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ABSTRACT

Incompressible fluid on the surface is an interesting research area in the fluid sim-
ulation, which is the fundamental building block in visual effects, design of liquid
crystal films, scientific analyses of atmospheric and oceanic phenomena, etc. The
task brings two key challenges: the extension of the physical laws on 3D surfaces
and the preservation of the energy and volume. Traditional methods rely on grids
or meshes for spatial discretization, which leads to high memory consumption and
a lack of robustness and adaptivity for various mesh qualities and representations.
Many implicit representations based simulators like INSR are proposed for the
storage efficiency and continuity, but they face challenges in the surface simula-
tion and the energy dissipation. We propose a neural physical simulation frame-
work on the surface with the implicit neural representation. Our method constructs
a parameterized vector field with the exterior calculus and Closest Point Method
on the surfaces, which guarantees the divergence-free property and enables the
simulation on different surface representations (e.g. implicit neural represented
surfaces). We further adopt a corresponding covariant derivative based advection
process for surface flow dynamics and energy preservation. Our method shows
higher accuracy, flexibility and memory-efficiency in the simulations of various
surfaces with low energy dissipation. Numerical studies also highlight the poten-
tial of our framework across different practical applications such as vorticity shape
generation and vector field Helmholtz decomposition.

1 INTRODUCTION

Fluids are fascinating but complex to simulate, with applications from aerodynamics and hydro-
dynamics to special effects in computer animation. Flow on the surface is a challenging problem
while the practical usages are essential on the visual effects with foam or bubble (Da et al., 2015;
Deng et al., 2022), studies of liquid crystal films (Crowdy & Marshall, 2005; Turner et al., 2010),
atmosphere/ocean evolution (Miller et al., 1992; Niiler, 2001) and fluid-solid interaction in robotics
(Ruan et al., 2021). The incompressible Euler flow model serves as a valuable simplification of
real-world fluid dynamics. This model, characterized by a vector field v(x, t) representing velocity,
along with pressure p(x, t) and density ρf , adheres to the following equations:

ρf (
∂v

∂t
+ v · ∇v) = −∇p (1a)

∇ · v = 0, (1b)
where x in a surface S.

Two main challenges in solving Eqs. 1 puzzle the researchers: one is enforcing the governing
equation on the surface and the other is developing efficient approaches for the time integration
(advection) and the divergence-free constraint in Eq. 1b, which is critical to ensure the conservation
of fluid volume and energy.

Classical approaches often utilize grids or meshes on surfaces and reduce the problem to 2D sce-
narios. However, they encounter significant challenges in the geometry and the differential operator
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computation. Accurate calculation on surfaces relies on high mesh/grid quality, leading to lim-
ited robustness and flexibility on different geometry representations. Moreover, the introduction of
mesh or grid through spatial discretization also hinders simulation in a continuous spatio-temporal
domain owing to the limited memory usage. Finally, the traditional methods need to conduct advec-
tion and pressure projection for the divergence-free field, causing the energy dissipation problem.
While many alternatives are proposed to solve the problems (Qu et al., 2019; Elcott et al., 2007b;
Nabizadeh et al., 2022; Yin et al., 2023), they often come with implementation complexities and
lack adaptability to different geometries.

As a promising alternative, simulations based on the neural implicit representations are proposed in
recent years (Richter-Powell et al., 2022; Chen et al., 2023). Unlike other data-driven simulation
methods (Morimoto et al., 2021; Pfaff et al., 2020) that have limited generalization ability, these
methods leverage neural networks to parameterize spatial functions and support the simulation on
the continuous domain with limited storage. However, existing methods (Raissi et al., 2019; Chen
et al., 2023) can not guarantee the divergence-free property and suffer from the advection error,
which leads to the energy dissipation problem. Furthermore, extending these methods to surfaces
presents additional challenges for practitioners.

To tackle the challenges, we propose a neural flow on surfaces method based on the neural implicit
representation. Neural implicit representation keeps high memory efficiency and supports robust and
accurate differential operator computation for the continuous simulation across various geometry
representations. Our method leverages a construction on the surface with Closest Point Method
(Ruuth & Merriman, 2008) and differential forms, and automatically satisfies the divergence-free
constraint, assisting us to enforce the constitutive laws on the surface. To mitigate the challenges
of energy dissipation encountered in both classical and advanced methods, we adopt a covariant-
derivative based advection to enforce the dynamics of the incompressible fluid. By integrating this
process with our divergence-free field construction, our framework eliminates the need for velocity
advection and pressure projection, thus minimizing energy dissipation. Furthermore, our framework
is versatile and applicable to various tasks such as generation and field decomposition, offering an
end-end solution that capitalizes on the advantages of neural representation. In summary, we make
the following contributions:

• We present a novel neural physical simulator for surface flow, named NFFS (Neural Func-
tional Flow on Surface), leveraging the Closest Point Method and exterior calculus in the
neural implicit representation. Our approach ensures divergence-free properties and adapt-
ability across various geometric surface representations. Notably, it is the first study to
present simulation results of incompressible fluid flow on implicitly neural-represented sur-
faces (Sitzmann et al., 2020) with a guarantee of divergence-free behavior.

• We design a complementary advection process based on the covariant derivatives for fluid
dynamics with low energy dissipation.

• We conduct comprehensive numerical studies to verify the correctness, energy preserva-
tion, memory efficiency and geometry adaptivity for our proposed framework. Benefitting
from the advantages of compact representation, as also highlighted in Chen et al. (2023),
our results show that our method achieves approximately 15 times higher accuracy than
other methods with the same storage cost and provides 5 times memory savings compared
to the classic method while accurately describing the phenomenon of fluid dynamics on the
surface. Additionally, we demonstrate the conditioning ability of our simulator through an
end-to-end generation task and apply it to a real-world velocity field decomposition task.

2 RELATED WORKS

Flow on two-dimensional surface. The main stream of the fluid simulation consists of the La-
grangian methods like Smoothed Particle Hydrodynamics (SPH) (Gingold & Monaghan, 1977;
Monaghan, 1992) and the Euler methods such as stable fluid with Mark-and-Cell grid (Stam, 1999).
On surfaces, particle-based methods have been studied extensively in the past decade. The pri-
mary focus is the differential operator with SPH-style. Many approximators (Petronetto et al., 2013;
Belkin & Niyogi, 2008; Cheung et al., 2015; Nealen, 2004) are proposed and adopted in fluid dy-
namics (Auer & Westermann, 2013; Leung et al., 2011; Wang et al., 2020; Tao et al., 2022; Suchde,
2021). However, the particle-based methods suffer from high computation cost for the comparable
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Figure 1: The paradigm of our paper. Left: the pipeline of our proposed methods. Our method uti-
lizes the implicit neural representation to construct a divergence-free field (showed in Sec. 3.1). We
employ exterior calculus and Closest Point Method to construct the surface velocity field v and vor-
ticity field ω (showed in Sec. 3.2). Subsequently, we adopt the covariant derivatives based advection
to calculate the flow in each discretized time iteratively (showed in Sec. 4.1). Right: the potential
applications of our proposed method: (a) Our method supports simulation on different surface rep-
resentation, like analytic surfaces (showed in Sec. 5.1), explicitly represented mesh surface (showed
in Sec. 5.2) and implicitly represented surface (showed in Sec. 5.2). (b) Our method also enjoys the
ability of conditioning and generation benefitting from our network architecture (showed in Sec 4.2
and 5.3). (c) We demonstrate the effectiveness of our method for the Helmholtz decomposition and
analyze the potential usage for scientific research (showed in Sec. 5.4).

accuracy. Dealing with differential forms on surfaces for divergence-free projection also remains
challenging, particularly without correspondence between particles.

We next focus our discussions on Euler methods, which can be categorized into velocity-based
methods and vorticity-based methods. Velocity-based methods, following Stam (1999), utilize the
global or local surface parameterizations (Lui et al., 2005; Hegeman et al., 2009; Hill & Henderson,
2016; Yang et al., 2019), which might introduce undesired distortion. Methods like Stam (2003)
restrict the problem to the subdivision surfaces to mitigate this issue. Shi & Yu (2004) tackles the
problem by directly simulating on general triangle meshes but entails explicit complex computation
of flow lines. More recently, Bhattacharya et al. (2019) extends these to unstructured quadrilateral
surface meshes. However, these methods require the advection and divergence-free projection, lead-
ing to energy dissipation (Nabizadeh et al., 2022). While there are approaches to address the energy
problem such as Mullen et al. (2009); Pavlov et al. (2011) and recent Qu et al. (2019); Deng et al.
(2023), they do not primarily focus on the surface dynamics and often entail additional complex
computations (such as accurate characteristic mapping (Wiggert & Wylie, 1976)).

For the stream of vorticity-based approaches, methods are grounded in differential forms and ex-
terior calculus on surfaces, circumventing surface parameterization and naturally enforcing the
divergence-free property. One of the pioneering methods in this domain was proposed by Elcott
et al. (2007b). While their method preserves circulation (vorticity), it suffers from the issues of nu-
merical instability. Another notable vorticity-based approach is presented by De Witt et al. (2012),
leveraging eigenfunctions of the Laplacian operator to reduce the computational cost of the Pois-
son solver when computing velocity from vorticity. This approach has been further extended in
works such as Cui et al. (2018; 2021) for spectral-based simulations. However, such methods can
be computationally expensive and require numerous eigenvectors for flows with high spatial fre-
quencies. A method closely related to ours is Functional Fluids on Surfaces (Azencot et al., 2014),
which employs the Discrete Exterior Calculus on the surface to derive the vorticity and advect with
covariant derivatives. This approach achieves convenient computation on surfaces with the energy
preservation. Our method builds upon this by employing continuous exterior calculus to generate
divergence-free fields and vorticity functions on surfaces. The theoretical accuracy of our method
is higher with a sufficient number of surface samples. Moreover, we incorporate the neural implicit
representation to alleviate the high memory burden associated with high smoothness and accuracy
requirements.

Physical Simulation based on Neural Network. Neural physical simulation can be divided into
two main streams. The first one is the data-driven simulation. This type of methods often aims at
solving simulation problems based more on data but less on the governing equation. They often
adopt the training data from the classical solvers or the real world observation to make the neural
network learn the physical rules and generalize it to other scenarios. Some convolution network
approaches (Morimoto et al., 2021) and designed U-Net approaches (Lu et al., 2019) show higher
efficiency than the classical solvers. Neural operator approach (Li et al., 2020) makes full use of
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the Fourier layer and becomes an important milestone for the type of methods. Recently, a newly
proposed Lagrangian Flow Networks (Torres et al., 2023) embeds the idea of the characteristic map-
ping and design a data-driven PDE solver. However, these methods may struggle to generalize well
to different initial/boundary conditions, material parameters, or geometries. The training data ac-
quisition and time-consuming training processes also block their wide applications. Another stream
of the line is to embed the governing equations into the network. For this type, one representative
direction we have to mention is Physical-Inform Neural Network (PINN) (Raissi et al., 2019). The
method designs the physical loss term according to the governing equation and the neural network
is trained to extract the features of the spatiotemporal correlation and fit the target field via the phys-
ical loss. However, the ways to directly force the neural network to fit all the physical rules make
the training process difficult. The training will cost a very long time and often can not achieve the
required accuracy. To fulfill this issue, the implicit neural representation Chen et al. (2023) is also
introduced to better describe the spatiotemporal dependencies and reduce the burden of network
training. Nevertheless, this method enforces physical laws via an operator splitting manner, leading
to the energy dissipation problem. Kim et al. (2019); Rao et al. (2020); Richter-Powell et al. (2022)
propose divergence-free neural field construction approaches and optimize the advection process.
These methods, while effective in guaranteeing the divergence-free property, face challenges in di-
rect application to surface flows and encounter difficulties in optimization processes.

Hence, in this work, we propose a novel framework that constructs a neural-represented divergence-
free vector field on surfaces to embed the efficient spatial representation with the physical prior. We
also design the corresponding covariant derivative based advection process for the fluid dynamics
computation. Our method can achieve a memory-efficiency, accurate and energy-preserving simula-
tion on different surfaces representation, even for the implicit neural represented surfaces. We show
the paradigm of our paper in Fig. 1.

3 NEURAL FLOW ON SURFACES

In this section, we present a framework designed to enforce the divergence-free characteristics for
vector fields on surfaces. We first present the general philosophy to construct the divergence-free
field then we explain how we apply it to the different surface representations, especially in implicit
neural represented surfaces.

3.1 CONSTRUCTION OF THE DIVERGENCE-FREE VECTOR FIELD

We adopt the terms of differential forms to derive the divergence-free vector field. More preliminar-
ies are shown in Do Carmo (1998) and Appendix A. in Richter-Powell et al. (2022). We first discuss
the divergence-free vector field on a Riemannian manifoldM, (e.g. R3).

LetAk(M) as the space of k-forms. The operator d: Ak(M)→ Ak+1(M) is the exterior derivative
while ∗: Ak(M) → An−k(M), where n is the dimension ofM, denotes the Hodge star operator
mapping each k-form to an (n − k)-form. Our vector field can be represented as 1-form, v =∑n

i=1 vidxi.

With the notation of the differential forms and the computation tools of the differential manifold,
we can define the divergence div(v) = ∗d ∗ v. We can observe that div(v) can be expressed with
differential k-forms, but after computation it reduce to a 0-form, resulting in a scalar function.

A fundamental property of the exterior calculus need to be proposed that for an arbitrary (n − 2)-
form µ ∈ An−2(M), we have

d2µ = d(dµ) = 0, (2)

then it follows that
v = ∗dµ (3)

is divergence-free since ∗∗ yields a sign function. Consequently, our objective is to construct a
parametric (n − 2)-form µ that enforces a divergence-free v. We can construct a network param-
eterization to construct µ and derive the required velocity field v with the divergence-free property
for the incompressibility via Eq. 3. Therefore, the main issue comes to the computation of the op-
erator ∗ and d on our provided surface S. We calculate it by Closest Point Method in the following
subsection.
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3.2 CONSTRUCTION OF THE NEURAL FLOW ON SURFACES

On the surfaces S embedded in R3, the analysis differs. To facilitate a more convenient analysis
of differential forms on the surface without specific surface parameterization, we consider studying
S in R3 instead of R2. The Closest Point Method (CPM) (Ruuth & Merriman, 2008; Li et al.,
2023a) serves as a tool to transform differential forms on surfaces into ones defined inR3, using the
closest point on the surface. We define the inclusion map j : S → N ⊂ R3, where N ⊂ R3 is a
neighborhood of j(S). The closest point function cp : N → S takes a point in the neighborhood and
returns the closest point on the surface. Then we can define the pullback operator j∗ : Ak(N ) →
Ak(S) and cp∗ : Ak(S) → Ak(N ) to map the tangential vector in the neighborhood and on the
surfaces. The endomorphism (j ◦ cp)∗ = cp∗j∗ : Ak(N )→ Ak(N ) replaces a neighbor k-form by
its extension from its value at the surface j(S).
With the Closest Point Method, we can construct the divergence-free field on the surfaces S in the
following theorem. 1

Theorem 3.1. Given a parameterized scalar function (stream function) σ : S → R, one can
construct divergence-free v : S → R3, for x ∈ S:

v(x) = j∗((∇(cp∗σ) ◦ j(x))× n(x)), (4)

where n : S → R3 represents the normal of the surfaces, and the corresponding vorticity function
ω : S → R can be defined as

ω = (∇× v(x)) · n(x). (5)

Equation 4 defines a stream function and employs the gradient operator to transform into a vector
field. The operator cp∗ pulls the vector field back into the ambient space, while n and j∗ ensure that
the field lies on the tangent plane and is restricted to the surface. The vorticity can be interpreted
as having a rotation axis aligned with the surface normal, as it is evaluated directly on the surface,
making it a scalar field. To provide a clearer understanding of the computation described in Theorem
3.1, we include an illustration in Fig. 2.

𝑥

𝑗(𝑥)
𝛻(𝑐𝑝∗𝜎)

𝒏

𝑗∗(𝛻(𝑐𝑝∗𝜎) ∘ 𝑗(𝑥))

𝒗

Figure 2: Illustration for
divergence-free field.

Proof sketch: Our goal is to construct a divergence-free field. We
adopt the form in Sec. 3.1 ∗dµ as the basis. Then we calculate the
value of this differential form for a surface function. We utilize the
Closest Point Method and pullback the surface field v into the ambient
space. We extend the differential form with surfaces normals to R3 by
the pullback and derive the parameterization on R3 that preserves the
divergence-free. Moreover, the pullback utilizes the closest point and
shares the property that the closest point of the surface point is the point
itself. Therefore, we can simply constrain this parameterization for v
on the surface and derive our required surface field that satisfies the
divergence-free property on the surface. We can also derive vorticity
function as ∗dv through the similar process.

Remark: The construction of the divergence-free field in Eq. 4 is related to the term “surface
curl” in the electromagnetic’s Helmholtz decomposition (Scharstein, 1991). However, our theorem
provides a more formal formulation indicating why it is divergence-free from the perspective of the
Closest Point Method and adopts it as a neural parametric function for surface vector field dynamics.
Building on our analysis, we can further derive a scalar vorticity function on the surface to support
the fluid dynamics simulation.

Following the conclusion of Theorem 3.1, we can construct our neural flow (a parametric vector
field based on σ and n) for different representations of the surfaces. For the explicit representations
like sphere, plane (analytical), and mesh (discretized), our neural flow can be constructed with sam-
pling on the surfaces and computing/querying the normal. Moreover, the most significant aspect of
our construction lies in its applicability to implicit representations, particularly the implicit neural
representation (INR), such as DeepSDF (Park et al., 2019) and siren (Sitzmann et al., 2020). These
methods take x ∈ R3 as input and return the sign distance function s(x). In the application on this

1Here we follow the similar discussions as Richter-Powell et al. (2022) and omit the case for non-zero
homology for clear and concise in theoretical analysis. We actually can address the issue as we state in the
following sections.
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type of surface, points x ∈ S can be simply sampled by x− s(x) ∇s(x)
∥∇s(x)∥2

leveraging the character-
istics of the sign distance function, while the normal on the surface can be computed using ∇s(x).
Then, for the sampled points on the surface, we can create a parametric form σ(θ, x) and finalize
the divergence-free construction with the normals following Eq. 4. The function can be also derived
via Eq. 5.

Our construction of v directly enables tasks like Hodge-Helmholtz decomposition (extracting the
divergence-free component given a vector field). It can be simply achieved with our construction
with the mean square error loss for v. In addition, the construction of ω can be utilized to conduct
advection serving for the vortices dynamics in fluid simulation, as we will introduce subsequently.

4 APPLICATIONS WITH NEURAL FLOW ON SURFACES

In this section, we put our construction of neural flow on surfaces into practice. We first discuss the
advection for the simulation of the real fluid dynamics. Then we delve into applications involving
the conditioning.

4.1 ADVECTION OF NEURAL FLOW ON SURFACES

Our vector field inherently satisfies the incompressibility condition with the divergence-free con-
struction, eliminating the need for pressure projection to enforce the constraint and associated
errors. However, our proposed field, while possessing this advantageous property, introduces
a new challenge: how can we advect this neural field over time to adhere to physical laws?

𝜔𝑡(𝑝) = 𝑎0

Φ𝑠(𝜔𝑡)(𝑝′) = 𝑎0
𝑻𝒑(𝑺)

𝒗(𝑝)
𝑝

𝑝′

𝛻𝜔(𝑝)

𝐷𝒗(𝜔)(𝑝)

Figure 3: Illustration for
covariant derivative.

The incompressible Euler equation can be written with the vortex form
(Davidson, 2015):

∂ωt

∂t
= −(vt · ∇)ωt, (6)

where vt is the divergence-free velocity field and ω is the vorticity field.

Remark: A direct sequence of Eq. 6 is that ωt is transported in the
same manner as fluid particles. This implies that we can advect/diffuse
ωt similarly to a scalar property carried by the particles, such as tem-
perature.

For the advection process, instead of the semi-Lagrangian scheme
(Staniforth & Côté, 1991) that requires the discretization, we opt for
a functional way to fully enjoy the continuity of our neural field construction (Azencot et al., 2014).
As indicated in the remark above, we define the flow ϕt(p) that denotes the particle position after
time t for the particle that starts at time 0. That is,

∂ϕt(p)

∂t
= vt(ϕt(p)), ϕ0(p) = p, (7)

for p ∈ S. Then we can observe ϕt is an invertible self-map on S and can be adopted to transport
ωt. Define ϕt acts on the smooth function f : S → R through the push forward:

Φt(f) = f ◦ ϕ−1
t . (8)

We can find out our vorticity mapped by Φ satisfies:

ωt = Φt(ω0). (9)

Next we implement the advection of ω. We discretize time and consider time i, ωi with the time
step h. Then we can impose the following requirement, by assuming vi advecting for time h− t and
vi+1 advecting for time t:

ωi+1 = Φi→i+1(ωi) = Φ
vi+1

t ◦ Φvi

h−t, (10)

as t ∈ [0, h], which is similar with the implicit Euler scheme (Butcher, 2016). This enables us to
derive the equivalence for the forward advected ωi (along vi) and backward advected ωi+1 (along
vi+1) by taking t = h/2 as follows:

Φ
vi+1

−h/2(ωi+1) = Φvi

h/2(ωi). (11)
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Then our goal turns to compute Φv
t . We first define the covariant derivative Dv(f) as a function g,

which measures the change in f w.r.t. the flow under v:

g(p) = Dv(f)(p) = lim
t→0

f(ϕt(p))− f(p)

t
. (12)

A classic result in Riemannian geometry is that the covariant derivative can be computed as Morita
(2001) (as shown in Fig. 3):

Dv(f)(p) = g(p) = ⟨(∇f)(p),v(p)⟩p . (13)

With the conclusion in Azencot et al. (2013) (Lemma 2.5), we can derive that

Φv
t (ω) = exp(tDv)ω =

∞∑
k=0

(tDv)
kω

k!
, (14)

with respect to v. Using Eq. 13 and Eq. 14 above, along with the first-order approximation estimated
by inner product, we can derive the following expression for each time step:

Li = ωi − ωi+1 +
h

2
⟨∇ωi,vi⟩+

h

2
⟨∇ωi+1,vi+1⟩ = 0. (15)

Then our advection schemes involve iteratively minimizing the loss function Li with respect to
parametric ωi+1 and vi+1 through Theorem 3.1 and preparing them for the advection for next time
i + 2. More specifically, for the parameters θi of the parametric function ωi and vi, we seek to
optimize

θi+1 = argminθi+1

∑
x∈M⊂S

Li(h, ω(θi),v(θi), ω(θi+1),v(θi+1)), (16)

whereM is the sample set from the surface and {θi}Ti=0 represents the vector field for T time steps.

For the initial time θ0, we utilize the given velocity field v0 or vorticity field ω0 and conduct fitting
for initialization. For the case that v0 and ω0 are all provided, these exists the harmonic component
that does not contribute to the vorticity but influences the velocity field. The term is often associated
with the topological structure and modeled as time-invariant (Azencot et al., 2014). Therefore, we
need to construct another time-invariant field parameterization (MLP) to fit the harmonic term for
the non-zero homology. We can follow Richter-Powell et al. (2022); Azencot et al. (2014) and
simply add another parameterized vector field η to Eq. 4. Specifically, at the initial time, we employ
another MLP η to learn the residual in the initial velocity after fitting the vorticity, treating this
residual as the harmonic components. Similar with Azencot et al. (2014), η remains time-invariant
in subsequent velocity computations and not trained in the following iterative computation. More
discussions about the topology are included in Appendix F.1.

For all the examples presented in this work, we solve this time-integration optimization problem via
Adam (Kingma & Ba, 2014), a first-order stochastic gradient descent method. The computational
process is showed in the pseudocode Algorithm 1 in Appendix D.

4.2 CONDITIONING PROPERTY IN NEURAL FLOW ON SURFACES

As mentioned in Theorem 3.1, we need to construct parametric σ(θ, x) for x ∈ S and parameters
θ. The formulation also allows us to conduct conditioning, i.e. function σ(θ, x, z), where z is the
features of the conditioning for the divergence-free field. This property can be leveraged in different
tasks. For instance, in Sec. 4.1, the feature z can represent time t. Moreover, for the tasks involving
the vector field generation, encode z can represent semantic features extracted from natural scenes
or images, thereby enabling control over the shape, scale or other more semantic information of
the field. We further present an example utilizing the variation auto-encoder for the vorticity field
generation (settings in Appendix C and results in Sec. 5.3), showing the capability of our framework
to involve the semantic prior.

5 NUMERICAL STUDIES

In this section, we conduct numerical studies for our proposed framework. Our primary emphasis
lies in verifying the efficacy of our framework in fluid dynamics across various surface represen-
tations, exploring conditioning characteristics, and demonstrating practical applications such as the

7



Published as a conference paper at ICLR 2025

Velocity

(Ours)

Vorticity

Ours

PINN

INSR

Small 

Grid

Reference

GT

Time 0s Time 4s Time 8s Time 0s Time 4s Time 8s

Figure 4: Comparison results for sphere jet flow.

Helmholtz decomposition using real-world data. It is worth noting that our method does not rely
on any training data, distinguishing it from certain neural network-based simulation methods (Mo-
rimoto et al., 2021; Lu et al., 2019; Pfaff et al., 2020; Torres et al., 2023).

Methods Error Time Storage
PINN 1.73e5 12.1 h 568.1KB
INSR 8.63e4 20.2 h 516.3KB
Small-F.S. 5.34e3 0.8h 583.8KB
Ours 2.89e2 16.5 h 532.8KB
GT N/A 8.3 h 2643.0 KB

Table 1: Quantitative results for the sphere jet flow. Error: mean square error (MSE) averaged by
100 time steps on 81924 mesh vertices.

5.1 FLOW ON THE ANALYTICAL SURFACES

In this subsection, we present the benchmark studies for our proposed framework on the analytical
sphere and inclined plane, which allows us to easily derive samples and normal. We design the
sphere jet flow and inclined plane to assess the correctness of our methods, compared against func-
tional fluid dynamics and other baseline methods. Additional, we also utilize a sphere rot case to
further validate the energy-preservation characteristics of our method in Appendix E.1.

GT Ours Small.F.S INSR PINN HOLA-7 Pseudospectral Elcott et al. 2007

Figure 5: Vorticity comparison for inclined planar Taylor vortices on the 40th time step. HOLA;
Pseudospectral; Elcott et al 2007 results are quoted from McKenzie (2007).

Sphere Jet. On the sphere, we also simulate a jet flow as illustrated in Fig. 4. We initialize two
opposite vortices on the sphere to generate the jet. Our vorticity results are compared with those from
PINN (Raissi et al., 2019), Implicit Neural Spatial Representations (INSR) (Chen et al., 2023) and
Functional Fluid on Surfaces with the same storage cost. We use higher-resolution Functional Fluid
on Surfaces as the reference ground truth, whose vector field storage is 5 times than ours. The results
depicted in Fig. 4 indicate our method better characterizes the jet phenomenon of the flow vortices
compared with other methods. Our method allows optimization on the subspace of divergence-
free functionals via the physical constraint in network design while others need projection to the
divergence-free functional subspace via an extra-designed loss function, which brings the error in
each discretized time step, leading to the significant inaccuracy with the cascading effects in Fig. 4.
Additionally, our method produces smoother results since we sample across the entire sphere rather
than only solving for the mesh vertices as in high/low-resolution Functional Fluid on Surfaces. In
other words, for higher resolution and smoother results, the Functional Fluid on Surfaces method
requires more storage, whereas our memory cost remains constant. We provide the quantitative
comparison for the vorticity values on the reference ground truth method’s mesh vertices. The mean
square error in 100 time steps is shown in Tab. 1. The results demonstrate that at the same memory
cost, ours can achieve the highest accuracy compared to other methods. More empirical results and
comparison with both classical and advanced methods are included in Appendix E.3 to further verify
the effectiveness of the proposed framework.
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Hand

Vortex Pair

Spot

Jet Flow
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Reference

GT
Reference
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Figure 6: Results for flow on explicit meshes.

Taylor vortices on inclined plane. We also simulate Taylor vortices on an inclined plane with a
known normal. The phenomena observed should be similar to those on a 2D plane. The initialization
of the vortices is referred to McKenzie (2007). The quantitative results are displayed in Fig. 5.
Ours capture the details of vortices phenomenon with high smoothness and low alias. The classical
methods with the close memory cost lost some details or leaves aliasing artifacts. The advanced
method INSR shows a similar result but still fails in details and vortices energy preservation due to
the energy dissipation. PINN suffers from the largest energy dissipation and the result is the least
accurate due to the enforcement of the divergence-free constraint. We also include the quantitative
results and more comparison with classic solvers in Appendix E.2 to further show the memory
efficiency and accuracy of our proposed method.

5.2 FLOW ON THE EXPLICIT AND IMPLICIT MESHES

Vorticity

Velocity

Time 1 Time 2 Time 3 Time 4 Time 1 Time 2 Time 3 Time 4

Vorticity

Velocity

Figure 7: Results for flow on implicit neural representation.
In this subsection, to further demonstrate the generality and robustness of our methods, we present
the flow results for both explicit and implicit geometry. For these geometries, the samples and
normal can not be analytically derived, resulting in inherent errors. Nevertheless, we demonstrate
that our method still performs effectively and captures the flow phenomenon accurately2.

Flow on the explicit meshes. We initialize the Taylor vortices pair and jet flow on the explicit hand
(Jacobson et al., 2018) and spot model (Crane et al., 2013a). The results are depicted in Fig. 6. They
show that albeit less smooth results, due to the relatively low mesh resolution, our flows exhibit the
similar behavior as the reference GT and effectively capture the vortices and jet phenomenon.

Flow on the implicit neural representation. We also simulate a jet flow on the implicit neural rep-
resented Armadillo (Krishnamurthy & Levoy, 1996) and Lucy (Turk & Levoy, 1994). The results
in Fig. 7 accurately capture the smooth jet flow phenomenon on different implicit surfaces. Sur-
prisingly, the classic functional flow on surface method fails to converge for both the mesh obtained
from marching cubes on our implicit neural representation and even the original mesh (using a New-
ton solver). To substantiate our claim regarding non-convergence, we include more studies in the
supplementary (Appendix E.4) that lists the simulation crash time steps across different marching
cube resolutions for the traditional methods. The outcome indicates that our method keeps higher
robustness than the traditional method which depends on mesh quality and exhibits instability but
consumes high memory when applied to the implicit neural representations. Instead, our method

2Note that we do not compared with INSR and PINN in these cases, since the advection and projection in the
two methods can not be simply adopted to the flow on the various surfaces without the surface parameterization
to R2 and the continuous pullback to R3, which are beyond the scope of the work.
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only needs the samples in 3D rather than meshes, thereby avoiding the subtle in the geometry and
topology inherent in the complex shape, and therefore derive the smooth jet flow results. More-
over, the learnable neural divergence-free field is capable of tolerating errors and supports more
robust simulation in the long term. Generally speaking, our method supports wider applications on
different geometry representations with high memory efficiency in practice.

Date 1: Divergence-free Magnitude Date 1: Total Magnitude Date 2: Divergence-free Magnitude Date 2: Total Magnitude

(a) Vorticity fields generation. (b) Helmholtz decomposition for 100-metre wind data.

Figure 8: Vorticity fields generation and decomposition tasks.

5.3 FLOW WITH CONDITIONING

To verify the conditioning property for our proposed neural-based framework, we design the gen-
eration task as stated in Sec. 4.2 and Appendix C. We take EMNIST dataset (Cohen et al., 2017)
as the image input and generation the divergence-free velocity fields with the vorticity imitating the
silhouettes of alphabets.

We construct a variational auto-encoder for the vorticity fields representing different alphabets in
Fig. 8 (a). The numerical studies demonstrate the feasibility of our proposed framework, benefitting
from the neural network, to effectively utilize conditioning encodes from other modalities. Ours
operates in a more end-to-end manner compared to approaches that first generate and then fit with
classic simulators, thereby avoiding the repeated fitting process for each generation.

5.4 FLOW FOR HELMHOLTZ DECOMPOSITION

Finally, we apply our method to the real-world atmosphere dataset (Raoult et al., 2017). The
Helmholtz decomposition is performed on the 100-metre wind velocity data with our proposed
framework. In this study, we make the sphere assumption for the latitude and longitude coordi-
nates in the dataset and derive the normal analytically. The results, shown in Fig. 8 (b), reveal
identifiable vortices after the decomposition. Further inference can be made regarding atmosphere
information from the results (Cao et al., 2014; Hammond & Lewis, 2021).

6 DISCUSSION AND CONCLUSION

This work adopts the neural representation to construct the parametric divergence-free vector field
based on the Closest Point Method that supports exterior calculus on the surfaces. Our framework
facilitates field construction along with covariant-derivative-based advection directly on various sur-
face representations, especially on the implicit neural representation, bypassing the need for march-
ing cubes or meshing functions. It is not well-supported by classic simulators. Our framework
aligns well with current trends in neural implicit representation methods like DeepSDF (Park et al.,
2019) and NeuS (Wang et al., 2021) from this point. The experiment results validate the correctness,
energy-preserving and memory-efficiency of our method. Furthermore, our framework shows high
robustness and flexibility and also supports various conditioning tasks for further applications.

While offering important benefits, our method also suffers from limitations. Our main limitations
stem from topology, geometry and the time efficiency, and we have discussed the details in Ap-
pendix F. For more future extensions, a theoretical analysis of convergence and stability of our
method would be valuable. Also, more efforts in advection can be made, including high order ap-
proximation (Suzuki, 1985), combination with other advanced methods like reference mapping (Li
et al., 2023c) and data-driven network (Liu et al., 2021). Expanding support for boundary conditions
and flow viscosity 3 on the surfaces are also vital, for more realistic and practical applications. It
is also a promising direction to integrate our proposed framework into the existing neural recon-
struction pipeline like NeRF (Mildenhall et al., 2021; Wang et al., 2021), enabling more improved
performances in dynamic reconstruction and inverse physics with the vision input.

3The viscosity term can be also supported by applying the Laplacian ∆ to the vorticity function ω and
⟨(∇ω),v⟩. We can derive the calculation on the surface using Theorem 3.1 by substituting the stream function
with ω and ⟨(∇ω),v⟩.
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A PRELIMINARIES FOR THE MATHEMATICAL TOOLS

A.1 THE DIFFERENTIAL GEOMETRY IN Rn

We provide an in-depth discussion of our field construction which follows the introduction in Ap-
pendix A of Richter-Powell et al. (2022). Please refer to the work for more details. Readers with
a background in differential geometry can skip this section. We first discussion the basic concept
in the differential geometry for the introduction of differential form that supports us to derive and
prove our theorem in the paper.

We take a local coordinate chart for x ∈ Rn as x = (x1, ..., xn) and dx1, .., dxn denotes the
coordinate differentials, i.e. dxi(x) = xi, i ∈ [n] = {1, ..., n}, which is also the co-vector field
of the local coordinates. Note that we discuss Rn as an example and all the definition can be
extended for smooth manifold and well-defined but needs the construction of the local chart or other
mathematical manipulations. For more extensive introduction see Do Carmo (1998); Morita (2001).

Define the linear vector space ∗k(Rn) forRn as the space of the k-linear alternating map:

ϕ :

k times︷ ︸︸ ︷
Rn × . . .Rn → R. (17)

A k-linear alternating map ϕ is linear in each coordinate and satisfies the alternating property:

ϕ(v1, . . . , vi, . . . , vj , . . . , vn) = −ϕ(v1, . . . , vj , . . . , vi, . . . , vn). (18)

The basis of the space Λk(Rn) can be denoted with the differentials by dxi1 ∧ · · · ∧ dxik . The way
of the basis act on k-vectors, v1, ..., vk ∈ Rn as:

dxi1∧· · ·∧dxik(v1, ..., vk) =
1

k!

∑
Υ∈Sk

sgn(Υ)dxi1∧· · ·∧dxik(vΥ(1), ..., vΥ(k)) = det[dxir (vs)]r,s∈[k],

(19)
where Sk is a permutation for i1, ..., ik.

More specifically, for χ ∈ Λk(Rn) can be represented by the basis as:

χ =
∑

i1<i2···<ik

ai1,...,ikdxi1 ∧ · · · ∧ dxik =
∑
I

aIdx
I , (20)

where i1, . . . , ik ∈ [n] and I = (i1, . . . , ik) determining scalars aI and dxI = dxi1 ∧ · · · ∧ dxik .

The space of differential k-form Ak(Rn) (k-forms in the main content) is defined by the smooth
function wI : Rn → R as w ∈ Ak(Rn) : Rn → Λk(Rn):

w =
∑
I

wIdx
I . (21)

Then the differential operator can be viewed as d : A0(Rn)→ A1(Rn) as:

df(x) =

n∑
i=1

∂f

∂xi
(x)dxi. (22)

The exterior derivative d : Ak(Rn) → Ak+1(Rn) is defined as a linear operator and can be calcu-
lated by:

dw(x) =
∑
I

dwI ∧ dxI , (23)

where the calculating rules for the exterior product ∧ for two forms w =
∑

I wIdx
I and ι =∑

J ιJdx
J can be derived by (with Eq. 19):

w ∧ ι =
∑
I,J

wIιJdx
I ∧ dxJ . (24)
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For the exterior derivative, an important property is dd = 0. It can be checked with the definition
Eq. 23 and ∂f2

∂xi∂xj
= ∂f2

∂xj∂xi
. It can be also extended to the general manifoldM with the local chart

and the similar proof.

The hodge operator ∗ : Ak(Rn) → An−k(Rn) maps each k-form to (n − k)-form by functioning
as:

∗wI(dx
I) = (−1)sgn(Υ)wI(dx

J), (25)

where Υ denotes the permutation (I, J) = (i1, ..., ik, j1, ..., jn−k) on [n]. We can also derive the

∗∗ = (−1)k(n−k) (26)

in Rn (the similar sign function result also holds in the generalM). We can also define the codif-
ferential operator δ : Ak(Rn)→ An−k(Rn) as:

δ = (−1)n(k+1)+1 ∗ d ∗ . (27)

Then for a vector field v = (v1, ..., vn), we can represent it as 1-form v =
∑n

i=1 vidxi. Then the
divergence can be calculated as follows:

∗d ∗ v = ∗d
n∑

i=1

vi ∗ dxi = ∗
n∑

i=1

∂vi
∂xi

dx1 ∧ · · · ∧ dxn =

n∑
i=1

∂vi
∂xi

, (28)

where the equation holds with the fact dxi ∧ dxi = 0.

Following the discussion above, we can also simply prove that our Eq. 3 is divergence free:

∗d ∗ v = ∗d ∗ ∗dµ = (−1)r ∗ ddµ = 0, (29)

where r = (n− 1) for (n− 1)-form dµ inRn.

There are various approaches to parameterize µ. One alternative involves directly parameterizing µ
using an antisymmetric matrix-valued function (Richter-Powell et al., 2022) to characterize the anti-
symmetric property in hodge star and wedge product computation. Also, the codifferential operator
µ = δν can also be employed to keep the properties required for ν ∈ An−1(Rn), and

v = ∗dδν. (30)

This form can be written as a vector representation with ν and simplify the parameterization.

We also propose a specific example to explore the relationship between the divergence-free field
construction through the differential operator and the classic approach involving the curl operator
(vector potential in fluid simulation) to enforce divergence-free.

We takeR3, µ = νxdx+ νydy+ νzdz for ν = (νx, νy, νz) and the differentials dX = (dx, dy, dz).
Then we can derive

v =

(
∂νx
∂y
− ∂νy

∂x

)
dz +

(
∂νy
∂z
− ∂νz

∂y

)
dx+

(
∂νx
∂z
− ∂νz

∂x

)
dy = ∗dµ = (∇× ν) · dX

= (curl ν) · dX.

(31)

With Eq. 3, we can deduce that v = ∗dµ is divergence-free. Additionally, it coincides with the
curl operator of the vector ν, which happens to be a vector field in R3. Consequently, the curl of a
vector field possesses zero divergence (div ◦ curl) in R3. This conclusion is frequently utilized in
simulations, known as the vector potential design (Elcott et al., 2007a; Chang et al., 2022), where
the divergence-free field construction leverages curl operator. However, for the general manifold,
it might be tricky to define each “curl” operator and the classical vector potential can not even be
simply designed as a vector, while the differential operator computation for the divergence-free field
construction can still work. We will next focus on the calculation of ∗d operator for the divergence-
free parameterization.
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A.2 INTRODUCTION TO THE CLOSEST POINT METHOD

We also discuss some preliminaries for the Closest Point Method. We follow the introduction in
King et al. (2023). For more details, please refer to King et al. (2023). Consider S embedded inR3.
The Closest Point Method utilizes a closest point surface representation, which is a mapping from
x ∈ R3 to the point cp(x) ∈ S . The point cp is defined as the closest point on S to x in Euclidean
distance, i.e.

cp(x) = argminy∈S∥x− y∥. (32)
For the smooth surfaces, cp is unique and well-defined in a sufficiently narrow tubular neighborhood
N (S) ⊂ R3 surrounding S (Marz & Macdonald, 2012) as an embedding in R3, which can be
formally described by:

N (S) = {x ∈ R|∥x− cp(x)∥ ≤ r}, (33)
where r is called the tube-radius. The method is designed for solving PDE on the surface. The
former definition enables us to formulate an embedding PDE on N (S), whose solution agrees with
the solution of the surface PDE at the points y ∈ S. More specifically, let ũ(y) for y ∈ S and
u(x) for x ∈ N (S) denote the solution to the surface PDE and the embedding PDE, respectively.
Fundamentally, the Closest Point Method (CPM) is based on extending surface from S onto N (S)
such that the data is constant in the normal direction of S. The task can be accomplished by the
closest point extension, i.e. we take u(x) = ũ(cp(x)) for all x ∈ N (S). We can observe that the
CP extension assigns surface data at the closest point of x to x itself. Then we solve the embedding
PDE u(x) and constrain the point on the surface to derive the solution. This extension also allows
the differential forms on the surface to be replaced with the differential forms on the Cartesian
differential forms (Ruuth & Merriman, 2008).

Hence, we can utilize the transform of differential forms on the surface to the differential forms on
the neighborhood, parameterizing with it to preserve the certain property (divergence-free). Then
we use the parametric functionals to solve u of PDEs on the Cartesian neighborhood and pull it
back to the surface with u(x) = ũ(cp(x)). Hence, our objective is to calculate the transformation
of differential form that is required in PDE. The basic differential operator transformations such as
exterior derivative, hodge star, wedge product d, ∗,∧ are showed in Li et al. (2023a) and Tab. 2. We
next employ them to calculate the differential operator that we need to construct the corresponding
divergence free field.

B PROOFS AND DERIVATIONS

B.1 PROOF FOR THEOREM 3.1

We first propose the exterior calculus rules on 3D in Tab. 2, where f(k) means the k-form of f . f
and g represent the scalar function and u,v,w represent vector functions.

Output type Wedge product ∧ Interior product iu Exterior derivative d Hodge star ∗
0-form f(0) ∧ g(0) = (fg)(0) iuw(1) = (u ·w)(0) N/A ∗f(3) = f(0)
1-form f(0) ∧ u(1) = fu(1) iuw(2) = (w × u)(1) df(0) = (∇f)(1) ∗u(2) = u(1)

2-form u(1) ∧ v(1) = (u× v)(2) iuf(3) = fu(2) du(1) = (∇× u)(2) ∗u(1) = u(2)

3-form u(1) ∧ v(2) = (u · v)(3) N/A du(2) = (∇ · u)(3) ∗f(0) = f(3)

Table 2: Exterior calculus operators in 3D.

Based on Li et al. (2023a), we can further write down the exterior calculus with the Closest Point
Method via cp∗. It allows us to emulate the operators on S (denoted with a superscript S) using the
operators onR3 (denoted with a superscriptR3):

CP-wedge product: cp∗(α ∧S β) = (cp∗α) ∧R
3

(cp∗β), (34a)

CP-interior product: cp∗(iSFuα) = iR
3

u cp∗α, (34b)

CP-exterior derivative: cp∗(dSα) = dR
3

cp∗α, (34c)

CP-hodge star: cp∗(∗Sα)|j(S) = in ∗R
3

(cp∗α)|j(S), (34d)
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where F = d(j ◦ cp) denotes the Jacobian and CP-hodge star is only applicable directly at the
surface.

Proof for Theorem 3.1: We prove our theorem 3.1 by mathematical manipulations. As we state in
Sec. 3.1, we need to construct v = ∗SdSσ via σ on the surface. Then we apply cp∗ on both side,
we derive

cp∗v = cp∗(∗SdSσ)

= in ∗R
3

(cp∗dSσ)

= in ∗R
3

dR
3

cp∗σ

= in ∗R
3

∇(cp∗σ)(1)
= in∇(cp∗σ)(2)
= ∇(cp∗σ)× n.

(35)

Then on the surface, we have (cp∗v)(j(x)) = v(cp ◦ j(x)) = v(x) (the closest point for the surface
point is itself). Hence, we can derive

v = (∇(cp∗σ) ◦ j(x))× n. (36)

Then for the vorticity function in 2D, it is defined by w = curlv as a scalar. For the surface, we
derive the vorticity function via the hodge decomposition. We need to derive the divergence-free
component of v (as “curl” on surfaces), which actually is ∗dv. Then we can derive

cp∗ω = cp∗(∗SdSv)

= in ∗R
3

(cp∗dSv)

= in ∗R
3

dR
3

(cp∗v)(1)

= in ∗R
3

(∇× (cp∗v))(2)

= in ∗R
3

(∇× (cp∗v))(1)

= ∇(cp∗v) · n.

(37)

Similar with Eq. 35, we achieve
ω = (∇× v) · n. (38)

Note that on the surface, the rules work like ones in 2D: the stream and the vorticity functions are
both scalars (compared with the vector potential functions in R3 (Elcott et al., 2007a; Chang et al.,
2022)). It can also be verified with the exterior calculus. If σ is not 0-form but 1-form instead, we
can not derive v as 1-form but 0-form, which brings trouble for our neural representation.

Remark: We can next parameterize the σ (with NN) and compute v and ω by sampling points and
do calculus with Eqs. 36 and 38. The theorem provides a continuous and analytic formulation on
the vorticity function on the surfaces with the help of the Closest Point Method in Tab. 2 while
the classic method (Azencot et al., 2014) needs to compute the discretized differential form with
the triangle meshes. CPM enables us to parameterize the surface field on the ambient space and
facilitate the neural representation.

C CONDITIONING PROPERTY OF OUR FRAMEWORK

For the generation problems, to verify the capability, we mirror the architecture of variation auto-
encoder. Let’s consider images as an example input, and our objective is to provide a model that re-
ceive the coordinate x and image conditions as an input and generate a divergence-free field of which
vorticity ω resembles the corresponding conditioned images silhouette in visualization. Images q are
encoded by the parametric encoder with θq and the features are provided with the reparameteriza-
tion trick zq(θq, q) ∼ N (ξ(θq, q), τ(θq, q)) (Kingma & Welling, 2013), where ξ(θq, q), τ(θq, q) is
the mean and variance output by the encoder. The encoded feature z = (zq, zaux), where zaux
is auxiliary information such as the image class, is input together with positional embedding (like
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siren) from x. Then the decoder translates the feature to σ function and further derive ω with The-
orem 3.1. The loss function consists of two parts: One is ∥ω(σ(θ, z(θq))) − G(q)∥2, where G is
mapping from the image color space to vorticity space. This term supervises the vorticity field to
shape as the silhouette of the corresponding images. The other term is Kullback-Leibler divergence
to constrain the distribution of zq to be normal, as given by ∥ξ2+ τ2− log τ2+1∥2 with ξ, τ ∈ Rr,
where r is the dimension of zq and log operation is computed element-wise. With such design, we
could derive a simple conditioning framework, which enables more data prior into the simulation
via a more end-to-end manner. More details are also provided in Appendix G. Our neural parame-
terization provides more direct and effective approach to involve the semantic information and show
more potential to combine with the advanced generation methods in 3D or language model.

Remark: The idea of the conditioning resonates with the eigen-decomposition of the fluid fields, as
discussed in Cui et al. (2021). This method decomposes the vector field v into several divergence-
free basis ui, i.e. v =

∑r
i=1 wiui and ui is the eigenfunction of the Laplacian operator. It’s

noteworthy that wi can serve as the encoding z in our formulation. If we strengthen our neural
represented velocity field to become eigenfunctions of the Laplacian operator on surfaces, we can
derive similar decomposition weights through the conditioning process described above.

D PSEUDOCODE FOR ADVECTION

Algorithm 1 Advection for Neural Flow on Surfaces.
Input: Initial velocity field v0, vorticity field ω0, timestep size h, number of timesteps N , surface
S, training steps E, sample size k, learning rate α
Fitting the initial network weight θ0 and non-zero harmonic term η with v0 and ω0.
for n = 1 to N do
θn+1 ← θn
for i = 1 to E do

Sample k point on S as sample setM.
Compute the stream function σ(θn+1) onM.
Compute the velocity v(θn), v(θn+1) and vorticity ω(θn), ω(θn+1) with Eqs. 4 and 5 for
time n and n+ 1 with σ(θn), σ(θn+1) and η.
Construct loss function Lθn+1 with Eq. 15 forM.
θn+1 ← θn+1 − α∇Lθn+1

end for
end for

E ADDITIONAL EXPERIMENTAL RESULTS

We include additional experiments to verify the performances of our method as a supplementary.
We provide the quantitative study for the flow on the inclined plane, the ablation and comparison on
the sphere jet flow and the convergence study for our flow on the implicit neural representation.
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(b)

Figure 9: Results for rotating sphere flow. (a) Qualitative results for rotating sphere. (b) Quantitative
results for energy preservation.
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E.1 RESULTS FOR ROTATING SPHERE FLOW

We verify the energy conservation property of our method by examining the rotating sphere flow, us-
ing an analytic solution as validated by Azencot et al. (2014). This approach allows us to rigorously
test our simulator’s reliability in preserving energy over time. The initial flow conditions combine a
Killing vector field with a rotated gradient of an eigenfunction of the Laplace-Beltrami operator on
the surface. Killing vector filed is a vector field whose Lie derivative of the metric vanishes, mean-
ing that the flow generated by the vector field remains constant in advection (Jost & Jost, 2008). A
classic example on the sphere is the vector field (−y, x, 0) around z-axis. The eigenfunctions of the
Laplace-Beltrami operator on the sphere are well-known as Spherical Harmonics functions. We also
apply the rotation on them for better identification. Actually, this rotating sphere flow appears as if
the sphere with the vector field is rotating over time when observed from a fixed point. It can be
demonstrated that the energy of inviscid flow with these initial conditions remains constant, making
this configuration an excellent test case for energy conservation. As the results showed in Fig. 9 (a),
the results exhibit periodic patterns resembling the sphere rotating.

We also plot the energy change across the entire sphere, comparing it with Functional Fluid on
Surfaces (Azencot et al., 2014), the classic method with Runge-Kutta (RK) time integrator and
Implicit Neural Spatial Representations (INSR) (Chen et al., 2023) with semi-Lagrangian advection
as the loss function. The results indicate that our method achieves a relative change in energy on the
order of 10−5, which is comparable to the results from the Functional Fluid on Surfaces method for
both larger and smaller time steps. Conversely, the RK method and INSR suffers from larger energy
losses, even for smaller time steps.

E.2 MORE RESULTS FOR THE TAYLOR VORTICES ON THE INCLINED PLANE

Time 0s Time 4s Time 11s Time 15s

Figure 10: Dynamic Results for Taylor vortices on inclined plane.

We include the qualitative results of our simulation dynamics for Taylor vortices in Fig. 10 and more
comparison results are provided in the supplementary video. We can observe a clear vortex pair and
the phenomenon of separation.

Methods Error Time Storage
PINN 4.16e5 9.6 h 568.1KB
INSR 3.45e3 16.8 h 516.3KB
Small-F.S. 3.21e2 0.2h 535.6KB
HomoLBM 8.92e1 3.8 h 4.3MB
Small-F.S. 3.21e2 0.2h 535.6KB
Ours 1.71e1 12.7 h 521.3KB
GT N/A 2.3 h 3964.0KB

Table 3: Quantitative results for the Taylor vortices on inclined plane. Error: mean square error
(MSE) averaged by 120 time steps with resolution of 400. The storage of our high resolution ground
truth is 7.6 times than ours.

We also include the quantitative results for the Taylor vortices in Tab. 3, together with more com-
parison with classic methods on the 2D plane for benchmark studies, including Stable Fluid (with
a resolution of 1024x1024) (Stam, 1999) and high-order Lattice Boltzmann methods (not parallel
version with a resolution of 512x512) (Li et al., 2023b). The corresponding qualitative results are
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presented in Fig. 11. The results demonstrate that our method enables high accuracy while show-
ing high memory-efficiency, compared with both classical and recent advanced methods under the
similar memory cost.

GT (High-reso

 Functional Fluid)

Ours Homo-LBM Stable Fluid

Time 1

Time 2

Time 3

Figure 11: Qualitative results for the Taylor vortices compared with 2D classical methods.

E.3 MORE COMPARISON RESULTS ON THE SPHERE JET FLOW

Eigen-Net

No divfree
Eigen-Net

divfree
NSF

No divfree
INSR Ours GT

Figure 12: Qualitative results for the sphere jet flow compared with eigen-net and NSF.

We compare with other surface field representation methods to verify the effectiveness of our pro-
posed framework. We try to adapt two methods into our framework. One is Koestler et al. (Koestler
et al., 2022), which proposes a surface field representation via the eigenfunction of the Laplacian-
beltrami operator (eigen-net) on the surface and the other is Xue et al. (Xue et al., 2023) that utilizes
the MLP and projection operator (NSF). We implement them on the sphere jet flow case for compar-
ison since the Laplacian-beltrami operator can be analytically computed by Spherical Harmonics.
To further verify the effectiveness of our field function design, for eigen-net, we implemented two
variations as ablations: one that incorporates our divergence-free design along with the covariant
derivative advection, and another that avoids our divergence-free approach in favor of the traditional
advection and divergence projection; for NSF we adopted the method without our divergence-free
design, as incorporating it would result in a configuration similar to our own framework, with the
primary distinction being the hyper-parameters of the MLP or siren. We show the quantitative results
in the Tab. 4 and the corresponding qualitative results in Fig. 12.

Both quantitative and qualitative results demonstrate that our proposed framework achieves higher
accuracy and memory-efficiency in the incompressible Euler flow simulation, compared with pure
eigen-net or NSF surface field representations. The ablation results also indicate that that our pro-
posed divergence-free field design framework significantly improves the accuracy of the eigen-net.
Ours avoid the divergence-free projection, which reduces the extra fitting error and cascading error
effects. The results also illustrate that our proposed divergence-free design is robust with the ways
of parameterization (MLP, siren or eigen-net).
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Methods Error Time Storage
Eigen-net without divergence-free design 6.82e6 13.5 h 632.5KB
NSF without divergence-free design 9.76e4 12.8 h 501.3 KB
Eigen-net with divergence-free 1.13e3 16.7h 622.4KB
Ours 2.89e2 16.5 h 532.8KB

Table 4: Quantitative results for the sphere jet flow compared with eigen-net and NSF. Error: mean
square error (MSE) averaged by 100 time steps on 81924 mesh vertices.

Methods Error Time Storage
Elcott et al. 2007 1.27e4 6.8h 2643.0KB
Stable Fluid 8.62e5 0.2h 972.8KB
Small-F.S. 5.34e3 0.8h 583.8KB
Ours 2.89e2 16.5 h 532.8KB
GT N/A 8.3 h 2643.0 KB

Table 5: More Quantitative results for the sphere jet flow with classic methods.

We also include more results of classical solvers for reference, including Stable Fluid (with a reso-
lution of 256x256) (Stam, 1999) and Elcott et al. (Elcott et al., 2007a) (using the same mesh as GT).
The quantitative results are shown in Tab. 5, and the qualitative results are presented in Fig. 13.

The results show that our method achieves high performance and low energy dissipation compared
to classic methods. However, this improvement comes with the trade-off of higher time consumption
as discuss in Appendix F.3.

E.4 CONVERGENCE VERIFICATION FOR THE FLOW ON THE IMPLICIT REPRESENTED
SURFACES

Marching Cubes resolution Average steps of Crashing Storage
64 36.5 117.18 KB
128 53.4 768.32 KB
240 68.7 1123.15 KB
GT Mesh 88.6 1419.48 KB
Ours N/A 523.4 KB

Table 6: Time steps that the classic method (Azencot et al., 2014) with Marching Cubes on implicit
neural represented surfaces crashes. We repeat the process with 10 times and derive the averaged
results. However, ours can work well with the implicit neural representation.

For the case of implicit represented surfaces, as previously stated in the main context (Sec. 5.2),
for the classical method it is not convergent, leading to non-referable results. To substantiate our
claim regarding non-convergence, we include a new Tab. 6 that lists the simulation crashing time
steps across different marching cube resolutions for the traditional methods. This data will offer
a quantitative perspective on the limitations of the classic methods in robustness. We also include
the reference qualitative results in the supplementary video to exhibit the simulation process and
describe the non convergence on different resolutions. The results demonstrate that our meshless and
end-to-end method can achieve high adaptability and robustness for the simulation on the implicit
neural representation, while the classical method fails in marching cube meshes and needs further
complex geometry processing schemes to improve the mesh quality.

E.5 ABLATION STUDIES FOR THE NETWORK AND TRAINING DESIGN

We also include the ablation studies on the network size and sample count on our sphere jet case.
The results are exhibited in Tab. 7 and Tab. 8, which indicate that our method is relatively insensitive
to these settings unless the width is extremely small.
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Figure 13: Qualitative results for the sphere jet flow compared with more classical methods.

Network Size Error
4 layers, 128 2.89e2
4 layers, 256 2.21e2
4 layers, 64 4.57e2

Table 7: Ablation studies for network size for the sphere jet flow.

F DISCUSSIONS AND LIMITATIONS

F.1 DISCUSSIONS AND LIMITATIONS ON THE TOPOLOGY PROBLEMS

The first limitation is about the singularity problem. We don’t focus heavily on the singularity issues
related to topology, such as those highlighted by the Poincaré-Hopf Theorem, which is a complex
challenge. Our main interest lies in using neural approaches to simulate fluid dynamics and model
vortex dynamics on surfaces for visual effects (as described in Eq. 6), rather than dealing with
arbitrary vector fields. The scenes chosen in both Azencot et al. (2014); Ando et al. (2015) (which
do not mention the issue) and ours typically maintain non-zero measure zero velocity and avoid
poles to simplify the analysis. We initialize the simulation with finite vorticity, which makes it
hard for advection to generate infinite vorticity (or singularities) within our settings. Furthermore,
we employ the stream and curl regularization to avoid extreme values in the singularity points and
preserve system stability. According to Sard’s theorem, the number of poles has zero measure in
our simple cases, we maintain a very small probability of sampling at the poles, which improves
the stability of the simulation. Though the velocity field near singularities will be underfitted and
approximated by the network, potentially leading to inaccuracies and numerical dissipation near the
”cyclone”, the overall results provide empirically reasonable visual effects, which is the primary
goal of our application.

To further validate the effectiveness of our regularization and sampling, we applied our framework
to fit the velocity (− sin(θ), cos(θ)) on a sphere with spherical coordinates (1, θ, ϕ), which keeps a
singularity at the northern/southern pole ((1, 0, 0), (1, π, 0)). The errors and velocity magnitude are
shown in Fig. 14, where we achieve the desired velocity pattern. Although some errors appear in the
initial epochs, they become negligible over time, which is sufficient for graphics and visual effects.

Training Samples (millions) Error
60 2.89e2
40 3.12e2
80 2.79e2

Table 8: Ablation studies for sample number for the sphere jet flow.
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Figure 14: Qualitative results of the numerical studies (Velocity magnitude and error) for the con-
stant sphere flow. (Views from the northern and southern poles)

Time 0

Time 1

Time 2

Ours Ref.  (Function Fluids on Surfaces)

Time 0

Time 1

Time 2

Ours Ref.  (Function Fluids on Surfaces)

Figure 15: Qualitative results for the sphere jet flow on the explicit torus and double torus.

Another problem related with the topology is the cohomology term. Our method is mainly adopted
for the topology for genius zero, where the velocity can be estimated by the stream function with-
out more consideration of the time-variant cohomology component (as stated in Yin et al. (2023)
Proposition 5 for the surfaces removing several poles). For the surface with high genius, we find
it insufficient for the time-invariant cohomology term to handle highly turbulent flow and generate
complex visual effects. The problem can be further addressed by incorporating the solver in Yin
et al. (2023) with the neural network, which will be our future work. However, only for the visual
effects, our method still performs well for the high genius surfaces and shows the correct jet flow
behavior compared to the reference classic method. We plot the results in Fig. 15 with simple torus
and double torus cases with explicit torus and double torus meshes. They do demonstrate reasonable
visual effects on high-genus surfaces even without considering the time-variant cohomology.

F.2 DISCUSSIONS AND LIMITATIONS ON THE GEOMETRY PROBLEMS

As stated in Sec. 3.2, our method needs SDF for the flow on the implicit surfaces. This can pose
challenges when calculating normals for open surfaces. To overcome this, one can use an unsigned
distance field (UDF) to extend our framework to open surfaces, which is well applied in Chibane
et al. (2020); Yang et al. (2023); Long et al. (2023).

Additionally, our framework is based on the Closest Point Method (CPM), which, due to its reliance
on ambient space, faces challenges when dealing with narrow geometric features. This reliance can
lead to ambiguities when processing narrow or thin features, resulting in inefficiency and inaccuracy
due to increased difficulties in convergence. To mitigate this issue, we can follow the approaches
in King et al. (2023); Marz & Macdonald (2012) and sample the neighborhood within a small tube
radius adaptively. In parctice, the sampling distance threshold to the surface can be determined
following the method outlined in King et al. (2023) (Sec. 8), guided by the estimation of the surface
reach distance as described by Aamari et al. (2019). This estimation can be locally constructed
using a simple mesh extractor from the signed distance function (SDF) if no mesh is available. This
allows for rough detection of thin regions and adaptive adjustment of the sampling distance, thereby
improving both efficiency and accuracy.
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Moreover, in the practical scenarios, the non-smooth surface, imperfect SDF (common problems in
implicit neural representations such as Yifan et al. (2021)) and the complex surfaces (like unoriented
surfaces) can also limit our performances. Noisy surfaces and normals introduce numerical viscosity,
slowing down the simulation. But fortunately, we show that they do not drive our simulation to
crash, as the neural representation provides smoother and more robust results (as demonstrated in
Appendix E.4 with GT mesh data) compared to traditional methods. To further solve these issues, we
can construct smooth approximator and utilize a large number of samples from a smaller tube radius
(as described in King et al. (2023) above) for improved performance. Additionally, the orientation
problem is addressed in King et al. (2023) and the extension for our method c an be similarly
constructed.

F.3 DISCUSSIONS AND LIMITATIONS ON THE TIME AND MEMORY CONSUMPTION

Our method actually keeps large advantages at the memory consumption albeit with the increased
time requirements. The low memory usage is crucial for handling and analyzing high-resolution
data. For example, a 2D simulation at a 4096x4096 resolution requires about 200MB per frame,
resulting in considerable memory demands for extended simulations. Similarly, high-resolution
3D grid simulations consume even more memory. Although mesh-based simulations can be more
efficient, they encounter mesh quality issues, as shown in the robustness tests in Appendix E.4.
The time cost remains high, as methods like siren or simple MLPs are too global and inefficient
for optimization, and inference sampling (particularly for implicit neural representations) is time-
consuming. To address the time consumption issue, a hybrid simulator to achieve both high speed
and performances is necessary. Fortunately, recent advances in hybrid representations (Müller et al.,
2022; Huang et al., 2023) have shown promising results in reducing training time from hours to
seconds while maintaining the expressiveness. Employing these more efficient representations hold
great promise for improvements of our method. In the inference time, a sampler (Sharp & Jacobson,
2022) with high efficiency can be adopted, which will provide huge saving for the inference time
with KD hierarchies.

G MORE IMPLEMENTATION DETAILS

We provide our implementation details for our numerical studies. Our experiments are all imple-
mented with Jax library (Bradbury et al., 2018) on an NVIDIA GeForce RTX 3090 GPU.

Sphere Jet: We adopt the 4-layers MLP (for shaper simulation results compared with siren) with
128 units for our implementation. The learning rate is set with the exponential decay from 1e − 5
to 1e − 7 with 60000 steps and batch size 1000 for each time step. The time step is chosen as
5e− 2. The initialization is the same as Azencot et al. (2014) and the initial vorticity is kept for the
whole simulation time. For the comparison, INSR uses the siren function with 4-layers 128 units
for advection, projection and correction respectively. The learning rate is set as 1e − 6. For each
process, the siren iterates for 40000 steps with batch size 5000. For the original PINN, we adopt
the MLP with 4-layers 128 units. The loss function is to enforce the incompressible Euler equation
directly, as showed in Appendix A.3 of Chen et al. (2023). The learning rate is set by 1e − 5 with
60000 steps and batch size 2000.

Taylor vortices on inclined plane: We adopt 4-layer siren with 128 units representation to conduct
the positional encoding with the first layer frequency as 30. The time step is chosen as 5e− 3. The
initialization is set the same as McKenzie (2007), and we rotate the plane and make the normal be
(0.3,−0.5, 0.8). The domain size is set [−π, π] with the periodic boundary condition. The time step
is set as 0.05. The learning rate is set with the piece-wise constant from 1e − 5 with a decay factor
0.1 on 40000 and 60000 steps for total 80000 steps and batch size 1000. For comparison, INSR
adopts the siren MLP with 4 layers and 128 units per layer for advection, projection and correction
respectively. The learning rate is set as 1e − 5. For each process, the siren iterates for 20000 steps
with batch size 1000. For the original PINN, we adopt MLP with 4 layers and 128 units. The loss
function consists of the governing equation part which is the same as the one in sphere jet case and
the periodic boundary condition part. The learning rate is set by 1e − 5 with 60000 iterations and
batch size 1000.
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Rotating sphere flow: For the construction of σ, we adopt 4-layer siren with 128 units represen-
tation (Sitzmann et al., 2020) with the first layer frequency as 30. The learning rate is set with the
exponential decay from 1e−6 to 1e−8 with 40000 steps and batch size 1000 for each time step. The
time step is chosen as 5e− 4 and 2e− 3. The initialization of the velocity is set as the Killing field
(−y, x, 0) with the rotated 4-degree Spherical Harmonics functions with order 4 and 5. For INSR
for our comparison, we adopt the siren function with 4-layers 64 units for advection, projection and
correction respectively. The learning rate is set as 5e − 4. For each process, the siren iterates for
10000 steps with batch size 1000.

Flow on the explicit meshes. We adopt a 4-layer siren with 128 units representation for both models
with the first layer frequency as 30. The learning rate is set with the exponential decay from 1e− 6
to 1e− 8 with 40000 steps and batch size 2400 for each time step. The time step is chosen as 5e− 2
and 8e− 2 for the hand and spot respectively. The hand model is initialized by two vortices with the
geodesic 0.41 by Crane et al. (2013b) and the spot model is set with 0.3.

Flow on the implicit mesh. First, we adopt 4-layer siren with 256 units to reconstruct the im-
plicit neural representation of the SDF function based on Sitzmann et al. (2020) with the uniform
sampling. The in the simulation, we take the rejection rules in Yang et al. (2021) to complete the
uniformly sampling for the simulation function and avoid the samples concentrating near the high
curvature area. The jet vortices are initialized by given two points on the mesh as an opposite pair.
Our simulation neural field is also implemented as 4-layer siren with 128 units representation with
the first layer frequency as 30. The learning rate is set with the exponential decay from 1e − 5 to
1e− 7 with 40000 steps and batch size 1000 for each time step. The time step is set by 5e− 2 and
2e− 2 for Armadillo and Lucy respectively.

Flow with conditioning: We adopt the encoder consists of 2-layer feature extraction MLP to reduce
image data to a 32-dimension feature space; siren network to generate 128-dimensional feature
with the input position x as neural field representation and an one-hot class encoder for image
categorization. Note that the first layer frequency for the siren network above is also 30. The
decoder is a 2-layer MLP that transforms the concatenated features from the encoders to the stream
function σ. Then following our Theorem 3.1, we can also derive the corresponding v and ω taking
the derivative with respect to x. In the inference time 32-dimension random Gaussian vector and
the corresponding image class are input to concatenate with the positional encoding to generate the
field value at the spatial point. The learning rate for the training process is set with the exponential
decay from 1e− 4 to 1e− 5 with 400000 steps and batch size 1000. We map the color of the input
images to the vorticity function and try to make the velocity field preserving the vortices shape as
alphabets via Mean Least Square loss and KL loss.

Flow for Helmholtz decomposition: We adopt the atmosphere data (100-metre wind velocity) on
Jan, 2024 (Raoult et al., 2017). We adopt 4-layer siren with 128 units representation for both models
with the first layer frequency as 100. The learning rate is set with the exponential decay from 1e− 4
to 1e − 5 with 200000 steps and batch size 1000. We try to make our velocity results closer to the
given data and derive the divergence-free component, similar as Richter-Powell et al. (2022).
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