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ABSTRACT

The rapid evolution of Large Language Models (LLMs) has outpaced the develop-
ment of model evaluation, highlighting the need for continuous curation of new,
challenging benchmarks. However, manual curation of high-quality, human-aligned
benchmarks is expensive and time-consuming. To address this, we introduce Bench-
O-Matic, an automated pipeline that leverages LLMs to curate high-quality, open-
ended prompts from large, crowd-sourced datasets, enabling continuous benchmark
updates without human in the loop. We apply Bench-O-Matic to datasets such as
Chatbot Arena and WildChat-1M, extracting challenging prompts and utilizing
LLM-as-a-Judge for automatic model evaluation. To validate benchmark quality,
we propose new metrics to measure a benchmark’s alignment with human pref-
erences and ability to separate models. We release Eval-O-Matic, a benchmark
consisting 500 challenging prompts curated by Bench-O-Matic. Eval-O-Matic
provides 3x higher separation of model performances compared to MT-Bench and
achieves 98.6% correlation with human preference rankings, all at a cost of $20.
Our work sets a new framework for the scalable curation of automated benchmarks
from extensive data.

1 INTRODUCTION

The proliferation of Large Language Models (LLMs) has spurred advancements as models expand
their capabilities by training on increasingly vast and diverse datasets. Traditional static bench-
marks (Wang et al., 2019; Rajpurkar et al., 2016; Bowman et al., 2015; Dolan & Brockett, 2005;
Bos & Markert, 2005; Hendrycks et al., 2021a) are quickly becoming saturated and struggle to
differentiate state-of-the-art models.

To address these limitations, recent benchmarks like GPQA (Rein et al., 2023) source high-quality
and challenging prompts from domain experts. Although these efforts have produced challenging
evaluation sets, they come at a steep price—GPQA, for instance, cost over $120,000 to curate its 500
multiple-choice questions (Rein, 2024). The reliance on manual curation makes such benchmarks
difficult to produce. Moreover, their static nature is susceptible to test-set leakage and overfitting
as models are trained on similar datasets. This necessitates the continuous development of new
benchmarks, exacerbating the cost and labor of manual curation. Further, many of these benchmarks
rely on close-ended tasks that fail to capture the open-ended nature of real-world interactions,
undermining their cost-effectiveness for evaluating alignment to user preference.

An alternative approach without manual curation involves crowdsourcing prompts through live
evaluation platforms such as Chatbot Arena (Chiang et al., 2024). These platforms test models
against a continuous stream of fresh, open-ended queries and user feedback. However, real-time
human evaluation is both expensive and time-consuming, rendering these platforms infeasible for
frequent evaluations by model developers. Moreover, while the crowd-sourced prompts represent real-
world and open-ended tasks, their quality varies in difficulty and cannot be converted to challenging
benchmarks without careful data filtering.

In light of these open challenges, there is a pressing need for an automated pipeline which can curate
high-quality prompts dynamically at scale. In this paper, we introduce Bench-O-Matic, an automated
benchmark curation system designed to address these gaps. Bench-O-Matic leverages LLMs to curate,
filter, and validate prompts based on seven indicators of high-quality prompts, such as specificity and
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Evaluation Open-Ended Prompt Curation Prompt Source

Eval-O-Matic Automatic Yes Automatic Configurable

MMLU, MATH, GPQA Automatic No Manual Fixed

MT-Bench, AlpacaEval Automatic Yes Manual Fixed

Live Bench, 
Live Code Bench

Automatic No Manual Fixed

Chatbot Arena Human Yes Crowd-source Crowd

Figure 1: Classification of LLM benchmarks: we categorize benchmarks on how the evaluation can
be done, whether the evaluated tasks are ground-truth or open-ended, how are the prompts curated,
and whether the developer can control the source for the prompts.

domain knowledge, creating a pipeline that can continuously curate benchmarks alongside model
development.

We apply Bench-O-Matic to crowd-sourced datasets, both Chatbot Arena (Chiang et al., 2024) and
WildChat-1M (Zhao et al., 2024), demonstrating that it can robustly generate high-quality benchmarks
that differentiate models. The resulting benchmark, Eval-O-Matic, employs LLM judges (Zheng et al.,
2023a; Li et al., 2023) to estimate human preferences against a baseline model, making the entire
process—from prompt curation to evaluation—fully automated. We also address potential biases in
LLM-based evaluations and propose solutions to mitigate them. To assess benchmark quality, we
introduce new metrics that measure a benchmark’s ability to confidently separate models and align
with human preferences. When compared to leading benchmarks such as AlpacaEval LC (Dubois
et al., 2024) and MT-Bench (Zheng et al., 2023a), Eval-O-Matic achieves stronger model separability,
tighter confidence intervals, and achieve 98.6% correlation with Chatbot Arena rankings, making it a
fast, reliable predictor of downstream model performance.

To summarize, our works makes the following contributions:

1. We propose a novel data curation pipeline, Bench-O-Matic, to automatically construct
high-quality benchmarks from crowdsourced data.

2. We propose metrics to capture desired properties in an LLM benchmark, and validate that
Eval-O-Matic achieves higher model separation and alignment to human preference than
existing benchmarks.

3. We open-source both Bench-O-Matic pipeline and Eval-O-Matic benchmark.

2 RELATED WORKS

LLM benchmarks. We briefly review widely used LLM benchmarks. Most existing benchmarks are
static and ground-truth-based (e.g., multi-choice question answering). They cover a wide range of
domains, including math, science, coding, and reasoning. Common ones include MMLU (Hendrycks
et al., 2021a), MATH (Hendrycks et al., 2021b), GSM-8K (Cobbe et al., 2021), HumanEval (Chen
et al., 2021), DROP (Dua et al., 2019), BigBench (Srivastava et al., 2023), HellaSwag (Zellers
et al., 2019), AGIEval (Zhong et al., 2023), GPQA (Rein et al., 2023), as well as comprehensive
collection like HELM (Liang et al., 2022). Many have considered task-based evaluation such as
IFEval (Zhou et al., 2023), SWE-Bench (Jimenez et al., 2024), BigCodeBench (Zhuo et al., 2024) or
AgentBench (Liu et al., 2023). As LLMs become widely adopted in open-ended scenarios involving
interaction with humans (e.g., chatbot), many have considered human evaluation using domain
experts or crowd raters such as Amazon Mechanical Turk (Karpinska et al., 2021; Wang et al., 2023)
to examine models’ response quality. As an alternative to human labeling, previous work has shown
that LLM-as-a-judge can be effective human preference proxies (e.g., AlpacaFarm (Dubois et al.,
2023), MT-bench (Zheng et al., 2023b), AlpacaEval (Li et al., 2023), WildBench (Lin et al., 2024)).

Benchmark leakage. A fundamental limitation of static benchmarks is the potential risk of test set
leakage (i.e., contamination). Existing works (Carlini et al., 2021; Sainz et al., 2023; Yang et al.,
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2023; Reid et al., 2024) have suggested a growing risk of contamination, which undermines the
reliability of benchmarks over time, motivating the need for benchmarks that are more frequently
updated.

Live benchmarks. DynaBench (Kiela et al., 2021) identifies these challenges and recommends
creating living and continuously evolving benchmarks. Recent works LiveBench (White et al., 2024),
LiveCodeBench (Jain et al., 2024a), MixedEval (Ni et al., 2024), R2E (Jain et al., 2024b), as well as
the community based live evaluation, Chatbot Arena (Chiang et al., 2024). However, none of these
focus on developing a pipeline for automatic benchmark curation to enable automatic evaluation on
open-ended tasks.

3 HOW DO YOU MEASURE BENCHMARKS?

We outline two key properties that the benchmark aiming to approximate human preference should
possess to provide meaningful comparisons between models:

1. Separability: the benchmark should separate models with high confidence.
2. Alignment with Human Preference: the benchmark should agree with human preference.

While previous works have focused on alignment, separability is also a crucial consideration when
comparing models of similar quality (e.g., different checkpoints from the same training run). However,
achieving high-confidence separability is challenging due to limitations in prompt design and inherent
variances in LLM evaluations. Overly simplistic prompts fail to distinguish between models, while
the randomness in human and LLM judgments leads to inconsistent predictions. As a result, it is often
difficult to confidently determine if a model’s apparent performance reflects a genuine difference
in capability or merely noisy observations, highlighting a need for methods to verify whether a
benchmark can reliably separate similar models.

Statistical measures like Pearson (Pearson, 1895) and Spearman Correlations (Spearman, 1961),
commonly used in benchmarks such as AlpacaEval (Li et al., 2023) to measure correlation to human
preference ranking, may fail to adequately address model separability and ranking instability. In
addition, these measures only provide a coarse signal of ranking correlation without quantifying the
magnitude of performance differences between model pairs.

To address these shortcomings, we develop three novel metrics: Separability with Confidence,
Agreement with Confidence, and Pair Rank Brier Score.

Separability with Confidence quantifies the benchmark’s confidence by measuring its consistency
in predicting the winner of a model pair across random seeds through bootstrapping. This is done
by calculating the percentage of model pairs that have non-overlapping confidence intervals of
their benchmark scores. A higher percentage indicates that the benchmark is more confident in
distinguishing between the performance of different models, as the confidence intervals of their scores
do not overlap.

Agreement with Confidence Interval measures how well benchmarks A and B confidently distin-
guish between two models with the same ordering. Given models π1, π2, we assign scores based
on:

1. If both benchmarks confidently separate π1, π2, a score of 1 is assigned if their preference agree,
and -1 if they disagree.

2. If either A or B cannot separate π1, π2 with confidence, we assign a score of 0.

The final agreement score is the average across all unique model pairs. A score of 1 implies perfect
agreement with full confidence, while a score of -1 indicates complete disagreement.

Pair Rank Brier Score further assesses an LLM benchmark’s capability to predict the ranking of a
pair of competing models by rewarding confidence in correct predictions while penalizing confidence
when incorrect. Consider two models π1 > π2 with disparate quality. Although two benchmarks
A and B predict the same ranking π1 > π2, they predict P (π1 > π2) as .60 and .90, respectively
(undetectable by Spearman correlation). These benchmarks would result in very different Brier scores,
reflecting their ability to quantify the magnitude of performance difference between the models.
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Figure 2: Bench-O-Matic Pipeline. Starting with a live data source of crowdsourced user prompts,
we first cluster their embeddings to form topic clusters. An LLM annotator then assigns quality scores
based on the required skills. Clusters with low quality scores are filtered out, and we sample from the
remaining high-quality clusters to create a diverse and challenging dataset of benchmark prompts.

If both benchmarks give the wrong prediction of the winner, we prefer the benchmark with a less
confident prediction. In other words, Brier score weighs a benchmark’s accuracy and its ability to
quantify the appropriate level of uncertainty in its predictions. Background on Pair Rank Brier Score
can be found in Appendix A.1.

While no single metric is intended to be individually sufficient, we claim that together, these met-
rics offer a robust framework for assessing benchmark performance, balancing the need for clear
differentiation with alignment to human preferences.

4 THE BENCH-O-MATIC PIPELINE AND EVAL-O-MATIC DATASET

4.1 BENCH-O-MATIC

The core idea behind how Bench-O-Matic extract high-quality user queries from vast datasets is
simple: each prompt is evaluated using a quality score, and prompts with high scores are sampled
evenly across diverse topics. Figure 2 illustrates our data creation pipeline.

To identify high-quality prompts, we define seven key qualities that capture the skills necessary to
effectively address a query, such as specificity, domain expertise, and creativity (shown in Figure 2).
An LLM-based annotator automatically scores each prompt by assessing how many of these qualities
are present, producing a “quality score”. Detailed instructions for these quality assessments are
provided in Section C.

To ensure our filtered prompts span a wide range of tasks, we leverage a topic modeling approach
using BERTopic. We first encode each prompt using OpenAI’s embedding model, text-embedding-3-
small (OpenAI, 2024a), reduce dimensions with UMAP, and apply a hierarchical-based clustering
algorithm (HDBSCAN). This process generates distinct topic clusters. Each topic is then summarized
and named using an LLM.

Since some topic clusters predominantly contain trivial or poorly defined prompts (e.g., "hi"), we
retain only the clusters with high average quality scores and sample prompts evenly across these
selected clusters. The resulting dataset consists of mostly well-defined, technical problem-solving
queries as required in the above key criteria. Dataset statistics and further details on our filtering and
sampling strategy are provided in the following section.
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Key Prompt Qualities

• Specificity: Does the prompt ask for a specific, well-defined output without leaving
any ambiguity?
• Domain Knowledge: Does the prompt test the AI’s knowledge and understanding
in a specific domain or set of domains?
• Complexity: Does the prompt have multiple components, variables, or levels of
depth and nuance?
• Problem-Solving: Does the prompt require active problem-solving: analyzing and
clearly defining the problem and systematically devising and implementing a solution?
• Creativity: Does the prompt require a creative approach or solution?
• Technical Accuracy: Does the prompt require an answer with a high degree of
technical accuracy, correctness and precision?
• Real-world Application: Does the prompt relate to real-world applications?

4.2 EVAL-O-MATIC

We utilize the Bench-O-Matic pipeline to curate 500 challenging benchmark prompts for Eval-O-
Matic. Our process begins with an initial pool of 200,000 prompts sourced from Chatbot Arena. We
filter out duplicates, multi-turn conversations, and non-English content. Next, we apply hierarchical
topic modeling, clustering the prompts into 4,000 distinct topics spanning a diverse range of domains

Then we use GPT-4-Turbo (OpenAI, 2023b) as a judge to assign a “quality score” to each prompt
and remove any prompts. Prompts with score less than 6 and topic clusters with mean score less
than 5 are discarded, ensuring only the highest quality prompts are retained. The resulting dataset
contains over 500 high quality clusters. To construct a 500-prompt benchmark, we sample 2 prompts
each from 250 randomly selected clusters. We also ensure the final dataset is free from personally
identifiable information or offensive content.

To validate qualities assigned by GPT-4-Turbo, we construct “ground truth” labels for 200 sampled
queries by collecting majority votes from GPT-4o (OpenAI, 2024b), Claude-3-Opus, and Gemini-1.5-
Pro (Reid et al., 2024). GPT-4-Turbo achieves 85.6% agreement with these labels, demonstrating its
reliability as an annotator.

We also applied Bench-O-Matic on 150,000 queries from WildChat-1M (Zhao et al., 2024), which
consists of diverse and real-world conversations between users and ChatGPT. Bench-O-Matic identi-
fied 185 high quality clusters with 4,500+ prompts. We then randomly sample 2 prompts from each
of the highest-quality 125 clusters to create a new benchmark, Wild-O-Matic, which we show to have
similar improvement in benchmark quality in section 6.4.

4.3 PIPELINE COST AND STATISTIC ANALYSIS

The estimated cost for applying Bench-O-Matic on 200,000 Chatbot Arena queries using GPT-4-
Turbo as annotator is approximately $500 1. This cost can be significantly reduced if employing
Llama-3-70B-Instruct (Dubey et al., 2024) as annotator instead, which only cost around $45 2. We ex-
perimented with Llama-3-70B-Instruct as an alternative annotator and observed similar improvement
in downstream benchmark quality. Results are discussed in section 6.4.

Figure 4 illustrates examples of topic clusters across a spectrum of mean scores. Clusters with higher
scores correspond to complex topics such as game development or mathematical proofs, while lower-
scoring clusters typically involve simpler or ambiguous questions (e.g., "Flirty Texting Strategies").
We provide further examples of prompts and their respective topic clusters in Appendix B.

1250 tokens per prompt on average x 200,000 user queries x $10 per 1 million tokens (OpenAI pricing for
GPT-4-1106-Preview).

2250 tokens per prompt on average x 200,000 user queries x $0.9 per 1 million tokens (TogetherAI pricing,
date: 2024-10-01).
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Figure 3: Win-rate of three model pairs (GPT-4-0613 vs Llama-2-70b-chat, Claude-3-Sonnet-
20240229 vs Claude-3-Haiku-20240307, and Mistral-Large vs Mixtral-8x7b-Instruct-v0.1) over
“quality score”. We randomly sample 50 queries for each quality score 0-7 and bootstrap a win-rate
and confidence interval between model pairs on each score interval of 2. We observe a similar trend
of win-rate between model pairs becomes increasingly separable as the quality score increases.
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Figure 4: Mean score of various topic clusters
in descending order. Higher-scoring clusters cor-
relate to challenging topics. A more complete
topic cluster plot is in Figure 6.
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Figure 5: Comparison between Eval-O-Matic
(Green) and MT-Bench (Grey). The former
offers significantly better separability between
models and tighter confidence intervals.

To see whether “quality score” assigned during Bench-O-Matic’s pipeline correlates with separability
and agreement, we sample 50 prompts per score and compare the responses from GPT-4 and Llama-
2-70b-Chat (Touvron et al., 2023), with GPT-4-Turbo as judge. In Figure 3 (Left), we observe
a strong correlation between high potential score and the win-rate of GPT-4-Turbo over Llama-
2-70b-Chat. Similar trends are across other model pairs, including Claude Sonnet vs Haiku and
Mistral-Large (team, 2024) vs Mixtral (Jiang et al., 2024a).

5 EVALUATION WITH LLM-AS-A-JUDGE

Evaluating models on challenging queries such as Eval-O-Matic requires expert-level judgment due to
the depth of domain knowledge and problem-solving skills involved. Expert evaluation, while ideal, is
both costly and time-consuming. To address this, we leverage the LLM-as-a-Judge framework (Zheng
et al., 2023b; Dubois et al., 2023) as a scalable alternative to approximate human preferences.

We evaluate a model on a given prompt using a pairwise comparison against a strong baseline model
(e.g., GPT-4-0314). A judge model (e.g., GPT-4-Turbo or Gemini-1.5-Pro) then scores each output
by rating its preference between the pair on a 5-point Likert scale (Likert, 1932) (1 indicates strong
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Eval-O-Matic MT Bench AlpacaEval 2.0 LC Chatbot Arena

Confidence Agreement 90.9% 26.6% 82.5% N/A
Separability 87.4% 22.6% 83.2% 85.8%
Spearman Correlation 93.2% 89.9% 91.9% N/A
Kendall Tau Correlation 80.0% 64.2% 77.9% N/A
Brier Score 0.069 0.09 0.11 N/A

Real-world Yes Mixed Mixed Yes
Freshness Frequent Updates Static Static Live
Eval cost per model $20 $10 $10 Very High
Prompts per model 500 160 800 10,000+

Table 1: We use a set of top-20 models3on Chatbot Arena (2024/04/13) that are also present on the
AlpacaEval leaderboard to calculate separability and agreement per benchmark. We consider the
human preference ranking by Chatbot Arena (English only) as the reference to calculate agreement.

Wild-O-Matic Wild-Random-250

Confidence Agreement 88.6% 36.4%
Separability 86.7% 75.6%
Spearman Correlation 91.5% 45.5%

Table 2: Comparing Wild-O-Matic and a baseline of 250 prompts randomly selected from the
WildChat dataset, using GPT-4-Turbo as the judge. Wild-O-Matic has significantly higher separability
and agreement to human preference ranking. The experiment demonstrates BenchBuilder’s robustness
as a general data curation pipeline across different datasets.

preference for model A, 5 indicates strong preference for model B). This scoring method penalizes
models more heavily for large losses, effectively distinguishing performance across models. To
ensure consistency, we utilize chain-of-thought (Wei et al., 2023) prompting, guiding the LLM judge
to generate its own solution before issuing a judgment. Detailed prompt templates are provided in
Section C. To avoid potential position bias, we adopt a two-game setup – per query we swap the
models on the first and second position. We also study and propose solutions to mitigate potential
stylistic biases, such as answer length, and self-bias in LLM-based evaluation in section 6.

This results in 1000 judgments per model evaluation. Following Chatbot Arena, we adopt the
Bradley & Terry (1952) model to produce model’s the final model scores. We aggregate all pairwise
comparisons to the baseline model for all models and bootstrapping the comparisons to retrieve a
bootstrapped confidence interval of all models’ win-rate against the baseline, producing a ordered
ranking of all models by their win-rates.

6 EXPERIMENTAL RESULTS

6.1 SETUP AND BASELINES

To compare Eval-O-Matic’s separability and alignment with humans against other widely used
benchmarks, MT-Bench (Zheng et al., 2023b) and AlpacaEval 2.0 Length Controlled (Dubois et al.,
2024), we obtain 95% confidence intervals of model performances via applying 100 rounds of
bootstrapping on judgment results for each benchmark. For AlpacaEval, we use pre-existing results
from their repository. We obtain MT-Bench judgment with no modification to their recommended
evaluation setup. For Eval-O-Matic, we employ the system proposed in section 5 by choosing
gpt-4-0314 as baseline model for pairwise comparison.

3gpt-4-turbo-2024-04-09, claude-3-opus-20240229, claude-3-sonnet-20240229, gpt-4-0314 (OpenAI, 2023a),
gpt-4-0613, mistral-large-2402, qwen1.5-72b-chat (Team, 2024a), mistral-medium, claude-2.0, gpt-3.5-turbo-
0613, claude-2.1, gemini-pro (Gemini et al., 2023), mixtral-8x7b-instruct-v0.1 (Jiang et al., 2024b), gpt-3.5-
turbo-0314, yi-34b-chat (AI et al., 2024), tulu-2-dpo-70b (Ivison et al., 2023), dbrx-instruct-preview (Team,
2024b), vicuna-33b (Chiang et al., 2023), starling-lm-7b-alpha (Zhu et al., 2023), llama-2-70b-chat (Touvron
et al., 2023)
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Eval-O-Matic (Style Control) Eval-O-Matic AlpacaEval 2.0 LC MT-Bench

Confidence Agreement 98.6% 94.4% 83.8% 30.3%
Separability 86.8% 87.4% 83.2% 22.6%
Spearman Correlation 98.6% 94.9% 88.1% 90.7%
Kendall Tau Correlation 93.7% 85.3% 70.5% 77.9%

Table 3: We apply style control to Chatbot Arena battles (English Hard Prompts) and use its model
ranking as reference to calculate alignment. When stylistic confounders like response length are
controlled, Eval-O-Matic achieves high alignment to human preferences.

Model GPT4-T Claude3-Opus Gemini1.5-Pro Llama3-70B Ensemble-as-Judges

Confiderence Agreement 90.9% 66.7% 84.8% 65.6% 91.5%
Separability 87.4% 83.68% 82.11% 81.6% 89.5%
Spearman Correlation 93.2% 77.0% 95.2% 70.5% 96.5%
Brier Score 0.069 0.170 0.064 0.196 0.065

Table 4: Statistics of Eval-O-Matic with four LLM different judges: GPT4-T (gpt-4-1106-preview),
Claude-3-Opus, Gemini1.5-Pro (gemini-1.5-pro-0514), Llama3-70B (llama-3-70b-instruct). We com-
pare rankings produced by these judges against Chatbot Arena (English) ranking (as of 2024/04/13).
We observe GPT-4T and Gemini1.5-Pro have higher agreement than Claude-3-Opus and Llama-3-
70B. Furthermore, the ensemble of GPT4-T and Gemini1.5-Pro shows even higher agreement.

To ensure fair comparison, we use a set of top-20 models3 on Chatbot Arena (Chiang et al., 2024)
(2024/04/13) that are also presented on AlpacaEval leaderboard (2024/04/13) as ground truth for
human preferences on the model ranking orders.

6.2 COMPARING SEPARABILITY AND ALIGNMENT ACROSS BENCHMARKS

In Table 1, Eval-O-Matic shows the highest separability (87.4%) against widely adopted LLM
benchmarks and offers highest agreement (90.8%) to Chatbot Arena at a $20 cost. In Figure 5,
we show Eval-O-Matic offers significantly stronger separability against MT-Bench with tighter
confidence intervals. With only 500 prompts, Eval-O-Matic achieve impressive alignment to (and
even higher separability than) Chatbot Arena Rankings, which constitutes over 1 million real-world
human preferences.

Notably, we observe a significant gap between MT-bench’s Spearman Correlation (89.9%) and
confidence agreement (22.6%) to Chatbot Arena, an example where Spearman Correlation fails
to account for variance of the rankings, and hence cannot adequately measure important ranking
granularity of top LLMs. We present a visual comparison between Eval-O-Matic and MT-Bench in
Figure 5, highlighting Eval-O-Matic’s improved separability.

6.3 COMPARING TO A SIMILAR DISTRIBUTION OF HUMAN PREFERENCE

We evaluate Eval-O-Matic with Chatbot Arena’s English Hard Prompt leaderboard as ground truth.
Since this version of Chatbot Arena leaderboard is based on votes from a more challenging subset of
the overall Chatbot Arena battles, we believe it is a more in-distribution comparison for Eval-O-Matic,
which also consist of challenging user queries. We observe Eval-O-Matic achieves an overall higher
alignment (98.6% Confidence Agreement and 96.7% Spearman Correlation) to human preferences.
Results are presented in Appendix Table 9.

6.4 ROBUSTNESS AND GENERALIZABILITY

To evaluate the robustness and generalizability of the Bench-O-Matic pipeline, we applied it on
150,000 WildChat (Zhao et al., 2024) dataset and identified 185 high quality clusters with 4,500+
prompts. We then randomly sample 2 prompts from each of the highest-quality 125 clusters to create a
new benchmark, Wild-O-Matic. We compare Wild-O-Matic and a baseline of 250 prompts randomly
selected from the WildChat dataset in table 2. Results indicates Wild-O-Matic has significantly higher
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No Modification

Model Score

Llama-3.1-70B-Instruct-detail 53.5
Llama-3.1-70B-Instruct-md 44.9
Llama-3.1-70B-Instruct 44.5
Llama-3.1-70B-Instruct-chatty 44.3
Llama-3.1-70B-Instruct-no-md 37.5

Style Control

Model Score

Llama-3.1-70B-Instruct 41.7
Llama-3.1-70B-Instruct-no-md 39.9
Llama-3.1-70B-Instruct-detail 39.8
Llama-3.1-70B-Instruct-chatty 39.5
Llama-3.1-70B-Instruct-md 34.9

Table 5: Comparison Between Eval-O-Matic with no modification versus applying style control. Left:
Eval-O-Matic with no modification to GPT-4-Turbo judge. Right: style controlled GPT-4-Turbo
judge. Asking Llama-3.1-70B-Instruct (Dubey et al., 2024) to response with more detail shows
significant performance gain when no style control is applied. However, it is no longer favored with
style control. Full table with additional models and system instructions can be found in Appendix
Table 6.

separability and agreement to human preference ranking than a random baseline, demonstrating
Bench-O-Matic’s robustness as a general data curation pipeline for various crowdsourced datasets.

Additionally, we compared Eval-O-Matic against two separate sets of 500 randomly selected prompts
from the Chatbot Arena dataset, prior to applying the pipeline extraction. We observe Eval-O-Matic
significantly outperforms both random baselines. Results are shown in Appendix Table 7.

To verify whether Bench-O-Matic is not limited to GPT-4-Turbo as annotator for prompt qualities,
we employed Llama-3-70B-Instruct as an alternative annotator for prompt curation. We observe the
benchmark produced by Llama-3-70b-instruct as the prompt annotator has similar improvement in
quality as Eval-O-Matic from random baselines. Results are shown in Appendix Table 8.

6.5 MITIGATING STYLISTIC BIASES IN LLM-BASED EVALUATION

LLM-as-a-Judge based evaluation is known to suffer from various biases, such as favoring longer
responses (Zheng et al., 2023b; Dubois et al., 2024). AlpacaEval 2.0 Length Control (Dubois et al.,
2024) proposes an regression based approach to control length bias in LLM-based evaluation. Chatbot
Arena also released a style controlled leaderboard (Li et al., 2024), which attempts to decouple
substance from stylistic preferences, including answer length and markdown usage. Following their
approaches, we modify how Eval-O-Matic computes the model scores by accounting for the stylistic
differences between two answers as additional features to the existing Bradley-Terry model.

We propose controlling for a similar set of stylistic elements used to control human preference on
Chatbot Arena for LLM-based evaluation: answer token length, density of markdown headers,
markdown bold elements, and markdown lists. Technical details on how to extend the Bradley-
Terry model for controlling any given style can be found in Appendix A.2.

We apply style control to Chatbot Arena battles and compare the resulting model preference ranking
to style controlled Eval-O-Matic, aiming to answer the question: How well aligned is Eval-O-Matic
to human preference when both human preference and LLM judgment are decoupled from stylistic
differences? In Table 3, we show that style controlled Eval-O-Matic achieves 98.6% agreement and
correlation to style controlled human preference ranking, suggesting Eval-O-Matic assessment of
model strength separated from style is still highly aligned to humans.

Additionally, we conducted an experiment trying to increase model score on Eval-O-Matic by
instructing GPT-3.5-Turbo, Llama-3.1-70b-instruct, and Gemini-1.5-Flash to increase the verbosity
and usage of markdown elements in their response and present our results in Table 5. While increasing
“detailedness” does increase model performances on Eval-O-Matic when no modifications is applied
to GPT-4-Turbo as judge, applying style control is effective at neutralizing this advantage. Our
results shows that style controlled model scores cannot be gamed via manipulating response length or
markdown usage on Eval-O-Matic. We also observe a reduction in correlation between model score
and answer length on Eval-O-Matic. Full results can be found in Appendix Table 12.

9
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6.6 MITIGATING SELF-BIASES IN LLM-BASED EVALUATION

LLM-as-a-Judge evaluations are also known to exhibit self-bias. While such biases should manifest
as lower alignment with human preferences in our proposed metrics, we conduct a focused analysis
to further understand and address this issue. Since Eval-O-Matic uses GPT-4-Turbo as the default
judge, we evaluate whether it favors OpenAI models over Anthropic models. Results in Appendix
Table 10 indicate that GPT models receive slightly higher average rankings than human preference,
while Claude models rank lower.

To reduce this bias, we propose Ensemble-as-Judges, which aggregates judgments from multiple
models. The ensemble judges (GPT-4-Turbo and Gemini-1.5-Pro) achieves overall higher separability
and alignment with human rankings, as shown in Table 4. Additionally, we also observe that
combining GPT-4-Turbo and Gemini-1.5-Pro reduces self-biases. Results can be found in Appendix
Table 10. We believe further research into ensemble methods can refine these results and leave this
for future exploration.

7 LIMITATIONS

While our data sources are drawn from diverse distributions, biases may still exist in our pipeline.
For instance, the seven defined qualities may not fully capture the range of possible attributes,
potentially skewing towards prompts in technical domains. Furthermore, Eval-O-Matic currently
lacks evaluation for multi-turn and non-English interactions due to the limited availability of multi-
turn data in crowdsourced datasets and the primary language proficiency of the authors.

To address these limitations, future work will focus on expanding Bench-O-Matic to incorporate
multi-turn and multilingual data curation. We also aim to refine our prompt quality definitions,
creating a more systematic approach for generating benchmarks that reflect a broader, more inclusive
range of scenarios while maintaining high separability and alignment with human judgment. We also
plan to explore more advanced version of Ensemble-as-Judges to further enhance our LLM-based
evaluation approach.

8 CONCLUSIONS

We introduced Bench-O-Matic, a data curation pipeline that transforms crowdsourced data into high-
quality benchmarks by seven key qualities. This pipeline enables building challenging and evolving
benchmarks which is crucial for evaluating today’s advanced language models. Our evaluation
metrics, including separability and agreement with confidence, provide a comprehensive assessment
of benchmarks. We show the resulting benchmark, Eval-O-Matic, significantly improves separability
and alignment with human preferences over existing benchmarks, achieving 98.6% agreement with
Chatbot Arena rankings at only $20 per evaluation. We expect Eval-O-Matic to be useful for LLM
developers to evaluate their models with confidence and Bench-O-Matic to be a valuable tool for
developers seeking to extract high-quality benchmark from vast amounts of data with minimal human
effort.

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we have taken the following steps. We have provided a
detailed description of the Bench-O-Matic pipeline in subsection 4.2, with the prompt instruction
to the LLM annotator for prompt quality assessment in the Appendix C. The costs associated with
running our pipeline and evaluations are provided in subsection 4.3. Our evaluation methodology
using LLM-as-a-Judge is explained in section 5, with prompt templates provided in the Appendix C.
We have included experiment setups for our ablation studies in section 6. For the appropriate reported
metrics and results, we have included confidence intervals obtained through bootstrapping. We will
de-anonymize both the Bench-O-Matic pipeline code and the Eval-O-Matic benchmark dataset after
decision date. Altogether, researchers should be able to reproduce our results and build upon our
work.
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A APPENDIX

A.1 PAIR RANK BRIER SCORE

Bootstrapping is a well-established statistical technique for estimating the distribution of an estimator
by sampling with replacement from the original dataset. This approach has become increasingly
popular for constructing confidence intervals in LLM leaderboards, such as Chatbot Arena (Chiang
et al., 2024). In our proposed evaluation metrics in section 3, such as Separability and Agreement
with Confidence Interval, a reliable confidence interval estimation is essential for assessing the
performance stability of different models on a given benchmark. Moreover, for metrics like the
Pairwise Rank Brier Score, estimating the probability distribution of rank-based model performance
is critical. Therefore, applying bootstrapping to the given benchmark provides a straightforward and
robust solution for these tasks.

Consider a benchmark consisting of a dataset D = {x1, x2, . . . , x|D|} and a scoring function f that
measures the performance of n models π1, π2, . . . , πn on this dataset. Let D∗ denote a bootstrap
sample of D, and let f(πi, D

∗) denote the bootstrapped performance score for model πi using the
dataset D∗. For simplicity, we use f∗(πi) to denote f(πi, D

∗).

To use Brier Score (Brier, 1950) for measuring the accuracy of the given benchmark’s probabilistic
predictions on model performances, we need to compute the forecasted probability that model πi

performs lower than πj on the ground truth measurement for every model pair.

P̂ (f∗(πi) < f∗(πj)) (1)

The bootstrapped scores f∗(πi) and f∗(πj) follow an empirical distribution that can be approxi-
mated using the Central Limit Theorem (CLT). In most cases, the distribution of f∗(πi) converges
asymptotically to a normal distribution, which we also observed in our experiments. Formally,
f∗(πi) ∼ N (µi, σ

2
i ), where µi and σ2

i are the bootstrapped mean and variance, respectively. When
this normality assumption does not hold, P̂ (f∗(πi) < f∗(πj)) can still be estimated from the
empirical distribution of the bootstrapped scores.

Let Oπi≺πj
denote the ground truth outcome for the model pair (πi, πj), where:

Oπi≺πj = 1(πi performs worse than πj on the ground truth evaluation metric) (2)

The Brier Score Loss is then calculated over the benchmark’s prediction for each model pair with
respect to the ground truth outcome O

1

N

∑
{i,j}

(P̂ (f∗(πi) < f∗(πj))−Oπi≺πj
)2 (3)

where N is the number of model pairs.
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A.2 STYLE CONTROL IN MODEL EVALUATION

To mitigate the potential confounding effects of response style on model evaluation, we implemented
an enhanced Bradley-Terry regression framework. This method, inspired by recent LLM evaluation
technique (Dubois et al., 2024), controls the influence of answer length on judges’ preferences.
Recently, Chatbot Arena implemented style control (Li et al., 2024) to decouple substance from style
in their leaderboard. This approach incorporates style-related features, such as answer length, into
the regression model, enabling a distinction between a model’s intrinsic capabilities and the influence
of these potential confounders like answer style. In essence, style control answers the question: What
would the preference be if everyone has the same style? This distinction is crucial for a more accurate
assessment of model performance without biases.

We extend the standard Bradley-Terry model by introducing additional style features. Let n denote
the number of pairwise comparison battles and M the number of models. For each battle i ∈ [n], we
define:

• Xi ∈ RM : Xi,m = 1 if model m is on the presented first to the judge, Xi,m = −1 if
presented last, and 0 otherwise.

• Yi ∈ 0, 1: The outcome, where 1 indicates the first model won.

• Zi ∈ RS : A vector of S style features for the comparison.

The traditional Bradley-Terry model estimates model strengths β ∈ RM through logistic regression:

β̂ = arg min
β∈RM

1

n

n∑
i=1

BCELoss(sigmoid(X⊤
i β), Yi) (4)

Our enhanced model incorporates style coefficients γ ∈ RS :

β̂, γ̂ = arg min
β∈RM ,γ∈RS

1

n

n∑
i=1

BCELoss(sigmoid(X⊤
i β + Z⊤

i γ), Yi) (5)

where BCELoss represents the binary cross-entropy loss. We selected the following style features:

• Answer token length

• Density of markdown headers, markdown bold elements, and markdown lists.

For each feature, we compute a normalized difference

normalize
(

featureA − featureB
featureA + featureB

)
(6)

This normalization technique accounts for the relative difference in features between responses. For
instance, the token length difference is normalized as

normalize
(

lengthA − lengthB
lengthA + lengthB

)
(7)

We chose this approach over alternatives like the hyperbolic tangent normalization used in AlpacaEval

tanh

(
lengthA − lengthB

σ(lengthA − lengthB)

)
(8)

Our method better captures proportional differences, especially in cases where absolute differences
may be misleading (e.g., 500 vs. 520 tokens compared to 20 vs. 40 tokens).

The resulting β̂ coefficients represent model strengths controlled for style effects, while γ̂ quantifies
the impact of each style feature on human preferences. To facilitate meaningful comparisons, we
normalize the style coefficients. Our analysis revealed that response length was the most influential
style factor, with other markdown-related features having secondary effects.
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Eval-O-Matic (No Modifications)
Model Score Token # Header (%) Bold (%) List (%)

gemini-1.5-flash-2-detail 80.0 1035 0.010 1.503 1.288
gemini-1.5-flash-2 78.6 729 0.020 1.353 1.122
gemini-1.5-flash-2-md 74.5 793 0.088 1.548 1.271
gemini-1.5-flash-2-chatty 68.2 808 0.005 1.236 0.986
gemini-1.5-flash-2-no-md 61.7 574 0.003 0.924 0.979
llama-3.1-70b-detail 53.5 834 0.025 0.961 1.470
llama-3.1-70b-md 44.9 601 0.257 1.776 1.695
llama-3.1-70b 44.5 606 0.084 0.728 1.380
llama-3.1-70b-chatty 44.3 623 0.011 0.679 1.173
llama-3.1-70b-no-md 37.5 522 0.010 0.123 0.986
gpt-3.5-turbo-0125-detail 25.6 416 0.008 0.447 1.540
gpt-3.5-turbo-0125 23.1 323 0.012 0.284 1.272
gpt-3.5-turbo-0125-md 22.0 328 0.372 0.877 1.601
gpt-3.5-turbo-0125-no-md 18.0 269 0.012 0.182 1.149
gpt-3.5-turbo-0125-chatty 17.1 286 0.006 0.296 1.012

Eval-O-Matic (Style Control)
Model Score Token # Header (%) Bold (%) List (%)

gemini-1.5-flash-2 75.5 729 0.020 1.353 1.122
gemini-1.5-flash-2-detail 71.2 1035 0.010 1.503 1.288
gemini-1.5-flash-2-md 69.3 793 0.088 1.548 1.271
gemini-1.5-flash-2-no-md 62.5 574 0.003 0.924 0.979
gemini-1.5-flash-2-chatty 61.5 808 0.005 1.236 0.986
llama-3.1-70b 41.7 606 0.084 0.728 1.380
llama-3.1-70b-no-md 39.9 522 0.010 0.123 0.986
llama-3.1-70b-detail 39.8 834 0.025 0.961 1.470
llama-3.1-70b-chatty 39.5 623 0.011 0.679 1.173
llama-3.1-70b-md 34.9 601 0.257 1.776 1.695
gpt-3.5-turbo-0125 33.2 323 0.012 0.284 1.272
gpt-3.5-turbo-0125-no-md 30.4 269 0.012 0.182 1.149
gpt-3.5-turbo-0125-detail 28.9 416 0.008 0.447 1.540
gpt-3.5-turbo-0125-md 27.9 328 0.372 0.877 1.601
gpt-3.5-turbo-0125-chatty 27.3 286 0.006 0.296 1.012

Table 6: Comparison Between Eval-O-Matic with no modification versus applying style control.
Prompt for detailed:“You are a helpful assistant who thoroughly explains things with as much detail
as possible.”, prompt for chatty: “You are a helpful assistant who is chatty.”, prompt for md: “You
are a helpful assistant who uses as much markdown as possible.”, and prompt for no-md: “You are a
helpful assistant who never uses markdown.” Token represents average number of tokens, header is
average markdown header density per token in percentage, bold is average bold markdown element
density per token in percentage, and list is average list markdown element per token in percentage.

Model Eval-O-Matic Random Sample 1 Random Sample 2

Confiderence Agreement 84.2% 57.5% 66.1%
Separability 80.5% 74.7% 76.3%
Spearman Correlation 94.7% 64.7% 72.5%
Brier Score 0.069 0.215 0.162

Table 7: We compare Eval-O-Matic with two sets of 500 prompts randomly sampled from 75K
Chatbot Arena user queries. We evaluate the set of top-20 models and compare various statistics
across. Each prompt is judged only once by positioning the baseline answer first.
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Llama-O-Matic Random 1 Random 2 Eval-O-Matic-500

Confidence Agreement 86.0% 55.8% 58.1% 88.4%
Separability 84.4% 68.9% 64.4% 88.9%
Spearman Correlation 96.4% 73.3% 70.9% 96.4%

Table 8: Comparing Llama-O-Matic against two random baselines on 10 of the 20 models outlined
in the paper. We observe similar improvement in benchmark quality, suggesting Bench-O-Matic is
robust across different choices of LLM annotators.

Eval-O-Matic

Confiderence Agreement 98.6%
Spearman Correlation 96.7%
Kendall Tau Correlation 87.4%
Brier Score 0.055

Table 9: We compare Eval-O-Matic (gpt-4-1106-preview as judge) to Chatbot Arena Category Hard
Prompt (English) on the same set of top-20 models. By comparing Eval-O-Matic to a challenging
distribution of queries from Chatbot Arena, we obtain even higher alignment to human preferences.

OpenAI GPT Series

GPT-4-turbo Ensemble

gpt-4-turbo 0 0
gpt-4-0314 1 1
gpt-4-0613 0 -2
gpt-3.5-turbo-0613 1 -1
gpt-3.5-turbo-0314 1 0

column average 0.6 -0.4

Anthropic Claude Series

GPT-4-turbo Ensemble

claude-3-opus 0 0
claude-3-sonnet -1 -1
claude-2.0 -2 0
claude-2.1 -1 3

column average -0.8 0.4

Table 10: Comparing bias in GPT-4-Turbo as a Judge and Ensemble-as-Judge. We calculate the
ranking shift by comparing the human preference ranking (by Chatbot Arena Category Hard Leader-
board) and LLM-judge ranking on OpenAI GPT Series and Anthropic Claude Series. Results show
both methods have relatively small shifts, but Ensemble-as-Judge produces a more balanced rank
difference than GPT-4-Turbo Judge, suggesting a smaller self-bias than single LLM as a Judge.

Quality Score 1+ 2+ 3+ 4+ 5+ 6+ 7+

% of queries 95.4 83.5 61.9 48.7 33.8 17.9 0.2

Qualities Specificity Domain-knowledge Complexity Problem-solving Creativity Tech. Accuracy Real-world

% of queries 57.3 63.4 35.0 34.9 26.1 39.0 87.9

Table 11: First row is the percentage of queries with quality scores of the column or more in 75K
Chatbot Arena data assigned by GPT-3.5-Turbo. Second row is the percentage of queries in 75K
Chatbot Arena labeled by GPT-3.5-Turbo with each of the 7 qualities.
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Avg. Token Length

Pearson Spearman

No Modification 0.364 0.125
Style Control 0.193 -0.025

Naive Verbose Policy

Pearson Spearman

No Modification 0.397 0.165
Style Control 0.231 0.028

Table 12: Left: Comparing correlation between model score and average token length between
GPT-4-Turbo as Judge with no modification versus style controlled. Right: Comparing correlation to
model score produced via a “verbose policy”, a judge which always picks the longer response. In
both cases, style control effectively reduces the correlation to verbosity.
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Model Name Win Rate CI Interval Average Token #
Claude-3-5-Sonnet-20240620 79.3 (-2.1, 2.0) 567
GPT-4O-2024-05-13 79.2 (-1.9, 1.7) 696
GPT-4-0125-Preview 78.0 (-2.1, 2.4) 619
GPT-4O-2024-08-06 77.9 (-2.0, 2.1) 594
Athene-70B 77.6 (-2.7, 2.2) 684
GPT-4O-Mini 74.9 (-2.5, 1.9) 668
Gemini-1.5-Pro-API-Preview 72.0 (-2.1, 2.5) 676
Mistral-Large-2407 70.4 (-1.6, 2.1) 623
LLaMA-3.1-405B-Instruct-FP8 69.3 (-2.4, 2.2) 658
GLM-4-0520 63.8 (-2.9, 2.8) 636
Yi-Large 63.7 (-2.6, 2.4) 626
DeepSeek-Coder-V2 62.3 (-2.1, 1.8) 578
Claude-3-Opus-20240229 60.4 (-2.5, 2.5) 541
Gemma-2-27B-IT 57.5 (-2.1, 2.4) 577
LLaMA-3.1-70B-Instruct 55.7 (-2.9, 2.7) 628
GLM-4-0116 55.7 (-2.4, 2.3) 622
GPT-4-0314 50.0 (0.0, 0.0) 423
Gemini-1.5-Flash-API-Preview 49.6 (-2.2, 2.8) 642
Qwen2-72B-Instruct 46.9 (-2.5, 2.7) 515
Claude-3-Sonnet-20240229 46.8 (-2.3, 2.7) 552
LLaMA-3-70B-Instruct 46.6 (-2.3, 2.6) 591
Claude-3-Haiku-20240307 41.5 (-2.5, 2.5) 505
GPT-4-0613 37.9 (-2.8, 2.4) 354
Mistral-Large-2402 37.7 (-2.1, 2.6) 400
Mixtral-8x22B-Instruct-V0.1 36.4 (-2.4, 2.6) 430
Qwen1.5-72B-Chat 36.1 (-2.0, 2.7) 474
Phi-3-Medium-4K-Instruct 33.4 (-2.6, 2.1) 517
Mistral-Medium 31.9 (-1.9, 2.2) 485
InternLM2.5-20B-Chat 31.2 (-2.4, 2.8) 576
Phi-3-Small-8K-Instruct 29.8 (-1.8, 1.9) 568
Mistral-Next 27.4 (-2.4, 2.4) 297
GPT-3.5-Turbo-0613 24.8 (-1.9, 2.3) 401
DBRX-Instruct-Preview 24.6 (-2.0, 2.6) 415
InternLM2-20B-Chat 24.4 (-2.0, 2.2) 667
Mixtral-8x7B-Instruct-V0.1 23.4 (-2.0, 1.9) 457
GPT-3.5-Turbo-0125 23.3 (-2.2, 1.9) 329
Yi-34B-Chat 23.1 (-1.6, 1.8) 611
Starling-LM-7B-Beta 23.0 (-1.8, 1.8) 530
LLaMA-3.1-8B-Instruct 21.3 (-1.9, 2.2) 861
Snorkel-Mistral-PairRM-DPO 20.7 (-1.8, 2.2) 564
LLaMA-3-8B-Instruct 20.6 (-2.0, 1.9) 585
GPT-3.5-Turbo-1106 18.9 (-1.8, 1.6) 285
Gemini-1.0-Pro 17.8 (-1.2, 2.2) 322
Command-R 17.0 (-1.7, 1.8) 432
Phi-3-Mini-128K-Instruct 15.4 (-1.4, 1.4) 609
Tulu-2-DPO-70B 15.0 (-1.6, 1.3) 550
Starling-LM-7B-Alpha 12.8 (-1.6, 1.4) 483
Gemma-1.1-7B-IT 12.1 (-1.3, 1.3) 341
LLaMA-2-70B-Chat-HF 11.6 (-1.5, 1.2) 595
Vicuna-33B-V1.3 8.6 (-1.1, 1.1) 451
Gemma-7B-IT 7.5 (-1.2, 1.3) 378
LLaMA-2-7B-Chat-HF 4.6 (-0.8, 0.8) 561
Gemma-1.1-2B-IT 3.4 (-0.6, 0.8) 316
Gemma-2B-IT 3.0 (-0.6, 0.6) 369

Table 13: Eval-O-Matic Leaderboard (baseline: GPT-4-0314) with some additional models (Frick
et al., 2024; DeepSeek-AI et al., 2024; GLM et al., 2024; Yang et al., 2024; Cai et al., 2024; Abdin
et al., 2024; Team et al., 2024).
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0 1 2 3 4 5
Global Restaurant Recommendations

Weekend Family Fun Ideas
Fox Welfare and Encounters

Flirty Texting Strategies
Design Styles & Influences

Professional Email Communication
Diverse Gift-Giving Ideas
Prohibited Erotic Fiction

Baywatch Athleticism & Strength
Emoji Usage and Interpretation

Diverse Extracurricular Engagement
Relationship Challenges and Advice

Aquatic Life and Cartoons
Inventive Brand Naming Strategies
Spelling Variations of SEQUENCE

Video Games & Related Films
Dinosaur Discovery and Extinction

Christmas Humor and Jokes
Carpet & Cleaning Services

American English Vocabulary
Scheduling Availability Coordination

Email Funding Update Requests
Investor Subscription Agreements

Effective Weight Loss Strategies
Finance and Banking Operations
Biblical Studies & Interpretations

Random Number Generation
Color Strategy and Selection

LLM Prompt Engineering
Atomic and Electronic Structure

Diagnostic Test Accuracy Metrics
LaTeX Figure and Tabular Formatting

Vehicle Damage Inspection
Advanced Mathematical Concepts

Web Development Essentials
Swift Retry Management

Advanced Random Number Techniques
Entropy in Various Contexts

Calculus Essentials & Applications
Solving Algebraic Equations

Golang HTTP Handlers & Errors
Chemical Equilibria and Reactions

Linked List Operations
Python Data Structures

Computability and Automata Theory
Prime Numbers and Proofs

PyTorch Autoencoder Implementation
Python Game Development
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Figure 6: A more complete selection of mean scores of various topic clusters in descending order.
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B EXAMPLES

Cluster 1: Greetings and Well-Being Inquiry (Mean Score: 2.7)

Yo, what up my brother (Qualities: None)

Cluster 2: US Presidents Query (Mean Score: 3.2)

Who was the president of the US in 1975 (Qualities: Specificity,
Domain-Knowledge, Technical Accuracy, Real-World)

Cluster 3: Physics Problem Solving (Mean Score: 5.0)

A 50,000 kg airplane initially flying at a speed of 60.0 m/s
accelerates at 5.0 m/s2 for 600 meters. What is its velocity after
this acceleration? What is the net force that caused this acceleration?
(Qualities: Specificity, Domain-Knowledge, Complexity, Problem-
Solving, Technical Accuracy, Real-World)

Cluster 4: OpenCV Image Processing Technique (Mean Score: 5.5)

you are given a task to detect number of faces in each frame of any
video using pytorch and display the number in the final edited video.
(Qualities: All)
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C PROMPTS

Prompt Quality Systems Instruction:

Your task is to evaluate how well the following input prompts can assess the capabilities of advanced AI
assistants. For the input prompt, please analyze it based on the following 7 criteria. For each criteria, make
sure to explain before determine whether the input satisfy it.

1. Specificity: Does the prompt ask for a specific, well-defined output without leaving any ambiguity? This
allows the AI to demonstrate its ability to follow instructions and generate a precise, targeted response.
2. Domain Knowledge: Does the prompt test the AI’s knowledge and understanding in a specific domain or
set of domains? The prompt must demand the AI to have a strong prior knowledge or mastery of domain-
specific concepts, theories, or principles.
3. Complexity: Does the prompt have multiple components, variables, or levels of depth and nuance? This
assesses the AI’s capability to handle complex, multi-faceted problems beyond simple queries.
4. Problem-Solving: Does the prompt require active problem-solving: analyzing and clearly defining the
problem and systematically devising and implementing a solution? Note active problem-solving is not
simply reciting facts or following a fixed set of instructions.
5. Creativity: Does the prompt require a creative approach or solution? This tests the AI’s ability to
generate novel ideas tailored to the specific needs of the request or problem at hand.
6. Technical Accuracy: Does the prompt require an answer with a high degree of technical accuracy,
correctness and precision? This assesses the reliability and truthfulness of the AI’s outputs.
7. Real-World Application: Does the prompt relate to real-world applications? This tests the AI’s ability
to provide practical and actionable information that could be implemented in real-life scenarios.

After analyzing the input prompt based on these criteria, you must list the criteria numbers that the prompt
satisfies in the format of a Python array. For example, "Criteria Satisfied: [1, 2, 4, 6, 7]".

LLM-Judge System Instruction

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to
the user prompt displayed below. You will be given assistant A’s answer and assistant B’s answer. Your
job is to evaluate which assistant’s answer is better.

Begin your evaluation by generating your own answer to the prompt. You must provide your answers before
judging any answers.

When evaluating the assistants’ answers, compare both assistants’ answers with your answer. You must
identify and correct any mistakes or inaccurate information.

Then consider if the assistant’s answers are helpful, relevant, and concise. Helpful means the answer
correctly responds to the prompt or follows the instructions. Note when user prompt has any ambiguity or
more than one interpretation, it is more helpful and appropriate to ask for clarifications or more information
from the user than providing an answer based on assumptions. Relevant means all parts of the response
closely connect or are appropriate to what is being asked. Concise means the response is clear and not
verbose or excessive.

Then consider the creativity and novelty of the assistant’s answers when needed. Finally, identify any
missing important information in the assistants’ answers that would be beneficial to include when responding
to the user prompt.

After providing your explanation, you must output only one of the following choices as your final verdict
with a label:

1. Assistant A is significantly better: [[A>>B]]

2. Assistant A is slightly better: [[A>B]]

3. Tie, relatively the same: [[A=B]]

4. Assistant B is slightly better: [[B>A]]

5. Assistant B is significantly better: [[B>>A]

Example output: "My final verdict is tie: [[A=B]]".
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D ADDITIONAL EXAMPLES

User: Use ABC notation to write a melody in the style of a folk tune.

GPT-4:

X:1 T:Untitled Folk Tune M:4/4 L:1/8
K:G|:G2A2|B2A2|G2E2|D4|E2F2|G2F2|E2C2|B,4|A2B2|c2B2|A2F2|E4|D2E2|F2E2
|D2B,2|C4:|

GPT-3.5-Turbo: Sure! Here’s a simple melody in the style of a folk tune written in ABC notation:

X:1 T:Folk Tune M:4/4 L:1/4 K:C
CDE|FGA|BAG|FED| CDE|FGA|BAG|c2z| CDE|FGA|BAG|FED| CDE|FGA|BAG|c2z||

This melody is in the key of C major and consists of four measures. Feel free to modify it or add more
sections to create your own folk tune!

Judgement: My own answer to the prompt would be:

X:1 T:My Folk Melody M:3/4 L:1/8
K:D A2|:d2f2a2|b2a2f2|e2d2B2|A4F2| G2A2B2|A2G2F2|E2D2F2|1D6:|2D4A2|
|:d2f2a2|b2a2f2|e2c2A2|B4A2| G2A2B2|A2G2F2|E2D2F2|1D6:|2D4||

This melody is in the key of D major, has a 3/4 time signature, and is structured in a typical AAB form
common in folk music. It uses a range of an octave, which is typical for folk tunes that need to be easily
singable.
Now, let’s evaluate the responses from Assistant A and Assistant B.
Assistant A’s Answer: Assistant A provides a melody in ABC notation that is coherent and follows the
structure of a folk tune. The melody is in 4/4 time, which is common for folk music, and it is in the key of
G major. The melody has a two-part form (indicated by the repeat signs |: and :|), which is typical in folk
music. The range of the melody is appropriate for a folk tune, and the rhythm is simple and repetitive, which
is characteristic of the genre.
Assistant B’s Answer: Assistant B also provides a melody in ABC notation that is coherent and could be
considered in the style of a folk tune. The melody is in 4/4 time and the key of C major. The melody consists
of four measures repeated twice, which is a simple structure that could be found in folk music. However,
Assistant B’s melody is less traditional in its form compared to Assistant A’s, as it does not have a distinct A
and B section, which is more common in folk tunes. Additionally, the use of “z” for a half-measure rest is
less typical in folk tunes, which usually have a more continuous melodic line.
Comparison: Both assistants provided melodies that could be considered folk tunes. Assistant A’s melody
has a more traditional structure with a clear A and B section, while Assistant B’s melody is simpler and does
not follow the traditional AAB or AB form. Assistant A’s melody is also more detailed in terms of the ABC
notation, providing a full eight-measure section that is repeated, which gives a more complete sense of the
tune. Assistant B’s melody is correct in its notation but is more basic and less representative of a traditional
folk tune structure.
In terms of helpfulness, relevance, and conciseness, both assistants provided relevant and concise answers.
However, Assistant A’s answer is slightly more helpful due to the more traditional structure of the provided
melody.
Creativity and novelty are not particularly applicable in this context, as the task is to create a melody in a
traditional style rather than to innovate. Both assistants showed an understanding of the folk tune style, but
Assistant A’s answer aligns more closely with traditional folk structures.
There are no significant mistakes or inaccurate information in either assistant’s answers. However, Assistant
B’s use of the rest “z” in a folk tune is less conventional.
My final verdict is: Assistant A is slightly better: [[A>B]].
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