
Representation Projection Invariance
Mitigates Representation Collapse

Anastasia Razdaibiedina♢ Ashish Khetan♣ Zohar Karnin♣

Daniel Khashabi♠ Vishaal Kapoor♣ Vivek Madan♣

♢University of Toronto ♠Johns Hopkins University ♣Amazon AI
anastasia.razdaibiedina@mail.utoronto.ca danielk@jhu.edu

{vivmadan, zkarnin, khetan, vishaalk}@amazon.com

Abstract

Fine-tuning contextualized representations
learned by pre-trained language models re-
mains a prevalent practice in NLP. However,
fine-tuning can lead to representation degrada-
tion (also known as representation collapse),
which may result in instability, sub-optimal per-
formance, and weak generalization.

In this paper, we propose Representation Pro-
jection Invariance (REPINA), a novel regular-
ization method to maintain information con-
tent of representation and reduce representa-
tion collapse during fine-tuning by discourag-
ing undesirable changes in the representations.
We study the empirical behavior of the pro-
posed regularization in comparison to 5 compa-
rable baselines across 13 language understand-
ing tasks (GLUE benchmark and six additional
datasets). When evaluating in-domain perfor-
mance, REPINA consistently outperforms other
baselines on most tasks (10 out of 13). Addi-
tionally, REPINA improves out-of-distribution
performance. We also demonstrate its effec-
tiveness in few-shot settings and robustness to
label perturbation. As a by-product, we ex-
tend previous studies of representation collapse
and propose several metrics to quantify it. Our
empirical findings show that our approach is
significantly more effective at mitigating repre-
sentation collapse.1

1 Introduction

Fine-tuning pre-trained language models has been
shown to achieve remarkable performance on a va-
riety of natural language processing (NLP) tasks
(Kenton and Toutanova, 2019; Brown et al., 2020;
Zhang et al., 2022). A standard fine-tuning strategy
involves adapting the pre-trained model to a super-
vised downstream task (Fig 1; left). Such a proce-
dure can result in representation collapse (Agha-
janyan et al., 2021; Zhou and Srikumar, 2022), dis-
torting the pre-trained representations that limits

1Code is available at https://github.com/arazd/REPINA.

Figure 1: Fine-tuning the whole architecture (left) gen-
erally leads to good performance though it distorts the
pre-trained representations. Minimal tuning (of classi-
fication head, for example; middle) mitigates the rep-
resentation collapse but limits the model performance.
Our proposal REPINA (right) leads to good performance
while mitigating the representation collapse.

their generalizability to other domains, styles, or
tasks. An alternative approach to full model tuning
is to fine-tune only several top layers, while keep-
ing the rest of the model frozen (e.g., we could train
solely a classification head, Fig 1; middle). This
practice of freezing all/most of the model parame-
ters can prevent unwanted changes to pre-trained
representations, but it can also limit fine-tuning and
negatively affect performance (Lee et al., 2019b;
Kumar et al., 2021). This study aims to determine
if it is possible to fine-tune the entire model without
compromising representation quality.

We introduce Representation Projection Invari-
ance (REPINA), a regularization objective that pre-
vents undesirable changes in the representations
(Fig 2a). Our regularization applies an invariance
loss on a tunable projection of the representation.
This regularization allows the underlying represen-
tation to change mildly (e.g., shift and scaling)
while not losing its expressivity (Fig 2b). Our regu-
larization objective provides a knob that controls
the amount of loss-free transformations allowed

https://github.com/arazd/REPINA

Figure 2: Example a) shows representations collapsing
into a single dimension and losing useful information
after fine-tuning. Example b) shows changes in rep-
resentations that preserve their expressive power (e.g.,
coordinate shift, rotation, scaling, etc.).

during fine-tuning.
We compare our method against several estab-

lished regularization approaches which explicitly
or implicitly address the issue of representation
degradation (Section 5.1). We show that our ap-
proach consistently outperforms major fine-tuning
methods across 13 tasks (Fig 3; left) and improves
generalizability on out-of-distribution (OOD) data
(Section 5.4). Our approach is particularly effec-
tive in scenarios where data is limited (such as with
only 250, 500, or 1000 examples), as the model
is more likely to overfit and memorize the train-
ing data in these cases (Section 5.6). Furthermore,
we thoroughly investigate fine-tuning under label
perturbation (from 5% to 30% label noise) and
observe that our approach is robust to incorrect
labels, exceeding the performance of standard fine-
tuning procedure and common baseline methods
(Section 5.5).

Finally, we quantify how much different meth-
ods mitigate the degradation of representations
(Section 6). We use previously explored probing
experiments (Aghajanyan et al., 2021), and pro-
pose a new set of metrics that quantify representa-
tion collapse objectively, without requiring extra
datasets/training. We observe that REPINA shows
the strongest resistance to representation degrada-
tion among all methods.

2 REPINA: Representation Projection
Invariance

Our method avoids representation collapse by pre-
venting undesirable changes in representations dur-

ing the fine-tuning process. A straightforward im-
plementation would anchor representations during
fine-tuning to their pre-trained values. That is, the
final loss L̂ would combine the standard fine-tuning
objective and regularizer of the deviation in repre-
sentations:

L̂ = L+ λ
∑
x∈I

∥fpre(x)− ffin(x)∥22, (1)

where L is the downstream task loss (e.g., cross
entropy for classification tasks), I are the input
samples of the task, fpre and ffin are the repre-
sentation functions defined by the pre-trained and
fine-tuned networks. Optimizing full model param-
eters under this modified objective would prevent
representation degradation. However, this formula-
tion of the loss function could be very restrictive.

Various transformations of a representation
maintain its expressivity (such as linear shift;
Fig 2b). While such transformations do not change
the information content of a representation, they
incur a high regularization loss based on equa-
tion 1. To address this issue and allow flexibility
in representations while preserving their expres-
sive capacity, we propose representation projection
invariance regularization (REPINA):

R̂ = min
ϕ∈Φ

∑
x∈I

∥fpre(x)− ϕ(ffin(x))∥22

L̂ = L+ λR̂. (2)

Here Φ is a class of dimension preserving func-
tions chosen before the fine-tuning process and
defines the strength of regularization. The intu-
ition behind the regularization objective is to in-
centivize the representations to be invariant un-
der some projection ϕ ∈ Φ; pre-trained repre-
sentations can be constructed from the fine-tuned
representations by applying a function ϕ ∈ Φ.
For instance, if Φ is the set of linear functions
{ϕ | ∃W, b : ϕ(z) = Wz + b} , then we bias fine-
tuned representations to be linear transformations
of the fine-tuned representations. Thus, regulariza-
tion loss in case of Fig 2a would be zero since there
exists a linear mapping from fine-tuned representa-
tions to the pre-trained representations. However,
regularization loss for Fig 2a would be high as
there does not exist such a linear mapping from
fine-tuned to the pre-trained representations.
Choice of the class of functions Φ: Φ defines the
strength of the regularizer. For instance, a singleton
Φ containing an identity function is the strongest

Figure 3: REPINA improves finetuning performance and mitigates representation collapse. STD++: Improved
variant of standard finetuning. REPINAI and REPINAMLP are our methods. GLUE & Non-GLUE: Average test set
performance across seven GLUE and six non-GLUE tasks. Probing Experiments: The measure of representation
collapse introduced by Aghajanyan et al. (2020) (higher is better). Representation Diversity: Mathematical measure
of the information content of representations (we report GM-5 score, see Section 6; higher is better).

regularizer which keeps fine-tuned representations
close to the pre-trained representations (equiva-
lent to equation 1). Conversely, for a rich Φ, e.g.,
deep and wide neural networks, ϕ can be chosen
to reconstruct the lost information in representa-
tion even if there is a severe degradation. Thus,
it provides a weak regularization. Choice of Φ
then depends on how prone fine-tuning is to over-
fitting and how strong of a regularization method
is needed. For instance, few-shot setting may re-
quire the strongest regularization and larger train-
ing datasets may require milder regularization.

In this paper, we experiment with Φ containing
identity function (REPINAI) and shallow multi-
layer perceptrons (REPINAMLP).
Choosing the right representation: Normally,
sentence-level representations are obtained from
the final encoder blocks of a transformer model.
However, it may be more beneficial to use repre-
sentations from the lower layers. In fact, Zhang
et al. (2020) show that re-initializing weights of the
top layers of encoder improves fine-tuning perfor-
mance, suggesting that representation consistency
may not be desirable for the top layers. Thus, we
consider a variant of regularization that uses repre-
sentations from the intermediate layers of encoder.
Explaining representation invariance regular-
ization as implicitly learning multiple tasks:
Consider the overfitting in Fig 2a again. It can
be prevented by fine-tuning the representations for
multiple tasks simultaneously instead of a single
task. This multi-tasking is a well-known way to
prevent overfitting. It not only prevents overfitting
of representations but can also improves generaliza-
tion performance for all of the tasks. We show that
REPINA’s regularization objective (equation 2) is
equivalent to fine-tuning on multiple hypothetical
tasks. Due to space constraints, we defer further

discussion on the connection and the formal proof
of equivalence in Appendix B.

3 Related Work

Mitigating Representation Collapse: Agha-
janyan et al. (2020) study representation collapse
and propose two methods, R3F and R4F, to address
it. R3F induces bias towards a solution with a lo-
cally smooth prediction function, and R4F extends
R3F by adding a Lipschitzness constraint on the
top classification layer. Some of the other methods
which implicitly target representation collapse are
FreeLB and SMART. FreeLB uses adversarial train-
ing to improve fine-tuning (Zhu et al., 2020) and
SMART is a trust region-based method that avoids
aggressive updates during fine-tuning (Jiang et al.,
2020). R3F (Aghajanyan et al., 2020) has been
shown to outperform both of these methods. Thus,
we only include R3F in our set of baselines.

A method that specifically targets representa-
tions during fine-tuning is Supervised Contrastive
Learning (SCL). SCL induces representations of
examples with the same label to be close to each
other and far from the examples of other classes
(Gunel et al., 2020). A major disadvantage of
SCL is a requirement for large mini-batch size and,
hence, heavy memory consumption. We imple-
ment a memory-efficient SCL version but exclude
the original implementation from the baselines due
to computational cost (see Appendix H). Another
method which can be potentially useful for mit-
igating representation collapse and form part of
our baseline is Data augmentation. It can be done
via back translation, synonymn replacement, ran-
dom deletion, and synthetic noise and is known to
improve generalization performance (Feng et al.,
2021; Wei and Zou, 2019).

Catastrophic Forgetting (Kirkpatrick et al., 2017)
is a phenomenon closely related to representation
collapse. In a sequential training setting, it refers to
forgetting information learnt from previous tasks
while being trained on a new task. In our con-
text, this means forgetting the pre-training language
modeling task while training for the fine-tuning
task. In contrast to catastrophic forgetting, we mea-
sure representation collapse as the loss in expres-
sive power of the representations irrespective of
the performance on pre-training task. A method
known to alleviate catastrophic forgetting is Weight
Consolidation (Chen et al., 2020; Kirkpatrick et al.,
2017). It regularizes the fine-tuning process by
encouraging fine-tuned weights to be close to the
pre-trained weights. In contrast to weight consoli-
dation, REPINA does not put direct constraints on
weight updates, but tries to control the structural
changes in representations.

Due to our limited space, we discuss further de-
tails on related works in Appendix A.

4 Experimental Set Up

4.1 Our Methods: REPINAI & REPINAMLP
Recall our methods REPINAI and REPINAMLP in-
troduced in Section 2. For REPINAI , we observe
that regularizing intermediate layer representations
(5th, 10th, 20th from input) perform better than reg-
ularizing the top layer (near the output, before the
classifier) representation. Thus, the regularization
objective for REPINAI is:

R̂(Φ = {1}) =
∑
x∈I

∥f ℓ
pre(x)− f ℓ

fin(x)∥22,

where f ℓ
pre, f

ℓ
fin are ℓ-th representations from the

ℓ-th layer (from input) of the model. Choice of ℓ
is a hyper-parameter with possible values of 5, 10
and 20. Layer 5 is most effective for small training
datasets and layer 20 is most effective for large
training datasets (see Appendix E).

Due to computational limitations, we experi-
ment with only top layer representations for RE-
PINAMLP . Thus, the regularization loss for RE-
PINAMLP , R̂(Φ = MLP) is:

min
Θ

∑
x∈I

∥fpre(x)− MLPΘ(ffin(x))∥22,

where fpre, ffin are the representations from the
top layer of the model (before the classifier) and
Θ are the parameters of a multi-layer perceptron

(MLP). We set the depth of MLP to 2, keeping
the width equal to the representation dimension.
By varying the depth from 1 to 5, we observe that
for smaller training datasets, lower depth performs
better. Training with large datasets is robust to the
depth choice (see Appendix D).

4.2 Baselines

We use a diverse range of baselines for our study:
STD++ is an improved variant of the standard fine-
tuning scheme that includes the use of bias correc-
tion in AdamW, following the works of (Zhang
et al., 2020; Mosbach et al., 2020) which shows
that bias correction is a major cause of instability
in language model fine-tuning.
Weight Consolidation (Kirkpatrick et al., 2017;
Chen et al., 2020) is an approach that encour-
ages agreement between pre-trained θpre and fine-
tuned θfin models weights via a regularization term∑

i∥θ
fin
i − θprei ∥22 added to the loss function.

R3F (Aghajanyan et al., 2020) is a local smooth-
ness regularization that prevents aggressive model
updates by restricting divergence of outputs upon
input perturbation. For model f(·) and input to-
ken embeddings x, R3F adds a regularization term
KLS (f(x)∥f(x+ z)) to the loss function, where
KLS is the symmetric Kullback-Leibler divergence
and noise z is sampled from a normal distribution.
ReInit (Zhang et al., 2020) improves fine-tuning
performance by re-initializing the top-k layers of
the encoder (closer to the output) with gaussian
random samples from N (0, 0.022). Following the
original study, we perform hyperparameter search
for k = 2, 4 or 6.
Data Augmentation (DA) generates augmented
samples by adding noise to the training data (keep-
ing the label intact) (DeVries and Taylor, 2017).
In our implementation, we add gaussian noise ϵ ∼
N (0, δ) to the token embeddings where δ = 1e−5.

Table 2 show the regularization coefficients used
for each method.

4.3 Datasets

We evaluate methods on GLUE benchmark (Wang
et al., 2018) and six additional non-GLUE datasets
(Table 3). These include: biomedical relation ex-
traction on CHEMPROT (Kringelum et al., 2016),
sentiment classification on YELP (Zhang et al.,
2015a) and IMDB (Maas et al., 2011), citation
intent classification on SCICITE (Cohan et al.,
2019), language inference on SCITAIL (Khot

Method ↓ / Task → RTE MNLI SST2 MRPC QNLI QQP CoLA Yelp Chem IMDB AGnews SciTail SciCite

STD++ 70.8 65.6 92.1 86.8 87.2 76.7 59.70 95.3 82.6 93.2 91.7 71.6 81.9
DA 73.6 65.5 92.0 90.7 87.4 76.4 63.4 95.6 82.9 93.2 91.8 93.7 82.1
WC 72.2 66.7 92.7 88.6 87.2 76.2 61.5 95.9 83.9 93.4 91.9 94.0 82.2
ReInit 70.9 65.1 92.0 91.0 87.3 77.2 61.2 95.4 82.5 92.7 91.7 93.4 82.4
R3F 70.4 65.0 92.1 89.9 87.0 74.9 62.0 95.5 82.9 93.1 91.7 86.5 82.0

REPINAI 71.4 65.7 92.9 91.5 87.5 79.0 62.3 95.8 83.5 94.0 92.1 93.7 82.7
REPINAMLP 74.4 65.2 93.2 91.1 87.6 79.3 62.5 96.0 83.7 93.9 91.9 94.8 83.2

Table 1: Performance for our methods (REPINAI/MLP) and baselines on 7 GLUE and 6 non-GLUE datasets. Average
gain of 2.1 over STD++ for GLUE datasets and 4.5 over non-GLUE datasets. REPINAbeats all baseline methods in
10/13 cases. For QQP, MNLI, QNI, AGNEWS, IMDB, YELP and SCITAIL, we only used 10K training datapoints.

Method Regularization coefficient

REPINAI 0.01, 0.05, 0.1, 0.5
REPINAMLP 0.01, 0.05, 0.1, 0.5

DA 0.05, 0.1, 0.2, 0.4, 0.8
R3F 0.1, 0.5, 1, 5
WC 0.01, 0.05, 0.1, 0.5

Table 2: Regularization coefficient for different meth-
ods.

et al., 2018) and article topic classification on AG-
NEWS (Zhang et al., 2015b). For each task, we use
their corresponding adopted performance metric

On these 13 datasets, we conduct a variety of ex-
periments with many and few supervision instances.
To keep the cost of fine-tuning computations on ex-
tremely large datasets (such as MNLI and QQP),
we limited their training sets to 10, 000 data points,
and marked with a suffix “-10K” henceforth. For
datasets with no available test set labels, we use
their development set to report the performance.
We use a subset of original train data split (size
equal to validation set) which is not used for train-
ing for hyper-parameter selection.

Task Train Dev C Metric

COLA 8551 1043 2 MCC
RTE 2490 277 2 Accuracy
SST 67349 872 2 Accuracy
MNLI-10k 10000 9815 3 MCC
MRPC 3668 408 2 F1
QQP-10k 10000 40430 2 F1
QNLI-10k 10000 5463 2 Accuracy
CHEMPROT 4169 2427 13 Micro F1
SCICITE 7320 916 3 Macro F1
SCITAIL-10k 10000 1304 2 Accuracy
AGNEWS-10k 10000 5000 4 Macro F1
YELP-10k 10000 10000 2 Accuracy
IMDB-10k 10000 5000 2 Macro F1

Table 3: The datasets used in this study, their size, num-
ber of classes (C) and the corresponding evaluation met-
rics. MCC denotes Matthews correlation coefficient.

4.4 Fine-tuning Settings

Due to the large scale of the experiments and in
order to have a meaningful comparison with var-
ious approaches, we consistently use BERT-large
model for implementing both our proposed algo-
rithm and the baselines. Existing works such as
(Zhang et al., 2020; Mosbach et al., 2020) also use
similar experimental setups. Additionally, to verify
the generality of our findings to other models, we
performed limited experiments on RoBERTa-base
where we observe similar performance gain.

We fine-tune all models for 5 epochs (unless oth-
erwise specified) at a learning rate of 2e-5, and
report performance with 5 different seeds. Due to
resource constraints and in contrast to prior works
(Kenton and Toutanova, 2019; Aghajanyan et al.,
2020; Chen et al., 2020), we do not search for
optimal learning rate for each method-task combi-
nation. To verify the impact of this choice, we per-
form limited experiments selecting the best learn-
ing rate, dropout and number of epochs for each
method and a subset of tasks (Appendix F). We
observe similar gains as reported in the main pa-
per. For each method, we select optimal hyperpa-
rameters by performing evaluation on the unused
fraction of the training set (see Appendix C).

Since standard fine-tuning is susceptible to failed
runs that substantially lower the resulting perfor-
mance (Mosbach et al., 2020; Razdaibiedina and
Brechalov, 2023), we filter out failed runs and re-
port average performance over 5 successful runs.
We define run as failed if its performance is close to
or lower than the majority classifier (i.e. a dummy
model that always predicts the label of the majority
class in the dataset) (Dodge et al., 2020). We define
a threshold close to the performance of the majority
classifier as per metric in Table 3. A fine-tuning
run is "failed" if its performance on unused part
of the training dataset is below the threshold. See
Section C.2 for the exact thresholds.

5 Results: Generalization Performance

In this section, we present experimental results with
the baselines introduced in the earlier section.

5.1 Full dataset - Generalization performance
Table 1 shows that REPINA models outperform
the baselines consistently across a variety of
tasks: our method outperforms other ones on 10/13
tasks. Both REPINAI and REPINAMLP outperform
baseline methods in terms of mean performance,
with improvements in the mean performance over
the corrected fine-tuning strategy STD++ by 1.7
and 2.0 points, respectively, for GLUE benchmark,
and 4.3 and 4.5 points for non-GLUE benchmark.

5.2 Analyses on Fine-tuning Stability
Similar to the prior literature (Dodge et al., 2020;
Mosbach et al., 2020; Wang et al., 2018), we ob-
serve that the standard fine-tuning procedure is
prone to instability and sub-optimal convergence,
leading to failed runs. Recall that we formally de-
fine a fine-tuning run as a failed run if the resulting
performance is close to the majority classifier.

In the previous section, we reported the mean
performance of only successful runs (complement
of failed runs). Figure 4 shows the fraction of runs
that were successful for each method. We note that
REPINAI has the least number of failed runs (maxi-
mum number of successful runs). Moreover, if we
do not filter out failed runs, our methods perform
even better than all the baseline methods. REPINAI
achieves an average 2.6 percentage point improve-
ment over the next best baseline method (WC).
Thus, we conclude that our methods demonstrate
higher stability and less fraction of failed runs
than other approaches. (additional experiments
in Table 21 in Appendix K.)

Figure 4: Fraction of successful runs across all tasks.
Run is defined as successful if its test performance is
higher than the performance of a majority classifier.
Our proposed regularization (RPI /RPM) increases the
fraction of successful runs, hence, leading to more stable
fine-tuning behavior.

5.3 Comparison with parameter-efficient
tuning methods

The main focus of our study is mitigating repre-
sentation collapse in a full model tuning setting,
which is a common way to tune LLMs since it
allows to achieve the best downstream task perfor-
mance, at the cost of forgetting and representation
collapse. However, this goal can also be achieved
with parameter-efficient tuning (PEFT) methods,
which can balance good downstream performance
with minimal parameter changes.

As we have discussed in the introduction, if
we fine-tune only several top layers of the model,
while keep- ing the rest of the parameter frozen
(e.g., train solely a classification head, Fig 1; mid-
dle), representation collapse can be avoided. How-
ever, this would not lead to optimal downstream
task performance. As a middle ground approach,
we could train just a larger fraction of model pa-
rameters (yet not the full model) with parameter-
efficient approaches. Common PEFT methods in-
clude LoRA (Hu et al., 2021), prefix tuning (Li and
Liang, 2021), prompt tuning (Lester et al., 2021),
adapters (Houlsby et al., 2019), and variations of
those (Rücklé et al., 2020; Khashabi et al., 2021;
Lester et al., 2022; Razdaibiedina et al., 2023a,b).

We provide results for prompt tuning, prefix tun-
ing, LoRA and REPINA-MLP on 4 GLUE tasks
in Table 4. As we can see, REPINA-MLP consis-
tently outperforms PEFT methods.

SST-2 MRPC CoLA RTE

Prompt Tuning 86.4 76.9 59.9 52.5
Prefix Tuning 90.9 91.0 57.6 73.9
LoRA 91.5 90.0 60.4 71.5
REPINA-MLP 93.2 91.1 62.5 74.4

Table 4: Comparison with PEFT methods.

5.4 Out-of-distribution robustness

We perform experiments on four pairs of datasets
to study OOD generalization following Hendrycks
et al. (2020) protocol (see Table 5). The chosen
pairs of datasets induce a distribution shift, which
allows to measure OOD robustness. Due to limited
resources and different sizes of tasks, we limited
the training set to 200 examples per class (fixed
across all runs). Overall, REPINAI shows steady
improvement in OOD performance in all cases.

Task IID OOD
Train → Eval STD++ RPI STD++ RPI
Imdb → SST2 92.1±0.5 92.1±0.5 87.8±0.9 88.9±0.5

SST2 → Imdb 91.1±0.1 92.1±0.1 87.1±0.1 87.8±0.1

Yelp → Amzn 60.7±0.2 60.8±0.9 28.9±0.2 29.3±0.5

Amzn → Yelp 39.4±1.9 41.5±1.4 49.7±1.9 50.8±1.4

Table 5: REPINA improves OOD performance. RPI :
REPINAI ; Train: training task (IID), Eval: evaluation-
only task (OOD). Data is limited to 200 samples/class.

5.5 Robustness to Label Perturbation

Real-world data can often contain mislabeled sam-
ples, which can hinder the training process. Hence,
robustness to label noise is a desirable quality of
the fine-tuning approaches. Here, we study the
performance of the fine-tuning methods under la-
bel perturbation. We introduce label noise as fol-
lows: let C = {1, . . . , c} be a class of labels and
X = {(x, y)} be the true dataset for the fine-
tuning task. Our fine-tuning method has access
to a noisy dataset X ′ = {(x, y′)} where y′ = y
with probability 1− p and sampled uniformly from
{1, . . . , c} \ {y} with probability p.

REPINAI and REPINAMLP show the high-
est resistance to label perturbation, retaining
closest to the original performance upon introduc-
ing 5-10% noise to labels (Table 6). The second
most resistant approach, WC, is also close to our
method conceptually, as it discourages the fine-
tuned weights to deviate from pre-trained weights.

Noise ↓ STD++ DA WC ReInit R3F RPI RPM
0% 64.7 78.5 81.4 79.9 72.9 84.0 83.0
5% 58.3 68.2 75.3 72.3 57.3 81.4 78.0
10% 58.0 63.7 72.2 68.9 52.4 78.1 75.6
20% 48.4 49.1 64.1 55.2 44.3 66.2 70.2
30% 40.1 45.9 53.5 52.4 42.0 50.3 59.5

Table 6: Mean performance over 13 datasets when train-
ing with noisy data. RPI : REPINAI , RPM : RE-
PINAMLP . See Appendix L for detailed results.

5.6 Analyses on Few-shot Fine-tuning

To investigate our methods’ robustness to small
dataset sizes, we study REPINAMLP and REPINAI
performance in limited data settings (250/500/1000
training data points). We fix the same data subset
across all models to avoid performance changes
related to data variability.

Since finetuning in few-shot setting is particu-
larly prone to instability and the performance on a
single dataset can distort the mean statistics for
the entire collection, we use average rank as a
more stable metric to compare different methods.

A method’s rank for a task corresponds to the posi-
tion of the method in a list of all methods sorted by
performance on that dataset. The minimal and best
possible rank is 1. The average rank of a method
is obtained by averaging ranks across all tasks.

We observe in Table 7 that REPINAI is the most
effective method in the few-shot setting mea-
sured in terms of the average rank. See Ap-
pendix J for a detailed analysis.

samples ↓ STD++ DA WC ReInit R3F RPI RPM
250 5.62 4.92 4.62 3.00 4.04 2.50 3.31
500 6.08 4.38 3.69 3.31 4.85 2.77 2.92
1000 5.69 4.00 3.62 3.54 4.62 2.69 3.85

Table 7: Average rank of different methods for few-shot
learning. RPI : REPINAI , RPM : REPINAMLP .

Overall, we find that REPINAMLP yields perfor-
mance gain on large-scale datasets, whereas RE-
PINAI is effective for few-sample fine-tuning (since
newly introduced parameters in REPINAMLP are
undertrained when the training data is limited). For
wall-time analysis, see Appendix O. For experi-
ments on hyper-parameter optimization over learn-
ing rate, batch size and other hyper-parameters see
Appendix F.

6 Degradation of Representations:
Analytical Perspective

Here we quantify the representation collapse.

6.1 Probing Representation Collapse

We follow the setting of Aghajanyan et al. (2020)
for studying representation collapse with probing
experiments as follows: (i) fine-tune model on a
downstream task A, (ii) freeze the encoding layers
and train the top linear layer for a different task
B. Low performance in the second step implies
representation collapse in the first step. To assess
robustness of the proposed approach to represen-
tation collapse, we perform a series of probing ex-
periments. In our experiments, we use four GLUE
and four non-GLUE datasets in the first step and
all datasets in the second step except the one used
in the first step (Table 8).

We observe that REPINAMLP and REPINAI
show high resistance to representation collapse, out-
performing other approaches in 6/8 cases (Table 8).
For instance, fine-tuning for QNLI-10k in the first
step with REPINAMLP results in a mean perfor-
mance of 49.5 in the second step, whereas the next
best baseline results in a mean performance of 44.5.

Task A ↓ STD++ DA WC ReInit R3F RPI RPM
QNLI 37.6 37.1 44.5 37.7 36.5 41.7 49.5
QQP 39.8 42.6 44.5 41.2 36.3 52.4 44.1
RTE 32.0 32.0 37.2 48.9 33.3 51.9 42.0

MNLI 36.3 40.6 41.3 52.5 43.0 51.0 48.5
AG 41.1 42.5 42.3 43.3 41.4 43.7 47.8

IMDB 45.2 44.0 43.3 42.0 44.5 47.9 48.4
SCIT 39.0 50.3 46.2 44.6 34.0 47.8 48.8
SCIC 43.9 44.7 46.3 41.4 39.1 48.3 48.1

Aver. 39.4 41.7 43.2 44.0 38.5 48.1 47.1

Table 8: Results of probing experiments to measure
representation collapse (higher score is better). Model
is fine-tuned for task A with different methods, then a
new linear head is trained for the remaining 12 tasks
and the mean performance is reported. Aver. is aver-
age over different choices of task A. RPI is REPINAI
, RPM is REPINAMLP . AG: AGNEWS-10k, SCIT:
SCITAIL-10k, SCIC: SCICITE-10k, QNLI: QNLI-10k,
QQP:QQP-10k, MNLI: MNLI-10k.

Note that auxiliary tasks considered here are
used only to evaluate the degradation of represen-
tations. They are not available during finetuning.
During fine-tuning stage, only one task dataset is
available. Thus, we do not compare our methods
to the rehearsal-based learning methods.

6.2 Diversity of Fine-tuned Representations

Probing experiments rely on the availability of ex-
tra fine-tuning tasks and, thus, are limited in the
amount of information they can assess, requiring
additional fine-tuning rounds. Here, we propose
metrics that can reliably quantify the power of fine-
tuned representations by capturing their geometric
diversity. The intuition behind our metrics is the
following: if all representations lie in a small di-
mensional space such as a straight line or a sin-
gle point, then they contain little information and
are not expressive. But if representations are well
spread out and span the entire representation space,
then they possess high information capacity).

We illustrate representation collapse metrics
from the geometric perspective in Figure 5. The top
three plots show three different distributions of data
points (representations). The left distribution spans
all three dimensions, indicating the highest degree
of data diversity. Since data points equally lie in all
dimensions, all three eigenvectors (V (λi)’s) will
be of equal importance and all three eigenvalues
(λi’s) will be approximately equal. In contrast, the
central distribution spans two axes, leading to a
smaller third eigenvalue that corresponds to the "re-
dundant" dimension. Right distribution has all the
data points collapsed along one axis, resulting in

Figure 5: Top: λi and V (λi) correspond to ith eigen-
value and its associated eigenvector after eigendecompo-
sition of Gram matrix. Data from the left distribution is
well spread out and spans all three dimensions, with all
of its eigenvalues being similar. The right distribution
shows all of the data collapsed along one eigenvector,
hence one of the eigenvalues significantly exceeds two
others. Bottom: comparison of top-20 eigenvalues of
STD++ and REPINAI after fine-tuning on QQP with
250 points. Less skewed distribution of eigenvalues for
REPINAI compared to STD++ indicates a more spread
out distribution of fine-tuned representations with RE-
PINAI compared to STD++ .

one eigenvalue being substantially higher than the
others. Overall, more uniform distribution of the
eigenvalues corresponds to a better representation
matrix diversity. In the bottom bar-plot we show
distribution of the top-20 eigenvalues of the fine-
tuned representations with REPINAI and STD++
after training on QQP dataset with 250 points (Fig-
ure 5). REPINAI preserved a closer to uniform
eigenvalue distribution, while STD++ results in
representations with much higher first eigenvalue,
indicating representation collapse. Thus, REPINAI
yields better representation matrix diversity and
less representation collapse than STD++ .

Next, we formalize this intuition by defining a
representation diversity metric based on the geo-
metric diversity of sentence-level representations.

Diversity Metrics: We compute the gram ma-
trix G for the representations where Gi,j =
⟨ffin(xi), ff in(xj)⟩. From G we obtain eigen-
values λ1 ≥ . . . ≥ λd. To measure diversity of
representations, we use geometric mean (GM) and

harmonic mean (HM) of the eigenvalues:

GM =
(
Πd

i=1λi

)1/d
= Determinant1/d(G),

HM =
(∑d

i=1
1
λi

)−1
= Trace

(
G−1

)−1

These metrics attain a high value if the represen-
tations are well spread out and are zero or close
to zero if all/most of the representations lie in a
smaller dimension subspace. In contrast to arith-
metic mean, geometric and harmonic mean are not
as sensitive to outliers. We observe that these met-
rics turn out to be always zero as representations
typically lie in 20-dimensional space. Hence, we
chose top-k λi values for k = 5, 10, 20 where GM
and HM are bounded away from 0.

GM-k =
(
Πk

i=1λi

) 1
k
,HM-k =

(
k∑

i=1

1

λi

)−1

We compare REPINAI and REPINAMLP to the

Metric ↓ STD++ DA WC ReInit R3F RPI RPM
GM-5 396 481 484 425 397 584 463

GM-10 92 118 118 90 93 134 91
GM-20 14 18 20 13 13 22 13
HM-5 198 253 242 184 207 290 217

HM-10 38 53 47 37 38 55 32
HM-20 3 4 5 3 3 6 3

Table 9: Diversity of fine-tuned representations. Mean
value across all the 13 tasks is presented. RPI is RE-
PINAI , RPM is REPINAMLP . REPINAI yields fine-
tuned representations with maximum representation ma-
trix diversity.

existing baselines using GM-k and HM-k with
k = 5, 10, 20 (Table 9). Low GM-k and HM-k indi-
cates representation collapse, when fine-tuned rep-
resentations lie in a low-dimensional space. High
GM-k and HM-k indicates that representations are
well spread out and span a higher dimensional
space. Table 9 shows that REPINAI results in
the most diverse representations among all the
baseline methods and incurs least representa-
tion collapse(see Appendix N for detailed results).

7 Conclusion

In this paper, we propose a novel representation
invariance regularizer targeted at avoiding repre-
sentation degradation during finetuning. It has a
knob that can control strength of regularization.
We experiment with two choices of this knob, RE-
PINAI and REPINAMLP and show that they both
achieve significant performance gain across 13

tasks, including few-shot and label noise settings,
and improve generalization performance. We also
study the degradation of representations during
fine-tuning, representation collapse, and propose
new metrics to quantify it. Our methods reduce rep-
resentation collapse and improve OOD robustness.

8 Limitations

We conduct extensive experiments in our paper
and show that the proposed approaches lead to sig-
nificant gains. However, we did not exhaust all
avenues of investigation due to limited resources.
Firstly, we could experiment with different choices
of ϕ other than in REPINAI (ϕ is identity) and RE-
PINAMLP (ϕ is MLP). Other choices of ϕ may
include deeper networks or transformer-based mod-
els, which could potentially improve performance
even further. Secondly, we investigated how rep-
resentations from intermediate layers affect RE-
PINAI performance, and observe major improve-
ments with top layer representations. Similar ex-
periments for REPINAMLP may also yield further
gain. Also, in REPINAI we could experiment with
more choices of the representations layer (we tried
5th, 10th, 20th layer). Since lower layer repre-
sentations are more computationally efficient to
regularize (do not require full forward pass through
the model), another interesting direction is finding
a trade-off between computational efficiency of the
regularizer and performance gains.

This study primarily focused on medium-sized
models due to computational constraints. It is
the outcome of extensive experimentation, which
would have been impractical with limited computa-
tional resources. Although we have experimented
with masked language models, we believe the find-
ings apply to other architectures that follow similar
principles. We anticipate that future research will
provide more insight into these issues.

Ethical Considerations

REPINA aims to improve performance and retain
the quality of representations during fine-tuning.
Practically, our method can help in suppressing po-
tential biases of language models after fine-tuning
on datasets that include biased content. REPINA
can achieve this by reducing collapse of represen-
tations and preserving their pre-trained knowledge.
All our experiments are based on publicly available
datasets and, hence, there is no immediate concern
about harmful content.

Acknowledgments

We thank the anonymous reviewers for their con-
structive feedback. DK is supported by generous
gifts from Johns Hopkins University, Allen Insti-
tute for AI and Amazon. AR is supported by Vector
Institute for Artificial Intelligence and the Univer-
sity of Toronto.

References
Steven Abney. 2007. Semisupervised learning for com-

putational linguistics. CRC Press.

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319–
7328.

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2020. Better fine-tuning by reducing representational
collapse. In International Conference on Learning
Representations.

Eyal Ben-David, Carmel Rabinovitz, and Roi Reichart.
2020. Perl: Pivot-based domain adaptation for
pre-trained deep contextualized embedding models.
Transactions of the Association for Computational
Linguistics, 8:504–521.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 con-
ference on empirical methods in natural language
processing, pages 120–128.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 7870–7881.

Arman Cohan, Waleed Ammar, Madeleine Van Zuylen,
and Field Cady. 2019. Structural scaffolds for cita-
tion intent classification in scientific publications. In
NAACL.

Terrance DeVries and Graham W Taylor. 2017. Dataset
augmentation in feature space. arXiv preprint
arXiv:1702.05538.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for nlp. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, Francois Lavi-
olette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–
2030.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin
Stoyanov. 2020. Supervised contrastive learning for
pre-trained language model fine-tuning. In Interna-
tional Conference on Learning Representations.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. arXiv preprint arXiv:2004.06100.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2177–2190.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui
Qin, Kyle Richardson, Sean Welleck, Hannaneh Ha-
jishirzi, Tushar Khot, Ashish Sabharwal, Sameer
Singh, et al. 2021. Prompt waywardness: The curi-
ous case of discretized interpretation of continuous
prompts. arXiv preprint arXiv:2112.08348.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
SciTail: A textual entailment dataset from science
question answering. In AAAI.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
Conference on Machine Learning, pages 3519–3529.
PMLR.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak,
Ole Lund, Tudor I Oprea, and Olivier Taboureau.
2016. Chemprot-3.0: a global chemical biology dis-
eases mapping. Database, 2016.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew
Jones, Tengyu Ma, and Percy Liang. 2021. Fine-
tuning can distort pretrained features and underper-
form out-of-distribution. In International Conference
on Learning Representations.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2019a. Mixout: Effective regularization to finetune
large-scale pretrained language models. In Interna-
tional Conference on Learning Representations.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019b. What
would elsa do? freezing layers during transformer
fine-tuning. arXiv preprint arXiv:1911.03090.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Brian Lester, Joshua Yurtsever, Siamak Shakeri, and
Noah Constant. 2022. Reducing retraining by re-
cycling parameter-efficient prompts. arXiv preprint
arXiv:2208.05577.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Vivek Madan, Ashish Khetan, and Zohar Karnin. 2021.
Tadpole: Task adapted pre-training via anomaly de-
tection. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Vivek Madan, Mohit Singh, Uthaipon Tantipongpipat,
and Weijun Xie. 2019. Combinatorial algorithms for
optimal design. In Conference on Learning Theory,
pages 2210–2258. PMLR.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and
Ian Tenney. 2020. What happens to bert embeddings
during fine-tuning? In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 33–44.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224, Uppsala, Sweden. Association for
Computational Linguistics.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. In International Conference on Learning Rep-
resentations.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain senti-
ment classification via spectral feature alignment. In
Proceedings of the 19th international conference on
World wide web, pages 751–760.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Anastasia Razdaibiedina and Alexander Brechalov.
2023. Miread: Simple method for learning high-
quality representations from scientific documents.
arXiv preprint arXiv:2305.04177.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, and Amjad Almahairi.
2023a. Progressive prompts: Continual learning for
language models. arXiv preprint arXiv:2301.12314.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, Jimmy Ba, and Amjad
Almahairi. 2023b. Residual prompt tuning: Improv-
ing prompt tuning with residual reparameterization.
arXiv preprint arXiv:2305.03937.

Subendhu Rongali, Abhyuday Jagannatha, Bhanu
Pratap Singh Rawat, and Hong Yu. 2020. Contin-
ual domain-tuning for pretrained language models.
arXiv preprint arXiv:2004.02288.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

http://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P10-2041
https://www.aclweb.org/anthology/P10-2041

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1482–1488.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6382–6388.

John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Dur-
rani, Fahim Dalvi, and James Glass. 2020. Similarity
analysis of contextual word representation models.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4638–
4655.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. In International Conference on
Learning Representations.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015b.
Character-level convolutional networks for text clas-
sification. In NIPS.

Yichu Zhou and Vivek Srikumar. 2022. A closer look
at how fine-tuning changes bert. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1046–1061.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In ICLR.

Supplementary Material
A Additional Related works

Due to limited space in the main text, part of the
related is below. We will reintroduce these to the
main text upon having more space.
Domain shift between pre-training and finetun-
ing data: Even though pretrained models achieve
high performance for a large number of NLP tasks,
they tend to suffer if there is a significant domain
shift between the pretraining data and finetuning
data. Domain Adaptation bridges this gap by adapt-
ing the model to the finetuning task domain. It
can done by doing additional pre-training on task
domain data if such data is available (Gururangan
et al., 2020) or algorithmically finding such data
from general domain corpus if such a data is not
available (Madan et al., 2021).
Domain shift between finetuning train data
and evaluation data: Domain Adaptation typi-
cally refers to the scenario where labeled train
data is available in one domain and the evalu-
ation is done for data in other domain. Tech-
niques for addressing domain shift include model-
centric techniques, data-centric techniques and hy-
brid techniques. Model-centric technique changes
the model by changing the feature space, loss func-
tion or the structure of the model (Blitzer et al.,
2006; Pan et al., 2010; Ganin et al., 2016; Ben-
David et al., 2020). Data-centeric approaches in-
volve pseudo-labeling (Abney, 2007), using aux-
iliary tasks (Phang et al., 2018), and data selec-
tion (Moore and Lewis, 2010; Wang et al., 2017).
Mixout (Lee et al., 2019a) is a variant of Dropout
regularization that replaces dropped neurons with
the pre-trained model neurons, thereby mixing pre-
trained and fine-tuned parameters.
Measures of representation: Aghajanyan et al.
(2020) measures the quality of finetuned represen-
tations by fitting them on auxiliary tasks. CKA (Ko-
rnblith et al., 2019) measures correspondences be-
tween representations from different network. Wu
et al. (2020) study the similarity of internal repre-
sentation and attention of different trained models
using some new similarity measures.

Merchant et al. (2020) also studies what hap-
pens during finetuning via probing classifiers and
representation similarity analysis. It argues that
finetuning does not necessarily incurs catastrophic
forgetting. It analyze the effect for finetuning dif-
ferent tasks on the changes in representation.

Rongali et al. (2020) show that rehearsal based
learning can improve performance and perform
better than Weight Consolidation. However, even
though our method is inspired by multi-task learn-
ing and performs pseudo multi-task learning implic-
itly, we do not have access to any dataset additional
to the single fine-tuning task. Thus, rehearsal based
learning does not apply in our setting.

B Theoretical Motivation and Connection
to Pseudo Meta-learning

Idea: We view the pre-trained model as a multi-
task learner with an infinite number of pseudo tasks
T1, T2, That is, for each i there exists a lin-
ear layer that fits pre-trained representations to a
pseudo task Ti. Our aim is to fine-tune the represen-
tations on a specific downstream task B while pre-
serving their ability to perform well on T1, T2, . . . ;
namely, there must exist a linear model on the fine-
tuned representations for each pseudo task Ti. The
linear classification head for Ti does not have to be
the same for the pre-trained and fine-tuned repre-
sentations, but their output should be close.

Figure 6: Intuitive explanation of the proposed ap-
proaches from the multi-task learning perspective. The
total loss consists of the cross-entropy loss for the fine-
tuning task and the consistency losses for the pseudo-
tasks. The pre-trained model is non-trainable (frozen).

Let the training samples be x1, . . . , xN for the
fine-tuning task B and zjpre, z

j
fin ∈ Rd be the rep-

resentations (output of the encoder layer) for the
pre-trained model and the model being fine-tuned.
Let F be a family of functions operating on repre-
sentations such that each function signifies a task,
Ti. We can formalize our objective as follows:
For any function g ∈ F on pre-trained representa-
tions, there must exists a corresponding h ∈ F on
fine-tuned representations giving the same output;
∀g ∈ F ,∃h ∈ F s.t. g ◦ zpre = h ◦ zfin

During fine-tuning, we do not expect an exact
agreement and allow representations to lose some
expressive power. Hence, we relax the constraint
and consider the representation loss error.2

For g ∈ F , Lg = min
h∈F

N∑
j=1

loss(g(zjpre), h(z
j
fin))

2If Ti’s were actual pre-training tasks and the data was
is available, we would compute the loss on the input of Ti.
In absence of that, we approximate it by loss on (unlabeled)
input of the given fine-tuning task.

If g comes from a distribution D over F , then our
representation loss is Eg∼D [Lg]. Here, we con-
sider F to be the set of regression tasks3, which are
characterized by vectors in {u ∈ Rd} and tasks to
be sampled from a standard Gaussian distribution
with mean 0 and unit variance. We consider loss
to be the natural ℓ2 loss function.

L =Eu∼N(0,Id)

min
v∈Rd

N∑
j=1

(uT zjpre − vT zjfin)
2

The inner minimization has a closed form solu-

tion v = (ZT
finZfin)

†ZT
finZpreu, and the resulting

expectation can be reduced to get:

L =
∥∥∥(Zfin(Z

T
finZfin)

†ZT
fin − In

)
Zpre

∥∥∥2
2
.

where Zpre ∈ RN×d matrix has j-th row zjpre and
Zfin ∈ RN×d matrix has j-th row zjfin. ||·||2 for a
vector denote the ℓ2-norm and for a matrix denote
the Frobenius norm. A† denote the pseudo-inverse
of a symmetric matrix A. The derivation of v and
reduction of expectation can be found in Theorem 1
in Appendix B.1. Loss function L̂ is not easily de-
composed into mini-batches, making it challenging
to optimize directly. We find an equivalent opti-
mization problem whose objective is decomposable
into mini-batches and whose optimum is equivalent
to the representation loss L:

L̂ = min
W∈Rd×d

N∑
j=1

∥∥∥zjpre −Wzjfin

∥∥∥2
2

We can minimize L̂ for W along with the fine-
tuning objective. Derivation of the above equiva-
lence can be found in Theorem 2 in Appendix B.1.
We can interpret the above loss as follows: There
exists a linear function (ϕW : x → Wx) which
operated on fine-tuned representations results in
pre-trained representations. We can generalize it
to include a class of functions Φ:

L̂ = min
ϕ∈Φ

N∑
j=1

∥∥∥zjpre − ϕ(zjfin)
∥∥∥2
2

(3)

This corresponds to the aggregate loss for pseudo-
tasks Ti’s, if instead of using a linear head for

3If we assume the tasks to be classification, then the linear
layer is followed by a softmax layer. However, for simplicity
we assume the pre-training to be done on regression tasks as
this yields closed from expressions and yields good results.

pseudo tasks on fine-tuned representations, we use
a function ϕ ∈ Φ followed by ui. Thus, Φ de-
fines the strength of the regularizer. A singleton
Φ containing an identity function enforces the use
of the same linear head ui for task Ti on both pre-
trained and fine-tuned representations. This results
in the strongest regularizer which keeps fine-tuned
representations close to the pre-trained represen-
tations. On the other hand, if Φ is a set of very
deep neural networks, then we allow a deep neural
network (+ui) to fit fine-tuned representations for
task Ti. Such a neural network will almost always
exist even if the fine-tuned representations have
degraded significantly. Thus, it is a weak regular-
izer and puts mild constraints on the change of the
structure of representations.

Overall, this section can be summarized as fol-
lows: (i) L̂ is an aggregate error in fitting fine-tuned
representations to pseudo-pre-training tasks Ti’s.
(ii) Φ controls the amount of structural changes in
representations allowed during fine-tuning.

B.1 Detailed Derivations

Lemma 1. minv∈Rd

∑N
j=1(yj − vT bj)

2 = ||y −
B(BTB)†BT y||22 where yj is the j-th entry of y.

Proof. Let the loss function be

L =

N∑
j=1

(yj − vT bj)
2

L is a smooth function with minimizer v⋆. Hence,
minimum is achieved at a local minimum. Thus,

δ

δv
L|v=v⋆ = 0

−2
N∑
j=1

bj(yj − (v⋆)T bj) = 0

−2
N∑
j=1

bjyj − bjb
T
j v

⋆ = 0 N∑
j=1

bj

 yj =

 N∑
j=1

bjb
T
j

 v⋆

 N∑
j=1

bjb
T
j

† N∑
j=1

bj

 yj = v⋆

where X⋆ is the pseudo inverse which is equal to
the inverse if X is invertible. Else it spans only
the space spanned by X . Note that

∑N
j=1 bjb

T
j =

BTB and
∑N

j=1 bjyj = BT y. So, v⋆ =

(BTB)†BT y. Least square error can be written
in terms of vector form to get

minv∈Rd

N∑
j=1

(yj − vT bj)
2 = min

v∈Rd
||y −Bv||22

where ||·||22 for a vector denote the ℓ2 norm squared.
Substituting v∗ we get minv∈Rd

∑N
j=1(yj −

vT bj)
2 =

∣∣∣∣y −B(BTB)†BT y
∣∣∣∣2
2

Theorem 1. We show that
Eu∼N(0,Id)

[
minv∈Rd

∑N
j=1(u

T zjpre − vT zjfin)
2
]

=
∥∥∥(Zfin(Z

T
finZfin)

†ZT
fin − In

)
Zpre

∥∥∥2
2
.

Proof. To simplify notation, we use aj =

zjpre,bj = zjfin,B = Zfin ∈ RN×d matrix has
j-th row bj , A = Zpre ∈ RN×d matrix has j-th
row aj and X† is the pseudo-inverse of X .

Let

W = Eu∼N(0,Id)

min
v∈Rd

N∑
j=1

(uT zjpre − vT zjfin)
2

From Lemma 1, we get

W = Eu∼N(0,Id)

∣∣∣∣∣∣Au−B(BTB)†BTAu
∣∣∣∣∣∣2
2

= Eu∼N(0,Id)

∣∣∣∣∣∣(A−B(BTB)†BTA)u
∣∣∣∣∣∣2
2

Lemma 2. For any matrix M , Rd×d.
Eu∼N(0,Id)[||Mu||22] = ||M ||22 where ||M ||22
is the forbenius norm of the matrix M .

Proof. Let the i, j-th entry of M be mi,j

and the j-th entry in u be uj . Then,
||Mu||22 =

∑d
i=1(

∑d
j=1mi,juj)

2 =∑d
i=1

∑d
j=1

∑d
k=1mi,jmi,kujuk.

E
[
||Mu|∥22

]
=

d∑
i=1

d∑
j=1

d∑
k=1

mi,jmi,kE[ujuk]

Since u is a gaussian random variable with mean
0 and covariance matrix Id, we have E[ujuk] = 0
for j ̸= k and E[u2i] = 1 for all i ∈ [d]. Thus,

E
[
||Mu|∥22

]
=

d∑
i=1

d∑
j=1

m2
i,j = ||M ||22

Substituting equality from Lemma 2 to W , we
get

W =
∣∣∣∣∣∣A−B(BTB)†BTA

∣∣∣∣∣∣2
2

Using ||−M ||22= ||M ||22 and substituting
back A = Zpre and B = Zfin, we get

Eu∼N(0,Id)

[
minv∈Rd

∑N
j=1(u

T zjpre − vT zjfin)
2
]

=
∥∥∥(Zfin(Z

T
finZfin)

†ZT
fin − In

)
Zpre

∥∥∥2
2
.

Theorem 2.∥∥∥(Zfin(Z
T
finZfin)

†ZT
fin − In

)
Zpre

∥∥∥2
2

= min
W∈Rd×d

N∑
j=1

∥∥∥zjpre −Wzjfin

∥∥∥2
2

Proof. To simplify notation, we use aj =

zjpre,bj = zjfin,B = Zfin ∈ RN×d matrix has
j-th row bj , A = Zpre ∈ RN×d matrix has j-th
row aj and X† is the pseudo-inverse of X . Let
W = Rd×d have i-th row wi. We need to compute

L = min
W∈Rd×d

N∑
j=1

∥aj −Wbj∥22

= min
w1,...,wd∈Rd

N∑
j=1

d∑
i=1

(aj,i − wT
i bj)

2

=
d∑

i=1

min
wi∈Rd

N∑
j=1

(aj,i − wT
i bj)

2

where aj,i is the i-th entry of aj . Applying
Lemma 1, we get

L =

d∑
i=1

∥∥∥(In −B(BTB)†BT)ci

∥∥∥2 (4)

where ci is the i-th column of A (j-th entry of ci is
aj,i).

Lemma 3. For a matrix M ∈ RN×N and a set of
vectors v1, . . . , vk ∈ RN ,

k∑
i=1

∥Mvi∥2 = ||MV ||22

where V ∈ RN×k is the matrix with columns
v1, . . . , vk.

Proof. Let j-th row of M be mj . Then,

k∑
i=1

∥Mvi∥2 =
k∑

i=1

N∑
j=1

(mT
j v)

2

For j ∈ [N], i ∈ [k], (j, i)-the entry of MV is
mT

j vi. Thus,

∥MV ∥2 =
N∑
j=1

k∑
i=1

(mT
j vi)

2

Combining the two equalities, we get

k∑
i=1

∥Mvi∥2 = ||MV ||22

Applying Lemma 3in eq 4, we get

L =
∥∥∥(In −B(BTB)†BT)A

∥∥∥2
This finishes the proof of theorem.

C Experiment Set up details

Our implementation is based on the HuggingFace
library.

C.1 Experimental Setup
To avoid the excessively high computational cost of
fine-tuning on large-scale datasets, we limited their
full training sets to 10, 000 data points (marked
with a suffix -10k in Table 3). For few-sample
experiments, we fixed the same data subset across
all models to avoid performance changes related to
data variability. Since test set labels are unavailable,
we use development set to report the performance.
Batch Size: Different methods have different mem-
ory requirement. For instance, R3F has the highest
footprint which limits the batch size as we can not
process too many inputs at the same time. Table 10
shows the batch size used for each dataset in our
experiments.

Task Batch size

COLA 4
RTE 1
SST 4

MNLI-10k 1
MRPC 4

QQP-10k 1
QNLI-10k 1

Task Batch size

CHEMPROT 1
SCICITE 2

SCITAIL-10k 1
AGNEWS-10k 2

YELP-10k 1
IMDB-10k 1

Table 10: Batch size used in our experiments

C.2 Filtering Failed Runs
For most of the datasets experimented here, avail-
able test data split is unlabeled. Thus, we use
the validation data split to report performance. It
has been observed that different finetuning runs
can result in very different finetuned model per-
formance (Mosbach et al., 2020). Thus, reporting
max test run performance does not truly reflect the
effectiveness of the finetuning process and the max-
imum test run performance across different random
seeds can be substantially larger than the mean. So,
in our experiments we do not use the val data (on
which we report performance) to select the run or
any hyperparameter. To select optimal hyperpa-
rameters such as regularization coefficient etc., we
use a subset of original train data split which is not
used for training. Such a data is available as we are
typically finetuning with a subset of original train
data. Table 11 shows the threshold for failed run
for each task.

Task Threshold

COLA 0.00
RTE 53.70
SST 54.00

MNLI-10k 30.00
MRPC 81.22

QQP-10k 0.00
QNLI-10k 50.53

Task Threshold

CHEMPROT 34.45
SCICITE 24.66

SCITAIL-10k 60.38
AGNEWS-10k 10.44

YELP-10k 52.80
IMDB-10k 33.94

Table 11: Failed run threshold

D REPINAMLP - Effect of MLP depth
and missing details

Missing Details: We use tanh activation in MLP
with learning rate same as the rest of the network.
Parameters of MLP are optimized alongside the
language model. We use Glorot uniform initializer
to initialize the parameters of MLP (Glorot and
Bengio, 2010). Bias parameters are initialized to
zero.

Table 12 shows that REPINAMLP is resistant to
the number of MLP layers chosen. When training
with all datapoints, performance is typically within
a percentage of each other.

Task ↓ / Num. layers → 1 2

IMDB-10k 93.43 93.87
MRPC 91.19 91.12
SCICITE 82.55 83.15
COLA 61.86 62.47
SST 93.03 93.19
MNLI-10k 65.18 65.22
AGNEWS-10k 91.8 91.93
CHEMPROT 82.48 83.67
QNLI-10k 87.52 87.61
SCITAIL-10k 94.06 94.75
YELP-10k 95.66 95.96
RTE 72.92 74.37
QQP-10k 78.22 79.3
Mean 83.83 84.35

Table 12: Performance of REPINAMLP with different
number of MLP layers.

E REPINAI - Which layer to regularize?

Table 13 compares the result between regularizing
the top layer vs regularizing the intermediate layer
in REPINAI . We observe that REPINAI consis-
tently outperform when regularizing the intermedi-
ate layer.

Table 14 shows the the result for REPINAI with
representations chosen from 5th, 10th or 20th layer
of encoder. Note that 5th layer is the closest to
the input and doesn’t account for token embedding
layer. We note that all three choices are performing
roughly equally well. Mean performance is typi-
cally less than a percentage point from each other.
If one were to use a single layer, one can use 5th
for low-data case and 10th or 20th for large dataset
case.

Tasks STD++ Top Interm.

500 Training Datapoints

QNLI 80.86 80.7 82.56
MNLI 41.74 41.07 49.07

AGNEWS 89.09 89.34 89.53
IMDB 83.65 89.77 91.32
SST 89.54 89.49 89.68

COLA 45.29 44.22 46.95
CHEMPROT 65.59 61.0 73.47

MRPC 84.44 84.54 85.26
SCITAIL 85.11 88.97 90.07
SCICITE 78.84 79.36 79.45

RTE 61.01 59.39 62.45
YELP 93.32 89.02 93.2
QQP 61.12 69.5 70.97

Mean 73.81 74.34 77.23
Average Rank 2.38 2.54 1.08

Table 13: Performance for REPINAI -intermediate vs
REPINAI -top.

Tasks STD++ 5 10 20

500 Training datapoints

COLA 45.29 46.95 44.58 44.34
QNLI 80.86 82.56 81.38 80.7
MRPC 84.44 85.26 84.78 84.31

SST 89.54 89.68 89.24 89.66
SCITAIL 85.11 90.36 90.07 89.2

YELP 93.32 92.88 93.2 93.2
AGNEWS 89.09 89.53 89.19 88.99

RTE 61.01 62.45 63.63 61.52
MNLI 41.74 44.61 49.07 44.57
QQP 61.12 72.6 71.79 70.97

IMDB 83.65 90.84 90.31 91.32
CHEMPROT 65.59 73.34 73.47 71.98

SCICITE 78.84 79.39 78.76 79.45

Mean 73.81 76.96 76.88 76.17

Table 14: Effect of embedding layer to be regularized
in REPINAI .

F Hyperparameter Optimization over
learning rate, epochs and dropout

Table 15 shows the results when we search over op-
timal learning rate and number of epochs for each
task and method. For learning rate, we perform the
search over [5e-6,1e-5,2e-5,4e-5] and for epochs,
we search over [5, 10]. We add an additional base-
line method DR where we search over dropout rate
from [0.05, 0.1, 0.2, 0.4].

Tasks STD++ DR DA WC ReInit R3F RPI RPM
QQP 78.6 78.9 78.8 78.2 78.7 78.6 79.7 79.2
RTE 72.9 73.4 74.4 74.3 74.1 74.2 75.1 75.0
COLA 56.7 61.2 62.4 61.8 61.5 61.7 62.5 61.8
MRPC 90.3 90.8 90.5 90.4 90.8 90.4 90.8 90.8

Table 15: Results with HPO over epochs and learning
rate. DR is a baseline method where we do additional
HPO over dropout rate as well.

G Experiments for RoBERTa

In the results above, we observed that our meth-
ods improve significant gain over baseline methods
for BERT-large. Table 16 shows the result when
we compare REPINAI against STD++ . We fine-
tune the model for 10 epochs with regularization
coefficient of 0.01 and learning rate 1e-5. Mean
and standard deviation across three runs is reported.
We observe that REPINAI improved STD++ perfor-
mance in all cases.

Tasks STD++ RPI
MRPC 90.3± 1.0 92.0± 0.5
RTE 74.1± 2.1 77.1± 0.7
CoLA 60.0± 1.1 60.1± 0.6

Table 16: Results for RoBERTa-base on 3 GLUE
datasets.

H Supervised Contrastive Learning

Let a mini-batch has m examples,
(x1, y1), . . . , (xm, ym) and z1, . . . , zm be the
representations (output of encoder) using the
model being finetuned. Supervised Contrastive
Learning encourages the representations of
examples of same label in the mini-batch to be
close to each other and far from the examples with
different label by additing the following loss to the
objective:

LSCL =
m∑
i=1

− 1

Nyi − 1

m∑
j=1

1i ̸=j1yi=yj

log
exp(⟨zi, zj⟩/τ)∑m

k=1 1i ̸=kexp(⟨zi, zk⟩/τ)

where τ is a scalable temperature parameter that
controls the separation of classes. Loss function
during training is

L = λLCE + (1− λ)LSCL

where LCE is the cross entropy loss where λ is
a factor that can be tuned. This was shown to
improve finetuning process in (Gunel et al., 2020)
for few-shot finetuning.

From the definition of LSCL we observe that
SCL is only effective when the mini-batch size is
large and each label class is sufficiently represented
in the mini-batch. Otherwise, the loss function
LSCL is vacuous. For instance, if the mini-batch
size is 1 which is the case for many of our datasets,
then L̂SCL = 0 for all the mini-batches. Thus, it is
equivalent to the standard finetuning. Large mini-
batch size however requires large memory during
finetuning process which is not always available as
in our case.Thus, we look for a relaxation of SCL
which can be implemented in a memory efficient
manner.

We start by considering LSCL over the entire
input set instead of mini-batch and then replace the
example xj with mean of examples of the same
class as xj while computing similarity with an-
other example. More formally, let the training
data be (x1, y1), . . . , (xN , yn), the set of labels be
{1, . . . , ℓ} and representation of xi from the en-
coder of finetuning model. Let Cj = {i | yi = j}
and cj = 1

|Cj |
∑

i∈Cj
zi be the center of embed-

dings of inputs with label j. We consider the fol-

Tasks STD++ SCL REPINAI REPINAMLP
250 datapoints

QNLI 75.11 73.79 78.82 76.13
SST 88.41 87.27 89.29 88.59
QQP 68.28 68.79 68.76 70.38

SCITAIL 82.31 86.13 88.9 86.5
MNLI 37.7 38.07 38.35 41.18
IMDB 86.11 90.27 90.38 90.33
RTE 59.13 60.77 60.83 59.3

MRPC 84.43 85.67 84.65 84.08
COLA 41.57 31.91 43.98 45.28

CHEMPROT 55.22 32.0 63.28 62.32

Mean 67.83 65.47 70.72 70.41
Average Rank 4.3 3.7 1.6 2.35

Table 17: Performance of memory-efficiet SCL.

lowing relaxation of LSCL.

L̂SCL =
N∑
i=1

− 1

Nyi − 1

N∑
j=1

1i ̸=j1yi=yj

log
exp(⟨zi, cyj ⟩/τ)∑N

k=1 1i ̸=kexp(⟨zi, cyk⟩/τ)

= −
N∑
i=1

ℓ∑
j=1

1j ̸=yi

log
exp(⟨zi, cj⟩/τ∑ℓ

k=1 1k ̸=yi |Ck|exp(⟨zi, ck⟩/τ)

A naive implementation of this loss function
would be very expansive as the centers c1, . . . , cℓ
would change in each iteration. We observe that
centers change much slower than the individual
examples. This is the reason to replace individual
training samples with the centers while comput-
ing similarity ⟨zi, zj⟩. Thus, we do not update
it in each iteration and instead update it only ten
times during the finetuning process. Note that it
increases the training time by roughly a factor of
10 which is also prohibitive for large datasets. Ta-
ble 17 shows the comparison of memory efficient
SCL with our methods. We see that both REPINAI
and REPINAMLP beat SCL consistently . More-
over, SCL incur significant loss for several datasets.

I Comparison of REPINAI and
REPINAMLP against each baseline

Table 18 show that both REPINAI and RE-
PINAMLP outperform each baseline method in ma-
jority of the datasets/

REPINAI REPINAMLP
wins against baselines methods

GLUE datasets (out of 7)

STD++ 7 6
DA 5 5
WC 5 6

ReInit 7 7
R3F 7 7

Non-GLUE datasets (out of 6)

STD++ 6 6
DA 6 6
WC 3 5

ReInit 6 6
R3F 6 6

Table 18: Number of tasks for which REPINAI or RE-
PINAMLP outperform the baseline method.

J Small dataset results

Table 19 and 20 show the performance for few-
sample finetuning setting.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
250 Training datapoints

QQP 68.28 65.63 69.01 68.46 67.45 68.76 70.38
COLA 41.57 40.39 45.14 43.73 40.76 43.98 45.28
RTE 59.13 61.37 58.99 60.29 60.02 60.83 59.3

MNLI 37.7 40.24 33.71 41.47 37.8 38.35 41.18
YELP 92.51 92.68 92.97 93.64 93.13 93.13 93.3

CHEMPROT 55.22 58.6 59.52 64.92 59.6 63.28 62.32
QNLI 75.11 78.72 75.27 77.62 77.43 78.82 76.13
IMDB 86.11 89.17 89.51 89.44 89.09 90.38 90.33

SCICITE 76.86 77.2 76.23 78.86 77.39 76.11 75.76
SST 88.41 88.1 88.14 88.3 88.47 89.29 88.59

MRPC 84.43 83.81 84.93 84.87 84.71 84.65 84.08
SCITAIL 82.31 87.65 86.2 87.8 88.6 88.9 86.5
AGNEWS 88.08 87.51 87.55 87.36 87.99 88.53 88.13

Mean 71.98 73.16 72.86 74.37 73.27 74.23 73.94
Average Rank 5.62 4.92 4.62 3.0 4.04 2.5 3.31

Table 19: Performance for different regularization meth-
ods.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
500 Training datapoints

QQP 61.12 71.5 70.13 72.03 71.61 70.97 71.67
COLA 45.29 46.27 47.34 46.03 45.36 46.95 46.76
RTE 61.01 60.53 61.23 63.33 60.41 62.45 62.94

MNLI 41.74 49.05 46.32 51.11 42.25 49.07 44.73
YELP 93.32 93.46 92.87 93.04 93.27 93.2 93.35

CHEMPROT 65.59 74.2 70.78 73.2 70.04 73.47 72.9
QNLI 80.86 82.4 82.19 81.84 82.42 82.56 82.43
IMDB 83.65 90.42 91.47 90.57 89.45 91.32 90.49

SCICITE 78.84 79.19 79.21 79.14 78.38 79.45 79.8
SST 89.54 89.36 90.02 90.37 90.1 89.68 89.4

MRPC 84.44 84.69 85.4 84.93 84.77 85.26 85.62
SCITAIL 85.11 87.41 90.23 89.38 80.73 90.07 89.3
AGNEWS 89.09 88.93 89.0 89.09 89.59 89.53 89.54

Mean 73.81 76.72 76.63 77.24 75.26 77.23 76.84
Average Rank 6.08 4.38 3.69 3.31 4.85 2.77 2.92

Table 20: Performance for different regularization meth-
ods.

K Results without any filtered runs

STD++ DA WC ReInit R3F RPI RPM
Successful runs (Failed runs filtered)

Mean 81.16 83.74 83.58 83.3 82.55 84.01 84.36
std 2.87 0.56 0.83 0.76 2.19 0.61 0.49
Frac 0.34 0.06 0.18 0.05 0.11 0.00 0.04

All runs (Failed runs not filtered)

Mean 64.71 78.58 81.4 79.97 72.97 83.99 83.04
std 13.4 6.14 2.89 5.89 8.62 0.60 1.28

Table 21: Stability of fine-tuning results. RPI : RE-
PINAI , RPM : REPINAMLP . Frac: fraction of fine-
tuning runs filtered due to low performance. Mean, std:
mean and standard deviation in performance across all
datasets.

Table 22, and 23 shows performance without
filtering out failed runs.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
250 datapoints

YELP 92.51 92.68 92.97 93.64 93.13 93.13 93.57
RTE 55.6 58.12 55.96 60.29 58.88 59.78 60.14

MNLI 25.75 30.22 28.42 41.47 31.94 39.2 38.58
QNLI 72.71 77.5 75.27 77.62 77.43 78.82 76.13

SCITAIL 82.31 87.65 86.2 87.8 88.6 88.9 86.5
SST 88.41 88.1 88.14 88.3 88.47 89.29 88.59

CHEMPROT 55.22 58.6 59.52 64.92 59.6 60.72 62.32
AGNEWS 88.08 87.51 87.55 87.36 87.99 88.53 88.13
SCICITE 76.86 77.2 76.23 78.86 77.39 78.95 75.76

IMDB 83.5 80.13 89.51 89.44 89.05 90.38 90.33
COLA 41.57 40.39 45.14 43.73 40.76 43.98 45.28
MRPC 84.43 83.81 84.93 84.87 84.71 84.65 84.08
QQP 35.94 64.08 51.92 68.46 55.81 68.76 65.5

Mean 67.91 71.23 70.9 74.37 71.83 74.24 73.45
Average Rank 5.92 5.46 4.85 2.69 3.88 1.96 3.23

Table 22: Performance for different regularization meth-
ods without filtering failed runs.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
All datapoints

MRPC 86.84 90.67 88.6 90.98 89.9 91.49 91.12
IMDB-10k 66.59 93.24 93.69 92.7 93.1 93.96 93.87
YELP-10k 72.65 95.55 95.81 95.56 95.42 95.78 95.96
SCICITE 81.87 82.13 82.23 82.41 81.97 82.74 83.15
QNLI-10k 64.93 81.64 86.1 86.73 78.43 86.85 87.36

CHEMPROT 72.59 82.57 83.91 82.46 82.73 83.49 83.67
MNLI-10k 14.37 45.98 55.94 46.54 21.66 65.48 64.81

COLA 59.69 63.45 61.5 61.25 62.04 62.34 62.47
RTE 51.35 56.14 52.87 66.86 56.68 71.26 61.44

AGNEWS-10k 91.67 91.82 91.92 91.67 91.73 92.07 91.93
SST 81.95 84.13 92.32 92.28 83.88 92.71 93.23

QQP-10k 5.9 47.77 76.25 55.16 27.8 79.03 79.3
SCITAIL-10k 76.01 93.74 94.03 93.36 86.54 93.74 94.75

Mean 63.57 77.6 81.17 79.84 73.22 83.92 83.31
Average Rank 6.92 4.38 3.46 4.38 5.31 1.92 1.62

Table 23: Performance for different regularization meth-
ods without filtering failed runs.

L Detailed results for label noise

Table 24, 25, 26 shows detailed results with varying
amount of label noise in the training data.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
Noise level = 0.05

SCICITE 81.29 56.46 81.34 81.11 81.03 81.36 81.88
QNLI-10k 57.35 50.18 68.59 67.16 64.33 83.87 86.08

MRPC 87.4 87.48 86.66 89.11 88.41 88.41 86.81
RTE 51.35 48.59 51.55 65.63 48.65 67.58 61.16

IMDB-10k 72.43 68.28 77.4 62.14 91.63 92.84 92.56
CHEMPROT 71.57 81.42 83.88 81.81 81.48 81.64 82.18

AGNEWS-10k 91.1 91.11 91.55 91.07 91.26 91.21 91.47
YELP-10k 49.92 72.44 86.24 85.4 72.38 95.1 95.36
MNLI-10k 0.0 0.0 31.9 41.99 47.51 63.26 24.96
SST-10k 91.12 83.17 91.83 90.05 91.31 83.21 90.73

SCITAIL-10k 58.21 57.94 92.91 83.36 83.93 92.32 93.48
QQP-10k 0.0 0.0 76.24 57.38 0.0 77.78 78.82

COLA 46.38 47.84 59.33 43.47 45.15 59.53 48.29

Mean 58.32 57.3 75.34 72.28 68.24 81.39 77.98
Average Rank 5.5 5.96 2.92 4.38 4.35 2.42 2.46

Table 24: Training with at most 10k training datapoints
on 13 datasets.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
Noise level = 0.1

SST-10k 88.0 66.93 91.58 88.97 81.02 82.73 82.64
MNLI-10k 12.44 0.13 57.55 48.92 24.31 59.67 12.38

SCITAIL-10k 65.86 63.01 74.68 80.92 69.86 90.97 92.82
IMDB-10k 33.33 33.33 44.86 67.47 76.92 90.96 91.88

RTE 50.54 49.46 48.38 61.52 50.54 64.77 60.58
MRPC 84.11 83.69 85.11 88.49 84.33 86.06 87.4

AGNEWS-10k 90.19 90.24 90.54 90.23 90.32 90.51 90.58
CHEMPROT 80.75 68.56 82.25 80.56 69.38 82.49 71.92

QQP-10k 0.0 0.0 75.49 14.99 14.92 76.17 76.76
YELP-10k 60.78 60.77 83.65 76.4 73.85 94.22 94.64

COLA 56.75 45.85 58.65 52.8 45.43 44.12 55.6
QNLI-10k 50.32 50.54 65.61 63.15 66.69 74.24 83.83
SCICITE 80.79 69.21 80.45 80.71 80.29 78.76 81.52

Mean 57.99 52.44 72.22 68.86 63.68 78.13 75.58
Average Rank 4.96 6.46 3.23 3.46 4.73 2.77 2.38

Table 25: Training with at most 10k training datapoints
on 13 datasets.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
Noise level = 0.3

QQP-10k 0.0 0.0 68.62 13.08 16.01 68.31 67.36
SCICITE 34.18 24.67 43.99 73.7 62.73 67.3 73.7

COLA 3.42 6.67 35.97 22.14 12.8 15.01 24.99
IMDB-10k 33.33 33.33 47.15 43.14 33.33 33.33 35.6
MNLI-10k 0.0 0.0 1.29 0.0 0.0 0.22 0.0

CHEMPROT 41.96 54.1 69.21 75.81 45.41 67.7 53.96
QNLI-10k 50.11 49.89 56.27 55.13 50.27 50.18 77.96

AGNEWS-10k 70.31 83.14 67.91 81.75 82.41 45.87 68.06
RTE 49.46 49.46 51.48 53.14 49.46 60.83 54.51

YELP-10k 50.02 49.56 56.02 60.22 49.79 51.99 91.44
SCITAIL-10k 49.62 49.62 58.45 49.62 49.62 56.83 86.71

MRPC 80.92 81.38 81.26 78.42 81.22 79.54 80.63
SST-10k 58.23 64.04 57.73 75.53 63.03 57.08 57.98

Mean 40.12 41.99 53.49 52.44 45.85 50.32 59.45
Average Rank 5.5 4.88 2.77 3.23 4.54 4.04 3.04

Table 26: Training with at most 10k training datapoints
on 13 datasets.

M Representation Collapse - Continual
learning perspective

Table 27, 28, 29 shows results for representation
collapse when we finetune the model for task A
using different methods and then finetune the top
layer for task B.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
COLA -0.38 -0.63 3.39 -1.17 0.0 0.93 5.08
MRPC 81.62 81.22 83.13 81.57 81.44 82.12 82.42
QQP-10k 29.68 28.97 43.13 31.71 22.18 46.74 59.26
YELP-10k 50.86 51.55 55.13 51.46 50.99 52.63 60.04
SCITAIL-10k 59.55 58.44 74.46 61.32 49.62 67.38 71.24
SCICITE 24.82 24.84 28.74 24.75 24.67 25.02 27.71
AGNEWS-10k 20.22 20.5 36.61 16.92 20.15 31.01 62.9
IMDB-10k 41.36 33.33 49.87 41.0 43.36 43.57 55.72
CHEMPROT 33.1 32.46 33.23 32.92 32.34 33.09 33.15
MNLI-10k 8.07 8.27 16.76 8.36 6.92 14.58 17.69
SST-10k 51.25 54.55 58.21 52.24 52.2 55.93 66.36
RTE 51.32 51.62 51.5 51.26 53.55 47.83 52.17

Mean 37.62 37.09 44.51 37.69 36.45 41.74 49.48
Average Rank 5.17 5.17 1.92 5.33 5.67 3.33 1.42

Table 27: Results for training top layer for different task
after finetuning entire model for QNLI-10k

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
MRPC 81.45 81.4 82.67 81.18 81.22 82.13 81.15
CHEMPROT 33.46 33.46 33.46 33.46 33.46 33.59 33.46
QNLI-10k 59.06 63.74 67.98 61.65 50.54 64.95 64.58
YELP-10k 50.18 50.02 55.91 51.43 50.06 64.07 51.32
SCITAIL-10k 62.54 72.01 68.1 65.55 49.62 76.55 71.55
COLA 0.23 -0.79 0.0 -0.01 0.0 5.17 -0.82
AGNEWS-10k 16.02 19.77 32.56 19.6 10.76 64.32 38.5
IMDB-10k 39.92 45.49 45.45 39.17 33.33 66.28 34.55
SCICITE 24.67 24.67 24.65 24.67 24.67 28.51 24.67
MNLI-10k 11.73 17.18 18.91 15.72 0.0 19.57 19.38
SST-10k 49.69 nan 52.24 50.89 51.03 69.87 58.08
RTE 48.86 52.71 52.89 51.44 50.9 53.52 52.17

Mean 39.82 41.79 44.57 41.23 36.3 52.38 44.05
Average Rank 4.96 3.79 3.08 4.79 5.67 1.17 4.04

Table 28: Results for training top layer for different task
after finetuning entire model for QQP-10k

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
COLA 0.0 0.0 1.48 -0.59 0.0 5.06 1.91
MRPC 81.22 81.22 81.31 80.75 81.22 81.68 81.91
QQP-10k 0.0 0.0 18.89 60.51 0.0 60.87 36.29
QNLI-10k 50.54 50.54 57.24 58.24 50.54 62.8 55.56
YELP-10k 50.02 50.02 50.15 58.96 53.13 63.63 57.1
SCITAIL-10k 49.62 49.62 57.21 79.02 49.62 82.36 67.64
AGNEWS-10k 10.0 10.0 21.94 44.49 15.14 52.33 21.44
IMDB-10k 33.33 33.33 38.1 56.09 35.22 57.18 44.89
SCICITE 24.67 24.67 25.14 25.33 24.67 31.81 25.96
CHEMPROT 33.46 33.46 33.46 33.26 33.46 33.56 33.46
MNLI-10k 0.0 0.0 6.4 29.24 2.67 27.0 20.51
SST-10k 50.92 50.92 55.59 60.92 53.36 63.88 56.86

Mean 31.98 31.98 37.24 48.85 33.25 51.85 41.96
Average Rank 5.96 5.88 3.75 3.25 5.08 1.17 2.92

Table 29: Results for training top layer for different task
after finetuning entire model for RTE

N Measuring representation collapse

Table 30 show the sum of top-k normalized eigen-
values (divide each eigenvalue by the sum of eigen-
values) for k=10. From this, we can observe that
almost all the normalized eigenvalues after the first
twenty are close to zero

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
RTE 1.0 1.0 1.0 0.99 1.0 0.99 1.0

MRPC 1.0 0.99 0.99 0.96 1.0 1.0 1.0
QNLI-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SCITAIL-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
IMDB-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SST-10k 1.0 1.0 0.99 1.0 1.0 1.0 1.0
COLA 0.99 0.99 0.98 0.99 1.0 1.0 1.0

AGNEWS-10k 0.98 0.98 0.98 0.99 0.98 0.98 0.99
QQP-10k 1.0 1.0 1.0 1.0 1.0 0.99 1.0

MNLI-10k 1.0 0.99 0.99 0.99 1.0 0.99 1.0
YELP-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

CHEMPROT 0.98 0.97 0.97 0.98 0.98 0.98 0.99
SCICITE 0.99 0.99 0.98 1.0 1.0 0.98 0.99

Table 30: Normalized average of top-10 eigenvalues

Tables 31 and 32 show the GM-k and HM-k
for k=10. We observe that REPINAI achieves the
highest value and thus is most effective in reducing
representation collapse.

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
RTE 0.01 0.01 28.58 54.68 0.54 113.27 24.64

MRPC 47.83 85.21 108.67 65.41 59.4 61.13 19.25
QNLI-10k 29.3 34.28 54.86 16.92 29.65 47.15 46.11

SCITAIL-10k 25.23 58.43 47.44 26.62 31.48 49.61 33.93
IMDB-10k 32.82 32.53 29.47 12.69 23.31 48.51 35.45
SST-10k 58.83 68.08 65.03 27.32 67.7 59.49 44.76
COLA 69.32 82.06 84.79 44.59 42.05 68.46 71.23

AGNEWS-10k 220.03 221.59 186.54 95.6 202.22 208.1 179.2
QQP-10k 10.5 25.4 64.85 22.53 0.01 90.66 35.88

MNLI-10k 20.29 82.66 46.99 115.1 34.8 164.62 71.13
YELP-10k 19.27 33.91 39.9 8.13 10.12 33.49 25.33

CHEMPROT 499.58 646.59 613.5 603.17 601.67 619.9 446.36
SCICITE 164.7 171.53 163.86 88.84 108.6 190.12 152.38

Mean 92.13 118.64 118.04 90.89 93.2 134.96 91.2
Average Rank 5.08 2.62 2.85 5.38 5.31 2.31 4.46

Table 31: GM-10

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
RTE 0.0 0.0 9.0 14.79 0.1 41.73 7.15

MRPC 15.09 24.73 33.48 26.9 13.53 17.29 3.31
QNLI-10k 6.99 9.65 16.49 3.13 7.1 11.6 12.37

SCITAIL-10k 5.46 14.88 14.11 4.35 6.74 10.75 7.91
IMDB-10k 6.7 6.83 7.81 1.7 4.09 11.92 6.44
SST-10k 15.31 19.3 21.21 4.19 18.37 16.18 9.32
COLA 19.72 24.21 28.76 11.5 9.88 19.34 20.15

AGNEWS-10k 65.88 67.33 54.52 18.78 60.41 62.36 44.45
QQP-10k 1.56 5.6 17.67 3.68 0.0 26.38 9.33

MNLI-10k 5.68 27.28 13.1 28.45 10.77 50.47 20.74
YELP-10k 3.28 7.42 11.0 0.95 1.88 7.14 4.95

CHEMPROT 302.28 429.53 333.57 356.82 332.11 389.25 226.06
SCICITE 48.68 54.7 56.06 18.57 29.54 59.65 45.86

Mean 38.2 53.19 47.44 37.99 38.04 55.7 32.16
Average Rank 5.08 2.77 2.31 5.31 5.46 2.46 4.62

Table 32: HM-10

O Walltime Analysis

Walltime analysis: STD++ uses a single forward
and backward pass with simplest loss function and
thus has the least training time. ReInit is a close
second as it only differs in the initialization of the
model. WC also uses a single forward and back-
ward pass but is slower due to the regularization
loss function computation. R3F and DA use two
forward passes and two (effective) backward passes.
Our method on the other hand use only one for-
ward and backward pass. In addition to that we
use only an extra forward pass of the pretrained
model. Thus, our method is slower than STD++
, ReInit and WC and is faster than R3F and DA.
Table 33 show the training time for all the methods.
We observe that R3F consistently takes more time
than all the methods. REPINAI runs faster than R3F
and DA but slower than STD++ , WC and ReInit.
REPINAMLP runs slower than REPINAI .

Tasks STD++ DA WC ReInit R3F REPINAI REPINAMLP
CHEMPROT 584.01 1015.37 702.38 589.39 1415.28 826.09 1141.63
MNLI-10k 1506.74 2643.21 1723.52 1514.14 3746.99 1832.83 3022.97
SCITAIL-10k 1678.89 2962.31 1896.3 1684.06 4217.93 2418.12 3130.63
MRPC 162.09 258.92 214.94 157.42 362.83 226.59 299.13
QNLI-10k 1683.58 2966.56 1894.97 1681.34 4232.07 2414.78 3124.71
QQP-10k 1272.46 2194.95 1487.52 1276.92 3078.56 2307.62 2302.41
SST 5050.32 8537.84 5997.04 5080.05 11878.49 6019.1 9568.79
COLA 239.78 375.78 349.94 240.61 515.27 292.32 398.9
SCICITE 961.03 1746.23 1066.78 962.4 2838.07 1850.68 1835.6
IMDB-10k 1679.74 2975.29 1899.58 1692.33 4220.9 3149.3 3124.5
YELP-10k 1681.65 2975.09 1894.85 1686.21 4224.52 2426.62 3130.62
RTE 307.13 504.8 396.35 309.26 698.16 527.76 529.66
AGNEWS-10k 589.23 1046.27 675.37 595.06 1449.9 1125.27 1227.09

Mean 1338.2 2323.28 1553.81 1343.78 3298.38 1955.16 2525.9

Table 33: Training time for different methods

P Connection of GMand HMto
parameter estimation error

Let the pseudo linear regression task on finetuned
representations be defined by w ∈ Rd and the noisy
labels observed on zi’s be yi = zTi w+ϵi where ϵi’s
are the gaussian noise centered around 0 with iden-
tity covariance matrix. If ŵ is the least square min-
imizer (same as log-likelihood maximizer), then
ŵ = w +N

(
0, G−1

)
GM corresponds to minimizing the confidence

ellipsoid corresponding to the error ŵ − w. HM
corresponds to minimizing the expected ℓ22 norm of
the error vector ŵ−w. Derivation of the ŵ and the
explanation can be found in Madan et al. (2019).

