
One Model to Train them All: Hierarchical Self-Distillation for Enhanced
Layer Representations in Embeddings

Anonymous ACL submission

Abstract001

Deploying language models often requires han-002
dling model size vs. performance trade-offs to003
satisfy downstream latency constraints while004
preserving the model’s usefulness. Model005
distillation is commonly employed to reduce006
model size while maintaining acceptable perfor-007
mance. However, distillation can be inefficient008
since it involves multiple training steps. In009
this work, we introduce MODULARSTAREN-010
CODER, a modular multi-exit encoder with 1B011
parameters, useful for multiple tasks within the012
scope of code retrieval. MODULARSTAREN-013
CODER is trained with a novel self-distillation014
mechanism that significantly improves lower-015
layer representations—allowing different por-016
tions of the model to be used while still main-017
taining a good trade-off in terms of perfor-018
mance. Our architecture focuses on enhancing019
text-to-code and code-to-code search by sys-020
tematically capturing syntactic and semantic021
structures across multiple levels of representa-022
tion. Specific encoder layers are targeted as023
exit heads, allowing higher layers to guide ear-024
lier layers during training. This self-distillation025
effect improves intermediate representations,026
increasing retrieval recall at no extra training027
cost. In addition to the multi-exit scheme, our028
approach integrates a repository-level contex-029
tual loss that maximally utilizes the training030
context window, further enhancing the learned031
representations. We also release a new dataset032
constructed via code translation, seamlessly ex-033
panding traditional text-to-code benchmarks034
with code-to-code pairs across diverse program-035
ming languages. Experimental results highlight036
the benefits of self-distillation through multi-037
exit supervision.038

1 Introduction039

Large language models (LLMs) have significantly040

impacted the field of natural language processing,041

demonstrating remarkable performance across var-042

ious applications (Niu et al., 2023). However, the043

amount of computation required to operate state- 044

of-the-art models poses significant challenges for 045

the large-scale deployment of these models. 046

To mitigate these challenges, the research com- 047

munity has explored several model strategies to 048

reduce the operational cost of LLMs without sacri- 049

ficing their effectiveness. A prominent technique 050

in model compression is quantization (Jacob et al., 051

2017; Lin et al., 2023; Egiazarian et al., 2024), 052

which involves the reduction of numerical precision 053

in the model’s parameters. Quantization effectively 054

decreases memory requirements and enhances in- 055

ference speed, facilitating the deployment of large 056

language models in resource-constrained environ- 057

ments. Concurrently, knowledge distillation has 058

emerged as a powerful technique whereby a smaller 059

“student” model is trained to emulate the behav- 060

ior of a larger “teacher” model, as evidenced by 061

works such as DISTILBERT (Sanh et al., 2019) and 062

TINYBERT (Jiao et al., 2019). Additionally, prun- 063

ing methods selectively eliminate less influential 064

weights or neurons, further reducing model com- 065

plexity and aiming to preserve performance (Han 066

et al., 2015). 067

Recent efforts have increasingly focused on de- 068

veloping efficient architectures requiring fewer pa- 069

rameters. Model families such as LLaMA (Dubey 070

et al., 2024), Qwen (Hui et al., 2024), Mistral (Jiang 071

et al., 2023), and SmolLM (Allal et al., 2025) ex- 072

emplify a paradigm shift towards smaller, more 073

accessible architectures. These model families 074

are deployed at various resolutions—ranging from 075

lightweight variants optimized for heavily resource- 076

constrained environments to larger versions that 077

retain competitive performance. 078

In parallel, advancements in dynamic inference 079

strategies have introduced mechanisms that fur- 080

ther optimize computational efficiency. Techniques 081

like multi-exit networks enable early predictions 082

at intermediate layers, reducing unnecessary com- 083

putations. For instance, early-exit architectures 084

1

La
ye

r 1

La
ye

r 2

La
ye

r 4

La
ye

r 5
0.

8
0.

4
0.

23
...

0.
5

0.
3

0.
8

...

La
ye

r 9

La
ye

r 1
0

0.
75

0.
5

0.
8

...
0.

25
0.

6
0.

6

...

La
ye

r 1
8

La
ye

r 1
9

0.
5

0.
8

0.
6

...
0.

45
0.

6
0.

32

...

La
ye

r 2
7

La
ye

r 2
8

0.
46

0.
67

0.
18

...
0.

56
0.

6
0.

32

...

La
ye

r 3
6

0.
43

0.
86

0.
18

...
0.

27
0.

85
0.

75

...

La
ye

r l
os

s

La
ye

r l
os

s

La
ye

r l
os

s

La
ye

r l
os

s

La
ye

r l
os

s

Figure 1: Overview of our multi-exit self-distillation encoder, shown here with exit heads at selected layers (e.g.,
Layers 4, 9, 18, 27, and 36). Each exit head predicts an output embedding and adds a “layer loss,” contribution
weighted by a coefficient αi, summed into the overall objective L.

such as BranchyNet (Teerapittayanon et al., 2017)085

dynamically balance computation and accuracy086

by allowing predictions before full model execu-087

tion. Similarly, Matryoshka representation learn-088

ing (Kusupati et al., 2022) extends this idea to em-089

beddings, introducing a loss function that yields090

multi-granular representations. This approach al-091

lows downstream tasks to adjust computational092

complexity by pruning embedding dimensionality,093

further contributing to efficient model deployment.094

Building on these principles, we propose MODU-095

LARSTARENCODER, a modular multi-exit encoder096

architecture that integrates a novel intra-model self-097

distillation mechanism. In our design, specific in-098

termediate layers are supervised by both the pri-099

mary task loss and auxiliary distillation losses on100

specific exit heads, encouraging lower layers to101

learn better representations by mimicking the out-102

puts of higher layers. We apply a shared embed-103

ding head comprising a masked language modeling104

head and an in-context classification head across105

a chosen subset of layers. We then fine-tuned the106

model with different projection heads for each exit107

point. We reached state-of-the-art results on multi-108

ple retrieval tasks (such as code-to-code and text-to-109

code), fine-tuning one single modular model that110

can be sliced depending on the end-user computa-111

tional constraints.112

Our contributions are as follows:113

• We introduce a self-distillation framework that114

enables training multiple model resolutions115

within a unified layer stack, reducing redun-116

dancy and improving scalability. We believe117

this approach can significantly affect LLM 118

training pipelines that depend on multiple 119

model distillations. 120

• We train and plan to release MODU- 121

LARSTARENCODER, which consists of a pre- 122

trained and fine-tuned encoder: The former is 123

a modular pre-trained encoder with up to 1 bil- 124

lion parameters and four exit points, allowing 125

users to perform multiple exit fine-tuning de- 126

pending on downstream tasks. The latter is a 127

fine-tuned encoder for various retrieval tasks, 128

enabling the end user to select the model size 129

that meets their memory and computational 130

constraints. 131

• We plan to release SYNTHCODE2CODE2NL 132

a new dataset constructed via code trans- 133

lation, expanding popular text-to-code 134

datasets across diverse programming 135

languages with code-to-code pairs. SYN- 136

THCODE2CODE2NL comprises 1.071.367 137

triplets of natural language-code-code. 138

2 Methodology 139

2.1 Dataset 140

In the pre-training phase, we leveraged The Stack 141

V2 dataset (Lozhkov et al., 2024), a large open- 142

source code repository. Since many samples ex- 143

ceed typical context lengths, we split any tokenized 144

sample that surpassed 1536 tokens — 75% of our 145

2048 token limit — while preserving each reposi- 146

tory’s original structure. This strategy ensures that 147

our model sees manageable code segments. 148

2

Table 1: SYNTHCODE2CODE2NL details: Average character count and sample size per language for the Code-
SearchNet dataset and the synthesized portion obtained through translation.

Language CSN samples CSN avg. char Synth. samples Synth. avg. char
English 1.071.367 180 - -
PHP 280.706 514 116.967 579
Python 274.454 474 117.374 518
Go 234.089 350 124.125 541
Java 282.118 505 116.098 707
C++ - - 141.956 938
Ruby - - 158.494 456
C - - 136.365 1029
JavaScript - - 159.988 557

Translate this ''' print("Hello World") '''

from Python to Rust.

Here is the translated code '''

Qwen2.5Coder-
7B-Instruct

 fn main() {

 println!("Hello World!");

 }

Figure 2: Prompt provided to Qwen2.5-Coder-7B-Instruct for translating a given code snippet (print("Hello
World") in the example) from a source programming language (Python) to a target one (Rust).

We created SYNTHCODE2CODE2NL, a dataset149

for fine-tuning that supports text-to-code and code-150

to-code search. Using the popular CODESEARCH-151

NET (Husain et al., 2019) as a seed dataset and152

selecting popular programming languages (Python,153

Java, Go, and PHP), we augmented it by transpiling154

available code snippets onto other languages.155

During the preprocessing phase of SYNTH-156

CODE2CODE2NL, we deduplicated the dataset157

using both the CodeSearchNet code column and158

the synthesized code column. After a manual in-159

spection, we discovered that both columns con-160

tained code snippets that differed only in identifiers161

or function arguments, as several tasks were se-162

mantically identical but paraphrased with different163

parameter requirements (e.g., two identical para-164

phrased tasks were asking for opening a socket on165

a different port). During the data near deduplica-166

tion phase, we relied on Locality Sensitive Hashing167

(LSH) with a Jaccard similarity threshold of 0.7168

and 256 permutations, analyzing character-level169

5-grams.170

To generate semantically similar code snippets171

for code-to-code search, we translated each snip-172

pet into a different language randomly sampled173

from Go, Ruby, Python, Java, C++, PHP, C,174

JavaScript. We prompted the QWEN2.5-CODER-175

7B-INSTRUCT model with the source code, the 176

name of the source language, and the name of the 177

target language (see fig. 2). During code transla- 178

tion, we choose the token with the highest proba- 179

bility as output (greedy search) to prevent semantic 180

discrepancies. 181

This process yielded pairs of code snippets in 182

distinct languages tied to the same natural language 183

description. As a result, every sample in the fine- 184

tuning dataset includes a natural language descrip- 185

tion and two code snippets from distinct languages. 186

SYNTHCODE2CODE2NL contains 1.071.367 sam- 187

ples where in the first code column we directly 188

processed code snippets from CodeSearchNet, in- 189

cluding Python, Java, PHP, and Go. The third col- 190

umn, artificially synthesized via code translation, 191

includes Go, Ruby, JavaScript, Python, C++, PHP, 192

C, and Java code snippets. Motivated by prelimi- 193

nary experiments indicating that near-deduplication 194

on the code columns improved model performance, 195

we then near-deduplicated the code columns of the 196

datasets. Table 1 shows the average number of char- 197

acters per language in SYNTHCODE2CODE2NL, 198

we emphasize that synthesized data is significantly 199

longer than human-written code. Appendix A pro- 200

vides examples of code translation. 201

3

def build_examples(repo_1, repo_2):
 is_negative = random(0, 1)
 input = empty_string

 while not empty(repo_1):
 input += <sep_token>

 # Positive case

 pos_sample = sample_random_snippet(repo_1)
 if len(input) + len(pos_sample) > context_length - 1:
 break
 input += pos_sample

 if is_negative and not empty(repo_2):

 # Negative (snippets from different repos)
 input += <sep_token>
 neg_sample = sample_random_snippet(repo_2)
 if len(input) + len(neg_sample) > context_length - 1:
 break

 input += neg_sample
 input += <cls_token>

 return input

Sample 1
repo 1

Sample 2
 repo 1

Sample 3
repo 1

Sample 1
repo 1

Sample 1
 repo 2

Sample 2
repo 1

Sample 2
repo 2

Sample 3
repo 1

SEP SEP SEP CLS

CLSSEPSEPSEPSEPSEP

Positive example

Negative example

Figure 3: On the left side the illustration of the in-context loss framework, where samples from different repositories
are concatenated. Positive examples share the same repository context, while negative examples come from different
repositories. On the right side, in-context loss framework pseudocode.

2.2 Architecture202

We built MODULARSTARENCODER on top of203

STARCODER-2 (Lozhkov et al., 2024), reducing its204

size from 15B to 1B parameters in bfloat16. Our205

architecture consists of 36 hidden layers, each with206

16 attention heads and 4 key-value heads, using207

Grouped Query Attention (GQA) (Ainslie et al.,208

2023). The model employs Rotary Positional En-209

coding (RoPE) (Su et al., 2021) with a base period210

θ = 10−6 and features a hidden dimensionality of211

1024 with an intermediate size of 12,288.212

To enhance efficiency, we replaced the213

causal self-attention layers with bidirectional self-214

attention, similar to recent work that “modernized”215

BERT (Warner et al., 2024). Unlike STARCODER-216

2, which uses sliding window attention, we opted217

for full attention to ensure greater modularity,218

avoiding the receptive field constraints of sliding219

window mechanisms (Zhu et al., 2021). Addition-220

ally, we extended the maximum input length to221

2048 tokens, accommodating longer code snippets222

compared to prior code encoders such as STAREN-223

CODER (Li et al., 2023).224

Finally, our implementation integrates225

FLASHATTENTION V2 (Dao, 2023) for faster226

inference. Table 2 summarizes the architectural227

details.228

2.3 Pre-training229

We pre-trained MODULARSTARENCODER with230

a batch size of 3.99M tokens for 245,000 train-231

ing steps, processing 1T tokens. The pre-training232

and fine-tuning were conducted on 512 NVIDIA233

Ampere (64GB) GPUs using the Leonardo super-234

computer (Turisini et al., 2023), requiring 450,000235

GPU working hours.236

To enable both token-level and snippet-level em- 237

beddings after pre-training, we employed a multi- 238

objective pre-training strategy that combined two 239

losses, as detailed in section 2.3.1 and section 2.3.2. 240

The pre-training was performed on THESTACKV2, 241

whose context length analysis revealed an average 242

of ≈ 630 tokens per code snippet. As described in 243

section 2.3.1, we concatenated multiple snippets to 244

facilitate our multi-loss methodology, allowing our 245

in-context classification loss to expand the average 246

context window to ≈ 1300 tokens, reaching the 247

maximum context length 20 248

We optimized the model using the AdamW op- 249

timizer with β1 set to 0.9, β2 to 0.95, ϵ to 1e-6, 250

and a weight decay of 1e-1. The learning rate was 251

initialized at 6.24e-4 and scheduled using a multi- 252

step learning rate decay (Bi et al., 2024) with 4,000 253

warmup steps. The learning rate was reduced at 254

120,000, 185,000, 220,000, 230,000, and 240,000 255

training steps, applying a decay factor of 0.36, and 256

from step 185,000 onward, further reduced by fac- 257

tors of 0.1, 0.031, 0.01, and 0.001. Table 2 sum- 258

marizes the hyperparameters for architecture, pre- 259

training, and fine-tuning. 260

2.3.1 Masked Language Modeling and In 261

Context Classification 262

The training objectives of BERT (Feng et al., 2020), 263

specifically Masked Language Modeling (MLM) 264

and Next Sentence Prediction (NSP), have become 265

a de facto standard. However, The NSP loss con- 266

strains the context window length to the sentence 267

length, leading to too many padding tokens and 268

redundant computation(Zeng et al., 2022), and has 269

been shown to not yield significant benefits after 270

fine-tuning (Warner et al., 2024; Aroca-Ouellette 271

4

Table 2: Hyperparameters for Architecture, Pre-training,
and Fine-tuning

Architecture
Hyperparameter Value
Model size 1B parameters
Precision bfloat16
Hidden layers 36
Attention heads 16
Hidden dimensionality 1024
Positional encoding RoPE (θ = 10−6)
Context length 2048
Attention mechanism Grouped-Query Attention
Attention pattern Bi-directional

Pre-training
Batch size 3.99M tokens
Pretraining steps 245.000
Pretraining Tokens 1T
Loss function MLM + In-Context loss
Multi-layer loss yes
Optimizer AdamW
Weight decay 1e-1
Initial learning rate 6.24e-4
Learning rate schedule Multi-step
Warmup steps 4000

Fine-tuning
Dataset size 635.404 samples
Fine-tuning steps 20.000
Loss function CLIP loss
Multi-layer loss yes
Batch size 2048
Learning rate 1.0e-5
Temperature parameter 10.0

Hardware (Pre-training + fine-tuning)
GPUs 512 NVIDIA Ampere (64GB)
Overall Training hours 450.000

and Rudzicz, 2020). Given that the average num-272

ber of tokens per data sample in Stack v2 is 630, a273

large context window of 2048 results in substantial274

padding, making long-context training inefficient.275

While Wang et al. (2023) demonstrated the advan-276

tages of training LLMs with multiple objectives, we277

revisited the NSP loss and introduced an in-context278

classification (ICC) objective. We hypothesize that279

predicting whether multiple code snippets belong280

to the same context (in our case, the same repos-281

itory) can enhance semantic search performance282

while allowing efficient concatenation of multiple283

code fragments. Our final training objective is the284

summation of two losses: (1) MLM loss and (2)285

ICC loss: L = LMLM + LICC .286

In LMLM , a certain percentage of tokens are287

randomly masked and predicted using a classi-288

fication head. Following Zhang et al. (2024),289

we adopt a 15% masking rate with the standard290

80-10-10 token replacement strategy (Feng et al.,291

2020). The secondary objective, LICC , determines292

whether randomly concatenated inputs (separated 293

by a < SEP > token) originate from the same 294

repository (see fig. 3). Each concatenated sam- 295

ple has a 50% probability of containing source 296

code from different repositories. This approach 297

increases input density—reducing padding by ex- 298

panding the average input length from 630 to 1300 299

tokens—and potentially enhances cross-language 300

understanding. Since repositories are inherently 301

modular and often contain files written in multiple 302

languages, learning from repository-level context 303

may improve inter-language generalization. 304

2.3.2 Multi-layer Loss 305

To achieve layer-wise modularity in transformer 306

architectures, we apply the previously introduced 307

loss (section 2.3.1) across a selected set of lay- 308

ers, sharing classification heads (masked language 309

modeling and in-context classification) while in- 310

corporating a positional embedding of the layer 311

index. The total loss is computed as the sum of 312

individual layer losses, weighted by a factor α to 313

prioritize deeper layers: L =
∑

i∈ι Li · α where 314

α = i/|I| and I = {1, . . . , 36} represents all lay- 315

ers, and the selected subset ι = {4, 9, 18, 27, 36} 316

defines the layers where the loss is applied. The 317

selected subset was chosen to enable four model 318

variants equally spaced in depth (9, 18, 27, 36) 319

along with an additional “tiny” version (4) to see 320

the model performance in a lower number of param- 321

eters set. This approach allows for flexible model 322

deployment, enabling adaptive layer pruning while 323

maintaining performance trade-offs. 324

2.4 Fine-tuning 325

Following (Su et al., 2023), we fine-tune a single 326

model for both text-to-code and code-to-code re- 327

trieval using instruction prompting. The optimiza- 328

tion objective combines CLIP loss (Radford et al., 329

2021) with a multi-layer loss (details in 2.3.2). 330

To enhance representation learning, we replace 331

the standard single-head projection with five dis- 332

tinct projection heads, applied at different exit 333

points of the pre-trained model (layers 4, 9, 18, 334

27, and 36). We used a batch of 2048 elements, 335

ensuring that text-to-code and code-to-code were 336

equally distributed across the batch. 337

We performed data augmentation by randomly 338

replacing frequently occurring words (appearing 339

more than twice and having at least three charac- 340

ters) with random strings. We applied the augmen- 341

tation exclusively to code snippets in 30% of cases, 342

5

Table 3: Performance of different models on text-to-code with CodeSearchNet using codeXGLUE. We reported the
results presented in codet5plus, unixcoder and modernBERT (Wang et al., 2023; Guo et al., 2022; Warner et al.,
2024).

CodeSearchNet
Model Ruby JS Go Python Java PHP avg. MRR avg. NDCG
MODULARSTARENCODER 74.1 74.0 82.5 92.5 78.7 84.5 81.0 84.2
Codet5+ 770M 78.0 71.3 92.7 75.8 76.2 70.1 77.4 -
OpenAI text-embedding-3-large 84.7 85.3 95.9 99.8 90.1 95.6 91.9 93.3
Unixcoder 74.0 68.4 91.5 72.0 72.6 67.6 74.4 -
ModernBERT-large - - - - - - - 59.5

leaving natural language descriptions unchanged.343

After conducting a grid search, we selected 1.0e−5344

as the learning rate, maintained throughout the fine-345

tuning process, and set the temperature parameter346

at 10.0.347

2.5 Evaluation348

We evaluated MODULARSTARENCODER on both349

text-to-code and code-to-code retrieval tasks using350

the CODEXGLUE benchmark (Lu et al., 2021).351

For text-to-code retrieval, we employed the CODE-352

SEARCHNET dataset, where the goal is to retrieve353

the most relevant code snippet given a natural lan-354

guage query. Specifically, the query corresponds to355

a documentation comment, and the model is tasked356

with ranking the correct code snippet among 999357

distractor snippets (Husain et al., 2019). This setup358

assesses the model’s ability to learn meaningful359

cross-modal representations between code and nat-360

ural language.361

For code-to-code retrieval, we relied on two362

datasets from CODEXGLUE: the Code Translation363

(CT) benchmark and POJ-104. The Code Trans-364

lation dataset consists of semantically equivalent365

code snippets in different programming languages,366

and we framed the task as cross-language code re-367

trieval rather than translation. In this setting, given368

a Java code snippet as a query, the model retrieves369

the corresponding C# implementation, testing its370

capability to capture cross-lingual semantic simi-371

larities between functionally equivalent programs.372

In contrast, the POJ-104 dataset contains C/C++373

programs that solve the same problem but with374

different implementations, making it a suitable375

benchmark for assessing retrieval of semantically376

similar code across diverse implementations. This377

setup evaluates the model’s capacity to generalize378

across structural variations while preserving seman-379

tic equivalence.380

Table 4: Performance of different models on Code Trans-
lation (CT) and POJ104 for code-to-code search with
codeXGLUE dataset.

CT POJ104
Model MRR mAP
MODULARSTARENCODER 98.9 56.5
Codet5+ 110M-embedding 98.4 24.5
OpenAI text-embedding-3-large 98.8 82.9
Unixcoder 97.6 41.0
ModernBERT-large 93.1 27.3

3 Results and Discussion 381

3.1 Benchmarks 382

Table 3 presents the results for CodeSearchNet 383

(t2c) task in terms of Mean Reciprocal Rank 384

(MRR) for each single language, average NDCG 385

and average MRR. Results for Unixcoder, Mod- 386

ernBERT, and CodeT5+ are reported from the 387

original papers (Guo et al., 2022; Warner et al., 388

2024; Wang et al., 2023). On CODESEARCHNET, 389

MODULARSTARENCODER achieves an MRR of 390

81.0, outperforming CODET5+ (Wang et al., 2023) 391

(770M), UNIXCODER (Guo et al., 2022), and 392

MODERNBERT-LARGE (Warner et al., 2024). Al- 393

though MODERNBERT-LARGE reports only aver- 394

age NDCG results (59.5). The only encoder that 395

surpasses MODULARSTARENCODER is OpenAI’s 396

text-embedding-3-large. 397

Table 4 presents results from both POJ104 and 398

CT dataset reported respectively in MRR for code 399

translation and mean average precision for POJ104. 400

For Code Translation (CT), we report MRR on 401

Java-to-C# retrieval. MODULARSTARENCODER 402

reaches the best performance among the tests. We 403

decided to replicate the experiments in a zero-shot 404

setting for code-to-code tasks, as our model does 405

not integrate POJ104 and code translation datasets 406

in the training set. 407

Referring to Table 4, on the POJ104 dataset in 408

6

Table 5: Performance comparison of MODULARSTARENCODER model layers and baseline fine-tuned models on
the CodeSearchNet benchmark. The table displays the overall retrieval performance measured by Mean Reciprocal
Rank (MRR). We refer to the model fine-tuned with multiple exit points simultaneously as self-distilled; the others
are fine-tuned singularly for each exit point.

CodeSearchNet
Model Size Ruby Javascript Go Python Java PHP avg. MRR
Layer-4 110M 59.5 61.3 72.1 86.2 68.2 75.5 70.5
Layer-4 (self-distilled) 62.2 64.7 74.8 88.1 71.4 78.0 73.2
Layer-9 250M 64.9 65.7 74.3 87.3 72.0 78.8 73.8
Layer-9 (self-distilled) 67.6 69.4 78.9 90.2 75.5 82.3 77.3
Layer-18 500M 73.8 73.5 82.4 92.1 78.4 84.0 80.7
Layer-18 (self-distilled) 74.1 74.0 82.5 92.5 78.7 84.5 81.0
Layer-27 750M 72.3 71.8 80.8 90.8 76.9 82.3 79.1
Layer-27 (self-distilled) 73.2 73.3 81.7 92.1 77.8 83.8 80.3
Layer-36 1B 72.3 72.9 80.7 91.5 77.1 82.9 79.5
Layer-36 (self-distilled) 73.5 72.6 80.5 91.4 76.9 82.7 79.6

zero-shot, MODULARSTARENCODER achieves an409

mAP of 0.57, which is state-of-art between open-410

sourced models, even though it is significantly be-411

hind OpenAI text-embedding-3-large. However,412

direct comparison with OpenAI text-embedding-413

3-large remains challenging because it is closed-414

source, and details such as model size, training415

methodology, or potential data contamination are416

undisclosed.417

3.2 Ablation Study418

We conducted an ablation study by fine-tuning sin-419

gularly each exit point (also starting from MODU-420

LARSTARENCODER, pre-trained) and pruning the421

subsequent layers (e.g., for the baseline on layer 18,422

we retain only the first 18 layers and fine-tune the423

model using just one projection head on that layer).424

The multi-exit model consistently outperforms the425

single-exit baseline, indicating that lower-level lay-426

ers benefit from training signals propagated from427

deeper layers. This behavior is highlighted in Ta-428

ble 5, where our model, indicated by self-distilled,429

outperforms all the single exit baselines consis-430

tently. This finding underscores a promising new431

direction in self-distillation for large-scale code432

and text models, enabling high performance even433

in more compact configurations. Moreover, Fig-434

ure 4 illustrates that MODULARSTARENCODER435

maintains robust performance from layers 18 to 36,436

allowing users to scale down the network to match437

their memory, computational, or latency constraints438

while preserving strong retrieval accuracy.439

4 Related work 440

Since the introduction of ELMo (Peters et al., 441

2018), deep contextual information has enhanced 442

generating embeddings for textual retrieval or clas- 443

sification, reaching state-of-the-art results in sev- 444

eral tasks. BERT (Feng et al., 2020) followed 445

those findings, adapting the Transformer architec- 446

ture (Vaswani et al., 2017) to enable a bi-directional 447

representation with two different training object- 448

ing, namely the masked language modeling and 449

the next sentence prediction losses. (Lan et al., 450

2019; Liu et al., 2019) adapted the BERT archi- 451

tecture to obtain an enhanced pre-trained model 452

by removing or modifying the NSP, focusing on 453

pre-training data or hyperparameters optimization. 454

More recently, modernBERT (Warner et al., 2024) 455

tied the gap between modern decoders (Jiang et al., 456

2023; Hui et al., 2024; Dubey et al., 2024; Touvron 457

et al., 2023; Lozhkov et al., 2024) advancements 458

that rely upon models with an increased number of 459

parameters, trained upon more tokens, and being 460

capable of handling longer contextual information. 461

In code representation, large language models 462

must be adapted by training them on a curated cor- 463

pus focused on software and by leveraging code’s 464

syntactic and semantic structures, which differ sig- 465

nificantly from natural language. Feng et al. (2020) 466

adapted the BERT architecture to produce seman- 467

tically meaningful embeddings for source code, 468

resulting in codeBERT. This was accomplished 469

by including more source code in the training set 470

and focusing on a training loss that can leverage 471

bimodal (natural language and code) contextual in- 472

7

5 10 15 20 25 30 35
Layer

0.70

0.72

0.74

0.76

0.78

0.80

0.82

M
R

R

+2.72%

+3.47%

+0.40%
+1.18%

+0.00%

Baseline models
Self-distilled model

(a) MRR

5 10 15 20 25 30 35
Layer

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

R
ec

al
l@

1

+3.11%

+4.36%

+0.58%

+1.46%
+0.27%

Baseline models
Self-distilled model

(b) Recall@1

Figure 4: Performance Comparison Across Layers: The graph illustrates the MRR and the Recall@1 for different
layers, comparing baseline models and a self-distilled model.

formation (Clark et al., 2020). GraphCodeBERT473

enhanced codeBERT (Feng et al., 2020) represen-474

tations by incorporating data flow graphs, captur-475

ing dependencies between variables and operations,476

and improving tasks like code summarization and477

clone detection. UniXcoder (Guo et al., 2022)478

extended this by introducing a unified encoder-479

decoder framework, integrating abstract syntax480

trees (ASTs) and data flow information. Wang et al.481

(2023) expanded these findings with codet5plus,482

stressing how multiple losses that leverage code483

semantics impact the model pertaining. The work484

incorporated text-code contrastive learning, text-485

code Matching, and text-code causal LM for better486

code understanding and generation.487

When trying to achieve better performance, re-488

search has shifted toward models with a high num-489

ber of parameters. While this trend appears ef-490

fective from a performance perspective, end users491

may face computational or memory limitations as492

LLMs vary from millions to billions of parame-493

ters. Sanh et al. (2019) pioneered the introduction494

of knowledge distillation, using a “teacher” model495

that guides a smaller model to emulate its behav-496

ior. This methodology has been widely adopted497

and improved upon recently (DeepSeek-AI et al.,498

2025; Hui et al., 2024), becoming a standard for499

obtaining high-performing smaller LLMs.500

Our work differs from previous work by adapt-501

ing a modern architecture (Lozhkov et al., 2024) to502

a code encoder-only based model and introducing503

a novel ’self-distillation’ mechanism. We replace504

the next sentence prediction loss with an in-context505

classification focused on the repository level and506

expand the context to 2048 tokens. Our novel507

self-distillation mechanism improves low-level lay-508

ers, resulting in a modular transformer architecture 509

without additional teacher models or further data 510

for distillation. 511

5 Conclusion 512

In this work, we introduced MODULARSTAREN- 513

CODER, a modular multi-exit encoder architecture 514

designed to improve efficiency and scalability in 515

code retrieval tasks. By integrating an intra-model 516

self-distillation mechanism, our approach enables 517

multiple resolution models to be trained within 518

a unified layer stack, reducing redundancy while 519

maintaining high retrieval performance. Our evalu- 520

ation on CODEXGLUE demonstrates that MOD- 521

ULARSTARENCODER achieves state-of-the-art re- 522

sults among open-source models, outperforming 523

prior baselines across text-to-code and code-to- 524

code retrieval tasks. Ablations further highlighted 525

the benefits of self-distillation, showing that lower 526

layers gain representational strength from deeper 527

layers, leading to superior performance compared 528

to single-exit models. 529

Beyond performance gains, MODU- 530

LARSTARENCODER offers practical benefits 531

by providing multiple exit points, allowing users 532

to balance computational efficiency and accuracy 533

based on resource constraints. The results suggest 534

that self-distillation provides a promising direction 535

for efficient large-scale encoders, reducing 536

deployment costs without sacrificing effectiveness. 537

Finally, we plan to release in open-access our 538

SYNTHCODE2CODE2NL and both pre-trained and 539

fine-tuned MODULARSTARENCODER models. 540

8

Limitations541

Due to our dependence on multiple GPUs, we542

encountered significant computational constraints.543

Parameter grid searches with smaller and embry-544

onic models were the only ways to extrapolate the545

best hyperparameter setup. The best hyperparam-546

eters for smaller models can differ from those for547

larger ones; thus, we faced a limitation in finding548

an optimal training setup. Ablating both the in-549

context classification and the multi-layer loss in a550

real scenario was impossible as we depended on551

smaller models to understand their performances.552

Therefore, computational resources pose a signif-553

icant constraint in this work, and we want to em-554

phasize how this factor undermines the possibility555

of replicating the experiments.556

Here, we highlight potential threats to the va-557

lidity of the research process, focusing on both558

external and internal factors.559

External validity When synthesizing the SYN-560

THCODE2CODE2NL code, we rely on code trans-561

lation; we understand that synthesized data adheres562

to stylistic writing patterns distinct from those of563

humans. We tested the model’s performance on564

standard benchmarks. However, the impact of uti-565

lizing code snippets as synthetic data in training566

large language models for generalization over hu-567

man text-to-code and code-to-code search is still568

not fully understood.569

Internal validity The ablation study focused on570

fine-tuning the model with and without multi-layer571

loss. However, this comparison does not account572

for how the model behaves when starting from573

a model not pre-trained on multi-layer loss. Al-574

though our experiments present promising results,575

further inspection is necessary to better understand576

this phenomenon.577

References578

Joshua Ainslie, James Lee-Thorp, Michiel de Jong,579
Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-580
hai. 2023. GQA: Training Generalized Multi-Query581
Transformer Models from Multi-Head Checkpoints.582
arXiv e-prints, arXiv:2305.13245.583

Loubna Ben Allal, Anton Lozhkov, Elie Bak-584
ouch, Gabriel Martín Blázquez, Guilherme Penedo,585
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček,586
Agustín Piqueres Lajarín, Vaibhav Srivastav, et al.587
2025. Smollm2: When smol goes big–data-centric588
training of a small language model. arXiv preprint589
arXiv:2502.02737.590

Stéphane Aroca-Ouellette and Frank Rudzicz. 2020. On 591
losses for modern language models. arXiv preprint 592
arXiv:2010.01694. 593

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, 594
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, 595
Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun 596
Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong 597
Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie 598
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi 599
Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, 600
Alex X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin 601
Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, 602
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Jun- 603
jie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong 604
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, 605
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui 606
Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, 607
Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin 608
Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei 609
Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang 610
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei 611
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan 612
Zhang, Minghua Zhang, Wentao Zhang, Yichao 613
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, 614
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024. 615
Deepseek LLM: scaling open-source language mod- 616
els with longtermism. CoRR, abs/2401.02954. 617

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and 618
Christopher D. Manning. 2020. ELECTRA: pre- 619
training text encoders as discriminators rather than 620
generators. In 8th International Conference on 621
Learning Representations, ICLR 2020, Addis Ababa, 622
Ethiopia, April 26-30, 2020. OpenReview.net. 623

Tri Dao. 2023. FlashAttention-2: Faster Attention with 624
Better Parallelism and Work Partitioning. arXiv e- 625
prints, arXiv:2307.08691. 626

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 627
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 628
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 629
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong 630
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, 631
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, 632
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, 633
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, 634
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, 635
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, 636
Han Bao, Hanwei Xu, Haocheng Wang, Honghui 637
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, 638
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang 639
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. 640
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai 641
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai 642
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong 643
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan 644
Zhang, Minghua Zhang, Minghui Tang, Meng Li, 645
Miaojun Wang, Mingming Li, Ning Tian, Panpan 646
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, 647
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 648
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, 649
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 650
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 651

9

https://doi.org/10.48550/arXiv.2305.13245
https://doi.org/10.48550/arXiv.2305.13245
https://doi.org/10.48550/arXiv.2305.13245
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2401.02954
https://doi.org/10.48550/ARXIV.2401.02954
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691

Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing652
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,653
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,654
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao655
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan656
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin657
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,658
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,659
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-660
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,661
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang662
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng663
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,664
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,665
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,666
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-667
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,668
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,669
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,670
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,671
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean672
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,673
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-674
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,675
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu676
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-677
tivizing reasoning capability in llms via reinforce-678
ment learning. Preprint, arXiv:2501.12948.679

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,680
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,681
Akhil Mathur, Alan Schelten, Amy Yang, Angela682
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,683
Archi Mitra, Archie Sravankumar, Artem Korenev,684
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien685
Rodriguez, Austen Gregerson, Ava Spataru, Bap-686
tiste Rozière, Bethany Biron, Binh Tang, Bobbie687
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe688
Bi, Chris Marra, Chris McConnell, Christian Keller,689
Christophe Touret, Chunyang Wu, Corinne Wong,690
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-691
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,692
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,693
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,694
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,695
Emily Dinan, Eric Michael Smith, Filip Radenovic,696
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-697
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,698
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-699
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,700
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan701
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan702
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,703
Jeet Shah, Jelmer van der Linde, Jennifer Billock,704
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,705
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,706
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph707
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,708
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate709
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and710
et al. 2024. The llama 3 herd of models. CoRR,711
abs/2407.21783.712

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev,713

Elias Frantar, Artem Babenko, and Dan Alistarh. 714
2024. Extreme Compression of Large Language 715
Models via Additive Quantization. arXiv e-prints, 716
arXiv:2401.06118. 717

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, 718
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing 719
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 720
2020. CodeBERT: A Pre-Trained Model for Pro- 721
gramming and Natural Languages. arXiv e-prints, 722
arXiv:2002.08155. 723

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 724
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 725
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 726
bert: A pre-trained model for programming and nat- 727
ural languages. In Findings of the Association for 728
Computational Linguistics: EMNLP 2020, Online 729
Event, 16-20 November 2020, volume EMNLP 2020 730
of Findings of ACL, pages 1536–1547. Association 731
for Computational Linguistics. 732

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 733
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 734
modal pre-training for code representation. In Pro- 735
ceedings of the 60th Annual Meeting of the Associa- 736
tion for Computational Linguistics (Volume 1: Long 737
Papers), ACL 2022, Dublin, Ireland, May 22-27, 738
2022, pages 7212–7225. Association for Computa- 739
tional Linguistics. 740

Song Han, Jeff Pool, John Tran, and William J. Dally. 741
2015. Learning both Weights and Connections 742
for Efficient Neural Networks. arXiv e-prints, 743
arXiv:1506.02626. 744

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 745
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 746
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, 747
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and 748
Junyang Lin. 2024. Qwen2.5-coder technical report. 749
CoRR, abs/2409.12186. 750

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 751
Allamanis, and Marc Brockschmidt. 2019. Code- 752
searchnet challenge: Evaluating the state of semantic 753
code search. CoRR, abs/1909.09436. 754

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng- 755
long Zhu, Matthew Tang, Andrew Howard, Hartwig 756
Adam, and Dmitry Kalenichenko. 2017. Quantiza- 757
tion and Training of Neural Networks for Efficient 758
Integer-Arithmetic-Only Inference. arXiv e-prints, 759
arXiv:1712.05877. 760

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 761
sch, Chris Bamford, Devendra Singh Chaplot, Diego 762
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 763
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 764
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 765
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 766
and William El Sayed. 2023. Mistral 7B. arXiv 767
e-prints, arXiv:2310.06825. 768

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 769
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. 770

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/arXiv.2401.06118
https://doi.org/10.48550/arXiv.2401.06118
https://doi.org/10.48550/arXiv.2401.06118
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2022.ACL-LONG.499
https://doi.org/10.18653/V1/2022.ACL-LONG.499
https://doi.org/10.18653/V1/2022.ACL-LONG.499
https://doi.org/10.48550/arXiv.1506.02626
https://doi.org/10.48550/arXiv.1506.02626
https://doi.org/10.48550/arXiv.1506.02626
https://doi.org/10.48550/ARXIV.2409.12186
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.48550/arXiv.2310.06825

TinyBERT: Distilling BERT for Natural Language771
Understanding. arXiv e-prints, arXiv:1909.10351.772

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,773
Matthew Wallingford, Aditya Sinha, Vivek Ramanu-774
jan, William Howard-Snyder, Kaifeng Chen, Sham775
Kakade, Prateek Jain, and Ali Farhadi. 2022. Ma-776
tryoshka representation learning. In Advances in777
Neural Information Processing Systems, volume 35,778
pages 30233–30249. Curran Associates, Inc.779

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,780
Kevin Gimpel, Piyush Sharma, and Radu Soricut.781
2019. ALBERT: A Lite BERT for Self-supervised782
Learning of Language Representations. arXiv e-783
prints, arXiv:1909.11942.784

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas785
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc786
Marone, Christopher Akiki, Jia Li, Jenny Chim,787
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,788
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,789
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,790
Nicolas Gontier, Nicholas Meade, Armel Zebaze,791
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,792
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo793
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp794
Patel, Dmitry Abulkhanov, Marco Zocca, Manan795
Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhat-796
tacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-797
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zh-798
danov, Manuel Romero, Tony Lee, Nadav Timor,799
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf,800
Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jen-801
nifer Robinson, Carolyn Jane Anderson, Brendan802
Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel803
Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos804
Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Ar-805
jun Guha, Leandro von Werra, and Harm de Vries.806
2023. StarCoder: may the source be with you! arXiv807
e-prints, arXiv:2305.06161.808

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-809
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,810
Xingyu Dang, Chuang Gan, and Song Han. 2023.811
AWQ: Activation-aware Weight Quantization for812
LLM Compression and Acceleration. arXiv e-prints,813
arXiv:2306.00978.814

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-815
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,816
Luke Zettlemoyer, and Veselin Stoyanov. 2019.817
Roberta: A robustly optimized BERT pretraining818
approach. CoRR, abs/1907.11692.819

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-820
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,821
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,822
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur823
Zucker, Younes Belkada, Zijian Wang, Qian Liu,824
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-825
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue826
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,827
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,828
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,829

Niklas Muennighoff, Xiangru Tang, Muhtasham 830
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 831
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 832
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas 833
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten 834
Scholak, Sebastien Paquet, Jennifer Robinson, Car- 835
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat- 836
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz 837
Ferrandis, Lingming Zhang, Sean Hughes, Thomas 838
Wolf, Arjun Guha, Leandro von Werra, and Harm 839
de Vries. 2024. StarCoder 2 and The Stack v2: The 840
Next Generation. arXiv e-prints, arXiv:2402.19173. 841

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 842
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, 843
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li- 844
dong Zhou, Linjun Shou, Long Zhou, Michele Tu- 845
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun- 846
daresan, Shao Kun Deng, Shengyu Fu, and Shujie 847
Liu. 2021. Codexglue: A machine learning bench- 848
mark dataset for code understanding and generation. 849
In Proceedings of the Neural Information Process- 850
ing Systems Track on Datasets and Benchmarks 1, 851
NeurIPS Datasets and Benchmarks 2021, December 852
2021, virtual. 853

Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, 854
Jidong Ge, and Bin Luo. 2023. An empirical compar- 855
ison of pre-trained models of source code. In 2023 856
IEEE/ACM 45th International Conference on Soft- 857
ware Engineering (ICSE), pages 2136–2148. IEEE. 858

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt 859
Gardner, Christopher Clark, Kenton Lee, and Luke 860
Zettlemoyer. 2018. Deep contextualized word repre- 861
sentations. In Proceedings of the 2018 Conference of 862
the North American Chapter of the Association for 863
Computational Linguistics: Human Language Tech- 864
nologies, Volume 1 (Long Papers), pages 2227–2237, 865
New Orleans, Louisiana. Association for Computa- 866
tional Linguistics. 867

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya 868
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas- 869
try, Amanda Askell, Pamela Mishkin, Jack Clark, 870
Gretchen Krueger, and Ilya Sutskever. 2021. Learn- 871
ing transferable visual models from natural language 872
supervision. In Proceedings of the 38th International 873
Conference on Machine Learning, ICML 2021, 18-24 874
July 2021, Virtual Event, volume 139 of Proceedings 875
of Machine Learning Research, pages 8748–8763. 876
PMLR. 877

Victor Sanh, Lysandre Debut, Julien Chaumond, and 878
Thomas Wolf. 2019. DistilBERT, a distilled version 879
of BERT: smaller, faster, cheaper and lighter. arXiv 880
e-prints, arXiv:1910.01108. 881

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, 882
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A. 883
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One 884
embedder, any task: Instruction-finetuned text em- 885
beddings. In Findings of the Association for Com- 886
putational Linguistics: ACL 2023, Toronto, Canada, 887
July 9-14, 2023, pages 1102–1121. Association for 888
Computational Linguistics. 889

11

https://doi.org/10.48550/arXiv.1909.10351
https://doi.org/10.48550/arXiv.1909.10351
https://doi.org/10.48550/arXiv.1909.10351
https://proceedings.neurips.cc/paper_files/paper/2022/file/c32319f4868da7613d78af9993100e42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c32319f4868da7613d78af9993100e42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c32319f4868da7613d78af9993100e42-Paper-Conference.pdf
https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2306.00978
https://doi.org/10.48550/arXiv.2306.00978
https://doi.org/10.48550/arXiv.2306.00978
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://doi.org/10.48550/arXiv.2402.19173
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,890
Bo Wen, and Yunfeng Liu. 2021. RoFormer: En-891
hanced Transformer with Rotary Position Embedding.892
arXiv e-prints, arXiv:2104.09864.893

Surat Teerapittayanon, Bradley McDanel, and H. T.894
Kung. 2017. BranchyNet: Fast Inference via Early895
Exiting from Deep Neural Networks. arXiv e-prints,896
arXiv:1709.01686.897

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-898
bert, Amjad Almahairi, Yasmine Babaei, Nikolay899
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti900
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-901
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,902
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,903
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-904
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan905
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,906
Isabel Kloumann, Artem Korenev, Punit Singh Koura,907
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-908
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-909
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-910
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-911
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,912
Ruan Silva, Eric Michael Smith, Ranjan Subrama-913
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-914
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,915
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,916
Melanie Kambadur, Sharan Narang, Aurélien Ro-917
driguez, Robert Stojnic, Sergey Edunov, and Thomas918
Scialom. 2023. Llama 2: Open foundation and fine-919
tuned chat models. CoRR, abs/2307.09288.920

Matteo Turisini, Giorgio Amati, and Mirko Cestari.921
2023. LEONARDO: A pan-european pre-exascale922
supercomputer for HPC and AI applications. CoRR,923
abs/2307.16885.924

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob925
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz926
Kaiser, and Illia Polosukhin. 2017. Attention Is All927
You Need. arXiv e-prints, arXiv:1706.03762.928

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D. Q. Bui,929
Junnan Li, and Steven C. H. Hoi. 2023. Codet5+:930
Open code large language models for code under-931
standing and generation. In Proceedings of the 2023932
Conference on Empirical Methods in Natural Lan-933
guage Processing, EMNLP 2023, Singapore, Decem-934
ber 6-10, 2023, pages 1069–1088. Association for935
Computational Linguistics.936

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,937
Orion Weller, Oskar Hallström, Said Taghadouini,938
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom939
Aarsen, Nathan Cooper, Griffin Adams, Jeremy940
Howard, and Iacopo Poli. 2024. Smarter, better,941
faster, longer: A modern bidirectional encoder for942
fast, memory efficient, and long context finetuning943
and inference. CoRR, abs/2412.13663.944

Jinle Zeng, Min Li, Zhihua Wu, Jiaqi Liu, Yuang Liu,945
Dianhai Yu, and Yanjun Ma. 2022. Boosting dis-946
tributed training performance of the unpadded BERT947
model. CoRR, abs/2208.08124.948

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, 949
Ramesh Nallapati, Dan Roth, Xiaofei Ma, and Bing 950
Xiang. 2024. Code Representation Learning At Scale. 951
arXiv e-prints, arXiv:2402.01935. 952

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad 953
Shoeybi, Tom Goldstein, Anima Anandkumar, and 954
Bryan Catanzaro. 2021. Long-short transformer: Ef- 955
ficient transformers for language and vision. In Ad- 956
vances in Neural Information Processing Systems 34: 957
Annual Conference on Neural Information Process- 958
ing Systems 2021, NeurIPS 2021, December 6-14, 959
2021, virtual, pages 17723–17736. 960

A Synthetic dataset 961

SYNTHCODE2CODE2NL is a fine-tuning dataset 962

designed for text-to-code and code-to-code search, 963

built by augmenting CODESEARCHNET (Husain 964

et al., 2019) with transpiled code snippets across 965

multiple languages (Python, Java, Go, PHP, Ruby, 966

C++, C, JavaScript). The dataset underwent a pre- 967

processing phase, including deduplication based on 968

the original and synthesized code columns. Near- 969

deduplication was performed using Locality Sensi- 970

tive Hashing (LSH) with a Jaccard similarity thresh- 971

old of 0.7 over character-level 5-grams to remove 972

semantically identical snippets differing only in 973

identifiers or function arguments. 974

For code-to-code search, we translated each snip- 975

pet into a randomly sampled target language us- 976

ing the QWEN2.5-CODER-7B-INSTRUCT model 977

with greedy search to ensure consistency. Each 978

dataset entry consists of a natural language descrip- 979

tion and two code snippets in different languages. 980

SYNTHCODE2CODE2NL contains 1,071,367 sam- 981

ples, with original code from CODESEARCHNET 982

(Python, Java, PHP, Go) and translated code (Go, 983

Ruby, JavaScript, Python, C++, PHP, C, Java). In 984

Figure 5, In Figure 6 and Figure 7 some examples 985

of code translation are shown. 986

12

https://doi.org/10.48550/arXiv.2104.09864
https://doi.org/10.48550/arXiv.2104.09864
https://doi.org/10.48550/arXiv.2104.09864
https://doi.org/10.48550/arXiv.1709.01686
https://doi.org/10.48550/arXiv.1709.01686
https://doi.org/10.48550/arXiv.1709.01686
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.16885
https://doi.org/10.48550/ARXIV.2307.16885
https://doi.org/10.48550/ARXIV.2307.16885
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2208.08124
https://doi.org/10.48550/ARXIV.2208.08124
https://doi.org/10.48550/ARXIV.2208.08124
https://doi.org/10.48550/ARXIV.2208.08124
https://doi.org/10.48550/ARXIV.2208.08124
https://doi.org/10.48550/arXiv.2402.01935
https://proceedings.neurips.cc/paper/2021/hash/9425be43ba92c2b4454ca7bf602efad8-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9425be43ba92c2b4454ca7bf602efad8-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9425be43ba92c2b4454ca7bf602efad8-Abstract.html

GO
// readNextChunk creates an io.LimitedReader for the next chunk of data,

// and returns io.EOF if the last chunk has been read.

func readNextChunk(r wire.SyncScanner) (io.Reader, error) {

status, err := r.ReadStatus("read-chunk")

if err != nil {

if wire.IsAdbServerErrorMatching(err, readFileNotFoundPredicate) {

return nil, errors.Errorf(errors.FileNoExistError, "no such file or directory")

}

return nil, err

}

switch status {

case wire.StatusSyncData:

return r.ReadBytes()

case wire.StatusSyncDone:

return nil, io.EOF

default:

return nil, errors.Errorf(

errors.AssertionError,

"expected chunk id '%s' or '%s', but got '%s'",

wire.StatusSyncData, wire.StatusSyncDone, []byte(status),

)

}

}

Ruby
def read_next_chunk(r)

status, err = r.read_status("read-chunk")

if err

if AdbServerErrorMatching(err, readFileNotFoundPredicate)

return nil, FileNoExistError.new("no such file or directory")

end

return nil, err

end

case status

when wire.StatusSyncData

return r.read_bytes

when wire.StatusSyncDone

return nil, EOFError.new

else

return nil, AssertionError.new(

"expected chunk id '#{wire.StatusSyncData}' or '#{wire.StatusSyncDone}', but got '#{status}'"

)

end

end

Figure 5: Example of a code snippet translation from Go to Ruby.

13

JAVA
public void get(URI uri, Credentials credentials) throws IOException {

get(uri, null, credentials);

}

C
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

typedef struct {

 char *username;

 char *password;

} Credentials;

typedef struct {

 char *scheme;

 char *host;

 int port;

 char *path;

} URI;

void get(URI *uri, Credentials *credentials) {

 // Implementation of the get function

 printf("Fetching resource from %s://%s:%d%s\n", uri->scheme, uri->host, uri->port, uri->path);

 if (credentials != NULL) {

 printf("Using credentials: %s:%s\n", credentials->username, credentials->password);

 }

}

int main() {

 URI uri = {"http", "example.com", 80, "/index.html"};

 Credentials credentials = {"user", "pass"};

 get(&uri, &credentials);

 return 0;

}

Figure 6: Example of a code snippet translation from Java to C.

14

Python
def toString(self):

 result = []
 k, v = self.optimalRepr()
 longest = reduce(lambda x, y: x if x > len(y) else len(y), k, 0)
 for ind in range(len(k)):

 result.append("%s : %s" % (k[ind].ljust(longest), v[ind]))
 return "\n".join(result)

PHP
public function toString() {

 /**

 * Return a printable view of the dictionary

 */

 $result = [];

 list($k, $v) = $this->optimalRepr();

 $longest = array_reduce($k, function($x, $y) {

 return $x > strlen($y) ? $x : strlen($y);

 }, 0);

 for ($ind = 0; $ind < count($k); $ind++) {

 $result[] = sprintf("%s : %s", ltrim($k[$ind], ' '), str_pad($v[$ind], $longest, ' ', STR_PAD_LEFT));

 }

 return implode("\n", $result);

}

Figure 7: Example of a code snippet translation from Python to PHP.

15

	Introduction
	Methodology
	Dataset
	Architecture
	Pre-training
	Masked Language Modeling and In Context Classification
	Multi-layer Loss

	Fine-tuning
	Evaluation

	Results and Discussion
	Benchmarks
	Ablation Study

	Related work
	Conclusion
	Synthetic dataset

