the perturbed duality gap oscillates, making it difficult to determine whether collapse has occurred.
This indicates that our metrics provide a more consistent and reliable approach for detecting the collapsing
phase.

G.5 Impact on the Early Stopping Metric after Applying Techniques to Mitigate Mode Collapse

In this subsection, we validate our early stopping metric’s effectiveness by demonstrating that injecting noise
into the intermediate layers of the discriminator combats mode collapse and pushes back the metric.

Figure 16: The generated images from the noise-free GAN and the noised GAN. Upper: Noise-free GAN.
Lower: Noised GAN. The noise-free GAN collapses at the 54th epoch, whereas the noised GAN consistently
produces high-quality images.
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Experimental setup. We devise two generator models of identical architecture and implement two dis-
criminators, one adhering to the original design (which we will refer to as “noise-free”) and the other modified
to incorporate Gaussian noise with a standard deviation of 0.1 before forwarding the input to the subsequent
layer (which we will refer to as “noised”). Both generators and discriminators are initialized using the same
random seed. During training, the four networks are concurrently trained, with each generator paired with
a discriminator. We present the generated images of the two models on Fashion MNIST in fig. 16 and
histograms of ∥∇d(x)/d(x)∥2 in fig. 17.

101 1.1 × 101 1.2 × 101 1.3 × 101 1.4 × 101 1.5 × 101 1.6 × 101
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Figure 17: Histograms of the values of ∥∇d(x)/d(x)∥2 and their 90th percentile across epochs. The epochs
are displayed at the bottom of each histogram. The x-axis represents ∥∇d(x)/d(x)∥2 values on a logarithmic
scale, while the y-axis denotes density. Results are differentiated by color: red for the model with noise
and blue for the model without noise. Preceding the 54th epoch where the noise-free GAN collapses, the
noised model nearly always exhibits lower ∥∇d(x)/d(x)∥2 values compared to its noise-free counterpart.
Post 54th epoch, this relationship reverses. Notably, in the noise-free model, ∥∇d(x)/d(x)∥2 tends towards
zero, contributing to this observed divergence.

Results. The noise-free GAN collapses at the 54th epoch, while the noised GAN consistently generates
high-quality images. The introduction of noise results in an overall decrease in the ||∇d(x)/d(x)||2 compared
to its noise-free counterpart before the 54th epoch. After the 54th epoch, the opposite trend is observed,
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attributed to the vanishing of ||∇d(x)/d(x)||2 in the noise-free GAN. This indicates that the strategy of in-
jecting noise to mitigate mode collapse leads to an overall decrease in our proposed metric, thereby validating
the effectiveness of the metric.

H Extension to Other Divergence GANs

In this section, we outline how to extended to other Divergence GANs. We focus on the f -GAN proposed
in (Nowozin et al., 2016) with the f -divergence defined as

Df (Qθ||pdata) =
∫

x

pdata(x)f
(pdata(x)

Qθ(x)

)
dx.

The variational lower bound of Df (Qθ||pdata) is used as the training objective:

F (θ; ω) = Ex∼pdata

[
gf

(
Vω(x)

)]
+ Ex∼Qθ

[
− f∗(

gf (Vω(x))
)]

.

Here, f∗ is the Fenchel conjugate of f , gf is analogous to the generator and Vω is similar to the discriminator.
We consider its variant where the objective function of the generator is modified to

−Ex∼Qθ

[
gf

(
Vω(x)

)]
,

while the objective function of the discriminator remains unchanged.

General methodology. The key to analyzing Divergence GANs is their interpretation as particle models.
The update of the generator Qθ can be recasted as:

• Generate particles Zi = Qθ(zi).

• Update the particles Ẑi = Zi + g′
f (Vω(Zi))∇Vω(Zi).

• Update θ by descending its stochastic gradient with respect to the Mean Square Error (MSE) loss
betweeen Ẑi’s and g(zi)’s.

Fitting phase. We may plot the vector field g′
f (Vω(Zi))∇Vω(Zi) instead of the original ∇d(x)/d(x) to

visualize the updating process of particles, which promotes the fitting of the modes.

Refining phase. Only theorems 4.3 and 4.4 in section 4.2 needs to be modified to accommodate the
desired Divergence GAN.

Collapsing phase. In section 5.1, apart from modifying the update formula for particles, a more appro-
priate model for the discriminator needs to be established and a new threshold may be developed on the
basis of it.

I Visualizing Generator Functions

This section visualizes generator functions g that satisfy g#pz = pdata, where pz ∼ N (0, 1) and pdata is
a Gaussian mixture, as shown in fig. 18. For qualitative effects of the parameters in pdata, please refer
to table 2. We then discuss about how to plot fig. 18. While Φ can be computed in MATLAB using the
built-in function normcdf, Ψ−1 typically necessitates solving a non-linear equation at each evaluation point.
To mitigate computational expenses, we choose to calculate the inverse of g, which is g−1 = Φ−1 ◦ Ψ. In
this context, Ψ can be computed by employing gmdistribution to construct a Gaussian mixture model,
followed by utilizing cdf to assess the cumulative distribution function (CDF) of the model at a specific
point. To generate a plot of g, a mere interchange of the x and g−1(x) in the plot function suffices.
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Figure 18: The functions g that satisfy g#pz = pdata, where pdata is a Gaussian mixture. First: Varying
the mean µ. Second: Varying the variance σ2. Third: Varying the mixing coefficients {αi}n

i=1. Fourth:
Varying the number of Gaussians n. Please refer to table 2 for a detailed description.

Table 2: Qualitative effects of the parameters in pdata ∼ α1N (µ1, σ2) + · · · + αnN (µn, σ2) on g.

Parameters Qualitative Effects on g

Means {µi}n
i=1 Larger ∥µi − µi+1∥2 increases the magnitude of g′ between the two modes.

Variances σ2 Larger σ2 increases the asymptotic slope of g as x → ∞.
Mixing coefficients {αi}n

i=1 Different combinations of αi incline g towards specific modes.
Number of Gaussians n Larger n increases the number of segments in g.

J Discussions

In this section, we provide additional intuitions and implications.

In terms of applicability scope, our theoretical findings are primarily derived from Divergence GANs, specifi-
cally NSGAN, where we can leverage their particle model interpretations. While Divergence GANs represent
a significant category within GANs, they do not encompass some prominent GAN models, such as Wasser-
stein GAN with gradient penalty and MMD GAN. Exploring how our theoretical findings can be extended
to incorporate these Integral Probability Metric (IPM) based GAN variants presents an intriguing avenue
for future research.

Regarding the proposed three phases, it is important to note that not all Divergence GANs may fit neatly
into the this characterization. While we often observe such empirical patterns, we acknowledge the possibility
that when networks are not well-initialized or when advanced techniques are used, GAN training may deviate
from the fitting phase entirely. However, these inquiries may spark independent interests and are beyond
the scope of our study.

In our numerical experiments, we used relatively small-scale real-world datasets compared to modern
datasets. This choice was deliberate as we aimed to assess the effectiveness of our early stopping algorithm
in detecting the transition from refining to collapsing phases. Modern datasets often comprise exponentially
more modes, which could potentially limit the efficacy of our algorithm, particularly considering that our
algorithm takes the number of modes as an input parameter.
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