
Published in Transactions on Machine Learning Research (10/2024)

Tree Ensembles for Contextual Bandits

Hannes Nilsson∗ hannesni@chalmers.se
Chalmers University of Technology and University of Gothenburg

Rikard Johansson∗ rikjo@chalmers.se
Chalmers University of Technology and University of Gothenburg

Niklas Åkerblom niklas.akerblom@volvocars.com
Volvo Car Corporation
Chalmers University of Technology and University of Gothenburg

Morteza Haghir Chehreghani morteza.chehreghani@chalmers.se
Chalmers University of Technology and University of Gothenburg

Reviewed on OpenReview: https: // openreview. net/ forum? id= 59DCkSGw8S

Abstract

We propose a new framework for contextual multi-armed bandits based on tree ensem-
bles. Our framework adapts two widely used bandit methods, Upper Confidence Bound and
Thompson Sampling, for both standard and combinatorial settings. As part of this frame-
work, we propose a novel method of estimating the uncertainty in tree ensemble predictions.
We further demonstrate the effectiveness of our framework via several experimental studies,
employing XGBoost and random forests, two popular tree ensemble methods. Compared
to state-of-the-art methods based on decision trees and neural networks, our methods ex-
hibit superior performance in terms of both regret minimization and computational runtime,
when applied to benchmark datasets and the real-world application of navigation over road
networks.

1 Introduction

Stochastic multi-armed bandits (MABs) (see Slivkins, 2019) provide a principled framework for making
optimal sequences of decisions under uncertainty. As discussed by Zhu & Van Roy (2023), MABs constitute a
vital component of modern recommendation systems for efficient exploration, among many other applications.
An important variant known as the contextual multi-armed bandit incorporates additional contextual / side
information into the decision-making process, allowing for more personalized or adaptive action selection.
Following the recent success of (deep) neural networks in solving various machine learning tasks, several
methods building on such models have been suggested for finding functional relationships between the context
and outcomes of actions to aid the decision-making process (Zhou et al., 2020; Zhang et al., 2021; Zhu &
Van Roy, 2023; Osband et al., 2021; Hoseini et al., 2022). Even though sophisticated, these methods can be
impractical, time-consuming, and computationally expensive.

In light of these challenges, we propose bandit algorithms that utilize tree ensemble (TE) methods (Hastie
et al., 2009), like gradient-boosted decision trees (GBDT) and random forests, to comprehend the contextual
features, combined with the most popular bandit methods Upper Confidence Bound (UCB) and Thompson
Sampling (TS) as exploration strategies. Compared with other tree-based and neural network methods, our
methods, called TEUCB and TETS, yield superior results on UCI benchmark datasets. Additionally, our
methods benefit from more effective learning with less computational overhead on most problem instances,
compared to existing methods that use similarly expressive machine learning models. We furthermore

∗These authors contributed equally.

1

https://openreview.net/forum?id=59DCkSGw8S

Published in Transactions on Machine Learning Research (10/2024)

extend the framework to the combinatorial contextual setting, a type of bandit that deals with complex
combinatorial sets of arms, and investigate it on the important real-world application of efficient navigation
in road networks. In this work, we focus on the practical applicability of the proposed framework in different
settings and do not provide a theoretical analysis of the regret.

1.1 Related Work

The concept of applying decision trees to contextual bandit problems has been studied to a limited extent.
Elmachtoub et al. (2017) suggest using a single decision tree for each arm available to the agent. Their
method is referred to as TreeBootstrap, as the concept of bootstrapping is employed in order to resemble the
Thompson Sampling process. One issue with their method is its limited ability to achieve the accuracy and
robustness of tree ensemble methods, particularly when estimating complex reward functions. The possibility
of applying random forests in their framework is discussed, but no concrete methods or experimental results
are presented. Furthermore, storing and training one tree model per arm does not scale well, especially
not with large action spaces (e.g., in the combinatorial setting), and could potentially lead to excessive
exploration for dynamic arm sets, as it cannot attend to what it has learned from the contexts of other
arms. In contrast, Féraud et al. (2016) employ a tree ensemble but only use decision trees of unit depth, also
known as decision stumps. While tree ensembles with a large number of decision stumps tend to perform
well regarding accuracy, lower variance, and increased robustness, restricting the depth in such an extreme
way may not be adequate when addressing complex tasks (Hastie et al., 2009). The experimental studies by
Hastie et al. (2009) indicate that tree depths of 4 to 8 work well for boosting. Additionally, Féraud et al.
(2016) only investigate the bandit algorithm known as successive elimination, which usually leads to less
efficient exploration compared to UCB and TS, and thus is used less commonly. Moreover, the method,
called Bandit Forest, requires binary encoded contextual features. Comparing these two tree-based bandit
methods, Elmachtoub et al. (2017) experimentally show that TreeBootstrap tends to outperform Bandit
Forest in practice. It should be noted that neither Elmachtoub et al. (2017) nor Féraud et al. (2016) consider
combinatorial contextual bandits.

Apart from the two methods mentioned above, the problem has primarily been addressed using other ma-
chine learning models. When the reward function is linear w.r.t. the context, LinUCB (Li et al., 2010;
Abbasi-Yadkori et al., 2011) and Linear Thompson Sampling (LinTS) (Agrawal & Goyal, 2013) have demon-
strated good performance. In more complicated cases, the linear assumption no longer holds, and thus more
expressive models are needed.

In recent years, neural contextual bandits have attracted a lot of attention. As the name suggests, these
methods use (deep) neural networks to model the expected rewards for some observed contextual features.
Out of several proposed neural contextual bandit algorithms, NeuralUCB (Zhou et al., 2020) and NeuralTS
(Zhang et al., 2021), in particular, have been shown to perform well, while also providing theoretical regret
bounds. On the negative side, due to how these methods estimate the uncertainty in predictions, they rely
on inverting a matrix of size equal to the number of network parameters, which is usually computationally
expensive and time-consuming, especially when the prediction tasks require large neural networks.

Zhu & Van Roy (2023) provide a thorough review of different neural bandit methods and suggest a method
based on epistemic neural networks (Osband et al., 2021) for more efficient uncertainty modeling, showing its
advantages in terms of regret minimization and computational efficiency. Despite their promising results, we
argue that neural networks may not necessarily be the most appropriate models for contextual bandits. For
instance, even with epistemic neural networks, training is still resource-intensive. On the other hand, there
is a large body of work that shows the effectiveness of tree ensemble methods for regression and classification
tasks in the standard supervised learning setting (Borisov et al., 2022; Gorishniy et al., 2021; Grinsztajn
et al., 2022), and therefore we believe that their extension to contextual bandits can have great potential.

One less directly related method is Ensemble Sampling (Lu & Van Roy, 2017), where the ensembles are
solely used for uncertainty estimation and not for modeling the reward functions in bandits. Uncertainty
estimates in Ensemble Sampling and similar methods focus on uncertainties in the parameters of the models
used to approximate the underlying processes being sampled. In contrast, we sample directly from estimated

2

Published in Transactions on Machine Learning Research (10/2024)

distributions of the expected rewards given contexts. Our approach aligns closer with sampling-based bandit
methods like LinTS and NeuralTS.

2 Background

In this section, we describe the multi-armed bandit problem and its extensions relevant to our work.

2.1 Multi-Armed Bandit Problem

The multi-armed bandit (MAB) problem is a sequential decision-making problem under uncertainty, where
the decision maker, i.e., the agent, interactively learns from the environment over a horizon of T time steps
(interactions). At each time step t ≤ T , the agent is presented with a set of K actions A, commonly
referred to as arms. Each action a ∈ A has an (initially) unknown reward distribution with expected value
µa. The objective is to maximize the cumulative reward over the time horizon T , or more commonly (and
equivalently) to minimize the cumulative regret, which is defined as

R(T) ≜
T∑

t=1
(µa∗ − µat), (1)

where µa∗ is the expected reward of the optimal arm a∗, and at is the arm selected at time step t. It is
important to note that the agent only receives feedback from the selected arm/action. More specifically,
when selecting at the agent receives a reward rt,at which is sampled from the underlying reward distribution.
As previously mentioned, the agent’s objective is to minimize the cumulative regret, not to learn the complete
reward function for each arm. Thus, the agent has to balance delicately between exploration and exploitation.

2.2 Contextual Bandit Problem

The contextual multi-armed bandit problem is an extension of the classical MAB problem described in
Section 2.1. The agent is, at each time step t, presented with a context vector xt,a ∈ Rd for each action
a ∈ A. For example, a recommendation system could encode a combination of user-related and action-
specific features into the context vector xt,a. Then, the expected reward of action a at time t is given by
an (unknown) function of the context q : Rd → R, such that E[rt,a] = q(xt,a). Learning to generalize the
relationship between the contextual features and the expected reward is crucial for effective learning and
minimizing cumulative regret.

2.3 Combinatorial Bandits

Combinatorial multi-armed bandits (CMAB) (Cesa-Bianchi & Lugosi, 2012) deal with problems where at
each time step t, a subset St (called a super arm) of the set of all base arms A is selected, instead of an
individual arm. The reward of a super arm S depends on its constituent base arms. When the reward for a
super arm is given as a function (e.g., sum) of feedback from its individual base arms (observable if and only
if the super arm is selected), it is referred to as semi-bandit feedback. As previously, the evaluation metric is
the cumulative regret, and for the combinatorial semi-bandit setting (with the sum of base arm feedback as
super arm reward) it can be defined as

R(T) ≜
T∑

t=1

∑
i∈S∗

t

µi −
∑
j∈St

µj

 , (2)

where S∗
t denotes the optimal super arm at time t.

3 Proposed Algorithms

Machine learning models based on decision trees have consistently demonstrated solid performance across
various supervised learning tasks (Borisov et al., 2022; Gorishniy et al., 2021; Grinsztajn et al., 2022). An

3

Published in Transactions on Machine Learning Research (10/2024)

up-to-date overview of tree ensemble methods is provided by Blockeel et al. (2023), where several advantages
are discussed over other techniques. For instance, they are known to learn fast from small sets of examples,
while simultaneously possessing the capability of handling large data sets, and are computationally efficient
to train.

Despite the potential benefits, these types of models have not been studied much for contextual bandits.
To the best of our knowledge, there is no previously known work that in a principled way combines tree
ensemble models with UCB, which is one of the most effective strategies known for handling the exploration-
exploitation dilemma. Further, works that combine tree ensemble methods with Thompson Sampling are
limited. We address this research gap and introduce a novel approach for the contextual MAB problem that
combines any tree ensemble method with a natural adaption of these two prominent exploration schemes.

Within our framework, we empirically investigate the XGBoost and random forest algorithms and demon-
strate promising performance on several benchmark tasks, as well as a combinatorial contextual MAB prob-
lem for efficient navigation over a stochastic road network in Section 4. However, we emphasize that our
bandit algorithms are sufficiently general to be employed with any decision tree ensemble.

3.1 Tree-Based Weak Learners

The underlying concept of decision tree ensembles is to combine several weak learners. Each standalone tree
is sufficiently expressive to learn simple relationships and patterns in the data, yet simple enough to prevent
overfitting to noise. By combining the relatively poor predictions of a large number of weak learners, the
errors they all make individually tend to cancel out, while the true underlying signal is enhanced.

In our notation, a tree ensemble regressor f is a collection of N decision trees {fn}, where the trees are
collectively fitted to a set of training samples {(x, r)}. Each sample consists of a context vector x and a
target value r. The fitting procedure can differ between different types of tree ensemble methods, which are
often divided into two categories based on the approach used, i.e., bagging or boosting. In both variants, the
prediction of each tree is determined by assigning the training samples to distinct leaves, where all samples
in the same leaf resemble each other in some way, based on the features attended to in the splitting criteria
associated with the ancestor nodes of the leaf. Hence, when fitted to the data, each tree fn receives an input
vector x which it assigns to one of its leaves.

Every leaf is associated with three values that depend on the samples from the training data assigned to
that particular leaf. We denote the output of the nth tree by on, which is this tree’s contribution to the total
ensemble prediction and depends on which leaf the input vector x is assigned to. The number of training
samples assigned to the same leaf as x in tree n is denoted by cn. Finally, the sample variance in the output
proposed by the individual training samples assigned to the leaf is denoted s2

n. This value represents the
uncertainty in the output on associated with the leaf and depends not only on the training samples — but
also on the particular tree ensemble method used. We elaborate on the calculations of s2

n for two types of
tree ensembles in Sections 3.6 and 3.7. Note that, for the sample variance to exist, we must have at least
two samples. This is ensured by requiring the tree to be built such that no leaf has fewer than two training
samples assigned to it.

The tree ensemble constructs its total target value prediction p by summing up all of the N individual trees’
outputs on:

p(x) =
N∑

i=1
oi(x). (3)

The outputs on, in turn, are averages of the cn outputs suggested by each training sample assigned to
the same leaf. These suggested outputs are based on the target values of the training samples, with the
calculation method depending on the specific type of tree ensemble used. We always consider the full tree
ensemble target value predictions as a sum of the individual tree predictions on to unify the notation of all
kinds of tree ensembles. Hence, for averaging models, such as random forests, we assume that the leaf values
on are already weighted by 1/N .

4

Published in Transactions on Machine Learning Research (10/2024)

3.2 Uncertainty Modeling

For bandit problems, keeping track of the uncertainty in the outcomes of different actions is crucial for
guiding the decision-making process. In order to form estimates of the uncertainty in the final prediction of
the tree ensembles we employ, we make a few assumptions.

Firstly, we assume that the output on of the n’th decision tree, given a context x, is an arithmetic average
of cn independent and identically distributed random variables with finite mean µn and variance σ2

n. By
this assumption, on is itself a random variable with mean µn and variance σ2

n

cn
. Also, we can approximate µn

and σ2
n by the sample mean and variance respectively, based on the training samples assigned to the leaf.

Moreover, the central limit theorem (CLT) (see e.g., Dodge, 2008) ensures that, as cn →∞, the distribution of
on tends to a Gaussian distribution. See Appendix A.2 for more details about the independence assumption.

Secondly, if we also assume the output of each one of the N trees in the ensemble to be independent of
every other tree, we have that the total tree ensemble’s target value prediction, which is a sum of N random
variables, is normally distributed with mean µ =

∑N
i=1 µi and variance σ2 =

∑N
i=1 σ2

i .

We acknowledge that these assumptions may not always be true in practice, but they act here as motivation
for the design of our proposed algorithms. Specifically, they entail a straightforward way of accumulating
the variances of the individual tree contributions to obtain an uncertainty estimate in the total reward
prediction, allowing us to construct efficient exploration strategies. In the following two subsections, we
present our approach to doing so with UCB and TS methods, respectively.

3.3 Tree Ensemble Upper Confidence Bound

UCB methods act under the principle of optimism in the face of uncertainty, and have been established as
some of the most prominent approaches to handling exploration in bandit problems. A classic example is the
UCB1 algorithm (Auer et al., 2002) which builds confidence bounds around the expected reward from each
arm depending on the fraction of times it has been played, and for which there are proven upper bounds on
the expected regret. One disadvantage of the method, however, is that it does not take the variance of the
observed rewards into account, which may lead to a sub-optimal exploration strategy in practice. In light
of this, Auer et al. (2002) further proposed the UCB1-Tuned and UCB1-Normal algorithms, which extend
UCB1 by including variance estimates, and demonstrate better performance experimentally. The main
difference between the two extended versions is that UCB1-Tuned assumes Bernoulli-distributed rewards,
while UCB1-Normal is constructed for Gaussian rewards. At each time step t, UCB1-Normal selects the
arm a with the maximal upper confidence bound Ut,a, calculated as

Ut,a ← µ̃t,a +

√
16σ̃2

t,a

ln(t− 1)
mt,a

, (4)

where mt,a is the number of times arm a has been played so far, and µ̃t,a and σ̃2
t,a are the sample mean and

variance of the corresponding observed rewards, respectively. For the sample variance to be defined for all
arms, they must have been played at least twice first.

By the assumptions we have made on the tree ensembles, the predictions of the expected rewards will
be approximately Gaussian. Therefore, we propose an algorithm called Tree Ensemble Upper Confidence
Bound (TEUCB) in Algorithm 1, which draws inspiration from UCB1-Normal, and is suitable for both
Gaussian and Bernoulli bandits. As seen in lines 27 and 31 of Algorithm 1, the selection rule of TEUCB
closely resembles that of UCB1-Normal, but is constructed specifically for contextual MABs where the arms
available in each time step are characterized by their context vectors. Therefore, TEUCB considers each
individual contribution from all samples in a leaf as a sample of that leaf’s output distribution, which is
demonstrated in line 14. The total prediction for a context xt,a is subsequently computed as the sum of
sampled contributions from each leaf that xt,a is assigned to in the ensemble (lines 16, 17, 18).

Beyond yielding better performance in experiments, there are additional benefits associated with considering
the sample variances of rewards in the TEUCB method, as discussed regarding UCB1-Normal. Since each
tree in the ensemble may be given a different weight, certain trees can contribute more than others to the

5

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 1 Tree Ensemble Upper Confidence Bound / Tree Ensemble Thompson Sampling

1: Input: Number of rounds T , number of initial
random selection rounds TI , number of trees in
ensemble N , exploration factor ν, tree ensemble
regressor f , bandit method (UCB or TS).

2: for t = 1 to TI do
3: Randomly select and play an arm at

4: Observe context xt,at
and reward rt,at

5: end for
6: for t = TI + 1 to T do
7: Fit tree ensemble f to previously observed

context-reward pairs {(xi,ai
, ri,ai

)}t−1
i=1 and set

leaf values
8: Observe current contexts {xt,a}K

a=1
9: for a = 1 to K do

10: Initialize arm parameters:
µ̃t,a ← 0, σ̃2

t,a ← 0, ct,a ← 0
11: for n = 1 to N do
12: Assign leaf values:
13: (ot,a,n, st,a,n, ct,a,n)← fn (xt,a)
14: Update leaf parameters:

µ̃t,a,n ← ot,a,n, σ̃2
t,a,n ←

s2
t,a,n

ct,a,n

15: Increment arm parameters:
16: µ̃t,a ← µ̃t,a + µ̃t,a,n

17: σ̃2
t,a ← σ̃2

t,a + σ̃2
t,a,n

18: ct,a ← ct,a + ct,a,n

19: end for
20: if bandit method is UCB then
21: Ut,a ← µ̃t,a +

√
ν2σ̃2

t,a
ln(t−1)

ct,a

22: else if bandit method is TS then
23: r̃t,a ∼ N (µ̃t,a, ν2σ̃2

t,a)
24: end if
25: end for
26: if bandit method is UCB then
27: at ← argmaxaUt,a

28: else if bandit method is TS then
29: at ← argmaxar̃t,a

30: end if
31: Play at and observe reward rt,at

32: end for

final reward prediction. This should be accounted for in the total uncertainty as well, since it can otherwise
be dominated by high uncertainty estimates from trees of low importance to the prediction. Accounting for
the sample variances of the proposed tree contributions individually is a way of preventing such behavior.

3.4 Tree Ensemble Thompson Sampling

The way in which uncertainties are estimated by TEUCB can also be incorporated into Thompson Sampling
(Thompson, 1933). In its traditional form, Thompson Sampling selects arms by sampling them from the
posterior distribution describing each arm’s probability of being optimal, given some (known or assumed)
prior distribution and previously observed rewards. This can be achieved by sampling mean rewards from
each arm’s posterior distribution over expected rewards, and playing the arm with the largest sampled mean
reward.

Using a TS-based approach, we propose to estimate the uncertainty in the predicted reward given an arm’s
context in the same way as in the case with UCB. However, in line 23 of Algorithm 1, instead of constructing
confidence bounds, we sample mean rewards from the resulting distributions (here, interpreted as posterior
distributions). Hence, the main difference from TEUCB is how the uncertainty is used to guide exploration.
Due to its similarity with standard Thompson Sampling, we call this algorithm Tree Ensemble Thompson
Sampling (TETS).

Regular Thomson Sampling is inherently a Bayesian approach. However, the framework may be extended to
include the frequentist perspective as well, and the two views have been unified in a larger set of algorithms
called Generalized Thompson Sampling (Li, 2013). It should be noted that TETS, as we present it here, is
prior-free and should fall under the umbrella of Generalized TS. Although not the focus of this work, the
algorithm could be modified to explicitly incorporate and utilize prior beliefs, making it Bayesian in the
traditional sense.

6

Published in Transactions on Machine Learning Research (10/2024)

3.5 Extension to Combinatorial Bandits

The framework outlined in Algorithm 1 is formulated to address the standard contextual MAB problem.
However, TEUCB and TETS can easily be extended to the combinatorial semi-bandit setting. The main
difference is in the way arms are selected, i.e., super arms instead of individual arms. In Algorithm 1, this
corresponds to modifying lines 27 to

St ← argmaxS
∑
a∈S

Ut,a, (5)

and 29 to
St ← argmaxS

∑
a∈S

r̃t,a. (6)

The selected super arm St at time t is subsequently played in line 31. In this setting, the set of observed
context-reward pairs would include all rewards received for each base arm in the selected super arms indi-
vidually, which are generally more than one per time step.

3.6 Adaptation to XGBoost

Extreme gradient boosting (XGBoost) is a gradient boosting algorithm that utilizes ensembles of decision
trees and techniques for computational efficiency (Chen & Guestrin, 2016). Gradient boosting creates new
decision trees based on the gradient of the loss function. The ensemble output is based on the cumulative
contribution of the decision trees within the ensemble.

When using XGBoost regression models, we can extract on directly from the individual leaves in the con-
structed ensemble. The sample variance s2

n is not accessible directly, but we can easily calculate it. As
a GBDT method, XGBoost calculates its outputs during the training procedure as the average difference
between the target value and the value predicted from the collection of preceding trees in the ensemble,
multiplied with a learning rate. Hence, the trees do not have predetermined weights as in, e.g., random
forests. Instead, the relative size of the contributions of an assigned leaf to the final prediction depends on
the particular paths that are traversed through the other trees, which may be different for every sample we
observe in a leaf. Therefore, we cannot estimate s2

n from the variance in target values directly.

However, XGBoost is augmented with many useful features, one of them being staged predictions (XGBoost
Developers, 2022b). This means that we can propagate the predicted outputs on sub-ensembles up to a
certain tree on all data samples and cache these outputs. After recording these we include the next tree
in the prediction as well, without having to start over. By utilizing this technique, s2

n is easily estimated
from the previously observed samples assigned to a particular leaf. Furthermore, cn is simply the number
of such samples. This gives us all the pieces of the puzzle needed to apply XGBoost to the TEUCB and
TETS algorithms. In order to reduce bias when calculating on, s2

n and cn, one may split the previously
observed samples into two distinct data sets; one which is used for building the trees, and a second for the
value estimations.

3.7 Adaptation to Random Forest

Random forest (Ho, 1995) is a supervised machine learning algorithm that utilizes decision trees as base
learners together with bootstrapped aggregating (bagging). Bagging models randomly sample from the
training data with replacement—reducing the variance of the model by providing the base learners with
diverse subsets from the complete dataset. In addition to bagging, a random forest randomly samples a
subset of the features (Hastie et al., 2009). For classification tasks, majority voting is commonly used to
make predictions, while in regression, the average or weighted average of predictions is a common method.

Similar to XGBoost, random forests can also be incorporated into TEUCB and TETS. This is even less
complicated in the case of random forests as the trees in a random forest do not depend on the predictions
made by any of the other trees. Therefore, s2

n can be directly estimated from the variance in the target
values, taking the tree’s weight of 1/N into account. Hence, all the quantities of interest (i.e., on, s2

n, and

7

Published in Transactions on Machine Learning Research (10/2024)

cn) are available from the trees of a random forest by looking at which observed samples are assigned to the
terminal nodes.

As with XGBoost, one may consider dividing the previously observed samples into different subsets for fitting
and value estimation. An alternative way for handling bias with random forests is to consider only the out-
of-bag samples for computing on, s2

n, and cn. Random forests employ the concept of bagging—resampling
with replacement—when building trees, which means roughly one-third of the samples will be omitted in
the construction of any particular tree. Thus, they yield a natural way of providing an independent set of
data samples for model evaluation without limiting the size of the training data set.

4 Experiments

In this section, we evaluate TEUCB and TETS and compare them against several well-known algorithms
for solving the contextual bandit problem. For the implementations, we use the XGBoost library (Chen
& Guestrin, 2016) to build gradient-boosted decision trees as our tree ensembles, as well as the version of
random forests found in the scikit-learn library (Pedregosa et al., 2011). We first evaluate the algorithms
on benchmark datasets. We then study them in the combinatorial contextual setting for solving the real-
world problem of navigation over stochastic road networks in Luxembourg. The agent’s cumulative regret is
calculated by comparing the path to an oracle agent, who knows the expected travel duration for each edge
given the current time of day. All the algorithms are evaluated w.r.t. cumulative regret averaged over ten
random seeds and we report the average results. The setup of the experiments is inspired by and adapted
from Russo et al. (2018).

4.1 Setup

We use the same procedure as Zhang et al. (2021) to transform a classification task into a contextual MAB
problem. In each time step, the environment provides a context vector belonging to an unknown class. For
the agent, each class corresponds to an arm, and the goal is to select the arm corresponding to the correct
class. This results in a reward of 1, while an incorrect prediction results in a reward of 0.

Since only the context of a single (unknown) arm is provided, the agent must have a procedure for encoding
it differently for each arm. This is generally done through positional encoding, where in the case of K arms
and d data features, we form K context vectors (each of dimensionality Kd) such that: x1 = (x; 0; · · · ; 0),
x2 = (0; x; · · · ; 0), · · · , xK = (0; 0; · · · ; x). As no features are shared between any of the arms, this setup is
an instance of a disjoint model, as opposed to a hybrid model (Li et al., 2010).

In the experiments in Section 4.2, we use the disjoint model for LinUCB, LinTS, NeuralUCB, and NeuralTS.
However, due to the nature of discrete splitting by decision trees, we can encode the context more effectively
using a hybrid model for tree-based methods. There, we simply append the corresponding labels as a single
character for each arm respectively at the beginning of the context: xk = (k, x), and mix numeric and
categorical features in the context vectors. For LinUCB, LinTS, NeuralUCB, and NeuralTS, categorical
features are one-hot-encoded.

In these experiments, we set the time horizon to 10,000 (except for the Mushroom dataset, where a horizon
of 8,124 is sufficient to observe it entirely). For each of those time steps, the agents are presented with a
feature vector x drawn randomly without replacement, which they encode for the different arms as described
above. Subsequently, the agents predict the rewards for the individual arms according to the algorithms
used. TEUCB and TETS (Algorithm 1) are described in Section 3. The TreeBootstrap (Elmachtoub et al.,
2017), NeuralUCB (Zhou et al., 2020), NeuralTS (Zhang et al., 2021), LinUCB (Li et al., 2010) and LinTS
(Agrawal & Goyal, 2013) algorithms are implemented according to their respective references.

4.2 Contextual Bandits

For this experiment, the data is collected from the UCI machine learning repository (Kelly et al., n.d.),
where an overview of the used selected datasets is given in Table 1. Magic (Bock, 2007), which is short for
Magic Gamma Telescope, contains only numerical features. The same is true for Shuttle (Statlog (Shuttle),

8

Published in Transactions on Machine Learning Research (10/2024)

Table 1: Datasets overview.

Dataset Features Instances Classes
Adult 14 48,842 2
Magic 10 19,020 2

Mushroom 22 8,124 2
Shuttle 9 58,000 7

n.d.), also known as Statlog. All features of Mushroom (Mushroom, 1987) are categorical, and Adult (Becker
& Kohavi, 1996) has a balanced distribution between numerical and categorical features.

(a) Adult (b) Magic

(c) Mushroom (d) Shuttle

Figure 1: Comparison of contextual MAB algorithms on UCI datasets. Figures 1a, 1b, 1c, and 1d share the
same color scheme for consistency, but the legend is only presented in 1a for improved visibility.

4.2.1 Implementation

For all datasets in Table 1, the neural network agents use a network architecture of one hidden layer with
100 neurons. Regarding NeuralUCB, NeuralTS, LinUCB, and LinTS, we search the same sets of hyper-
parameters as described by Zhang et al. (2021), who run these agents on the same datasets, and select
the parameters with the best performance. One difference in our experiments is that we added a dropout
probability of 0.2 when training the neural networks, which had a positive impact on the performance.
Furthermore, each of the networks is trained for 10 epochs. For all tree ensemble bandits, we use XGBoost
and random forest regressors with MSE loss and ensembles of 100 trees.

9

Published in Transactions on Machine Learning Research (10/2024)

Table 2: Average regret accumulated by agents after the final step, with standard deviation, and number of
hours required to run one experiment with CPU. Runtime in hours on GPU is also reported where it applies.

Adult Magic Mushroom Shuttle
TEUCB-XGBoost Mean ± SD 1532.5 ± 27.8 1685.7 ± 27.7 69.2 ± 8.6 171.4 ± 40.0

CPU 0.13 0.14 0.09 0.08
TETS-XGBoost Mean ± SD 1548.0 ± 30.9 1703.2 ± 25.2 78.6 ± 11.8 165.7 ± 31.2

CPU 0.13 0.14 0.09 0.08
TEUCB-RF Mean ± SD 1550.6 ± 32.9 1678.5 ± 31.3 58.2 ± 10.9 190.8 ± 68.9

CPU 0.12 0.13 0.10 0.12
TETS-RF Mean ± SD 1566.3 ± 34.2 1688.6 ± 38.3 57.7 ± 8.1 166.3 ± 37.1

CPU 0.12 0.13 0.10 0.12
NeuralUCB Mean ± SD 1974.0 ± 82.0 2155.2 ± 39.5 160.8 ± 68.9 862.4 ± 428.8

CPU 10 10 7.4 8.1
GPU 1.2 0.68 0.37 1.4

NeuralTS Mean ± SD 1929.7 ± 68.3 2209.5 ± 62.2 243.4 ± 168.9 853.8 ± 340.3
CPU 10 10 7.4 8.1
GPU 1.2 0.68 0.37 1.4

LinUCB Mean ± SD 2109.8 ± 51.8 2598.4 ± 25.4 666.2 ± 14.7 1156.3 ± 41.3
CPU 0.02 0.02 0.04 0.11

LinTS Mean ± SD 2253.2 ± 37.7 2703.8 ± 30.4 892.2 ± 18.6 1263.0 ± 22.1
CPU 0.02 0.02 0.04 0.11

TreeBootstrap-XGBoost Mean ± SD 1693.2 ± 18.8 1836.1 ± 36.7 91.6 ± 5.6 164.1 ± 24.4
CPU 0.97 1.2 0.10 0.27

TreeBootstrap-RF Mean ± SD 1584.3 ± 32.5 1722.9 ± 28.0 82.5 ± 3.3 161.9 ± 29.2
CPU 3.8 4.2 1.8 4.2

TreeBootstrap-DT Mean ± SD 2187.2 ± 57.1 2473.3 ± 35.3 168.9 ± 11.0 216.0 ± 22.9
CPU 0.08 0.09 0.04 0.08

Initial test runs revealed that the agents are robust w.r.t. different choices of hyper-parameters for XGBoost
(XGBoost Developers, 2022a), and consequently, we settle on the default values. The only exception is the
maximum tree depth, which we set to 10. The same maximum tree depth is used for the implementation of
random forests. The number of initial random arm selections TI is set to 10 times the number of arms for all
tree-based algorithms, and the exploration factor of TEUCB and TETS is set to ν = 1. As for the decision
tree (DT) algorithm used for TreeBootstrap, we use the scikit-learn library to employ CART (Breiman et al.,
2017), which is free of tunable parameters. This is similar to the implementation presented in the original
work on TreeBootstrap (Elmachtoub et al., 2017).

Another point we noted during our initial test runs was that accurate predictions seem to be more important
than less biased estimates obtained by splitting the previously observed samples into distinct data sets for
ensemble fitting and value calculations respectively. Therefore, we use all observed context-reward pairs for
both purposes in all experiments with TEUCB and TETS.

In order to avoid unnecessary computations and speed up the runs, TEUCB and TETS do not build new
tree ensembles from scratch at each time step. Instead, they only consider which leaves the latest observation
assigned in each tree and update the corresponding on, s2

n, and cn parameters. Initially, when newly observed
samples may have a relatively large effect on the optimal tree ensemble, re-building happens more frequently.
However, as the effect that the samples are expected to have on the tree architectures degrades over time,
less re-building takes place. More precisely, re-building happens when the function ⌈8 ln(t)⌉ increases by one
compared to the previous time step.

The experimental results are obtained using an NVIDIA A40 GPU for NeuralUCB and NeuralTS, and a
desktop CPU for the other agents. To illustrate the differences in computational performance between the
agents, we report the runtime of the neural agents on the same CPU as well.

4.2.2 Experimental Results

The results of the experiments described above are presented in Fig. 1 and Table 2. We observe that the
tree ensemble methods consistently outperform all other models by a large margin, both with XGBoost and

10

Published in Transactions on Machine Learning Research (10/2024)

0 200 400 600 800 1000
time step

0

10000

20000

30000

40000

cu
m

ul
at

iv
e

re
gr

et
TreeBootstrap-XGBoost
TreeBootstrap-RF
TreeBootstrap-DT
TEUCB-XGBoost
TETS-XGBoost
TEUCB-RF
TETS-RF
NeuralUCB
NeuralTS
LinUCB
LinTS

(a) Cumulative regret on paths problem instance 1

0 200 400 600 800 1000
time step

0

10000

20000

30000

40000

50000

60000

cu
m

ul
at

iv
e

re
gr

et

(b) Cumulative regret on paths problem instance 2

Figure 2: Experimental results on real-world road network navigation in Luxembourg.

random forest, and yield significantly lower cumulative regrets. Furthermore, TEUCB and TETS tend to
perform better than TreeBootstrap on the adult, magic, and mushroom data sets.

On the shuttle data set, with seven different arms, the TreeBootstrap agents exhibit comparable and even
slightly better average performance in terms of regret minimization. It appears that TreeBootstrap’s assign-
ing of a separate tree-based model for each arm is beneficial for this problem. However, this comes at the
expense of having to fit multiple models in each time step, which is time-consuming and computationally de-
manding. Furthermore, its inability to generalize the reward predictions of distinct but related arms may in
some cases be disadvantageous, especially for larger arm sets. Comparing TEUCB vs. TETS, and XGBoost
vs. random forest (i.e., the different design choices within our framework), there is no clear winner as they all
tend to perform comparably (and very effectively) on different data sets. In addition to regret minimization,
the CPU experiments indicate that TEUCB and TETS are significantly more efficient than their neural
counterparts from a computational perspective. Notably, LinUCB, LinTS, and TreeBootstrap-DT are the
most efficient methods in terms of computation. However, they do not minimize regret as effectively as most
other agents in our data sets.

4.3 Combinatorial Contextual Bandits

In this section, we investigate the combinatorial contextual bandit methods on a real-world application, where
we study two scenarios corresponding to performing the most efficient navigation over the real-world road
network of Luxembourg. This problem is crucial with the emergence of electric vehicles to mitigate the so-
called range anxiety. Similar navigation problems have recently been studied from a CMAB perspective, but
often without contextual information (Åkerblom et al., 2023) or limited to neural bandit methods (Hoseini
et al., 2022). CMAB methods are well-suited to the navigation problem since the traversal time of each road
segment can be highly stochastic and dependent on local factors (e.g., road works, traffic congestion, stop
lights) about which knowledge may be gathered through sequential interactions with the environment.

4.3.1 Implementation

We model the road network of Luxembourg via a graph G(V, E), with |V| = 2, 247 vertices and |E| = 5, 651
edges. The vertices represent intersections in the road network, and the edges represent individual road
segments connecting the intersections. In this scenario, edges correspond to base arms, and paths (i.e.,
ordered sequences of edges) correspond to super arms. Each vertex has a coordinate consisting of longitude,
latitude, and altitude values. For all edges e ∈ E , the contextual vector xe describes each road segment in
the network. The agent is presented with a vector containing contextual data according to Table 3.

Edge traversal times have been collected using the Luxembourg SUMO Traffic (LuST) simulation scenario
(Codeca et al., 2015). The recorded edge traversal times are used to form kernel density estimators (KDE)
(Weglarczyk, 2018) for each edge. If an edge does not contain any recorded traversals, the expected traversal

11

Published in Transactions on Machine Learning Research (10/2024)

Table 3: The variables included in the contextual vector describing each edge in the graph.

Variable Description
x Start position along x-axis.
y Start position along y-axis.
z Start position along z-axis.
x′ End position along x-axis.
y′ End position along y-axis
z′ End position along z-axis√

(x − x′)2 Euclidean distance along x-axis.√
(y − y′)2 Euclidean distance along y-axis.√
(z − z′)2 Euclidean distance along z-axis.

speed_limit Maximum speed limit
stop A boolean if edge includes a stop
time The current time of day

time is set to the length of the edge divided by the speed limit. At each time step t, the time of day
is randomly sampled, and used for updating the expected travel times of all edges and the corresponding
KDE’s. We generate edge-specific feedback by individually sampling travel times from the KDE of each edge
on the chosen path.

As the graph contains more than 5,000 edges, the agents need to learn how the contextual features impact the
expected travel time. The road types in the graph are highways, arterial roads, and residential streets, with
a total length of 955 km. In our experiments, we specifically study two problem instances (characterized by
different start and end nodes), referred to as problem instance 1 and problem instance 2. The paths selected
by the different agents during a single run are visualized for problem instance 1 in Fig. 3 (in the Appendix).

An agent predicts the expected travel time for each of the edges in the graph, and then solves the shortest
path problem using Dijkstra’s algorithm (Dijkstra, 1959). The agents are evaluated based on the sum of the
expected travel times for all edges forming the traversed path compared to the expected travel time of the
optimal path S∗.

For this experiment, the neural agents utilize a neural network with two hidden layers, both containing 100
fully connected neurons. A dropout probability of 0.2 is used and after a parameter search over the same
sets of values as in Section 4.2.1, we set λ = 0.1 and ν = 0.001. Furthermore, the network is trained over 10
epochs with the option of early stopping if the MSE loss does not tend to keep improving. We implement
the tree ensemble bandits utilizing XGBoost and random forest regressors with maximum tree depths of 10;
all other hyper-parameters being set to their default values. The number of trees is set to N = 100 for all
agents with tree ensembles, and the initial random selection is set to TI = 10 paths. An exploration factor
of ν = 1 is used for TEUCB and TETS and the frequency of re-building their tree ensembles is the same as
described in Section 4.2.1.

4.3.2 Experimental Results

Fig. 2 shows the results of the TEUCB and TETS methods along with the baselines. The road network and
the agents’ traversals are presented in Fig. 3 (in the Appendix). The frequency by which an edge has been
traversed is indicated by the red saturation, where more traversals correspond to a higher saturation. It is
worth noting that LinUCB, LinTS, and the TreeBootstrap require excessive exploration as their models are
edge-specific. In contrast, TETS, TEUCB, NeuralTS, and NeuralUCB train one model with the possibility of
generalizing the expected travel time predictions over different edges. We observe that using both XGBoost
and random forest, TEUCB and TETS significantly outperform the other methods. In this setting, if an
agent can generalize well what it has learned from one arm’s reward distribution to the other arms, it can
then effectively avoid over-exploration, as indicated by both the regret plots in Fig. 2 and the agent’s specific
path selections in Fig. 3. Comparing the two different tree ensemble methods, XGBoost seems to perform
better on the navigation task compared to random forests in the TEUCB and TETS frameworks.

The neural methods tend to outperform LinUCB and LinTS. Compared to TreeBootstrap, however, the
advantage is less clear, and seems to depend on the particular time horizon T . NeuralUCB and NeuralTS

12

Published in Transactions on Machine Learning Research (10/2024)

tend to learn faster, which is unsurprising since they can generalize reward predictions over different specific
arms. After an initial period of heavy exploration, however, the TreeBootstrap agents appear to make good
path selections more frequently, and yield cumulative reward curves that are more similar to those of TEUCB
and TETS in slope.

All the agents were run on a single desktop CPU, apart from NeuralUCB and NeuralTS, which were run
on an NVIDIA A40 GPU. NeuralTS and NeuralUCB tend to require highly parameterized networks and
substantial hyper-parameter tuning to achieve deliberate exploration, which can make them time-consuming
while running and searching for good parameter values. In terms of runtime, the experiments took about an
hour on the GPU for a neural agent. It is also noticeable that the neural agents appear to be sensitive to
the weight initialization of the networks, which leads to higher variance (see Fig. 2). In contrast, TETS and
TEUCB achieve solid results for a large range of parameter settings, yield lower regret, and tend to run at
comparable speed on a single CPU (instead of GPU). The experiments with TEUCB and TETS took about
1.5 hours with XGBoost, and 5 hours using random forests as the tree ensemble methods. The runtime
of TreeBootstrap also tends to depend heavily on the particular tree model used. With a single decision
tree per arm, the experiments took 0.5 hours, which is about the same as LinUCB and LinTS. Using tree
ensembles, they took about 4 and 20 hours with XGBoost and random forests, respectively.

5 Conclusion

We developed a novel framework for contextual multi-armed bandits using tree ensembles. Within this
framework, we adapted the two commonly used methods for handling the exploration-exploitation dilemma:
UCB and Thompson Sampling. Furthermore, we extended the framework to handle combinatorial contextual
bandits, enabling more complex action selection at each time step. To demonstrate the effectiveness of the
framework, we conducted experiments on benchmark datasets using the XGBoost and random forest tree
ensemble methods. Additionally, we employed it for navigation over stochastic real-world road networks,
modeled as a combinatorial contextual bandit problem.

Across all problem instances, the introduced tree ensemble-based methods, TEUCB and TETS, consistently
demonstrated effectiveness in minimizing regret while requiring relatively low computational resources. In
many cases, these methods significantly outperformed neural network-based methods that are often consid-
ered state-of-the-art for contextual bandits, in terms of both accuracy and computational cost. Hence, this
work indicates that using tree ensembles offers several advantages over other machine-learning models for
these problems. Furthermore, compared to other tree-based methods, TEUCB and TETS exhibited similar
or better capabilities in minimizing regret while maintaining computational efficiency, even for problems with
large numbers of arms. These results indicate that using a single tree ensemble to predict the reward dis-
tributions of all arms, particularly as implemented in TEUCB and TETS, facilitates effective generalization
between arms based on context, enabling more efficient learning with fewer samples.

The study primarily focuses on the practical applicability of tree ensembles for bandits in various settings.
Therefore, we did not provide a theoretical analysis of the respective regrets. For future work, exploring
theoretical regret bounds for the proposed tree ensemble methods could offer deeper insights and a better
understanding of the methods presented in this work.

Acknowledgments

The computations and data handling were enabled by resources provided by the National Academic Infras-
tructure for Supercomputing in Sweden (NAISS), partially funded by the Swedish Research Council through
grant agreement no. 2022-06725. The work of Niklas Åkerblom was partially funded by the Strategic Ve-
hicle Research and Innovation Programme (FFI) of Sweden, through the project EENE (reference number:
2018-01937).

13

Published in Transactions on Machine Learning Research (10/2024)

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvari. Improved algorithms for linear stochastic bandits.

In Neural Information Processing Systems, 2011. URL https://api.semanticscholar.org/CorpusID:
1713123.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In Pro-
ceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning
Research, pp. 127–135, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Niklas Åkerblom, Yuxin Chen, and Morteza Haghir Chehreghani. Online learning of energy consumption for
navigation of electric vehicles. Artificial Intelligence, 317:103879, 2023. doi: 10.1016/j.artint.2023.103879.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2):235–256, 2002. ISSN 1573-0565. doi: 10.1023/A:1013689704352.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. URL https://doi.org/
10.24432/C5XW20.

Hendrik Blockeel, Laurens Devos, Benoît Frénay, Géraldin Nanfack, and Siegfried Nijssen. Decision trees:
from efficient prediction to responsible ai. Frontiers in Artificial Intelligence, 6, 2023. ISSN 2624-8212.

R. Bock. MAGIC Gamma Telescope. UCI Machine Learning Repository, 2007. URL https://doi.org/
10.24432/C52C8B.

Vadim Borisov, Tobias Leemann, Kathrin Sessler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci.
Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–21, 2022. ISSN 2162-2388. doi: 10.1109/tnnls.2022.3229161.

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification And Regression Trees.
10 2017. ISBN 9781315139470. doi: 10.1201/9781315139470.

Nicolò Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System Sciences,
78(5):1404–1422, 2012. ISSN 0022-0000. doi: 10.1016/j.jcss.2012.01.001. JCSS Special Issue: Cloud
Computing 2011.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/
2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM,
2016. doi: 10.1145/2939672.2939785.

Lara Codeca, Raphael Frank, and Thomas Engel. Luxembourg sumo traffic (lust) scenario: 24 hours of
mobility for vehicular networking research. In 2015 IEEE Vehicular Networking Conference (VNC), pp.
1–8, 2015. doi: 10.1109/VNC.2015.7385539.

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

Yadolah Dodge. The Concise Encyclopedia of Statistics, pp. 66–68. Springer New York, New York, NY,
2008. ISBN 978-0-387-32833-1. doi: 10.1007/978-0-387-32833-1_50.

Adam N Elmachtoub, Ryan McNellis, Sechan Oh, and Marek Petrik. A practical method for solving con-
textual bandit problems using decision trees. arXiv preprint arXiv:1706.04687, 2017.

Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, and Fabrice Clérot. Random forest for the contextual
bandit problem. In Proceedings of the 19th International Conference on Artificial Intelligence and Statis-
tics, volume 51 of Proceedings of Machine Learning Research, pp. 93–101, Cadiz, Spain, 09–11 May 2016.
PMLR.

14

https://api.semanticscholar.org/CorpusID:1713123
https://api.semanticscholar.org/CorpusID:1713123
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C52C8B
https://doi.org/10.24432/C52C8B
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf

Published in Transactions on Machine Learning Research (10/2024)

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for
tabular data. In Advances in Neural Information Processing Systems, pp. 18932–18943. Curran Associates,
Inc., 2021.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In Advances in Neural Information Processing Systems, pp. 507–520.
Curran Associates, Inc., 2022.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining,
inference and prediction. Springer, 2 edition, 2009.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document analysis
and recognition, volume 1, pp. 278–282. IEEE, 1995.

Fazeleh Sadat Hoseini, Niklas Åkerblom, and Morteza Haghir Chehreghani. A contextual combinatorial
semi-bandit approach to network bottleneck identification. CoRR, abs/2206.08144, 2022. doi: 10.48550/
ARXIV.2206.08144.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository, n.d.

Lihong Li. Generalized thompson sampling for contextual bandits. arXiv preprint arXiv:1310.7163, 2013.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web.
ACM, 2010. doi: 10.1145/1772690.1772758.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2017.

Mushroom. UCI Machine Learning Repository, 1987. URL https://doi.org/10.24432/C5959T.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan
Lu, and Benjamin Van Roy. Epistemic neural networks. arXiv preprint arXiv:2107.08924, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Math. Oper. Res., 39(4):
1221–1243, 2014.

Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on thompson
sampling. Found. Trends Mach. Learn., 11(1):1–96, jul 2018. ISSN 1935-8237. doi: 10.1561/2200000070.
URL https://doi.org/10.1561/2200000070.

Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning,
12(1-2):1–286, 2019. ISSN 1935-8237. doi: 10.1561/2200000068.

Statlog (Shuttle). UCI Machine Learning Repository, n.d. URL https://doi.org/10.24432/C5WS31.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444.

Stanislaw Weglarczyk. Kernel density estimation and its application. ITM Web of Conferences, 23:00037,
2018. doi: 10.1051/itmconf/20182300037.

XGBoost Developers. Xgboost documentation: Parameters. https://xgboost.readthedocs.io/en/
stable/parameter.html, 2022a. [Accessed 2024-02-09].

XGBoost Developers. Xgboost documentation: Prediction. https://xgboost.readthedocs.io/en/
stable/prediction.html, 2022b. [Accessed 2024-02-09].

15

https://doi.org/10.24432/C5959T
https://doi.org/10.1561/2200000070
https://doi.org/10.24432/C5WS31
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/prediction.html
https://xgboost.readthedocs.io/en/stable/prediction.html

Published in Transactions on Machine Learning Research (10/2024)

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In International
Conference on Learning Representations, 2021.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with UCB-based exploration.
In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 11492–11502. PMLR, 13–18 Jul 2020.

Zheqing Zhu and Benjamin Van Roy. Scalable neural contextual bandit for recommender systems. In
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management,
CIKM ’23, pp. 3636–3646, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701245. doi: 10.1145/3583780.3615048.

16

Published in Transactions on Machine Learning Research (10/2024)

A Appendix

A.1 Nomenclature

Table 4: Table of notations used in this paper.

Notation Description
a Arm/action
a∗ Optimal arm
at Arm selected at time step t
A Action space, set of all arms
cn Number of training samples assigned to a leaf in regression tree n
f Tree ensemble regressor consisting of N regression trees fitted in unison
fn nth individual tree of the ensemble

mt,a Number of times arm a has been selected up to time step t
N (µ, σ2) Normal distribution with mean µ and variance σ2

on Output value associated with a leaf in regression tree n
q Function of expected reward
r Observed reward
r̃ Estimated reward
R Regret
s2

n Sample variance of the output value associated with a leaf in regression tree n
S Super arm, a set of arms
S∗ Optimal super arm
St super arm selected at time step t
t time step
U Upper confidence bound
x Context/feature vector
µ True mean
µ̃ Estimated mean
ν Exploration factor

σ2 True variance
σ̃2 Estimated variance

{xi}I
i=1 List of I entries

A.2 Further Elaboration on the Independence Assumption

Given a tree ensemble f = {f1, f2, . . . , fN}, the prediction for a context vector x is the sum of individual
tree outputs:

p(x) =
N∑

i=1
oi(x), (7)

where each oi(x) is a random variable representing the output of tree i when the input is x. Assuming
the output of each tree oi(x) has a mean µi and a variance σ2

i

ci
(where ci is the number of training samples

assigned to the leaf of tree i that x ends up in), the variance of the ensemble’s prediction is:

Var(p(x)) = Var
(

N∑
i=1

oi(x)
)

. (8)

Under the independence assumption between the trees, the variance of the sum is simply the sum of the
variances of the individual trees:

Var(p(x)) =
N∑

i=1
Var(oi(x)) =

N∑
i=1

σ2
i

ci
. (9)

17

Published in Transactions on Machine Learning Research (10/2024)

This expression allows us to estimate the total uncertainty in the ensemble’s prediction by summing up the
individual uncertainties of each tree.

In reality, especially in boosting algorithms, there might be some correlation between the trees. Let us denote
the correlation between the outputs of two trees i and j as ρij . The variance of the sum of tree outputs in
the presence of correlations becomes:

Var(p(x)) =
N∑

i=1

σ2
i

ci
+ 2

N−1∑
i=1

N∑
j=i+1

ρij

√
σ2

i

ci
·

σ2
j

cj
. (10)

Here, ρij represents the correlation coefficient between the outputs of trees i and j. If the correlations ρij are
positive, they increase the total variance of the ensemble’s prediction. However, if we assume independence
(ρij = 0), the second term vanishes, simplifying the variance to just the sum of individual variances, i.e.,

Var(p(x)) ≈
N∑

i=1

σ2
i

ci
. (11)

In the context of bagging-based ensembles like random forests, where trees are trained on different subsets of
data and with random feature selection, the correlations ρij are typically small, making this approximation
reasonable. For boosting-based methods, which sequentially fit trees, the correlations might be stronger,
implying that our approximation could be less accurate.

However, we argue that this approximation often yields a lower bound for the actual variance, where this
lower bound provides useful insights into the ensemble’s uncertainty, offering a simplified way to quantify
prediction variability. For this, we argue that negative correlations are less common than positive ones
in ensemble learning primarily due to the nature of how individual models are trained and how ensemble
methods perform.

In tree ensemble methods, individual models (e.g., decision trees) are trained on subsets of the same data
and tend to capture underlying patterns that are common across these subsets. This shared learning process
often leads to similar predictions, resulting in positive correlations. In boosting, in particular, trees are added
sequentially, with each new tree focused on correcting the errors (residuals) of the previous ensemble. As the
boosting process continues, new trees are highly dependent on the earlier trees’ mistakes. Although boosting
can sometimes create predictions that ‘pull’ in opposite directions (implying a negative correlation locally),
the overall direction of learning is typically aligned to reduce residual error. This alignment contributes
to positive correlations because all trees are ultimately working together to approximate the same target
function. Therefore, we can assume that in boosting, the overall correlation is positive. On the other hand,
as mentioned, bagging methods such as random forests use randomness (bootstrapping data samples and
feature selection) to reduce the correlation between individual trees (i.e., the correlations can be discarded).

In summary, we expect the independence assumption between the trees (i.e., ρij = 0) to hold reasonably
well for bagging methods. On the other hand, this assumption usually leads to an underestimate of the total
variance for boosting methods. This means that our calculated variance:

∑N
i=1

σ2
i

ci
serves as a lower bound

on the true variance. Interestingly, some bandit algorithms, such as UCB, are known to suffer from over-
exploration (Russo & Roy, 2014), and thus underestimating the variance could even be helpful to mitigate
this issue and lead to more efficient learning.

18

Published in Transactions on Machine Learning Research (10/2024)

A.3 Calculating Leaf Values

The code blocks presented in this section outline the procedure by which the leaf values on,l, s2
n,l and cn,l

for a leaf l in tree n are obtained for the implementation of TEUCB and TETS with XGBoost and random
forests, respectively.

Algorithm 2 Set Leaf Values - XGBoost

1: Input: Tree ensemble regressor f , number of
trees in ensemble N , base predictor value b,
learning rate η, set of D training data points
{(xi, ri)}D

i=1.
2: on,l, sn,l, cn,l = 0 ∀ trees n, leaves l
3: for i = 1 to D do
4: for n = 1 to N do
5: Check which leaf l that the context xi is as-

signed to in tree n
6: cn,l = cn,l + 1

7: Get prediction on xi from previous trees:
pn−1 = b +

∑n−1
j=1 fj(xi)

8: on,l,cn,l
= η(ri − pn−1)

9: end for
10: end for
11: for n = 1 to N do
12: for leaves l in tree n do
13: on,l = 1

cn,l

∑cn,l

i=1 on,l,i

14: s2
n,l = 1

cn,l−1
∑cn,l

i=1(on,l,i − on,l)2

15: end for
16: end for

Algorithm 3 Set Leaf Values - Random Forest

1: Input: Tree ensemble regressor f , number of
trees in ensemble N , set of D training data points
{(xi, ri)}D

i=1.
2: on,l, sn,l, cn,l = 0 ∀ trees n, leaves l
3: for i = 1 to D do
4: for n = 1 to N do
5: Check which leaf l that the context xi is as-

signed to in tree n
6: cn,l = cn,l + 1

7: on,l,cn,l
= fj(xi)

8: end for
9: end for

10: for n = 1 to N do
11: for leaves l in tree n do
12: on,l = 1

cn,l

∑cn,l

i=1 on,l,i

13: s2
n,l = 1

cn,l−1
∑cn,l

i=1(on,l,i − on,l)
14: end for
15: end for

19

Published in Transactions on Machine Learning Research (10/2024)

A.4 Path Selections

In this section, we present maps of the routes selected by the respective agents throughout one run of the
navigation task.

(a) Optimal paths (b) LinUCB (c) LinTS

(d) TreeBootstrap-XGBoost (e) TEUCB-XGBoost (f) TEUCB-RF

(g) NeuralUCB (h) TreeBootstrap-RF (i) TETS-XGBoost

(j) TETS-RF (k) NeuralTS (l) TreeBootstrap-DT

Figure 3: The road network of Luxembourg shows the trajectories of different agents for the experiment on
problem instance 1, where the corresponding cumulative regret is presented in Fig. 2a. The plots show all
the paths selected by the agents during a full run of the experiment, where a higher level of opacity indicates
that a road segment was more frequently part of a traveled path.

20

Published in Transactions on Machine Learning Research (10/2024)

A.5 Sensitivity Analysis

Here, we investigate the robustness of TEUCB and TETS to changes in a number of key (hyper)parameters.
To do so, we run the same experiments as presented in Section 4.2, but varying one parameter at a time. In
addition, we study how robust the methods are to delays in reward feedback, and compare the performance
of TEUCB and TETS to TreeBootstrap.

A.5.1 Delayed Feedback

As done by Zhang et al. (2021), in the experiments with delayed feedback presented in Fig. 4, the rewards
associated with an agent’s actions are fed in batches of varying batch size, rather than one by one instantly
after the action is taken. This setting appears to occur naturally in several real-world applications of multi-
armed bandits, as discussed by Chapelle & Li (2011). Their findings suggest that Thompson Sampling scales
better with delay in rewards than UCB methods, which is also supported by the experiments of Zhang et al.
(2021). It is not clear from our experiments whether this is the case for TEUCB, TETS, and TreeBootstrap
(which, as discussed in Section 1.1, can be viewed as a Thompson Sampling method). Comparing with the
results of Zhang et al. (2021) for NeuralUCB and NeuralTS on the same datasets, however, it appears that
the tree-based methods we study are more resilient to delays in the rewards.

A.5.2 Varied Tree Depth

In Fig. 5, we study the robustness of TEUCB and TETS towards different depths for the regression trees in
the ensembles. We observe that a significant change in tree depth may influence the performance of TEUCB
and TETS when used with both XGBoost and random forests. We note that random forests tend to benefit
from deeper trees, while XGBoost performs better with shallower ones. This is particularly interesting as
the depth is only a maximum value for XGBoost, and the algorithm is designed to automatically prune trees
where deemed beneficial for the reduction of overfitting. The extent to which this is utilized can be controlled
by changing the XGBoost parameters γ and λ, though we use the default values. As a final note on the
effect of tree depth, we observe that a depth of 10, which is used in the comparison study in Section 4.2, is
suitable.

A.5.3 Varied Ensemble Size

In Fig. 6 we study how the performance of TEUCB and TETS varies with different numbers of trees making
up the tree ensembles used to predict rewards. In this study, we see that initially going from a relatively small
ensemble of trees to a larger one can greatly improve the performance, which makes sense. However, after
this initial setup, the results stay stable when increasing the number of trees further. XGBoost appears to
be particularly sensitive to selecting too few trees. This issue may potentially be mitigated by adjusting the
learning rate parameter η, though we have not investigated this. Further, we note that setting the number
of trees to 100, as in the comparison with other bandit methods in Section 4.2, is shown to be a good choice.

A.5.4 Varied Exploration Factor

Finally, in Fig. 7 we investigate the robustness of TEUCB and TETS to different exploration factors used
to control the level of exploration. The results demonstrate that the methods are robust to changes in
the exploration factor within a wide range of values. Only one observation deviates significantly from the
pattern, in which an exploration factor of 100 is used for TEUCB with XGBoost. For both datasets, this
value results in a significantly larger average cumulative regret compared to all other evaluated methods and
parameter values. For all other values and agents, the results are stable and consistent.

21

Published in Transactions on Machine Learning Research (10/2024)

0 100 500 1000
reward delay

100

200

300

400

500

600

cu
m

ul
at

iv
e

re
gr

et

TEUCB-XGBoost
TEUCB-RF
TETS-XGBoost
TETS-RF
TreeBootstrap-XGBoost
TreeBootstrap-RF
TreeBootstrap-DT

(a) Cumulative regret with different levels of reward delays on the mushroom dataset

0 100 500 1000
reward delay

1600

1800

2000

2200

2400

cu
m

ul
at

iv
e

re
gr

et

(b) Cumulative regret with different levels of reward delays on the adult dataset

Figure 4: Comparison of TEUCB, TETS, and TreeBootstrap on the mushroom and the adult datasets with
different levels of delays. Cumulative regret for a single experiment is calculated over 10,000 time steps and
repeated 10 times. The results display the average cumulative regret plus/minus the standard deviation for
each respective agent. Hyperparameters are selected as in Section 4.2. All agents are evaluated on the same
levels of reward delays, but each agent is shifted slightly horizontally for visualization purposes.

22

Published in Transactions on Machine Learning Research (10/2024)

5 10 20
tree depth

40

60

80

100

120

140

cu
m

ul
at

iv
e

re
gr

et

TEUCB-XGBoost
TEUCB-RF
TETS-XGBoost
TETS-RF

(a) Cumulative regret with varying tree depths on the mushroom dataset

5 10 20
tree depth

1500

1550

1600

1650

1700

1750

1800

cu
m

ul
at

iv
e

re
gr

et

(b) Cumulative regret with varying tree depths on the adult dataset

Figure 5: Comparison of TEUCB and TETS on the mushroom and the adult datasets with different tree
depths. Cumulative regret for a single experiment is calculated over 10,000 time steps and repeated 10 times.
The results display the average cumulative regret plus/minus the standard deviation for each respective agent.
Hyperparameters other than tree depth are selected as in Section 4.2. All agents are evaluated with the
same tree depths, but each agent is shifted slightly horizontally for visualization purposes.

23

Published in Transactions on Machine Learning Research (10/2024)

10 20 50 100 200
number of trees

50

100

150

200

250
cu

m
ul

at
iv

e
re

gr
et

TEUCB-XGBoost
TEUCB-RF
TETS-XGBoost
TETS-RF

(a) Cumulative regret with varying ensemble sizes on the mushroom dataset

10 20 50 100 200
number of trees

1500

1550

1600

1650

1700

1750

1800

cu
m

ul
at

iv
e

re
gr

et

(b) Cumulative regret with varying ensemble sizes on the adult dataset

Figure 6: Comparison of TEUCB and TETS on the mushroom and the adult datasets with different numbers
of trees in the ensembles. Cumulative regret for a single experiment is calculated over 10,000 time steps
and repeated 10 times. The results display the average cumulative regret plus/minus the standard deviation
for each respective agent. Hyperparameters other than the numbers of trees are selected as in Section 4.2.
All agents are evaluated with the same number of trees, but each agent is shifted slightly horizontally for
visualization purposes.

24

Published in Transactions on Machine Learning Research (10/2024)

0.01 0.10 1.00 10.00 100.00
exploration factor

40

60

80

100

120

cu
m

ul
at

iv
e

re
gr

et

TEUCB-XGBoost
TEUCB-RF
TETS-XGBoost
TETS-RF

(a) Cumulative regret with varying exploration factors on the mushroom dataset

0.01 0.10 1.00 10.00 100.00
exploration factor

1500

1520

1540

1560

1580

1600

1620

1640

cu
m

ul
at

iv
e

re
gr

et

(b) Cumulative regret with varying exploration factors on the mushroom dataset

Figure 7: Comparison of TEUCB and TETS on the mushroom and the adult datasets with different explo-
ration factors. Cumulative regret for a single experiment is calculated over 10,000 time steps and repeated
10 times. The results display the average cumulative regret plus/minus the standard deviation for each re-
spective agent. Hyperparameters other than the exploration factor are selected as in Section 4.2. All agents
are evaluated on the same exploration factors, but each agent is shifted slightly horizontally for visualization
purposes.

25

	Introduction
	Related Work

	Background
	Multi-Armed Bandit Problem
	Contextual Bandit Problem
	Combinatorial Bandits

	Proposed Algorithms
	Tree-Based Weak Learners
	Uncertainty Modeling
	Tree Ensemble Upper Confidence Bound
	Tree Ensemble Thompson Sampling
	Extension to Combinatorial Bandits
	Adaptation to XGBoost
	Adaptation to Random Forest

	Experiments
	Setup
	Contextual Bandits
	Implementation
	Experimental Results

	Combinatorial Contextual Bandits
	Implementation
	Experimental Results

	Conclusion
	Appendix
	Nomenclature
	Further Elaboration on the Independence Assumption
	Calculating Leaf Values
	Path Selections
	Sensitivity Analysis
	Delayed Feedback
	Varied Tree Depth
	Varied Ensemble Size
	Varied Exploration Factor

