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Abstract

We consider minimizing a smooth function subject to a summation constraint1

over its variables. By exploiting a connection between the greedy 2-coordinate2

update for this problem and equality-constrained steepest descent in the 1-norm, we3

give a convergence rate for greedy selection under a proximal Polyak-Łojasiewicz4

assumption that is faster than random selection and independent of the problem5

dimension n. We then consider minimizing with both a summation constraint and6

bound constraints, as arises in the support vector machine dual problem. Existing7

greedy rules for this setting either guarantee trivial progress only or require O(n2)8

time to compute. We show that bound- and summation-constrained steepest descent9

in the L1-norm guarantees more progress per iteration than previous rules and can10

be computed in only O(n log n) time.11

1 Introduction12

Coordinate descent (CD) is an iterative optimization algorithm that performs a gradient descent step13

on a single variable at each iteration. CD methods are appealing because they have a convergence14

rate similar to gradient descent, but for some common objective functions the iterations have a much15

lower cost. Thus, there is substantial interest in using CD for training machine learning models.16

Unconstrained coordinate descent: Nesterov [2012] considered CD with random choices of the17

coordinate to update, and proved non-asymptotic linear convergence rates for strongly-convex func-18

tions with Lipschitz-continuous gradients. It was later shown that these linear convergence rates are19

achieved under a generalization of strong convexity called the Polyak-Łojsiewicz condition [Karimi20

et al., 2016]. Moreover, greedy selection of the coordinate to update also leads to faster rates than21

random selection [Nutini et al., 2015]. These faster rates do not depend directly on the dimensionality22

of the problem due to an equivalence between the greedy coordinate update and steepest descent on23

all coordinates in the 1-norm. For a discussion of many other problems where we can implement24

greedy selection rules at similar cost to random rules, see Nutini et al. [2022, Sections 2.4-2.5].25

Bound-constrained coordinate descent: CD is commonly used for optimization with lower and/or26

upper bounds on each variable. Nesterov [2012] showed that the unconstrained rates of randomized27

CD can be achieved under these separable constraints using a projected-gradient update of the28

coordinate. Richtárik and Takáč [2014] generalize this result to include a non-smooth but separable29

term in the objective function via a proximal-gradient update; this justifies using CD in various30

constrained and non-smooth settings, including least squares regularized by the 1-norm and support31

vector machines with regularized bias. Similar to the unconstrained case, Karimireddy et al. [2019]32

show that several forms of greedy coordinate selection lead to faster convergence rates than random33

selection for problems with bound constraints or separable non-smooth terms.34
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Equality-constrained coordinate descent: many problems in machine learning require us to satisfy35

an equality constraint. The most common example is that discrete probabilities must sum to one.36

Another common example is SVMs with an unregularized bias term. The (non-separable) equality37

constraint cannot be maintained by single-coordinate updates, but it can be maintained if we update38

two variables at each iteration. Necoara et al. [2011] analyze random selection of the two coordinates39

to update, while Fang et al. [2018] discuss randomized selection with tighter rates. The LIBSVM40

package [Chang and Lin, 2011] uses a greedy 2-coordinate update for fitting SVMs which has the41

same cost as random selection. But despite LIBSVM being perhaps the most widely-used CD method42

of all time, current analyses of greedy 2-coordinate updates either result in sublinear convergence43

rates or do not lead to faster rates than random selection [Tseng and Yun, 2009, Beck, 2014].44

Our contributions: we first give a new analysis for the greedy 2-coordinate update for optimizing45

a smooth function with an equality constraint. The analysis is based on an equivalence between46

the greedy update and equality-constrained steepest descent in the 1-norm. This leads to a simple47

dimension-independent analysis of greedy selection showing that it can converge substantially faster48

than random selection. Next, we consider greedy rules when we have an equality constraint and49

bound constraints. We argue that the rules used by LIBSVM cannot guarantee non-trivial progress50

on each step. We analyze a classic greedy rule based on maximizing progress, but this analysis is51

dimension-dependent and the cost of implementing this rule is O(n2) if we have both lower and upper52

bounds. Finally, we show that steepest descent in the 1-norm with equalities and bounds guarantees53

a fast dimension-independent rate and can be implemented in O(n log n). This rule may require54

updating more than 2 variables, in which case the additional variables can only be moved to their55

bounds, but this can only happen for a finite number of early iterations.56

2 Equality-Constrained Greedy 2-Coordinate Updates57

We first consider the problem of minimizing a twice-differentiable function f subject to a simple58

linear equality constraint,59

min
x2Rn

f(x), subject to
nX

i=1

xi = �, (1)

where n is the number of variables and � is a constant. On iteration k the 2-coordinate optimization60

method chooses a coordinate ik and a coordinate jk and updates these two coordinates using61

xk+1
ik

= xk

ik
+ �k, xk+1

jk
= xk

jk
� �k, (2)

for a scalar �k (the other coordinates are unchanged). We can write this update for all coordinates as62

xk+1 = xk + dk, where dk
ik

= �k, dk
jk

= ��k, and dk
m

= 0 for m 62 {ik, jj}. (3)

If the iterate xk satisfies the constraint then this update maintains the constraint. In the coordinate63

gradient descent variant of this update we choose �k = �↵
k

2 (rikf(x
k)�rjkf(x

k)) for a step size64

↵k. This results in an update to ik and jk of the form65

xk+1
ik

= xk

ik
� ↵k

2
(rikf(x

k)�rjkf(x
k)), xk+1

jk
= xk

jk
� ↵k

2
(rjkf(x

k)�rikf(x
k)). (4)

If f is continuous, this update is guaranteed to decrease f for sufficiently small ↵k. The greedy rule66

chooses the coordinates to update by maximizing the difference in their partial derivatives,67

ik 2 argmax
i

rif(x
k), jk 2 argmin

j

rjf(x
k). (5)

At the solution of the problem we must have partial derivatives being equal, so intuitively this greedy68

choice updates the coordinates that are furthest above/below the average partial derivative. This choice69

also minimizes the set of 2-coordinate quadratic approximations to the function (see Appendix A.1)70

argmin
i,j

⇢
min

dij |di+dj=0
f(xk) +rijf(x

k)T dij +
1

2↵k
kdijk2

�
, (6)

which is a special case of the Gauss-Southwell-q (GS-q) rule of Tseng and Yun [2009].71
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We assume that the gradient of f is Lipschitz continuous, and our analysis will depend on a quantity72

we call L2. The quantity L2 bounds the change in the 2-norm of the gradient with respect to any two73

coordinates i and j under a two-coordinate update of any x of the form (3).74

krijf(x+ d)�rijf(x)k2  L2kdk2. (7)

Note that L2 is less than or equal to the Lipschitz constant of the gradient of f .75

2.1 Connections between Greedy 2-Coordinate Updates and the 1-Norm76

Our analysis relies on several connections between the greedy update and steepest descent in the77

1-norm, which we outline in this section. First, we note that vectors dk of the form (3) satisfy78

kdkk21 = 2kdkk22, since79

kdkk21 = (|�k|+ |� �k|)2

= (�k)2 + (�k)2 + 2|�k| · |�k|
= 4(�k)2

= 2((�k)2 + (��k)2)
= 2kdkk22.

Second, if a twice-differentiable function’s gradient satisfies the 2-coordinate Lipschitz continuity80

assumption (7) with constant L2, then the full gradient is Lipschitz continuous in the 1-norm with81

constant L1 = L2/2 (see Appendix B). Finally, we note that applying the 2-coordinate update (4)82

is an instance of applying steepest descent over all coordinates in the 1-norm. In particular, in83

Appendix A.2 we show that steepest descent in the 1-norm always admits a greedy 2-coordinate84

update as a solution.85

Lemma 2.1. Let ↵ > 0. Then at least one steepest descent direction with respect to the 1-norm has86

exactly two non-zero coordinates. That is,87

min
d2Rn|dT 1=0

rf(x)T d+ 1

2↵
||d||21 = min

i,j

⇢
min

dij2R2|di+dj=0
rijf(x)

T dij +
1

2↵
||dij ||21

�
. (8)

This lemma allows us to equate the progress of greedy 2-coordinate updates to the progress made by88

a full-coordinate steepest descent step descent step in the 1-norm.89

2.2 Proximal-PL Inequality in the 1-Norm90

For lower bounding sub-optimality in terms of the 1-norm, we introduce the proximal-PL inequality91

in the 1-norm. The proximal-PL condition was introduced to allow simpler proofs for various92

constrained and non-smooth optimization problems [Karimi et al., 2016]. The proximal-PL condition93

is normally defined based on the 2-norm, but we define a variant for the summation-constrained94

problem where distances are measured in the 1-norm.95

Definition 2.2. A function f , that is L1-Lipschitz with respect to the 1-norm and has a summmation96

constraint on its parameters, satisfies the proximal-PL condition in the 1-norm if for a positive97

constants µ1 we have98
1

2
D(x, L1) � µ1(f(x)� f⇤), (9)

for all x satisfying the equality constraint. Here, f⇤ is the constrained optimal function value and99

D(x, L) = �2L min
{y |yT 1=�}


hrf(x), y � xi+ L

2
||y � x||21

�
. (10)

It follows from the equivalence between norms that summation-constrained functions satisfying the100

proximal-PL condition in the 2-norm will also satisfy the above proximal-PL condition in the 1-norm.101

In particular, if µ2 is the proximal-PL constant in the 2-norm, then we have µ2

n
 µ1  µ2 (see102

Appendix C). Functions satisfying these conditions include any strongly-convex function f as well as103

relaxations of strong convexity, such as functions of the form f = g(Ax) for a strongly-convex g and104

a matrix A [Karimi et al., 2016]. In the g(Ax) case f is not strongly-convex if A is singular, and we105

note that the SVM dual problem can be written in the form g(Ax).106

3



2.3 Convergence Rate of Greedy 2-Coordinate Updates under Proximal-PL107

We analyze the greedy 2-coordinate method under the proximal-PL condition based on the connections108

to steepest descent in the 1-norm.109

Theorem 2.3. Let f be a twice-differentiable function whose gradient is 2-coordinate-wise Lips-110

chitz (7) and restricted to the set where xT 1 = �. If this function satisfies the proximal-PL inequality111

in the 1-norm (9) for some positive µ1, then the iterations of the 2-coordinate update (4) with112

↵k = 1/L2 and the greedy rule (5) satisfy:113

f(xk)� f(x⇤) 
✓
1� 2µ1

L2

◆k

(f(x0)� f⇤). (11)

114

Proof. Starting from the descent lemma restricted to the coordinates ik and jk we have115

f(xk+1)  f(xk) +rikjkf(x
k)T dikjk +

L2

2
kdikjkk2

= f(xk) + min
i,j

8
><

>:
min

dij2R2|
di+dj=0

rijf(x
k)T dij +

L2

2
kdijk2

9
>=

>;
(GS-q rule)

= f(xk) + min
i,j

8
><

>:
min

dij2R2|
di+dj=0

rijf(x
k)T dij +

L2

4
kdijk21

9
>=

>;
(kdk21 = 2kdk2)

= f(xk) + min
i,j

8
><

>:
min

dij2R2|
di+dj=0

rijf(x
k)T dij +

L1

2
kdijk21

9
>=

>;
(L1 = L2/2)

= f(xk) + min
d|dT 1=0

⇢
rf(xk)T d+

L1

2
kdk21

�
(Lemma 2.1).

Now subtracting f⇤ from both sides and using the definition of D from the proximal-PL assumption,116

f(xk+1)� f(x⇤)  f(xk)� f(x⇤)� 1

2L1
D(xk, L1)

= f(xk)� f(x⇤)� µ1

L1
(f(xk)� f⇤)

= f(xk)� f(x⇤)� 2µ1

L2
(f(xk)� f⇤)

=

✓
1� 2µ1

L2

◆
(f(xk)� f⇤)

Applying the inequality recursively completes the proof.117

Note that the above rate also holds if we choose ↵k to maximally decrease f , and the same rate holds118

up to a constant if we use a backtracking line search to set ↵k.119

2.4 Comparison to Randomized Selection120

If we sample the two coordinates ik and jk from a uniform distribution, then it is known that the121

2-coordinate descent method satisfies [She and Schmidt, 2017]122

E[f(xk)]� f(x⇤) 
✓
1� µ2

n2L2

◆k

(f(x0)� f⇤). (12)

A similar result for a more-general problem class was shown by Necoara and Patrascu [2014]. This is123

substantially slower than the rate we show for the greedy 2-coordinate descent method. This rate124

is slower even in the extreme case where µ1 is similar to µ2/n, due to the presence of the n2 term.125
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There also exist analyses for cyclic selection in the equality-constrained case but existing rates for126

cyclic rules are slower than the random rates Wang and Lin [2014].127

In the case where f is a dense quadratic function of n variables, which includes SVMs under the most128

popular kernels, both random selection and greedy selection cost O(n) per iteration to implement. If129

we consider the time required to reach an accuracy of ✏ under random selection using the rate (12)130

we obtain O(n3 log(1/✏)) where  = L2/µ2. While for greedy selection under (11) it is between131

O(n2 log(1/✏)) if µ1 is close to µ2/n and O(n log(1/✏)) if µ1 is close to µ2. Thus, the reduction132

in total time complexity from using the greedy method is between a factor of O(n) and O(n2). This133

is a large difference which has not been reflected in previous analyses.134

There exist faster rates than (12) in the literature, but these require additional assumptions such as135

f being separable or that we know the coordinate-wise Lipschitz constants [Necoara et al., 2011,136

Necoara and Patrascu, 2014, Necoara et al., 2017, Fang et al., 2018]. However, these assumptions137

restrict the applicability of the results. Further, unlike convergence rates for random coordinate138

selection, we note that the new linear convergence rate (11) for greedy 2-coordinate method avoids139

requiring a direct dependence on the problem dimension. The only previous dimension-independent140

convergence rate for the greedy 2-coordinate method that we are aware of is due to Beck [2014,141

Theorem 5.2b]. Their work considers functions that are bounded below, which is a weaker assumption142

than the proximal-PL assumption. However, this only leads to sublinear convergence rates and only143

on a measure of the violation in the Karush-Kuhn-Tucker conditions. Beck [2014, Theorem 6.2] also144

gives convergence rates in terms of function values for the special case of convex functions, but these145

rates are sublinear and dimension dependent.146

3 Equality- and Bound-Constrained Greedy Coordinate Updates147

Equality constraints often appear alongside lower and/or upper bounds on the values of the individual148

variables. This results in problems of the form149

min
x2Rn

f(x), subject to
nX

i=1

xi = �, li  xi  ui. (13)

This framework includes our motivating problems of optimizing over the probability simplex (li = 0150

for all i since probabilites are non-negative), and optimizing SVMs with an unregularized bias (where151

we have lower and upper bounds). With bound constraints we use a dk of form (3) but where �k is152

defined so that the step respects the constraints,153

�k = �min
n↵k

2
(rikf(x

k)�rjkf(x
k)), xk

ik
� lik , ujk � xk

jk

o
, (14)

Unfortunately, analyzing the bound-constrained case is more complicated. There are several possible154

generalizations of the greedy rule for choosing the coordinates ik and jk to update, depending on155

what properties of (5) we want to preserve [see Nutini, 2018, Section 2.7]. In this section we discuss156

several possibilities, and how the choice of greedy rule affects the convergence rate and iteration cost.157

3.1 GS-s: Minimizing Directional Derivative158

Up until version 2.7, the greedy rule used in LIBSVM was the Gauss-Southwell-s (GS-s) rule. The159

GS-s rule chooses the coordinates resulting in the dk with the most-negative directional derivative.160

This is a natural generalization of the idea of steepest descent, and the first uses of the method that161

we aware of are by Keerthi et al. [2001] for SVMs and by Shevade and Keerthi [2003] for 1-norm162

regularized optimization. For problem (13) the GS-s rule chooses163

ik 2 argmax
i | xk

i >li

rif(x
k), jk 2 argmin

j | xk
j<ui

rjf(x
k). (15)

This is similar to the unbounded greedy rule (5) but excludes variables where the update would164

immediately violate a bound constraint.165

Unfortunately, the per-iteration decrease in f obtained by the GS-s rule can be arbitrarily small. In166

particular, consider the case where the variable i maximizing rif(xk) has a value of xk

i
= li + ✏167

for an arbitrarily small ✏. In this case, we would choose ik and take an arbitrarily small step of168
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�k = ✏. Steps like this that truncate �k are called “bad” steps, and the GS-s rule does not guarantee a169

non-trivial decrease in f on bad steps. If we only have bound constraints and do not have an equality170

constraint (so we can update on variable at a time), Karimireddy et al. [2019] show that at most half171

of the steps are bad steps. Their argument is that after we have taken a bad step on coordinate i,172

then the next time i is chosen we will not take a bad step. However, with an equality constraint it is173

possible for a coordinate to be involved in consecutive bad steps. It is possible that a combinatorial174

argument similar to Lacoste-Julien and Jaggi [2015, Theorem 8] could bound the number of bad175

steps, but it is not obvious that we do not require an exponential total number of bad steps.176

3.2 GS-q: Minimum 2-Coordinate Approximation177

A variant of the Gauss-Southwell-q (GS-q) rule of Tseng and Yun [2009]for problem (13) is178

argmin
i,j

min
dij ||di+dj=0

⇢
f(xk) +rijf(x

k)T dij +
1

2↵k
kdijk2 : xk + d 2 [l, u]

�
. (16)

This minimizes a quadratic approximation to the function, restricted to the feasible set. For prob-179

lem (13), the GS-q rule is equivalent to choosing ik and jk to maximize (14), the distance that we180

move. We show the following result for the GS-q rule in Appendix D.181

Theorem 3.1. Let f be a differentiable function whose gradient is 2-coordinate-wise Lipschitz (7)182

and restricted to the set where xT 1 = � and li  xi  ui. If this function satisfies the proximal-183

PL inequality in the 2-norm [Karimi et al., 2016] for some positive µ2, then the iterations of the184

2-coordinate update (3) with �k given by (14), ↵k = 1/L2, and the greedy GS-q rule (16) satisfy:185

f(xk)� f(x⇤) 
✓
1� µ2

L2(n� 1)

◆k

(f(x0)� f⇤). (17)

The proof of this result is more complicated than our previous results, relying on the concept of186

conformal realizations used by Tseng and Yun [2009]. We prove the result for general block sizes187

and then specialize to the two-coordinate case. Unlike the GS-s rule, this result shows that the GS-q188

guarantees non-trivial progress on each iteration. Note that while this result does have a dependence189

on the dimension n, it does not depend on n2 as the random rate (12) does. Moreover, the dependence190

on n can be improved by increasing the block size.191

Unfortunately, the GS-q rule is not always efficient to use. As discussed by Beck [2014], there is192

no known algorithm faster than O(n2) for computing the GS-q rule (16). One special case where193

this can be solved in O(n) given the gradient is if we only have lower bounds (or only have upper194

bounds) [Beck, 2014]. An example with only lower bounds is our motivating problem of optimizing195

over the probability simplex, which only requires variables to be non-negative and sum to 1. On the196

other hand, our other motivating problem of SVMs requires lower and upper bounds so computing the197

GS-q rule would require O(n2). Beginning with version 2.8, LIBSVM began using an approximation198

to the GS-q rule that can be computed in O(n). In particular, LIBSVM first chooses one coordinate199

using the GS-s rule, and then optimizes the other coordinate according to a variant of the GS-q200

rule [Fan et al., 2005].1 While other rules have been proposed, the LIBSVM rule remains among the201

best-performing methods in practice [Horn et al., 2018]. However, similar to the GS-s rule we cannot202

guarantee non-trivial progress for the practical variant of the GS-q rule used by LIBSVM.203

3.3 GS-1: Steepest Descent in the 1-Norm204

Rather than using the classic GS-s or GS-q selection rules, the Gauss-Southwell-1 (GS-1) rule205

performs steepest descent in the 1-norm. For problem (13) this gives the update206

dk 2 argmin
lixi+diui|dT 1=0

⇢
rf(xk)T d+

1

2↵k
||d||21

�
. (18)

The GS-1 rule was proposed by Song et al. [2017] for (unconstrained) 1-norm regularized problems.207

To analyze this method, we modify the definition of D(x, L) in the proximal-PL assumption to be208

D(x, L) =� 2L min
{liyiui |yT 1=�}

n
hrf(x), y � xi+ L

2
||y � x||21

o
. (19)

We then have the following dimension-independent convergence rate for the GS-1 rule.209

1The newer LIBSVM rule also uses Lipschitz information about each coordinate; see Section 4 for discussion.
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Algorithm 1 The GS-1 algorithm (with variables sorted in descending order according torf(x)).
1: function GS-1(x,rf(x),↵, l, u)
2: x0  0;xn+1  0; i 1; j  n; d 0;
3: while 1 do

4: �  ↵

4 (rif(x)�rjf(x))

5: ! =
i�1P
p=0

xp � lp;  =
n+1P

q=j+1
u� xq

6: if � � ! < 0 & � �  < 0 then

7: if ! <  then di = ! �  ; break;
8: else dj = ! � ; break;
9: end if

10: else if � � ! < 0 then dj = ! � ; break;
11: else if � �  < 0 then di = ! � ; break;
12: end if

13: if xi + ! � � � li & xj � + �  uj then

14: di = ! � �; dj = � � ; break;
15: end if

16: if xi + ! � � < li & xj � + � > uj then

17: if li � (xi + ! � �) > xj � + � � uj then

18: di = l � xi; i i+ 1
19: else

20: dj = u� xj ; j  j � 1
21: end if

22: else if xi + ! � � < li then di = l � xi; i i+ 1
23: else dj = u� xj ; j  j � 1
24: end if

25: end while

26: return d
27: end function

Theorem 3.2. Let f be a differentiable function whose gradient is 2-coordinate-wise Lipschitz (7)210

and restricted to the set where xT 1 = � and li  xi  ui. If this function satisfies the proximal-PL211

inequality in the 1-norm (9) for some positive µ1 with the definition (19), then the iterations of the212

update xk+1 = xk + dk with the greedy rule (18) and ↵k = 1/L1 = 2/L2 satisfy:213

f(xk)� f(x⇤) 
✓
1� 2µ1

L2

◆k

(f(x0)� f⇤). (20)

Proof. The proof follows the same reasoning as Theorem 2.3, but beginning after the application of214

Lemma 2.1 since we are directly computing the steepest descent direction.215

This GS-1 convergence rate is at least as fast as the convergence rate for GS-q, and thus by exploiting216

a connection to the 1-norm we once again obtain a faster dimension-independent rate. In Algorithm 1217

we give a method to construct a solution to the GS-1 rule (18) in O(n log n) time (due to sorting the218

rif(xk) values). Thus, our new GS-1 update guarantees non-trivial progress at each step (unlike the219

GS-s rule) and is efficient to compute (unlike the GS-q rule). The precise logic of Algorithm 1 is220

somewhat complicated, but it can intuitively be viewed as a version of GS-s that fixes the bad steps221

where �k is truncated. Roughly, if the GS-s rule gives a bad step then the GS-1 moves the violating222

variable to its boundary and then may also update the variable with the next largest/smallestrif(xk).223

The drawback of the GS-1 update is that it is not strictly a 2-coordinate method. While the GS-1224

update moves at most 2 variables within the interior of the bound constraints, it may move additional225

variables to their boundary. The iteration cost of the method will be higher on iterations where more226

than 2 variables are updated. However, by using an argument similar to Sun et al. [2019], we can show227

that the GS-1 rule will only update more than 2 variables on a finite number of early iterations. This228

is because, after some finite number of iterations, the variables actively constrained by their bounds229

will remain at their bounds. At this point, each GS-1 update will only update 2 variables within the230
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interior of the bounds. In the case of SVMs, moving a variable to its lower bound corresponds to231

removing it as a potential support vector. Thus, this “bug” of GS-1 that it may update more than 2232

variables can allow it to quickly remove many support vectors. In our experiments, we found that233

GS-1 identified the support vectors more quickly than other rules and that most GS-1 updates only234

updated 2 or 3 coordinates.235

4 Greedy Updates using Coordinate-Wise Lipschitz Constants236

Up until this point, we have measured smoothness based on the maximum blockwise Lipschitz-237

constant L2. An alternative measure of smoothness is Lipschitz continuity of individual coordinates.238

In particular, coordinate-wise Lipschitzness of coordinate i requires that for all x and ↵239

|rif(x+ ↵ei)�rif(x)|  Li|↵|,

where ei is a vector with a one in position i and zeros in all other positions. For twice-differentiable240

convex functions, the Lipschitz constant with respect to the block (i, j) is upper bounded by the sum241

of the coordinate-wise constants Li and Lj [Nesterov, 2012, Lemma 1]. For equality-constrained242

optimization, Necoara et al. [2011] uses the coordinate-wise Lipschitz constants to design sampling243

distributions for ik and jk. Their analysis gives rates that can be faster than uniform sampling (12).244

In Appendix E, we consider greedy rules that depend on the Li values for the equality-constrained245

case. In particular, we show that the equality-constrained GS-q rule chooses ik and jk by solving246

argmax
i,j

⇢
(rif(x)�rjf(x))2

Li + Lj

�
, (21)

which yields the standard greedy rule (5) if all Li values are equal. We show that the coordinate247

descent update with this selection rule and248

�k = �(rikf(x
k)�rjkf(x

k))/(Lik + Ljk), (22)

can be written as steepest descent in the norm defined by ||d||L , P
i

p
Li|di|. This yields a249

convergence rate that can be faster than the greedy rate (11).250

Unfortunately, it is not obvious how to solve (21) faster than O(n2). Nevertheless a reasonable251

approximation is to use252

ik 2 argmax
i

rif(x
k)/

p
Li, jk 2 argmin

j

rjf(x
k)/

p
Lj . (23)

which we call the ratio approximation. This approximation is (21) after re-parameterizing in terms of253

variables xi/
p
Li so that all coordinate-wise Lipschitz constants are 1 in the transformed problem.254

We can also use this re-parameterization to implement variations of the GS-s/GS-q/GS-1 rules if we255

also have bound constraints. While the ratio approximation (23) performed nearly as well as the more256

expensive (21) in our experiments, we found that the gap could be improved slightly if we choose one257

coordinate according to the ratio approximation and then the second coordinate to optimize (21).2258

5 Experiments259

Our first experiment evaluates the performance of various rules on a synthetic equality-constrained260

least squares problem. Specifically, the objective is f(x) = 1
2 ||Ax � b||2 subject to xT 1 = 0. We261

generate the elements of A 2 R1000⇥1000 from a standard normal and set b = Ax + z where x262

and z are generated from standard normal distributions. We also consider a variant where each263

column of A is scaled by a sample from a standard normal to induce very-different Li values. In264

Figure 1 we compare several selection rules: random ik and jk, the greedy rule (5), sampling ik and265

jk proportional to Li, the exact greedy Li rule (21), the ratio greedy Li rule (23), and a variant where266

we set one coordinate using (23) and other using (21) (switching between the two). All algorithms use267

the update (22). In these experiments we see that greedy rules lead to faster convergence than random268

rules in all cases. We see that knowing the Li values does not significantly change the performance269

of the random method, nor does it change the performance of the greedy methods in the case when270

2This strategy is similar to LIBSVM’s rule beginning in version 2.8 for the special case of quadratic functions.
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the Li were similar. However, with different Li the (expensive) exact greedy method exploiting Li271

works much better. We found that the ratio method worked similar to or better than the basic greedy272

method (depending on the random seed), while the switching method often performed closer to the273

exact method.274

Figure 1: Random vs greedy coordinate selection rules, including rules using the coordinate-wise
Lipschitz constants Li. The Li are similar in the left plot, but differ significantly on the right.

Our second experiment considers the same problem but with the additional constraints xi 2 [�1, 1].275

Figure 2 compares the GS-s, GS-q, and GS-1 rules in this setting. We see that the GS-s rule results in276

the slowest convergence rate, while the GS-q rule rule takes the longest to identify the active set. The277

GS-1 rule typically updates 2 or 3 variables, but on early iterations it updates up to 5 variables.278

Figure 2: Comparison of GS-1, GS-q and GS-s under linear equality constraint and bound constraints.
The left plot shows the function values, the middle plot shows the number of interior variables, and
the right plot shows the number of variables updated by the GS-1 rule.

6 Discussion279

Despite the popularity of LIBSVM, up until this work we did not have a strong justification for using280

greedy 2-coordinate methods over simpler random 2-coordinate methods for equality-constrained281

optimization methods. This work shows that greedy methods may be faster by a factor ranging from282

O(n) up to O(n2). This work is the first to identify the equivalence between the greedy 2-coordinate283

update and steepest descent in the 1-norm. The connection to the 1-norm is key to our simple analyses284

and also allows us to analyze greedy rules depending on coordinate-wise Lipschitz constants.285

For problems with bound constraints and equality constraints, we analyzed the classic GS-q rule but286

also proposed the new GS-1 rule. Unlike the GS-s rule the GS-1 rule guarantees non-trivial progress287

on each iteration, and unlike the GS-q rule the GS-1 rule can be implemented in O(n log n). We288

further expect that the GS-1 rule could be implemented in O(n) by using randomized algorithms,289

similar to the techniques used to implement O(n)-time projection onto the 1-norm ball Duchi et al.290

[2008], van den Berg et al. [2008]. The disadvantage of the GS-1 rule is that on some iterations it may291

update more than 2 coordinates on each step. However, when this happens the additional coordinates292

are simply moved to their bound. This can allow us to identify the active set of constraints more293

quickly. For SVMs this means identifying the support vectors faster, giving cheaper iterations.294
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