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Abstract

Goal-conditioned sequence-based supervised learning with
transformers has shown promise in offline reinforcement
learning (RL) for single-agent settings. However, extending
these methods to offline multi-agent RL (MARL) remains
challenging. Existing transformer-based MARL approaches
either train agents independently, neglecting multi-agent sys-
tem dynamics, or rely on centralized transformer models,
which face scalability issues. Moreover, transformers inher-
ently struggle with long-term dependencies and computa-
tional efficiency. Building on the recent success of Struc-
tured State Space Sequence (S4) models, known for their
parameter efficiency, faster inference, and superior handling
of long context lengths, we propose a novel application of
S4-based models to offline MARL tasks. Our method uti-
lizes S4’s efficient convolutional view for offline training and
its recurrent dynamics for fast on-policy fine-tuning. To fos-
ter scalable cooperation between agents, we sequentially ex-
pand the decision-making process, allowing agents to act one
after another at each time step. This design promotes bi-
directional cooperation, enabling agents to share information
via their S4 latent states or memory with minimal commu-
nication. Gradients also flow backward through this shared
information, linking the current agent’s learning to its pre-
decessor. Experiments on challenging MARL benchmarks,
including Multi-Robot Warehouse (RWARE) and StarCraft
Multi-Agent Challenge (SMAC), demonstrate that our ap-
proach significantly outperforms state-of-the-art offline RL
and transformer-based MARL baselines across most tasks.

Introduction
Multi-agent reinforcement learning (MARL) excels at learn-
ing complex, coordinated policies for shared objectives (Cao
et al. 2012; Berner et al. 2019; Ye, Zhang, and Yang 2015)
but often requires a large volume of costly or risky interac-
tions with the environment. To improve sample efficiency,
offline reinforcement learning (RL) algorithms (Lee et al.
2021; Fujimoto, Meger, and Precup 2019; Kumar et al. 2019,
2020; Kostrikov et al. 2021; Xu et al. 2022; Li et al. 2022;
Xu et al. 2023) enable learning from pre-collected datasets,
reducing the need for extensive online interactions.

Offline RL faces distribution shifts, causing extrapolation
errors when policies encounter out-of-distribution (OOD)
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samples, as the learned policy deviates from the behavior
policy used to collect the data. Regularization techniques
(Kumar et al. 2019) help mitigate this by keeping the learned
policy close to the behavior policy (Kumar et al. 2020; Xu
et al. 2023, 2022). While efforts have been made to ex-
tend these methods to multi-agent settings (Shao et al. 2023;
Wang et al. 2024; Pan et al. 2022; Yang et al. 2021), the joint
state-action space grows exponentially with the number of
agents, making global application of these regularizations
challenging, especially with limited offline data.

On the other hand, sequence-based supervised learning,
pioneered by the Decision Transformer (DT) (Chen et al.
2021), has also been applied in offline MARL by autore-
gressively predicting the next action based on the state, pre-
vious actions, and return-to-go. While extensions to offline
MARL (Meng et al. 2021; Tseng et al. 2022) have been
made, they still have limitations. MADT (Meng et al. 2021)
adapts DT independently for each agent, ignoring cooper-
ation, while (Tseng et al. 2022) uses a centralized teacher
policy, which faces scalability issues. Moreover, both ap-
proaches suffer from transformer-specific drawbacks, such
as large model sizes, inefficient inference, and difficulty cap-
turing long-range dependencies due to fixed window con-
straints.

Structured State Space Sequence (S4) models (Gu, Goel,
and Ré 2021) have recently outperformed transformer-based
models in single-agent offline RL tasks (Bar-David et al.
2023). Building on this success, we propose a sequence-
based offline MARL algorithm using S4 variants, which of-
fer superior parameter efficiency and constant-time infer-
ence while capturing long contexts. Unlike MADT, which
trains agents independently, our method explicitly models
cooperation through a Sequentially Expanded MDP (SE-
MDP) paradigm. In this framework, recently used in online
MARL settings (Li et al. 2023), each decision step is di-
vided into mini-steps, with agents acting sequentially based
on their predecessors’ actions. Unlike (Li et al. 2023), we
enable minimal communication, requiring each agent to ac-
cess only its immediate predecessor’s information, shared
through the latent state representation of the S4 model. Uti-
lizing this hidden state of the S4 module of the current
agent, information on all its prior agents is efficiently passed
down to the next agent, and gradients flow backward from
the current agent through this shared memory to the pre-
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Figure 1: (Left) Multi-Agent MDP (MMDP) is restructured into a Sequentially-Expanded MDP (SE-MDP) where the multi-
agent state transition at each timestep is decomposed into n intermediate states. Agents act sequentially, processing inputs with
information from their predecessor, taking actions, and passing updated information forward. During training, the gradient flows
backward, enabling earlier agents to receive updates based on the information passed by later agents. (Right) MADS4 Agent
Actor Network. In addition to the state, action, and reward encoder, the memory/ S4 state representation from the previous agent
(Hn−1) is encoded through a memory encoder. The updated S4 states and outputs from the S4 blocks pass through separate
projection layers.

vious agents during training. This design enables scalable
training with constant memory communication overhead,
unlike traditional communication-based MARL algorithms,
where memory overhead typically increases quadratically
with the number of agents. This offline algorithm is well-
suited for sample-efficient and scalable learning, making it
highly applicable in real-world scenarios, including infras-
tructure management (Leroy et al. 2023), traffic flow opti-
mization (Vinitsky et al. 2020), and more.

The S4-based agents are trained directly on sequences or
trajectories from the offline dataset in an efficient convolu-
tional manner. These pre-trained models can then be fine-
tuned online using individual tuples, leveraging S4’s recur-
rent dynamics. We evaluate the performance of our devel-
oped algorithm, called Multi-Agent Decision S4 (MADS4),
on the challenging offline MARL benchmarks of Multi-
Robot Warehouse (RWARE) (Papoudakis et al. 2020) and
StarCraft2 Multi-Agent Challenge (SMAC) (Samvelyan
et al. 2019), where MADS4 achieves superior performance
across many tasks over state-of-the-art offline RL-based and
transformer-based baselines.

Methodology
Sequentially Expanded MDP In this work, the Multi-
agent Markov Decision Process (MMDP) is formulated as
a Sequentially Expanded Markov Decision Process (SE-
MDP), where each timestep is divided into n mini timesteps,
with one agent acting during each mini-timestep. Thus, a
single-step transition in the original MMDP (st,at, st+1)
resulting in a shared reward r(st,at) is decomposed into
a sequence of n intermediate transitions, which collectively
lead to the same shared reward r(st,at), as illustrated in
Figure 1.

(st,at, st+1) = {(st, at1, sta1
), (sta1

, at2, s
t
a1:2

), ...,

(sta1:n−1
, atn, s

t
a1:n

= st+1)} (1)

Within this framework, at each timestep, an agent’s action
depends on information passed by its immediate predecessor
in the sequence. This establishes a bidirectional dependency
among agents, as illustrated in Figure 1: in the forward di-
rection, an agent’s actions are influenced by its predecessors,
while in the backward direction, gradients propagate from
the current agent to previous agents. While our algorithm is
primarily developed within an SE-MDP framework, it is not
confined to this setting, as we elaborate further in the discus-
sion.

S4-based Agent At each time step, the model takes u(t) as
input and updates the latent state/memory x(t) and, in turn,
returns an output y(t) by following the first-order differen-
tial equation:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2)

The above continuous SSM can be discretized with a fixed
step size ∆ following any discretization scheme, such as the
bilinear method (Tustin 1947), to obtain the following dis-
cretized linear recurrence relations:

xk = Āxk−1 + B̄uk(t)

yk = C̄xk + D̄uk

(3)

where Ā, B̄, C̄, D̄ are calculated based on A, B, C, D and
∆. Initializing A by the HIPPO matrix, as proposed by (Gu
et al. 2020), enhances the SSM model’s ability to capture
long-range contexts. Similar to previous works (Gu, Goel,
and Ré 2021; Gupta, Gu, and Berant 2022), D is represented
here by a skip connection. Since Eq. 3 is linear and time-
invariant, the output sequence y(t) can be computed directly
in parallel based on input sequence u(t) by convolution as
follows:

yk = C̄ĀkB̄u0 + C̄Āk−1B̄u1 + ...+ C̄ĀB̄uk−1 + C̄B̄uk

y = K̄ ∗ u
(4)



Table 1: Average returns and standard deviations over 5 random seeds on the Warehouse domain.

Method Tiny (11x11) Small (11x20)
(N = 2) (N = 4) (N = 6) (N = 2) (N = 4) (N = 6)

BC 8.80 ± 0.25 11.12 ± 0.19 14.06 ± 0.32 5.54 ± 0.06 7.88 ± 0.14 8.90 ± 0.13
ICQ 9.38 ± 0.75 12.13 ± 0.44 14.59 ± 0.16 5.43 ± 0.19 7.93 ± 0.19 8.87 ± 0.22

OMAR 6.77 ± 0.64 14.39 ± 0.91 16.13 ± 1.21 4.40 ± 0.34 7.12 ± 0.38 8.41 ± 0.49
MADTKD 6.24 ± 0.60 9.90 ± 0.21 13.06 ± 0.19 3.65 ± 0.34 6.85 ± 0.36 7.85 ± 0.52
OptiDICE 8.70 ± 0.06 11.13 ± 0.44 14.02 ± 0.36 4.84 ± 0.32 7.68 ± 0.09 8.47 ± 0.26
AlberDICE 11.15 ± 0.35 13.11 ± 0.32 15.72 ± 0.36 5.97 ± 0.11 8.18 ± 0.19 9.65 ± 0.13

MADS4 (ours) 11.79 ± 0.61 15.52 ± 0.20 17.29 ± 0.76 6.58 ± 0.28 9.47 ± 0.15 10.87 ± 0.55

Table 2: Average returns and standard deviations over 5 random seeds on the SMAC domain.

SMAC Map Data
RL-based Sequence-based

ICQ OMAR OMIGA MADT MADS4 (ours)

5m vs 6m (H)
G 7.87 ± 0.30 7.40 ± 0.63 8.25 ± 0.37 8.15 ± 0.63 8.00 ± 0.45
M 7.77 ± 0.30 7.08 ± 0.51 7.92 ± 0.57 7.80 ± 0.56 7.85 ± 0.57
P 7.26 ± 0.19 7.27 ± 0.42 7.52 ± 0.21 7.23 ± 0.48 7.67 ± 0.15

2c vs 64zg (H)
G 18.82 ± 0.17 17.27 ± 0.78 19.15 ± 0.32 18.90 ± 0.78 19.40 ± 0.55
M 15.57 ± 0.61 10.20 ± 0.20 16.03 ± 0.19 16.92 ± 0.20 17.27 ± 0.15
P 12.56 ± 0.18 11.33 ± 0.50 13.02 ± 0.66 13.33 ± 0.50 14.67 ± 0.32

6h vs 8z (SH)
G 11.81 ± 0.12 9.85 ± 0.28 12.54 ± 0.21 12.55 ± 0.67 12.75 ± 0.15
M 11.13 ± 0.33 10.36 ± 0.16 12.31 ± 0.22 12.36 ± 0.16 12.57 ± 0.25
P 10.55 ± 0.10 10.63 ± 0.25 11.67 ± 0.19 11.63 ± 0.25 11.89 ± 0.43

corridor (SH)
G 15.54 ± 1.12 6.74 ± 0.69 15.88 ± 0.89 17.81 ± 1.14 16.02 ± 0.97
M 11.30 ± 1.57 7.26 ± 0.71 11.66 ± 1.30 12.75 ± 1.18 12.80 ± 1.12
P 4.47 ± 0.33 4.28 ± 0.49 5.61 ± 0.35 8.76 ± 0.49 8.57 ± 0.54

where K̄ is the SSM convolution kernel which is a function
of Ā, B̄, C̄, D̄ and a fixed context length L during training.
This non-circular convolution enables parallelizable training
across time steps, while the recurrent view allows fast in-
ference with constant memory. These features make SSMs
better suited than transformers for reinforcement learning,
where efficient online interaction is crucial. More detailed
comparisons of computational complexity and parameter ef-
ficiency are provided in the Appendix.

Information sharing with minimal communication To
enable scalable cooperation among S4-based agents, we de-
sign a communication mechanism limited to consecutive
agents in the SE-MDP sequence. Each agent’s memory, rep-
resented by the hidden state of its S4 module, encodes infor-
mation about all prior agents in the sequence. A projection
of this latent state, ht

i−1, is passed as input to the next agent
along with other inputs ût

i, influencing its action ati and its
memory ht

i:

ati, h
t
i = πi(û

t
i, h

t
i−1; θi) (5)

During training, gradients flow backward through the
shared latent states, enabling the entire system to learn co-
operative strategies:

∂J

∂θi
=

∂J

∂ati
· ∂a

t
i

∂θi
+

∂J

∂ati+1

·
∂ati+1

∂ht
i

· ∂h
t
i

∂θi
. (6)

where J represents the supervised loss function computed
across all agents in the system. This sequential flow of in-
formation eliminates the need for an agent to communicate
with more than one peer or identify useful collaborators, a
challenge that grows with the number of agents. In contrast
to typical communication-based MARL algorithms, which

scale poorly with the number of agents, our mechanism is
highly efficient, requiring only constant memory per agent.

MADS4: Offline Training with Online Finetuning
We adapt Decision S4 (DS4) for each agent with shared
parameters, similar to Multi-Agent Decision Transformer
(MADT) (Meng et al. 2021). However, unlike MADT,
MADS4 trains agents sequentially, enabling memory shar-
ing between consecutive agents. Offline training is per-
formed using pre-collected trajectories, followed by on-
policy fine-tuning of pre-trained models utilizing MAPPO
(Yu et al. 2021).

In the offline training of MADS4, each agent is trained on
trajectories containing sequences of prior observations, exe-
cuted actions, the latent state of its predecessor, and returns-
to-go from the current timestep. Similar to MADT, the state
of each agent at each time step sti is composed of global
environment state stgi and its local observation oti. Thus, a
trajectory for the ith agent, consists of the following:

τi = (u1, u2, ..., uT ) where ut = {Rt, stgi, o
t
i, a

t−1
i , ht

i−1}
(7)

where Rt is the returns-to-go, stgi the global state, oti the lo-
cal observation, at−1

i the agent’s previous action, and ht
i−1

the hidden state of its predecessor. The S4-based model pre-
dicts actions autoregressively:

âti = argmax
a

P (ati|τ<=t
i ; θ) (8)

where θ represents shared model parameters for all agents,
ensuring training stability. Each agent’s unique inputs and
one-hot IDs are used to account for agent-specific behavior.
More details on network architecture and offline training are
provided in the Appendix.
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Figure 2: (a) Comparison of MADS4 with information sharing between agents and IDS4 where agents are trained independently.
(b) Comparison of random order against sorted order of the agents. (c) Effect of on-policy fine-tuning with pre-training vs.
without pretraining. (d) Comparison of MADS4 against decentralized MADS4. Mean and standard deviations of average returns
are plotted over 5 independent runs.

Experiments
Datasets and Baselines We evaluate MADS4 on chal-
lenging cooperative MARL benchmarks: Multi-Robot
Warehouse (RWARE) (Papoudakis et al. 2020) and Star-
Craft2 Multi-Agent Challenge (SMAC) (Samvelyan et al.
2019). RWARE datasets, sourced from (Matsunaga et al.
2023), include expert trajectories from Multi-Agent Trans-
former (MAT) (Wen et al. 2022). For SMAC, we use
datasets from (Meng et al. 2021), comprising trajectories
from MAPPO agents of good, medium, and poor quality,
tested on two hard and two super hard maps. We compare
MADS4 against recent offline MARL algorithms from both
offline reinforcement learning and sequence-based super-
vised learning paradigms. Additional details on datasets and
baselines are in the Appendix.

Offline Training Tables 1 and 2 show the mean and stan-
dard deviation of average returns in the RWARE and SMAC
domains, evaluated over 30 episodes and 5 training seeds.
During evaluation, the desired returns-to-go is set at 10%
higher than the highest returns encountered in the offline
datasets. In the RWARE domain, MADS4 outperforms all
baselines across the maps, with a larger performance gap on
the small and tiny maps involving 6 agents, where tight co-
ordination is crucial to avoid collisions in confined spaces.
MADS4 also outperforms transformer-based baselines like
MADTKD, likely due to the long trajectories in the RWARE
datasets (up to 500 timesteps), which are often truncated
to reduce transformer training costs. In contrast, MADS4
processes full trajectories, capturing longer contexts with
fewer parameters. In the SMAC domain, MADS4 consis-
tently matches or exceeds the performance of all baselines
across the considered hard and superhard maps, particularly
in the 2c vs. 64zg and 6h vs. 8z scenarios.

Effect of sharing information Sharing information be-
tween agents significantly enhances cooperation, yielding
higher rewards (Figure 2(a)), especially in complex tasks re-
quiring precise coordination. The scalable method involves
minimal overhead by limiting communication to neighbor-

ing agents, using action logits, latent states, or both. Ap-
pendix analyzes the impact of these information types.

Effect of order of agents We evaluated the impact of
agent ordering on MADS4’s performance by comparing two
settings: (1) Random Order (agents shuffled during train-
ing) and (2) Sorted Order (dataset order). Figure 2(b) shows
similar performance, demonstrating MADS4’s robustness to
agent ordering in the SE-MDP framework.

On-policy fine-tuning On-policy fine-tuning of the of-
fline pre-trained MADS4 model, shown in Figure 2(c), is
shown to improve performance. Without pre-training, on-
policy training leads to sub-optimal performance across all
tasks.

Decentralization of MADS4 To adapt MADS4 for a de-
centralized setting, where agents act in parallel, we leverage
the hidden state information of each agent from the previ-
ous timestep as a proxy for the current timestep. This ap-
proach removes the sequential dependency in updating agent
memory, as all agents’ memory information from the pre-
vious timestep is available when making decisions at the
current timestep. Since memory accumulates over multiple
timesteps, relying on the previous timestep’s information
does not compromise performance, as demonstrated in Fig-
ure 2(d).

Conclusions and Discussions
In this work, we showcase the effectiveness of S4-
based models in surpassing transformer-based architectures
for sequence-to-sequence offline multi-agent reinforcement
learning (MARL) tasks. By restricting communication to
the exchange of information between unique, arbitrarily se-
lected pairs of agents, MADS4 fosters superior coopera-
tion compared to state-of-the-art offline RL and centralized
transformer-based baselines, which require complete access
to all agents’ information during training. MADS4 offers a
low-latency and lightweight model that can be trained more
efficiently than transformers and fine-tuned online using re-
current computations.
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S. V. 2020. Benchmarking multi-agent deep reinforcement
learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869.
Samvelyan, M.; Rashid, T.; De Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G.; Hung, C.-M.; Torr, P. H.; Fo-
erster, J.; and Whiteson, S. 2019. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043.



Shao, J.; Qu, Y.; Chen, C.; Zhang, H.; and Ji, X. 2023. Coun-
terfactual Conservative Q Learning for Offline Multi-agent
Reinforcement Learning. In Thirty-seventh Conference on
Neural Information Processing Systems.
Smith, J. T.; Warrington, A.; and Linderman, S. W. 2022.
Simplified state space layers for sequence modeling. arXiv
preprint arXiv:2208.04933.
Tseng, W.-C.; Wang, T.-H. J.; Lin, Y.-C.; and Isola, P. 2022.
Offline multi-agent reinforcement learning with knowledge
distillation. Advances in Neural Information Processing Sys-
tems, 35: 226–237.
Tustin, A. 1947. A method of analysing the behaviour of
linear systems in terms of time series. Journal of the Institu-
tion of Electrical Engineers-Part IIA: Automatic Regulators
and Servo Mechanisms, 94(1): 130–142.
Uchendu, I.; Xiao, T.; Lu, Y.; Zhu, B.; Yan, M.; Simon, J.;
Bennice, M.; Fu, C.; Ma, C.; Jiao, J.; et al. 2023. Jump-
start reinforcement learning. In International Conference on
Machine Learning, 34556–34583. PMLR.
Vinitsky, E.; Lichtle, N.; Parvate, K.; and Bayen, A. 2020.
Optimizing mixed autonomy traffic flow with decentralized
autonomous vehicles and multi-agent rl. arXiv preprint
arXiv:2011.00120.
Wang, X.; Xu, H.; Zheng, Y.; and Zhan, X. 2024. Offline
multi-agent reinforcement learning with implicit global-to-
local value regularization. Advances in Neural Information
Processing Systems, 36.
Wen, M.; Kuba, J.; Lin, R.; Zhang, W.; Wen, Y.; Wang, J.;
and Yang, Y. 2022. Multi-agent reinforcement learning is a
sequence modeling problem. Advances in Neural Informa-
tion Processing Systems, 35: 16509–16521.
Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behavior
regularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361.
Wu, Y.; Zhai, S.; Srivastava, N.; Susskind, J.; Zhang, J.;
Salakhutdinov, R.; and Goh, H. 2021. Uncertainty weighted
actor-critic for offline reinforcement learning. arXiv preprint
arXiv:2105.08140.
Xu, H.; Jiang, L.; Jianxiong, L.; and Zhan, X. 2022. A
policy-guided imitation approach for offline reinforcement
learning. Advances in Neural Information Processing Sys-
tems, 35: 4085–4098.
Xu, H.; Jiang, L.; Li, J.; Yang, Z.; Wang, Z.; Chan, V. W. K.;
and Zhan, X. 2023. Offline rl with no ood actions: In-sample
learning via implicit value regularization. arXiv preprint
arXiv:2303.15810.
Xu, H.; Zhan, X.; Li, J.; and Yin, H. 2021. Offline rein-
forcement learning with soft behavior regularization. arXiv
preprint arXiv:2110.07395.
Xu, H.; Zhan, X.; and Zhu, X. 2022. Constraints penalized
q-learning for safe offline reinforcement learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 36, 8753–8760.
Yang, Y.; Ma, X.; Li, C.; Zheng, Z.; Zhang, Q.; Huang, G.;
Yang, J.; and Zhao, Q. 2021. Believe what you see: Im-
plicit constraint approach for offline multi-agent reinforce-

ment learning. Advances in Neural Information Processing
Systems, 34: 10299–10312.
Ye, D.; Zhang, M.; and Yang, Y. 2015. A multi-agent frame-
work for packet routing in wireless sensor networks. sen-
sors, 15(5): 10026–10047.
Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; and
Wu, Y. 2021. The surprising effectiveness of PPO in
cooperative, multi-agent games (2021). arXiv preprint
arXiv:2103.01955.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J. Y.; Levine,
S.; Finn, C.; and Ma, T. 2020. Mopo: Model-based offline
policy optimization. Advances in Neural Information Pro-
cessing Systems, 33: 14129–14142.

Additional Background and Related Work
Offline Reinforcement Learning Offline RL allows for
policy learning based on pre-collected datasets without
having access to active interactions with the environment
(Levine et al. 2020), which is then directly used as the final
policy or is used as a starting point for further improvement
(Uchendu et al. 2023). This learning paradigm, however, re-
sults in severe distribution shift and extrapolation errors dur-
ing policy evaluation on OOD samples not present in the of-
fline dataset (Kumar et al. 2019; Fujimoto, Meger, and Pre-
cup 2019). Several approaches have been developed to miti-
gate this issue which typically involves various types of reg-
ularizations to be near the offline data distribution. Policy-
based regularizations implicitly or explicitly constrain the
policy to be close to the behavior policy of the dataset (Wu,
Tucker, and Nachum 2019; Xu et al. 2021; Cheng et al.
2024; Li et al. 2022). Value-based regularizations aim to
learn conservative value functions on OOD samples (Kumar
et al. 2020; Kostrikov et al. 2021; Xu, Zhan, and Zhu 2022).
Other approaches involve including uncertainty (Wu et al.
2021; Bai et al. 2022) or penalizing OOD rewards (Yu et al.
2020).

On the other hand, Decision Transformer (DT) (Chen
et al. 2021) takes a goal-conditioned supervised learning
(GCSL) approach to formulate offline RL as a sequence
modeling task and outperforms many state-of-the-art of-
fline RL algorithms. Following the success of this training
regime, Decision S4 (Bar-David et al. 2023) proposes using
S4 model variants for higher parameter efficiency, capturing
longer sequences and faster inference.

Offline MARL Extending single-agent offline RL meth-
ods (Levine et al. 2020; Kumar et al. 2019; Fujimoto, Meger,
and Precup 2019; Wu, Tucker, and Nachum 2019; Xu et al.
2021; Cheng et al. 2024; Li et al. 2022; Kumar et al. 2020;
Kostrikov et al. 2021; Xu, Zhan, and Zhu 2022; Bai et al.
2022) to multi-agent settings presents significant challenges
due to the exponential growth of the joint state-action space,
and global-level policy regularization are challenging to ob-
tain and may result in very sparse constraints, especially
with limited and less diverse offline dataset. Therefore, re-
cently, offline RL-based MARL algorithms have emerged,
typically applying regularizations on local policies or value
functions (Yang et al. 2021; Jiang and Lu 2023; Pan et al.



2022). On the other hand, (Meng et al. 2021) extends the
sequence-learning based Decision Transformer (DT) (Chen
et al. 2021) to a multi-agent setting, where agents are trained
independently by sharing weights within a goal-conditioned
supervised learning framework. However, these algorithms
do not provide guarantees of global-level regularizations and
fail to explicitly or implicitly learn cooperative behavior.
Only a few recent works have tried to tackle these limi-
tations. For example, (Wang et al. 2024) uses an implicit
global to-local regularization, and (Tseng et al. 2022) uses
knowledge distillation to distill cooperation in the local poli-
cies.

S4 S4(Gu, Goel, and Ré 2021; Gu et al. 2021) and their
variants (Gupta, Gu, and Berant 2022; Smith, Warring-
ton, and Linderman 2022), which are developed on time-
invariant linear state space layers, have outperformed trans-
formers in capturing long-range contexts. These models re-
quire far fewer parameters and have constant time infer-
ence; hence, they have been suitably utilized in reinforce-
ment learning domains in single-agent learning (Bar-David
et al. 2023) and in-context learning (Lu et al. 2024). Com-
monly, the model uses the convolutional mode for efficient
parallelizable training (where the whole input sequence is
seen ahead of time) and switched into a recurrent mode for
efficient autoregressive inference (where the inputs are seen
one timestep at a time).

Additional Details on Experimental Setup and
Training Details

Sequence-based reinforcement learning
Offline RL is formulated as a supervised learning problem
by predicting actions in an autoregressive manner typically
conditioned on current states, previously executed actions,
and desired returns to go. This paradigm was introduced in
(Chen et al. 2021), where the DT is trained to predict cur-
rent actions based on returns to go instead of current rewards
in order to have better actions that are correlated with bet-
ter future rewards. This work utilizes this supervised learn-
ing setting, where the state, action, and reward of ith agent
at each timestep are denoted as si, ai, ri, and its trajecto-
ries τ : (s0, a0, r0, s1, a1, r1, ..., sL, aL, rL) consist of se-
quences of state, action, and reward tuples. Since the mod-
els are trained on returns-to-go, the trajectories are restruc-
tured as τ : (R0, s0, a0, R1, s1, a1, ..., RL, sL, aL) where
Ri =

∑N
t=i ri is the returns to go from ith time step.

Network Architecture and Offline Training The
MADS4 architecture comprises three main components
(Figure 1): (i) Projection layers, which consist of fully
connected layers followed by ReLU activations; (ii) Input
encoder layers, which handle states, actions, and rewards
as fully connected linear layers; (iii) Sequence modeling,
which features stacked S4 blocks with Batch Normalization,
S4 layers, linear mixing with GELU activation, and dropout.

The ”Normal Plus Low Rank” kernel, initialized with
HIPPO, provides the best performance. For all experiments,
the input channel and S4 state sizes are set to H = 96 and

N = 96. An ablation study on state and input sizes is in the
Appendix.

In the offline setting, the S4 model is trained efficiently
using the convolutional view on entire trajectories sampled
randomly from the offline dataset. The trajectories are zero-
padded to a constant context length. Unlike transformers,
which face limitations on context length due to the expen-
sive quadratic time and space complexity of self-attention,
S4-based models can be trained on complete trajectories that
are often much longer than those typically used for trans-
formers in most environments. The impact of truncating tra-
jectory lengths has significant implications for model per-
formance, as detailed later in the Appendix. Actions are pre-
dicted based on the action logit outputs of the model, and the
model is trained based on loss computed using cross-entropy
between the true action labels and the predicted actions.

Network Architecture and Online Finetuning The pre-
trained model is loaded as the actor network, which predicts
action probabilities and next states as:

pti, h
t
i = π(ut

i, h
t−1
i ; θ) where ut

i = {Rt
i, s

t
gi, o

t
i, a

t−1
i , ht

i−1}
(9)

The critic network is parameterized by fully connected
layers with ReLU activations, which take the shared global
state of the environment and encoded latent states and evalu-
ate the value function, which is used to update the S4-based
actor parameters (θ) using the policy gradient theorem. For
more stable training. the actor network is kept frozen ini-
tially, and the critic is solely trained on the recorded data
collected using the pre-trained actor. After sufficient training
of the critic, the actor and critics are simultaneously trained.
During exploration, the desired returns-to-go is set at 10%
higher than the current model’s highest return.

Other Training Details
In all experiments, we set the input channel size to H = 96
and the S4 state size to N = 96. Offline training is con-
ducted on batches of 64 trajectories, with the maximum tra-
jectory length in the offline dataset used as the length for
each batch. The shorter trajectories are zero-padded to a con-
stant length. The training was performed using Adam opti-
mizer with a learning rate of 10−4.

The offline trained model is fine-tuned online using on-
policy MAPPO. During the initial stage of fine-tuning, the
actor network is kept frozen, and the critic is first trained
for the first 50,000 iterations. After this, both the actor and
critic are trained simultaneously, with a slower learning rate
for the actor network (10−5) compared to the critic (10−4).
During on-policy fine-tuning, the returns-to-go is set at 10%
higher than the highest returns encountered during training.
On-policy training is conducted in batches of 64. To mitigate
the issue of deteriorating performance with prolonged on-
policy training, the S4 kernel A can be kept frozen. All ex-
periments were run on a single NVIDIA RTX 2080Ti GPU.
Experiments on the RWARE domain take less than 2 hrs to
reach optimal performance, and experiments on the SMAC
domain take less than 6hrs, 12 hrs, 12 hrs, and 30 hrs for



maps 2c vs. 64zg, 5m vs. 6m, 6h vs. 8z and Corridor, re-
spectively.

S4 Layer

S4(Gu, Goel, and Ré 2021) layer is a variant of linear
and time-invariant (LTI) state-space model (SSM)(Gu et al.
2021) which adopts the HIPPO (Gu et al. 2020)-based ini-
tializations in order to better capture longer contexts, and
proposes efficient ways for kernel computations and parallel
training.

Recurrent View Given an input scalar function u(t) :
R → R, the continuous LTI SSM is defined by the following
first-order differential equation:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (10)

The model maps the input stream u(t) to y(t). It was
shown that initializing A by the HIPPO matrix (Gu et al.
2020) grants the state-space model (SSM) the ability to cap-
ture long-range dependencies. Similar to previous works
(Gu, Goel, and Ré 2021; Gupta, Gu, and Berant 2022), D
is replaced by parameter-based skip-connection and is omit-
ted from the SSM by assuming D = 0.

This SSM operates on continuous sequences, and it is dis-
cretized by a step size ∆ to operate on discrete sequences.
Let the discretization matrices be Ā, B̄, C̄:

Ā = (I −∆A/2)−1(I +∆A/2),

B̄ = (I −∆A/2)−1∆B,

C̄ = C.

(11)

These matrices allow us to rewrite Eq. 10:

xk = Āxk−1 + B̄uk, yk = C̄xk (12)

Using the recurrent Eq.12, SSM asymptotically allows for
constant O(1) time and memory inference for each token/
timestep, as compared to O(L2) inference for transformers.
SSM can be interpreted as a linear RNN in which Ā is the
state-transition matrix, and B̄, C̄ are the input and output
matrices. Thus, it essentially requires O(L) training, L being
the sequence length, as compared to O(L2) (parallelizable)
training complexity for transformers.

Convolutional View The recurrent SSM view is not prac-
tical for training over long sequences, as the training cannot
be parallelized across the sequence dimension and results
in instabilities from vanishing gradient issues. However, the
LTI SSM can be rewritten as a convolution, which allows for
efficient parallelizable training. The S4 convolutional view
is obtained as follows:

Given a sequence of scalars u = (u0, u1, ..., uL−1) of
length L, the S4 recurrent view can be unrolled to the fol-
lowing closed form:

∀i ∈ [L− 1] : xi ∈ RN ,

x0 = B̄u0,

x1 = ĀB̄u0 + B̄u1,

. . . ,

xL−1 =

L−1∑
i=0

ĀL−1−iB̄ui.

(13)

yi ∈ R,
y0 = C̄B̄u0,

y1 = C̄ĀB̄u0 + C̄B̄u1,

. . . ,

yL−1 =

L−1∑
i=0

C̄ĀL−1−iB̄ui.

(14)

where N is the state size. Inputs and outputs are scalars.
Since the recurrent rule is linear, it can be computed in
closed form with matrix multiplication or non-circular con-
volution:


y0

y1

...
yL−1

 =


C̄B̄ 0 0 · · · 0

C̄ĀB̄ C̄B̄ 0 · · · 0

C̄Ā2B̄ C̄ĀB̄ C̄B̄ · · · 0

...
...

...
. . .

...
C̄ĀL−1B̄ C̄ĀL−2B̄ C̄ĀL−3B̄ · · · C̄B̄




u0

u1

...
uL−1


i.e., y = k̄ ∗ u for some kernel k̄, which can be calcu-

lated by fixing the sequence length L before training. This
kernel can be efficiently computed using FFT operations;
for example, (Gu, Goel, and Ré 2021) computes the kernel
via inverse FFT on the spectrum of k̄, which is calculated
via Cauchy kernel and the Woodbury Identity. This benefits
from the ”Normal Plus Low Rank” parameterization of the
HIPPO-initialized state transition matrix A, and other more
efficient parameterizations are proposed in (Gupta, Gu, and
Berant 2022).

The SSM, as represented above, operates on scalars or
one channel of inputs. To handle vector inputs ∈ RH , H
copies of the 1-D SSM layer are stacked, one for each input
channel, and a linear mixing layer in the after block of the
S4 layer mixes the information from different channels to
produce outputs ∈ RH .

Sharing Hidden State Representations
The raw outputs from the S4 layer consist of yk = C̄xk,
where yk ∈ RH and the latent states xk ∈ RN×H for H
input channels. Since the outputs are linear projections and
offer a compact representation of the latent states (or, mem-
ory of the agent), this has been used as the message that is
transmitted from one agent to the next in the SE-MDP. This
offers several advantages: i) results in better team perfor-
mance; ii) offers scalable cooperation between agents, which
eliminates the need for a centralized transformer or a critic,
which requires access to information from all agents; one
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Figure 3: Average Returns obtained in SMAC tasks by pass-
ing S4 output versus S4 latent states.

agent needs access to only its immediate neighbor in the se-
quence; (iii) allows parallel training via convolution.

We also experimented with passing the raw hidden states
xk ∈ RN×H from one agent to another. The hidden states
can be complex, depending on the parameterization of the
S4 kernel. Therefore, before passing the latent states di-
rectly, we first linearly mix the hidden states across the H
channels to obtain xk ∈ CN . Then, we linearly project
the real and imaginary parts of xk after concatenation. This
mode of information transfer, however, has notable draw-
backs: i) it requires computing the S4 hidden state at every
timestep, which requires recurrent rollouts of the S4 kernel,
and ii) it fails to outperform the method of passing the S4
outputs; possibly due to errors accumulated during recurrent
training. A comparison of performance using S4 output rep-
resentation versus S4 latent state representation is shown in
Figure3, where passing S4 outputs resulted in better perfor-
mance across all tasks.

It is, however, noted that hidden states at each timestep
may be efficiently obtained utilizing the parallel (associate)
scan operation as done in (Smith, Warrington, and Linder-
man 2022; Lu et al. 2024), but this requires JAX implemen-
tation and is currently not supported by PyTorch.

Preliminary study using Mamba
We also explored Mamba as an alternative to LTI S4-based
models. Mamba allows time-variant parameters to be con-
sidered in the SSM equations. Though convolution cannot
be applied here since the kernel cannot be computed apriori
since the parameters B,C are input-dependent, efficient par-
allel scan operation allows for parallelizable O(logL) com-
plexity. However, preliminary analysis utilizing Mamba re-
sulted in suboptimal performance, and it requires more ex-
tensive analysis.

Datasets and Baselines
RWARE
RWARE environment is a warehouse simulation consisting
of agents moving and delivering goods to workstations in
partially observable settings while avoiding collisions. This
domain poses challenges due to high-dimensional observa-
tions and the need for strong cooperation, especially in high-

density settings where agents must navigate narrow pas-
sages. The offline dataset on RWARE (Papoudakis et al.
2020) is obtained from (Matsunaga et al. 2023), which con-
tains an expert dataset with diverse behaviors obtained by
training MAT on small and tiny maps. The dataset con-
sists of 1000 trajectories, each trajectory consisting of 500
timesteps. The dataset statistics are in Table 3. The longest
trajectories consist of timesteps in the range of 500 in all the
datasets.

The baseline results are obtained from (Matsunaga et al.
2023), which currently holds the state-of-the-art results of
the baselines listed on this dataset.

Map Name Maximum Minimum Average
small 2 agents 12.37 1.13 7.12
small 4 agents 12.08 3.93 9.49
small 6 agents 12.69 7.59 10.76
tiny 2 agents 16.81 1.97 12.77
tiny 4 agents 18.63 10.40 15.67
tiny 6 agents 19.97 11.88 17.45

Table 3: RWARE datasets

SMAC
The offline SMAC (Samvelyan et al. 2019) dataset is ob-
tained from (Wang et al. 2024). This dataset is obtained
by randomly sampling 1000 trajectories from the original
dataset provided by (Meng et al. 2021). We consider 4 rep-
resentative battle maps, including 2 hard maps (5m vs 6m, 2c
vs 64zg) and 2 super hard maps (6h vs 8z, corridor), which
are detailed in Table 4. The average returns for the dataset
are listed in Table 5. The longest trajectories are encoun-
tered in the Corridor map, which typically comprises about
100 timesteps.

Map Name Ally Units Enemy Units Type
5m vs 6m 5 Marines 6 Marines homogeneous & asymmetric
2c vs 64zg 2 Colossi 64 Zerglings micro-trick: positioning
6h vs 8z 6 Hydralisks 8 Zealots micro-trick: focus fire
corridor 6 Zealots 24 Zerglings micro-trick: wall off

Table 4: SMAC maps for experiments.

Baselines
Offline RL baselines include Behavior Cloning (BC) (Fu-
jimoto, Meger, and Precup 2019), OptiDICE (Lee et al.
2021), AlberDICE (Matsunaga et al. 2023), ICQ (Yang et al.
2021), OMAR (Pan et al. 2022), and OMIGA (Wang et al.
2024). Sequence-based baselines include transformer-based
MADT (Meng et al. 2021), which lacks inter-agent coopera-
tion, and MADTKD (Tseng et al. 2022), which incorporates
cooperation via a centralized teacher model. The offline RL-
based baseline results are obtained from (Wang et al. 2024),
and MADT results are obtained by running the code avail-
able with (Meng et al. 2021).



Map Name Quality Average Return
5m vs 6m good 20.00

medium 11.03
poor 8.50

2c vs 64zg good 19.94
medium 13.00

poor 8.89
6h vs 8z good 17.84

medium 11.96
poor 9.12

corridor good 19.88
medium 13.07

poor 4.93

Table 5: SMAC datasets.
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Figure 4: The effect of truncating the trajectory length dur-
ing training. The average returns are normalized with the
maximum returns encountered in the offline dataset.

Hyperparameters and Additional Analysis
S4 model size parameters
We analyze the impact of the S4 model size parameters,
specifically the number of input channels (H) and the la-
tent state size (N ), on the model performance, as shown in
Table 6. We compare the total number of parameters against
the 1.8 million parameters reported for MADTKD in (Tseng
et al. 2022). Our biggest model with N=96 and H=96 was
used in all our experiments, which consists of about 200k
parameters.

The effect of context length
The context length used for pretraining significantly impacts
performance, which is also evident for transformer-based
models. In our experiments, we used the maximum trajec-
tory lengths encountered in the offline datasets for pretrain-
ing. Representative results are shown in Figure 4, which il-
lustrates the effects of truncating the trajectory lengths to
various percentages of the maximum length in the offline
dataset for the SMAC map 2c vs 64zg.

Effect of freezing A during on-policy finetuning
The degrading effect on MADS4 performance during recur-
rent on-policy finetuning can be mitigated by freezing the S4

Figure 5: The effect of freezing S4 kernel parameter A in the
SMAC 6h vs 8z map. Freezing A in the right Figure results
in more stable performance during the on-policy recurrent
finetuning.

Figure 6: The effect of having a shuffled random order vs.
a fixed sorted order of the agents in the SE-MDP frame-
work on the SMAC domain in the 2c vs. 64zg map (left)
and RWARE domain in the small 6 agents scenario (right).

kernel parameter A while updating only parameters B and
C, as illustrated in Figure 5. A similar observation has also
been reported in (Bar-David et al. 2023).

Effect of order of agents
To assess the impact of agent ordering on MADS4’s per-
formance, we compared two training settings: (1) Random
Order, where the agent order is randomly shuffled during
training, and (2) Fixed Order, where agents are trained in
the same sorted order as in the offline dataset. The results in
Figure 6 indicate minimal to no performance difference be-
tween the two settings, demonstrating that MADS4 is robust
to agent ordering within the SE-MDP framework. Nonethe-
less, we recommend using a random order during training to
avoid introducing potential biases into the learning process.

Effect of global states as inputs
Building on prior work such as MADT, the proposed S4-
based MADS4 agents utilize global states as inputs. How-
ever, in certain environments, access to the global state may
be restricted or unavailable. To address this, we present
an ablation study (Figure 7) evaluating the impact of us-
ing global state variables as inputs. The results indicate that
omitting the global state does not lead to a significant drop
in performance.

MADS4 vs. Decentralized MADS4
When decisions are made at the current timestep, all deci-
sions from the previous timestep will already be finalized.
As a result, the memory information of all agents is readily
available for use. This eliminates the need for any agent to
wait for its peer to decide the current timestep. By utilizing
the memory information from the previous timestep, agents



Table 6: Results of smaller models on the RWARE small map. Each of the smaller models is denoted by (i) N , the S4 state
size, and (ii) H , the number of input/output channels.

Environments (N=96,H=96) (N=64,H=64) (N=32,H=32) (N=64,H=96) (N=96,H=64) (N=32,H=64) MADTKD
2 agents 6.58 6.21 5.53 6.53 6.25 5.87 3.65
4 agents 9.47 8.86 8.57 9.15 8.88 8.64 6.85
6 agents 10.87 10.31 9.55 10.76 9.97 9.85 7.85

% Parameters (Ours) 100 60 40 81 82 55 100
% Parameters (MADTKD) 12 7 5 8 8 6 100

Figure 7: Performance comparison on RWARE small map
with 6 agents (left) and SMAC map 2c vs 64 zg (right). The
results demonstrate that excluding global states as inputs in
MADS4 agents has minimal impact on performance.

Figure 8: The comparison of performance of MADS4 vs.
MADS4-dec (decentralized MADS4) on RWARE small
map with 6 agents (left) and SMAC map 2c vs 64 zg (right).

can make decisions without relying on sequential dependen-
cies during the current timestep. Since memory accumulates
over multiple timesteps, relying on the previous timestep’s
information does not compromise performance, as demon-
strated in Figure 8. This modification enables our algorithm
to function effectively in decentralized policy settings with-
out performance degradation.
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