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Abstract

Understanding events in texts is a core objec-001
tive of natural language understanding, which002
requires detecting event occurrences, extract-003
ing event arguments, and analyzing inter-event004
relationships. However, due to the annotation005
challenges brought by task complexity, a large-006
scale dataset covering the full process of event007
understanding has long been absent. In this008
paper, we introduce MAVEN-ARG, which aug-009
ments MAVEN datasets with event argument010
annotations, making the first all-in-one dataset011
supporting event detection, event argument ex-012
traction (EAE), and event relation extraction.013
As an EAE benchmark, MAVEN-ARG offers014
three main advantages: (1) a comprehensive015
schema covering 162 event types and 612 argu-016
ment roles, all with expert-written definitions017
and examples; (2) a large data scale, contain-018
ing 98, 591 events and 290, 613 arguments ob-019
tained with laborious human annotation; (3)020
the exhaustive annotation supporting all task021
variants of EAE, which annotates both entity022
and non-entity event arguments in document023
level. Experiments indicate that MAVEN-ARG024
is quite challenging for both fine-tuned EAE025
models and proprietary large language mod-026
els (LLMs). Furthermore, to demonstrate the027
benefits of an all-in-one dataset, we preliminar-028
ily explore a potential application, future event029
prediction, with LLMs. MAVEN-ARG and our030
code will be publicly released.031

1 Introduction032

Conveying information about events is a core func-033

tion of human languages (Levelt, 1993; Pinker,034

2013; Miller and Johnson-Laird, 2013), which high-035

lights event understanding as a major objective for036

natural language understanding and a foundation037

for various downstream applications (Ding et al.,038

2015; Li et al., 2018a; Goldfarb-Tarrant et al., 2019;039

Huang et al., 2019; Wang et al., 2021a). As illus-040

trated in Figure 1, event understanding is typically041

organized as three information extraction tasks (Ma042
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Figure 1: Illustration for the overall event understanding,
consisting of event detection, event argument extraction,
and event relation extraction tasks.

et al., 2021; Peng et al., 2023b): event detection 043

(ED), which detects event occurrences by identi- 044

fying event triggers and classifying event types; 045

event argument extraction (EAE), which extracts 046

event arguments and classifies their argument roles; 047

event relation extraction (ERE), which analyzes 048

the coreference, temporal, causal, and hierarchical 049

relationships among events. 050

Despite the importance of event understand- 051

ing, a large-scale dataset covering all the event 052

understanding tasks has long been absent. Es- 053

tablished sentence-level event extraction (ED and 054

EAE) datasets like ACE 2005 (Walker et al., 2006) 055

and TAC KBP (Ellis et al., 2015, 2016; Getman 056

et al., 2017) do not involve event relation types 057

besides the basic coreferences. RAMS (Ebner 058

et al., 2020) and WikiEvents (Li et al., 2021) ex- 059

tend EAE to the document level but do not in- 060

volve event relations. ERE datasets are mostly 061

developed independently for coreference (Cybul- 062

ska and Vossen, 2014), temporal (Chambers et al., 063

2014; Ning et al., 2018), causal (Mirza et al., 2014; 064

Mostafazadeh et al., 2016b; Caselli and Vossen, 065

2017), and subevent (Hovy et al., 2013; Glavaš 066

and Šnajder, 2014) relationships and do not cover 067

event arguments. Given annotation challenges from 068

task complexity, these datasets often cover only 069
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thousands of events. Due to the inconsistent event070

schemata and data, these datasets cannot be unified.071

This status quo hinders the development of end-072

to-end event understanding methods and limits the073

potential for event-based downstream applications.074

MAVEN (Wang et al., 2020) is the largest human-075

annotated ED dataset, with a high-coverage event076

schema for general-domain events. Based on it,077

Wang et al. (2022) further annotates the first uni-078

fied ERE dataset MAVEN-ERE, which covers all079

four types of event relationships and has a massive080

scale with more than one million event relations.081

Building on the sustained efforts of these works082

over years, we complete the puzzle of an all-in-one083

event understanding dataset in this work. We con-084

struct MAVEN-ARG, which provides exhaustive085

event argument annotations based on MAVEN.086

Beyond finishing an all-in-one event understand-087

ing dataset, three main advantages of MAVEN-ARG088

make it a valuable EAE benchmark. (1) Com-089

prehensive Event Schema. The original MAVEN090

schema only defines event types but without argu-091

ment roles. We engage experts to enhance MAVEN092

schema with argument roles and to write detailed093

definitions for them, which help annotators and094

can also serve as task instructions for prompting095

large language models. The resulting event schema096

contains 162 event types, 612 argument roles, and097

14, 655 words of definitions, which well cover098

general-domain events. (2) Large Data Scale.099

MAVEN-ARG comprises 107, 507 event mentions,100

290, 613 event arguments, and 129, 126 entity men-101

tions, all of which are human annotated. To our102

knowledge, this makes it the largest EAE dataset103

currently available. (3) Exhaustive Annotation.104

The development of EAE has seen many variations105

in task settings, including annotating only the topic106

event (Ebner et al., 2020; Tong et al., 2022) of a107

document or all fine-grained events (Walker et al.,108

2006), annotating event arguments at the sentence109

level (Walker et al., 2006) or document level (Ebner110

et al., 2020; Li et al., 2021), and limiting event ar-111

guments to entities (Walker et al., 2006; Li et al.,112

2021) or including non-entity arguments (Grish-113

man and Sundheim, 1996; Parekh et al., 2023).114

MAVEN-ARG adopts the most exhaustive anno-115

tation. We annotate event arguments for all fine-116

grained events at the document level, covering both117

entity and non-entity arguments. This enhances the118

dataset’s utility for benchmarking and developing119

a wide range of EAE methods.120

In the experiments, we reproduce several recent121

state-of-the-art EAE models as baselines and also 122

evaluate large language models with in-context 123

learning. Experimental results show that they can 124

only achieve at most 40% F1 scores, which is far 125

from promising. It indicates that MAVEN-ARG 126

is quite challenging and more research efforts are 127

needed to develop practical EAE methods. Further- 128

more, to demonstrate the advantage of an all-in-one 129

event understanding dataset for enabling sophisti- 130

cated event-based applications, we conduct a pre- 131

liminary exploration of future event prediction. We 132

sample causally related event chains from MAVEN- 133

ARG and prompt LLMs to predict future events, 134

including their types and arguments. Experiments 135

show that while most of the predictions are reason- 136

able, they seldom align with the actual future. We 137

encourage future work to further explore this appli- 138

cation and hope MAVEN-ARG can help improve 139

EAE and develop diverse event-based applications. 140

2 Dataset Construction 141

2.1 Event Schema Creation 142

The event schema of MAVEN (Wang et al., 2020) 143

covers a broad range of general-domain events and 144

has a well-defined hierarchical structure. To enable 145

event argument annotation based on MAVEN, one 146

author and two engaged linguistic experts devoted 147

three years to manually designing argument roles 148

for MAVEN schema. Each argument role is ac- 149

companied by informative text definitions that are 150

easy to understand, and each event type is provided 151

with detailed annotation examples. An example in 152

shown in appendix A.1. This not only helps anno- 153

tators understand their tasks but also can prompt 154

LLMs to perform EAE via in-context learning. To 155

ensure quality, the argument role design for each 156

event type is reviewed by at least one expert. 157

Our event schema creation involves the follow- 158

ing steps: (1) Initially, to reduce annotation diffi- 159

culty, we invite ten ordinary annotators to review 160

the event type schema and a portion of the data. 161

Based on their feedback, we deleted 6 event types 162

that are similar to others and renamed 4 event 163

types for clarity. (2) The basic schema is con- 164

structed from a simplification and modification 165

of FrameNet (Baker et al., 1998). The frame el- 166

ements in FrameNet are widely considered akin to 167

argument roles (Aguilar et al., 2014; Parekh et al., 168

2023), but they are often too complex for ordinary 169

annotators to comprehend since FrameNet is pri- 170

marily constructed for linguistic experts (Aguilar 171
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Dataset #Event Type #Argument Role

ACE 2005 33 36
DocEE 59 356
WikiEvents 50 59
RAMS 139 65
MEE 16 23
GENEVA 115 220

MAVEN-ARG 162 612

Table 1: Event schema statistics of MAVEN-ARG com-
pared with other datasets.

et al., 2014). Therefore, for each event type, we172

manually select frame elements related to describ-173

ing events and suitable for annotation as MAVEN-174

ARG argument roles from their FrameNet equiva-175

lents, and we rewrite the definitions and examples.176

(3) Extending argument roles based on the 5W1H177

analysis (What, Where, When, Why, Who, How)178

for describing events (Karaman et al., 2017; Ham-179

borg et al., 2019). Temporal and causal relations180

from event relation extraction describe When and181

Why, while the event type describes What. We182

primarily refer to Who (participants), Where (lo-183

cations), and How (manners, instruments, etc.) to184

design argument roles. (4) Considering the hierar-185

chical structure. When designing subordinate types,186

we inherit and refine the argument roles of their su-187

perordinate types. (5) Sampling data to check if188

any event argument is missing.189

Schema Statistics After the schema design, the190

final MAVEN-ARG schema contains 162 event191

types, 612 unique argument roles, and 14, 655192

words of definitions. Taking inspiration from se-193

mantic role labeling (Fillmore, 1976; Banarescu194

et al., 2013), we tend to let the argument roles195

sharing the same semantic role use the same name196

but distinguish them with different textual defi-197

nitions. For instance, we do not use Killer for198

the Killing event type and use Attacker for the199

Attack event type. Instead, we use Agent to de-200

note them both but write different definitions for201

them. This is to encourage the knowledge transfer202

between EAE for different event types. Therefore,203

612 is the number of argument roles with unique204

definitions, and there are 143 unique names for all205

the argument roles. Table 1 compares the event206

schema size of MAVEN-ARG with existing EAE207

datasets, including ACE 2005 (Walker et al., 2006),208

DocEE (Tong et al., 2022), WikiEvents (Li et al.,209

2021), RAMS (Ebner et al., 2020), MEE (Pouran210

Ben Veyseh et al., 2022), and GENEVA1 (Parekh 211

et al., 2023). We can observe that MAVEN-ARG 212

has the largest event schema, which more compre- 213

hensively covers the broad range of diverse events 214

and will help develop more generalizable methods. 215

2.2 Entity Annotation 216

The mainstream task setting for EAE (Walker et al., 217

2006; Li et al., 2021) confines event arguments to 218

entities, which reduces the task’s complexity to 219

some extent and provides more definite and stan- 220

dardized extraction results. Hence, before anno- 221

tating event arguments, we annotate entities for 222

the 4, 480 MAVEN documents. We follow the 223

task definition and guidelines of a recent named 224

entity recognition benchmark Few-NERD (Ding 225

et al., 2021), but we only annotate coarse-grained 226

entity types, including Person, Organization, 227

Location, Building, Product, Art, and MISC. To 228

deliver more unambiguous EAE results and reduce 229

the argument annotation difficulty, we also annotate 230

entity coreference, which means judging whether 231

multiple entity mentions refer to the same entity. 232

During entity annotation, we engage 47 annota- 233

tors, including 8 senior annotators selected during 234

the annotation training. Each document is anno- 235

tated by three independent annotators and further 236

checked by one senior annotator. The final annota- 237

tion results are aggregated via majority voting. If 238

the senior annotator judged the accuracy of a docu- 239

ment’s annotation to be below 90%, the document 240

will be returned to the three first-stage annotators 241

for re-annotation. To check data quality, we cal- 242

culate Fleiss’ kappa (Fleiss, 1971) to measure the 243

inter-annotator agreements. The result for entity 244

recognition is 73.2%, and for entity coreference is 245

78.4%, both indicating high consistency. 246

2.3 Event Argument Annotation 247

Based on the event detection annotations of 248

MAVEN and event coreferences of MAVEN-ERE, 249

we conduct event argument annotations. For multi- 250

ple coreferent event mentions (triggers), only one 251

of them is displayed during annotation to reduce 252

annotation overhead. Once the annotator selects an 253

event trigger, the corresponding argument roles for 254

its event type are displayed on the annotation in- 255

terface, along with definitions and examples. This 256

ensures that annotators do not have to memorize 257

the lengthy event schema. To annotate an event 258

1GENEVA has a larger “full ontology” but is without data.
Here we compare with its schema actually used in dataset.
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Dataset #Doc. #Event #Trigger #Arg. #Entity #Entity
Mention

Fine-grained
Event

Doc.
Level

Entity
Arg.

Non-Entity
Arg.

ACE 2005 599 4, 090 5, 349 9, 683 45, 486 59, 430 ! % 9, 683 %

DocEE 27, 485 27, 485 - 180, 528 - - % ! % 180, 528

WikiEvents 246 3, 951 - 5, 536 13, 937 33, 225 ! ! 5, 536 %

RAMS 3, 993 9, 124 - 21, 237 - - % ! % 21, 237

MEE 13, 000 17, 642 - 13, 548 - 190, 592 ! ! 13, 548 %

GENEVA - 7, 505 - 12, 269 - 36, 390 ! % 8, 544 3, 725

MAVEN-ARG 4, 480 98, 591 107, 507 290, 613 83, 645 129, 126 ! ! 116, 024 174, 589

Table 2: Statistics of MAVEN-ARG compared to existing widely-used EAE datasets. “Doc.” is short for “Document”
and “Arg.” is short for “Argument”. “-” denotes not applicable due to lack of document structure or corresponding
annotations. “Fine-grained Event” means annotating all the events rather than only one topic event for a document.
“Doc. Level” means annotating arguments within the whole document rather than only the sentence containing the
trigger. For multilingual datasets, we only compare with its English subset.

argument, annotators can either choose an entity259

from the whole document or select a continuous260

textual span; once an entity mention is selected, all261

of its coreferent entity mentions are automatically262

selected. Annotators have the option to report er-263

rors in the event type annotation of a trigger, which264

allows for the discarding of that trigger. In the265

annotation process, approximately 4% of triggers266

are discarded. We employ 202 annotators, includ-267

ing 71 senior annotators selected during annotation268

training and 33 experts with rich annotation ex-269

periences. The annotation is divided into three270

phases. Each document is first annotated by an271

ordinary annotator, and then modified by a senior272

annotator. Finally, an expert will check whether the273

annotation accuracy reaches 90%. If not, the doc-274

ument’s annotation will be returned to the second275

phase. To measure data quality, we randomly sam-276

ple 100 documents and conduct the three-phrase277

annotation for them twice with different annotator278

groups. The Fleiss’ kappa is 68.6%, which indi-279

cates a satisfactory level of annotation agreement.280

More annotation details are shown in appendix A.281

3 Data Analysis282

3.1 Data Statistics283

Table 2 shows the main statistics of MAVEN-ARG284

compared with various existing EAE datasets. Ap-285

pendix B further shows the statistics of different286

splits. We can observe that MAVEN-ARG has two287

advantages: (1) MAVEN-ARG has the largest data288

scale, surpassing previous datasets by several times.289

This ensures that even for long-tail event types,290

MAVEN-ARG has sufficient data to fully train and291

stably evaluate EAE models. (2) The exhaustive an-292

notation of MAVEN-ARG makes it the only dataset293

that covers all settings of EAE task. MAVEN- 294

ARG includes complete annotations of entity and 295

event coreference and annotates both entity and 296

non-entity arguments for all fine-grained events at 297

the document level. This allows MAVEN-ARG to 298

support the evaluation of all variants of EAE meth- 299

ods and the development of comprehensive event 300

understanding applications. 301

3.2 Data Distribution 302

We present the distributions of the annotated en- 303

tity and event arguments of MAVEN-ARG in Fig- 304

ure 2. Argument roles with the same name across 305

different event types are merged for presentation 306

clarity. We observe that: (1) The distribution of 307

entity types is generally similar to that of Few- 308

NERD (Ding et al., 2021), demonstrating sufficient 309

diversity. (2) The three most frequent basic argu- 310

ment roles (Agent, Patient, and Location) ac- 311

count for over 60% of event arguments. This high- 312

lights their ubiquity and encourages knowledge 313

transfer among different event types in EAE meth- 314

ods. (3) Event arguments exhibit a highly long- 315

tailed distribution. The 136 argument roles counted 316

as “Others”, each constituting less than 1.5%, col- 317

lectively accounts for 27.8% of event arguments. 318

The long-tailed distribution of MAVEN-ARG poses 319

a significant challenge to model generalizability. 320

3.3 Trigger-argument Distance 321

We analyze the distribution of trigger-argument dis- 322

tances in Figure 3. For events with multiple coref- 323

erent triggers and entity arguments with multiple 324

entity mentions, the distance is calculated between 325

the nearest trigger-argument pairs. The overall av- 326

erage trigger-argument distance is 37.8. From Fig- 327

ure 3, we observe that while the majority of event 328
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Figure 2: MAVEN-ARG entity and event argument dis-
tributions. For clarity, only the top event argument roles
are shown and the others are summed up in “Others”.

arguments are located near their triggers, which is329

natural for human writing, a substantial number of330

arguments are situated far from their triggers, with331

the furthest exceeding 800 words. This data char-332

acteristic challenges the ability of EAE methods to333

capture long-distance dependencies.334

4 Experiment335

4.1 Experimental Setup336

Models To assess the challenge of MAVEN-ARG,337

we evaluate multiple advanced methods. For fine-338

tunned EAE models, we implement several state-339

of-the-art models, including DMBERT (Wang340

et al., 2019), CLEVE (Wang et al., 2021b),341

BERT+CRF (Wang et al., 2020), EEQA (Li et al.,342

2020), Text2Event (Lu et al., 2021), and PAIE (Ma343

et al., 2022). These methods cover all the main-344

stream EAE modeling paradigms (Peng et al.,345

2023c). Their detailed descriptions and implemen-346

tations are introduced in appendix C.1.347

We also evaluate large language models (LLMs)348

with in-context learning on MAVEN-ARG. Specif-349

ically, we select two advanced LLMs, GPT-350

3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023),351

and evaluate them with 2-shot in-context learn-352

ing. Here 2-shot means using full annotations of353

two documents as demonstrations. Considering354

time and cost constraints, we sample 50 documents355

from the test set for experimentation. We employ356

the gold trigger evaluation approach (Peng et al.,357

2023c) to directly assess their EAE performance.358

Evaluation Metric Considering that MAVEN-359

ARG covers non-entity argument annotations, tra-360

ditional evaluation metrics (Peng et al., 2023c) de-361

signed only for entity arguments are no longer ap-362

plicable. By taking each argument role as a ques-363

tion to the document, we propose to view EAE364

as a multi-answer question answering task2 and365

2A single role may correspond to multiple argument spans.
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Figure 3: Distribution of distances between triggers and
arguments in MAVEN-ARG.

adopt its evaluation metrics (Rajpurkar et al., 2016; 366

Amouyal et al., 2022; Yao et al., 2023), including 367

bag-of-words F1 and exact match (EM). 368

Conventional evaluation calculates the micro av- 369

erage over all the entity and event mentions, which 370

we dub it as mention-level evaluation. Consider- 371

ing that real-world applications only require the 372

accurate prediction for one of all the coreferent 373

mentions, we propose to consider entity (Li et al., 374

2021) and event coreference in evaluation. Specif- 375

ically, for entity coreference level evaluation, an 376

entity argument is considered as predicted correctly 377

if one of its mentions is predicted correctly. For 378

event coreference level evaluation, an argument is 379

considered as predicted correctly if it is predicted 380

correctly for one of the coreferent triggers. 381

4.2 Experiment Results of Fine-tuned Models 382

The results of fine-tuned EAE models are shown in 383

Table 3, and we have the following observations: 384

(1) Existing state-of-the-art EAE models exhibit 385

moderate performance on MAVEN-ARG, which is 386

significantly worse than their results on existing 387

datasets (Peng et al., 2023c). This indicates that 388

MAVEN-ARG is challenging and there is a need for 389

increased efforts in developing practical event un- 390

derstanding models. (2) The BERT+CRF and PAIE 391

models exhibit the best performance, potentially at- 392

tributable to their ability to model rich interactions 393

between different event arguments. (3) The pre- 394

vious top-performing classification-based models 395

(DMBERT and CLEVE) (Peng et al., 2023c) per- 396

form poorly on MAVEN-ARG, which is due to their 397

inability to handle non-entity arguments. There- 398

fore, future research necessitates more flexible ap- 399

proaches to tackle the complex and real-world sce- 400

nario in MAVEN-ARG. (4) Text2Event notably 401

underperforms. This is potentially due to the in- 402

tensive annotations of MAVEN-ARG, i.e., a high 403

volume of events and argument annotations within 404

a single document, making generating all events 405
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Model #Params Mention Level Entity Coref Level Event Coref Level
P R F1 EM P R F1 EM P R F1 EM

DMBERT 110M 19.7 19.7 19.7 19.5 12.5 12.4 12.4 12.3 11.8 11.8 11.8 11.6
CLEVE 355M 22.1 22.1 22.1 22.0 13.2 13.2 13.2 13.0 12.3 12.2 12.2 12.1
BERT+CRF 110M 31.7 31.4 30.9 27.0 33.5 32.8 32.2 27.1 32.3 31.8 31.2 26.3
EEQA 110M 21.4 19.5 19.6 15.8 24.5 22.9 22.8 18.8 23.7 22.2 22.1 18.1
Text2Event 770M 12.9 12.9 12.7 11.3 12.5 12.4 12.1 10.4 10.8 10.7 10.5 9.0
PAIE 406M 37.2 36.2 35.6 30.3 42.3 41.1 40.5 34.4 42.1 41.0 40.3 34.3

Table 3: Experimental results (%) of existing state-of-the-art fine-tuned EAE models on MAVEN-ARG.

and arguments at once difficult. It indicates that406

generating complex structured outputs remains a407

major challenge for generation models (Peng et al.,408

2023a), requiring further exploration.409

4.3 Experiment Results of LLMs410

The results of LLMs with in-context learning are411

presented in Table 4, revealing that while LLMs412

with in-context learning are competitive compared413

to some fine-tuned EAE models, they still fall sig-414

nificantly short of the state-of-the-art. This is con-415

sistent with previous findings, suggesting that exist-416

ing LLMs with in-context learning perform notably417

worse on specification-heavy information extrac-418

tion tasks (Peng et al., 2023a; Li et al., 2023; Han419

et al., 2023). The LLMs’ bag-of-words F1 scores420

are notably higher than their exact match scores,421

suggesting that the LLMs’ predictions tend to be422

free-format and do not strictly match human anno-423

tations (Han et al., 2023).424

One possible reason for the suboptimal perfor-425

mance is that LLMs cannot easily understand the426

schema form their names. Therefore, we conduct427

experiments with more informative prompts by in-428

corporating definitions for each used argument role429

into the prompt, which are high-quality instructions430

used for guiding human annotators during data an-431

notation. The results of these enhanced prompts are432

also shown in Table 4 (w/ definition). There is433

an obvious but marginal improvement after adding434

definitions, possibly due to the LLMs’ limitations435

in understanding long contexts (Shaham et al.,436

2022; Peng et al., 2023a; Liu et al., 2023).437

4.4 Analysis on Trigger-Argument Distance438

As shown in Figure 3, MAVEN-ARG provides439

document-level annotations, covering data with440

varying trigger-argument distances. We conduct441

an analytical experiment on the impact of trigger-442

argument distance to model performance. Specif-443

ically, we break down the predictions and annota-444

tions in the test set by their trigger-argument dis-445

5 100 200 300 400 500 >600
Trigger-argument Distance (#Words)

0

10

20

30

40

50

F1

DMBERT
CLEVE
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Text2Event
PAIE
GPT-3.5
GPT-4

Figure 4: Mention-level F1 (%) of models on data with
varying trigger-argument distances, i.e., the number of
words between an event argument and its trigger.

tances and evaluate how the performance changes 446

along with different distances. The experimental 447

results are shown in Figure 4, which demonstrate 448

that models perform significantly worse on samples 449

with longer trigger-argument distances. This aligns 450

with previous findings in document-level relation 451

extraction regarding the distance between entity 452

pairs (Ru et al., 2021). It suggests that modeling 453

long-distance dependencies between triggers and 454

arguments remains a challenge for existing EAE 455

models. Future research can leverage MAVEN- 456

ARG to explore advanced methods for handling 457

long-distance trigger-argument instances. 458

4.5 Analysis on Entity and Non-Entity 459

Arguments 460

MAVEN-ARG provides comprehensive annotations, 461

including both entity and non-entity arguments. We 462

analyze the performance breakdown of investigated 463

EAE models on these two types of arguments. The 464

results are presented in Table 5, which reveals that 465

EAE models generally perform better on non-entity 466

arguments. The possible reason may be that there 467

are more non-entity arguments in MAVEN-ARG 468

and non-entity arguments are often presented in a 469
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Model Mention Level Entity Coref Level Event Coref Level
P R F1 EM P R F1 EM P R F1 EM

GPT-3.5 21.3 20.9 19.9 14.3 24.5 25.1 23.4 16.8 24.4 24.8 23.2 16.9
w/ definition 21.8 21.7 20.6 15.2 25.0 25.8 24.1 17.8 24.9 25.4 23.9 17.9

GPT-4 25.6 27.2 25.1 17.9 28.9 31.7 28.7 20.2 27.9 30.5 27.6 19.5
w/ definition 27.2 28.7 26.6 19.1 30.5 33.3 30.3 21.3 29.8 32.3 29.5 21.1

Table 4: Experimental results (%) of LLMs with 2-shot in-context learning on MAVEN-ARG.

Model Entity Non-Entity
F1 EM F1 EM

DMBERT 19.7 19.5 − −
CLEVE 22.1 22.0 − −
BERT+CRF 17.8 18.5 19.4 24.0
EEQA 6.2 5.6 17.5 13.9
Text2Event 5.5 5.2 1.6 1.1
PAIE 20.3 19.2 37.6 30.4

Table 5: Mention-level results (%) of EAE models on
entity and non-entity arguments. Classification-based
models, e.g., DMBERT and CLEVE, are not applicable
to non-entity arguments.

looser form, making it easier for the models to learn470

the patterns and extract them. An exception is ob-471

served for the generation-based model Text2Event,472

which exhibits poorer performance on non-entity473

arguments. This may be because non-entity ar-474

guments are typically longer, which are harder to475

generate at once. It suggests that further explo-476

ration is needed to investigate how to well handle477

EAE with generation methods.478

5 Future Event Prediction Demonstration479

MAVEN-ARG, in conjunction with MAVEN and480

MAVEN-ERE, creates the first all-in-one event un-481

derstanding benchmark, which covers the full pro-482

cess of ED, EAE, and ERE. Beyond serving as483

an evaluation benchmark for these tasks, an all-484

in-one event dataset naturally enables a variety of485

event-based applications, especially considering486

the recent advances brought by LLMs. Here we487

preliminarily explore an application case, future488

event prediction, as a demonstration.489

Predicting future events based on causality can490

help decision-making, which is of self-evident im-491

portance. Therefore, since the early script learn-492

ing (Schank and Abelson, 1975; Mooney and De-493

Jong, 1985), future event prediction has continu-494

ally attracted research interest (Chambers and Ju-495

rafsky, 2008; Jans et al., 2012; Granroth-Wilding496

and Clark, 2016; Hu et al., 2017; Chaturvedi et al.,497

2017; Li et al., 2018b; Lee and Goldwasser, 2019;498

Model Reasonable (%) Matched (%)

GPT-3.5 92.7 7.8
GPT-4 95.2 12.2

Table 6: Future event prediction results (%), averaged
over 2 evaluators and 3 prompts. Reasonable denotes
the rate of predictions judged as reasonable to happen
next. Matched denotes the rate of predictions matched
with the actual future events.

Zhao, 2021). However, due to the lack of high- 499

quality event resources, the evaluation of future 500

event prediction often compromises by merely pre- 501

dicting verbs and subjects (Chambers et al., 2014), 502

predicting according to textual order (Jans et al., 503

2012), or selecting story endings (Mostafazadeh 504

et al., 2016a; Chaturvedi et al., 2017). The MAVEN 505

series of datasets, with annotations of complete 506

event structures and rich causal relations, may aid 507

in predicting future events in real-world scenarios. 508

Experiment Setup We sample 100 event chains, 509

each consisting of 3-5 events, from the training and 510

validation sets. In each chain, preceding events 511

cause the subsequent ones. Events are described in 512

a structured JSON format, containing event type, 513

event trigger, and event arguments. For each event 514

chain, we hold out the last event and input the 515

remaining incomplete chain into two proprietary 516

LLMs, GPT-3.5 and GPT-4 (OpenAI, 2023), requir- 517

ing them to predict the next occurring event. These 518

LLMs are prompted with detailed task instructions 519

and 5 demonstration event chains. To minimize 520

the influence of the demonstrations, predictions 521

are made independently three times under differ- 522

ent demonstrations. More experimental details are 523

shown in appendix D. We employ manual evalua- 524

tion, with two experts engaged to judge (1) whether 525

the prediction is reasonable, and (2) whether the 526

prediction matches the actual future event. 527

Experimental Results Experimental results are 528

shown in Table 6. From these, we can see that the 529

powerful LLMs can produce highly reasonable 530
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event predictions. However, their predictions531

seldom align with the actual future, making them532

not directly helpful. These observations suggest533

that using LLMs for future event prediction is534

promising, but there remain topics to explore535

on how to build practical future event prediction536

systems with LLMs. For instance, using retrieval-537

augmented methods may help LLMs access more538

timely evidence when making future predictions.539

As a preliminary attempt, the experiments demon-540

strate how our all-in-one event understanding541

dataset can assist in conveniently building and542

evaluating event-based applications. We hope that543

future works can explore using the MAVEN series544

datasets to build diverse applications.545

6 Related Work546

Event Argument Extraction Datasets Since the547

early MUC datasets (Grishman and Sundheim,548

1996), event argument extraction (EAE) as a part549

of event extraction has received widespread atten-550

tion. To reduce task complexity and provide stan-551

dardized extraction results, the ACE datasets (Dod-552

dington et al., 2004) are designed with a schema553

covering 33 event types, limiting event argument554

annotation to entities within the same sentence as555

the trigger. ACE 2005 (Walker et al., 2006) has556

been the most widely used dataset for a long time,557

and the practice of ACE has been broadly adopted.558

Rich ERE (Song et al., 2015) expands ACE schema559

to 38 event types and constructs the TAC KBP560

datasets (Ellis et al., 2014, 2015, 2016; Getman561

et al., 2017). MEE (Pouran Ben Veyseh et al., 2022)562

follows the ACE schema to build a multilingual563

dataset. With the advancement of NLP methods,564

some works break some of the constraints of ACE565

task definition to construct more practical datasets.566

RAMS (Ebner et al., 2020), WikiEvents (Li et al.,567

2021), and DocEE (Tong et al., 2022) extends the568

annotation scope to the whole documents. How-569

ever, RAMS and DocEE only annotate one topic570

event per document, ignoring fine-grained events571

within documents. MAVEN (Wang et al., 2020)572

and GENEVA (Parekh et al., 2023) both construct573

high-coverage general event schemata with over574

100 event types. MAVEN supports only event575

detection. GENEVA extends event arguments576

to cover non-entity spans but focuses on testing577

the generalizability rather than developing practi-578

cal EAE methods. Its data are repurposed from579

FrameNet (Baker et al., 1998) examples, which are580

individual sentences without document structure. 581

MAVEN-ARG meticulously designs 612 unique ar- 582

gument roles for MAVEN schema and conducts 583

large-scale exhaustive annotation, which anno- 584

tates both entity and non-entity arguments for fine- 585

grained events at the document level. 586

Event Argument Extraction Methods Tra- 587

ditional EAE methods primarily involve (1) 588

Classification-based methods (Chen et al., 2015a, 589

2017; Sha et al., 2018; Wadden et al., 2019; 590

Wang et al., 2019; Lin et al., 2020; Wang et al., 591

2021b; Zhou and Mao, 2022): employing text 592

encoders like CNN (Krizhevsky et al., 2012) 593

and BERT (Devlin et al., 2019), followed by an 594

information aggregator, such as dynamic multi- 595

pooling mechanism (Chen et al., 2015a), to obtain 596

role-specific representations for classification. 597

(2) Sequence labeling methods (Nguyen et al., 598

2016; Yang and Mitchell, 2017; Nguyen et al., 599

2021; Peng et al., 2023c): mainly adopting the 600

conditional random field (CRF) (Lafferty et al., 601

2001) as the output layer to model structured de- 602

pendencies between different arguments. Recently, 603

increasing attention has been paid to transforming 604

EAE into a question-answering task, transferring 605

question-answering capabilities to boost EAE (Liu 606

et al., 2020; Du and Cardie, 2020; Li et al., 2020; 607

Ma et al., 2022; Lu et al., 2023). Additionally, 608

some research focuses on using generation models 609

to directly generate structured outputs containing 610

events and their arguments (Lu et al., 2021; Li 611

et al., 2021; Hsu et al., 2022; Lu et al., 2022; Ren 612

et al., 2023; Hsu et al., 2023; Zhang et al., 2023), 613

which has been becoming increasingly important 614

with the advance of large language models. 615

7 Conclusion and Future Work 616

We introduce MAVEN-ARG, an event argument ex- 617

traction dataset with comprehensive schema, large 618

data scale, and exhaustive annotation. Experiments 619

indicate that MAVEN-ARG is quite challenging 620

for both fine-tuned EAE models and proprietary 621

large language models. Together with MAVEN and 622

MAVEN-ERE, MAVEN-ARG completes an all-in- 623

one dataset covering the entire process of event 624

understanding. An application case of future event 625

prediction demonstrates how an all-in-one dataset 626

can enable broad event-based applications. In the 627

future, we will explore constructing multilingual 628

resources under this framework and developing 629

practical EAE methods with MAVEN-ARG. 630
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Limitations631

(1) MAVEN-ARG currently includes only English632

corpus, which limits its potential applications and633

coverage for diverse linguistic phenomena. In634

future work, we will try to support more languages635

under our framework and we also encourage636

community efforts in developing multilingual event637

understanding benchmarks. (2) MAVEN-ARG,638

along with MAVEN (Wang et al., 2020) and639

MAVEN-ERE (Wang et al., 2022), exclusively640

supports mainstream event understanding tasks.641

However, these datasets do not cover more642

broad event-related tasks such as event factuality643

identification (Qian et al., 2019, 2022) and event644

salience identification (Liu et al., 2018). We645

encourage future explorations in building more646

challenging and diverse tasks and applications647

on top of MAVEN data. (3) While previous648

research has found that LLMs perform poorly on649

specification-heavy tasks (Peng et al., 2023c; Han650

et al., 2023; Li et al., 2023) including the EAE651

task, there is no in-depth exploration of effective652

LLM-based approaches addressing the EAE task653

in this paper. We leave the exploration of how to654

better leverage LLMs for EAE tasks in future work.655

Ethical Considerations656

In this section, we discuss the ethical considera-657

tions of this work: (1) Intellectual property. The658

MAVEN dataset is released under the CC BY-SA659

4.0 license3. The MAVEN-ERE is shared under660

GPLv34 license and the original Wikipedia corpus661

is shared under the CC BY-SA 3.0 license5. The662

usage of these data in this work strictly adheres to663

the corresponding licenses and intended use. (2) In-664

tended use. MAVEN-ARG is an event argument ex-665

traction dataset. Researchers and practitioners can666

utilize MAVEN-ARG to train and evaluate models667

for event argument extraction, thereby advancing668

the field of event understanding. (3) Potential risk669

control. MAVEN-ARG is constructed based on670

publicly available data. We believe that the under-671

lying public data has been adequately desensitized672

and anonymized. The event argument annotation673

does not involve judgments about social issues and674

thus we believe MAVEN-ARG will not involve ad-675

3https://creativecommons.org/licenses/by-sa/4.
0/

4https://www.gnu.org/licenses/gpl-3.0.html
5https://creativecommons.org/licenses/by-sa/3.

0/

ditional risks. The MAVEN-ARG test set will not 676

be publicly released to prevent potential unfair per- 677

formance comparisons. (4) Worker Treatments 678

are discussed in appendix A.2. (5) AI assistant. 679

The writing of this paper was assisted by ChatGPT 680

in rephrasing some sentences. 681
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Appendices1100

A Data Collection Details1101

A.1 Annotation Instruction1102

As introduced in § 2.1, we create a detailed event1103

schema for both defining the task and instructing1104

the annotators. We present the annotation instruc-1105

tions for the event type Incident in Table 7, includ-1106

ing its argument schema and annotation examples.1107

The overall event schema will be released along1108

with the dataset. To support the highly customized1109

annotation process designed for us, we developed1110

a new online annotation platform. A screenshot1111

for the annotation platform is shown in Figure 5 to1112

help understand the annotation operations.1113

A.2 Annotation Coordination1114

We employ annotators (including senior annotators1115

and expert annotators) from multiple commercial1116

data annotation companies. 61% of them are fe-1117

male and 39% of them are male. The experts in-1118

volved in schema creation are invited by the authors1119

through personal connections. All the workers are1120

fairly paid with agreed salaries and workloads. All1121

employment is under contract and in compliance1122

with local regulations. The overall annotation cost,1123

including annotating entities and event arguments1124

as well as developing and maintaining annotation1125

platforms, is about 85, 000 USD.1126

B Data Split Statistics1127

The detailed statistics of different data splits of1128

MAVEN-ARG are shown in Table 8.1129

C EAE Experimental Details1130

C.1 Fine-tuning Implementation Details1131

Here we provide brief descriptions of the fine-1132

tuning-based models involved in our experi-1133

ments. (1) DMBERT (Wang et al., 2019) utilizes1134

BERT (Devlin et al., 2019) as the text encoder and1135

a dynamic multi-pooling mechanism (Chen et al.,1136

2015b) on top of BERT to aggregate argument-1137

specific features and map them onto the distribution1138

in the label space. (2) CLEVE (Wang et al., 2021b)1139

is an event-oriented pre-trained language model,1140

which is pre-trained using contrastive pre-training1141

objectives on large-scale unsupervised data and1142

their semantic structures. (3) BERT+CRF (Wang1143

et al., 2020) is a sequence labeling model, which1144

leverages BERT as the backbone and the condi-1145

tional random field (CRF) (Lafferty et al., 2001) as1146

the output layer to model the structural dependen- 1147

cies of predictions. (4) EEQA (Li et al., 2020) is 1148

a span prediction model, which formulates event 1149

extraction as a question-answering task and out- 1150

puts start and end positions to indicate triggers and 1151

arguments. (5) Text2Event (Lu et al., 2021) is 1152

a conditional generation model, which proposes 1153

a sequence-to-structure paradigm and generates 1154

structured outputs containing triggers and corre- 1155

sponding arguments with constrained decoding. 1156

(6) PAIE (Ma et al., 2022) adopts prompt tun- 1157

ing (Lester et al., 2021) to train two span selec- 1158

tors for each argument role in the provided prompt 1159

and conduct joint optimization to find optimal role- 1160

span assignments. We adopt the same backbones 1161

with their original papers for all EAE models in 1162

our experiments. We employ pipeline evaluation as 1163

suggested by Peng et al. (2023c). Specifically, for 1164

PAIE, we conduct EAE experiments based on the 1165

triggers predicted by CLEVE. For the other mod- 1166

els, the EAE experiments are based on the triggers 1167

extracted by corresponding models. 1168

We implement the EAE models using code 1169

from the official repositories of OmniEvent (Peng 1170

et al., 2023b), PAIE (Ma et al., 2022), and 1171

Text2Event (Lu et al., 2021). The numbers of pa- 1172

rameters of the EAE models are shown in Table 3. 1173

All open-source models are downloaded from the 1174

HuggingFace Transformers community (Wolf et al., 1175

2020). Each of our fine-tuning experiments is con- 1176

ducted only once, on Nvidia A100 GPUs, consum- 1177

ing approximately 800 GPU hours in total. The 1178

hyper-parameters of the model are set based on 1179

prior experience and references from previous pa- 1180

pers (Lu et al., 2021; Ma et al., 2022; Peng et al., 1181

2023b). All hyper-parameters are shown in Table 9. 1182

C.2 LLM Experimental Details 1183

We access ChatGPT and GPT-4 through the offi- 1184

cial OpenAI interfaces, namely gpt-3.5-turbo 1185

and gpt-4, respectively. The API access period 1186

spans from October 1 to October 31, 2023. The 1187

decoding sampling temperature for both models is 1188

set to 0. An example of the prompt, input, output, 1189

and ground-truth of this experiment are presented 1190

in Table 10. Model outputs are automatically ex- 1191

tracted and evaluated using the evaluation approach 1192

mentioned in § 4.1. 1193
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[Incident] Accident, unfortunate event
Event Arguments:

1. Participant : Entities involved in the accident (individuals, institutions, organizations, and even trains, ships, etc.). They can
be the ones causing the accident or the ones affected by it. Similar to the combination of Agent and Patient in previous events,
but due to the difficulty in distinguishing between Agent and Patient in accidents, they are uniformly labeled as Participants.

2. Location : The location or position where the incident occurred. If the incident involves multiple locations during the process,
they should be marked separately.

3. Content : In general, only one annotation is needed, which accurately indicates the content and type of the accident.

4. Loss : The losses caused by accidents can include the number of deaths and injuries, property damage, and so on.

Annotation Examples:

1. British losses were confined to a single man wounded by an accident aboard “Crescent” .

2. On 6 June 1982, during the Falkland’s war, the British Royal Navy type 42 destroyer engaged and destroyed a [British army

gazelle helicopter, serial number “XX377”] Participant + Loss , in a friendly fire incident, killing all four occupants .

Table 7: Example annotation instructions for event type Incident. Different argument roles are denoted by different
background colors. Triggers are bolded in red.

Figure 5: Screenshot for the annotation platform. The trigger “headed” is selected for annotation (in the right panel)
and entities are highlighted in green as the options for annotating event arguments.

Dataset #Doc. #Event #Trigger #Arg. #Entity #Entity
Mention

Entity
Arg.

Non-Entity
Arg.

Train 2, 913 64, 923 70, 775 190, 479 55, 421 86, 969 76, 882 113, 597
Dev 710 15, 556 16, 996 46, 458 12, 927 18, 806 18, 040 28, 418
Test 857 18, 112 19, 736 53, 676 15, 297 23, 351 21, 102 32, 574

Table 8: Statistics of the data splits of MAVEN-ARG. “Doc.” is short for “Document” and “Arg.” is short for
“Argument”.
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DMBERT CLEVE BERT+CRF EEQA PAIE Text2Event

Learning Rate 5× 10−5 1× 10−5 5× 10−5 5× 10−5 2× 10−5 5× 10−5

Weight Decay 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−2

Batch Size 32 128 64 32 16 8
Epoch 6 5 10 10 − 30
Warmup Rate 0.1 0.1 0.1 0.1 0 0.1

Table 9: Hyper-parameters of fine-tuning EAE models on MAVEN-ARG. PAIE utilizes 10, 000 gradient update
steps to optimize the parameters.

PROMPT: Please extract event argument roles and the corresponding mentions for the events marked with <event> and </event>
in the text, the possible roles must be chosen from the Roleset. If there are no roles for the event, place output NA.

INPUT: The February 2010 Australian <event> cyberattacks </event> were a series of denial-of-service attacks conducted
by the Anonymous online community against the Australian government in response to proposed web censorship regulations .
Operation Titstorm was the name given to the cyber attacks by the perpetrators . They resulted in lapses of access to government
websites on 10 and 11 February 2010 . This was accompanied by emails , faxes , and phone calls harassing government
offices . The actual size of the attack and number of perpetrators involved is unknown but it was estimated that the number of
systems involved ranged from the hundreds to the thousands . The amount of traffic caused disruption on multiple government
websites . Australian Telecommunications Minister Stephen Conroy proposed the regulations that would mainly filter sites with
pornographic content . Various groups advocating uncensored access to the Internet , along with companies like Google and
Yahoo ! , object to the proposed filter . A spokesperson for Conroy said that the actions were not a legitimate form of protest and
called it irresponsible . The attacks also drew criticism from other filter protest groups . The initial stage was followed by small
in-person protests on 20 February that were called “ Project Freeweb ” . Roleset: [Agent, Location, Patient, Consequence]. The
event trigger is: <event> cyberattacks </event>.

GPT-3.5 OUTPUT: Answer: Patient: the Australian government; Consequence: lapses of access to government websites;
Agent: the Anonymous online community

GPT-4 OUTPUT: Answer: Agent: the Anonymous online community; Location: Australia; Patient: Australian government;
Consequence: lapses of access to government websites, disruption on multiple government websites.

GROUND-TRUTH: Agent: Anonymous online community; Patient: Australian government; Consequence: lapses of access to
government websites on 10 and 11 February 2010; Location: Australian

Table 10: Example prompt, input, output, and ground-truth for the LLMs experiments. Demonstrations are omitted.

D Event Prediction Experimental Details1194

The future event prediction experiments (§ 5) were1195

conducted in October and November, 2023. We use1196

OpenAI API endpoints gpt-3.5-turbo and gpt-41197

for GPT-3.5 and GPT-4 experiments, specifically.1198

To ensure the consistency among different runs, we1199

set temperature=0.0. Detailed instructions and1200

example input and output are shown in Table 11.1201

E More Experimental Results1202

In this section, we present more experimental re-1203

sults of using different proportions of training data1204

for training (appendix E.1) and results on entity1205

and non-entity arguments (appendix E.2).1206

E.1 Analysis on Data Size1207

The data volume of MAVEN-ARG significantly ex-1208

ceeds that of commonly used datasets. To examine1209

the benefits of increased data scale, we train mod-1210

els on training data of varying sizes and observe1211

their performance on the original test set. The ex-1212
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Figure 6: Mention-level F1 scores of investigated EAE
models using different proportions of training data on
MAVEN-ARG. This experiment adopts the gold trig-
ger evaluation approach (Peng et al., 2023c) and hence
Text2Event is not applicable. Due to the computation
limitations, CLEVE is not evaluated in this experiment.

perimental results are shown in Figure 6, which 1213

demonstrates that more training data indeed en- 1214

16



PROMPT: You need to complete the event chain prediction task. I will provide you with an event chain consisting of multiple
events, where earlier events cause the occurrence of subsequent events. You need to predict what the next most likely event in
this chain will be. Events will be provided in a structured JSON format, including event type, core event trigger words, and event
elements. I will first give you 5 example chains: ... Now please predict the next event for the following event chain:

INPUT: Event No.1: {"event type": "Attack", "event trigger": ["attack"], "event argument": {"Agent": ["unknown assailant"],
"Patient": ["Boris Nemtsov"], "Location": ["Bolshoy Moskvoretsky Bridge"]}} Event No.2: {"event type": "Use_firearm",
"event trigger": ["fired"], "event argument": {"Agent": ["unknown assailant"], "Patient": ["Nemtsov"], "Location": ["Bolshoy
Moskvoretsky Bridge"], "Instrument": ["Makarov pistol"]}} Event No.3: {"event type": "Bodily_harm", "event trigger": ["hit"],
"event argument": {"Agent": ["shots"], "Patient": ["Boris Nemtsov"], "Location": ["Bolshoy Moskvoretsky Bridge"]}}

GPT-3.5 OUTPUT: Based on the provided event chains, the next most likely event in the given event chain is: Event No.4:
{"event type": "Criminal_investigation", "event trigger": ["indicted"], "event argument": {"Agent": ["unknown assailant"],
"Suspect": ["Boris Nemtsov"], "Incident": ["shooting on Bolshoy Moskvoretsky Bridge"], "Conclusion": ["investigation and
charges"]}}

GPT-4 OUTPUT: Event No.4: {"event type": "Death", "event trigger": ["died"], "event argument": {"Agent": ["Boris
Nemtsov"], "Cause": ["gunshot wounds"], "Location": ["Bolshoy Moskvoretsky Bridge"]}}

GROUND-TRUTH: Event No.4: {"event type": "Death", "event trigger": ["died"], "event argument": {"Agent": ["Boris
Nemtsov"], "Location": ["Bolshoy Moskvoretsky Bridge"]}}

Table 11: Example prompt, input, output, and ground-truth for the future event prediction experiments. Demonstra-
tions are omitted and the JSON strings are unformatted to avoid taking up to much space.

hances model performance and allows for a com-1215

prehensive comparison of different models. The1216

extensive data of MAVEN-ARG make it feasible1217

to train a large language model (LLM) for gen-1218

eral event understanding, which we leave as future1219

work. Table 12 shows the detailed experimental1220

results, i.e., mention level, entity coreference level,1221

and event coreference level.1222

E.2 Entity and Non-Entity Arguments1223

Table 13 presents the overall results on entity and1224

non-entity arguments of MAVEN-ARG. The non-1225

entity arguments do not have coreferential relation-1226

ship with each other and hence there is no entity1227

coreference level evaluation for them.1228
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Proportion Mention Level Entity Coref Level Event Coref Level
P R F1 EM P R F1 EM P R F1 EM

DMBERT

1% 8.3 7.8 7.9 7.2 10.4 9.5 9.7 8.6 9.4 8.6 8.8 7.7
3% 11.1 10.7 10.8 10.1 11.9 11.2 11.3 10.3 10.2 9.6 9.7 8.8
5% 15.2 14.7 14.8 14.0 14.8 13.9 14.0 12.9 13.1 12.3 12.5 11.5
7% 17.0 16.4 16.5 15.7 17.9 16.8 17.1 15.7 16.4 15.4 15.6 14.4

10% 18.0 17.4 17.5 16.6 17.5 16.4 16.6 15.4 16.0 15.0 15.2 14.1
20% 22.6 22.0 22.1 21.2 21.0 19.8 20.0 18.6 19.3 18.2 18.4 17.1
30% 25.7 25.0 25.2 24.2 23.1 21.7 21.9 20.4 21.5 20.2 20.4 19.0
50% 26.9 26.3 26.4 25.5 23.9 22.7 22.9 21.4 22.1 21.0 21.2 19.8
70% 27.5 26.9 27.0 26.1 24.0 22.7 23.0 21.5 22.1 21.0 21.2 19.9
90% 29.2 28.6 28.7 27.8 24.7 23.5 23.8 22.2 22.9 21.8 22.0 20.6

BERT+CRF

1% 16.4 14.8 14.9 11.6 21.7 19.6 19.8 15.4 21.1 19.1 19.3 15.1
3% 25.3 24.1 23.8 19.2 31.4 29.6 29.4 23.4 30.4 28.8 28.5 22.9
5% 32.5 31.2 30.9 25.8 38.8 36.8 36.5 29.6 38.0 36.2 35.9 29.2
7% 33.9 32.8 32.4 27.1 41.6 39.7 39.3 31.9 40.7 38.9 38.5 31.3

10% 36.8 36.0 35.5 30.0 43.1 41.8 41.1 33.9 42.3 41.1 40.4 33.4
20% 40.5 39.7 39.1 33.7 46.6 45.2 44.5 37.0 45.7 44.4 43.7 36.4
30% 42.0 41.3 40.7 35.1 47.2 45.9 45.2 37.6 46.4 45.3 44.5 37.0
50% 42.7 42.2 41.5 36.3 48.3 47.2 46.4 39.0 47.3 46.4 45.6 38.3
70% 44.3 43.9 43.2 37.8 49.5 48.5 47.6 40.0 48.6 47.7 46.8 39.4
90% 43.8 43.7 42.8 37.5 47.9 47.5 46.4 39.2 46.9 46.6 45.5 38.5

100% 44.3 43.9 43.1 37.7 48.4 47.5 46.6 39.3 47.4 46.6 45.8 38.7

EEQA

1% 14.0 13.2 12.9 9.9 16.6 16.3 15.7 12.2 15.7 15.4 14.8 11.5
3% 20.5 18.8 18.7 14.4 23.3 22.1 21.7 17.0 22.4 21.3 20.8 16.4
5% 24.0 21.5 21.7 17.0 27.1 25.0 25.0 20.0 26.1 24.2 24.0 19.2
7% 24.2 21.8 21.9 17.1 27.1 25.2 25.0 20.0 26.4 24.5 24.4 19.5

10% 25.9 23.4 23.5 18.5 29.1 27.0 26.9 21.7 28.3 26.4 26.2 21.1
20% 26.7 24.5 24.5 19.6 29.9 28.2 28.0 22.9 29.1 27.4 27.2 22.2
30% 26.3 24.1 24.1 19.4 29.6 27.8 27.7 22.7 28.6 27.0 26.7 21.9
50% 27.8 25.5 25.6 20.7 31.3 29.4 29.2 24.0 30.3 28.5 28.3 23.2
70% 28.1 25.7 25.8 20.9 31.4 29.5 29.3 24.2 30.5 28.7 28.5 23.5
90% 28.2 26.0 26.0 21.0 31.5 29.8 29.6 24.4 30.7 29.1 28.8 23.7

100% 28.3 26.1 26.1 21.1 31.6 29.9 29.6 24.5 30.8 29.2 28.9 23.7

PAIE

1% 33.6 32.7 31.8 25.3 39.3 38.4 37.4 30.1 39.1 38.3 37.3 30.0
3% 37.0 36.0 35.2 28.6 43.2 42.0 41.1 33.7 43.1 42.0 41.1 33.7
5% 38.6 37.4 36.7 30.0 45.9 44.4 43.6 35.8 46.2 44.8 43.9 36.1
7% 39.8 39.0 38.1 31.5 45.8 45.0 43.9 36.5 46.1 45.3 44.2 36.7

10% 40.6 40.0 39.0 32.4 46.9 46.2 45.1 37.6 47.2 46.6 45.4 37.9
20% 43.2 42.1 41.3 34.7 49.5 48.3 47.4 39.9 49.8 48.6 47.7 40.1
30% 43.2 42.1 41.3 34.7 49.5 48.3 47.4 39.9 49.8 48.6 47.7 40.1
50% 43.4 42.6 41.8 35.3 49.9 49.0 48.0 40.6 50.3 49.4 48.4 40.9
70% 44.0 43.0 42.3 35.8 50.7 49.5 48.7 41.3 51.2 50.1 49.1 41.7
90% 44.4 43.4 42.7 36.2 51.3 49.9 49.1 41.8 51.5 50.3 49.4 42.0

100% 44.5 43.4 42.7 36.3 50.8 49.4 48.7 41.4 51.1 49.8 49.0 41.7

Table 12: Experimental results (%) of the EAE models using different proportions of training data of MAVEN-ARG.
In this experiment, we adopt the gold trigger evaluation approach (Peng et al., 2023c).
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Model #Params Mention Level Entity Coref Level Event Coref Level
P R F1 EM P R F1 EM P R F1 EM

Entity Argument

DMBERT 110M 19.7 19.7 19.7 19.5 12.5 12.4 12.4 12.3 11.8 11.8 11.8 11.6
CLEVE 355M 22.1 22.1 22.1 22.0 13.2 13.2 13.2 13.0 12.3 12.2 12.2 12.1
BERT+CRF 110M 18.6 18.5 18.5 17.8 12.7 12.6 12.6 12.0 12.0 11.8 11.8 11.3
EEQA 110M 6.3 6.2 6.2 5.6 9.1 9.1 9.0 8.3 8.5 8.5 8.4 7.7
Text2Event 770M 5.5 5.6 5.5 5.2 4.0 4.0 4.0 3.7 3.2 3.2 3.1 2.9
PAIE 406M 20.4 20.5 20.3 19.2 21.0 21.1 20.9 19.8 20.0 20.1 19.9 18.9

Non-Entity Argument

BERT+CRF 110M 24.8 24.8 24.0 19.4 − − − − 25.3 25.3 24.5 19.6
EEQA 110M 18.9 17.6 17.5 13.9 − − − − 18.6 17.4 17.2 13.7
Text2Event 770M 1.7 1.7 1.6 1.1 − − − − 1.5 1.6 1.5 1.1
PAIE 406M 39.4 38.4 37.6 30.4 − − − − 38.7 37.8 36.9 29.7

Table 13: Experimental results (%) of existing state-of-the-art fine-tuned EAE models on entity and non-entity
arguments of MAVEN-ARG. Classification-based models, e.g., DMBERT and CLEVE, are inapplicable to non-entity
arguments.
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