Under review as a conference paper at ICLR 2026

UNDERSTANDING MEDICAL TIME SERIES EVENT
PIECE BY PIECE: A FINE-GRAINED EVENT DETECTION
NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Event detection in medical time series is fundamental to supporting health moni-
toring and clinical decision-making. However, most existing methods divide time
series into fixed-length segments and perform coarse-grained, segment-level de-
tection, which fails to precisely localize the start and end times of events. This
limitation can mislead clinical assessment and obscure the true severity of condi-
tions. To address this, we propose EventCompreNet a universal network for
fine-grained event detection leveraging auxiliary tasks. Inspired by the cognitive
processes that human detect events, we introduce four human comprehension tasks
to enhance the model’s understanding of each piece of events. Moreover, to over-
come the limited knowledge transfer in existing multi-task learning structures, we
develop a task-deep-coupling framework that facilitates deeper interaction among
tasks. Through these designs, EventCompreNet achieves a comprehensive under-
standing of the entire event life cycle. Experimental results on four benchmark
datasets demonstrate that our model significantly outperforms existing state-of-
the-art time series models in fine-grained event detection and exhibits strong event
comprehension capabilities.

1 INTRODUCTION

The detection of medical time series events can provide critical guidance for health monitoring
and disease diagnosis [Levy et al.|(2023); Jia et al.|(2021); /Ahmad et al.| (2023)). Traditional event
detection tasks in time series analysis—such as sleep staging, epilepsy detection and sleep apnea
detection—have currently achieved strong performance within their respective domains, but they
typically segment signals into fixed windows (e.g., 30 s—several minutes) for classification. They fall
into the category of coarse-grained event detection approaches, which lack the flexibility to Ipinpoint
event onsets and offsets, limiting both diagnostic accuracy and assessment of disease severity.

FOG Event FOG Event
i TR kb I
Li Apnea Event L__ Apnea Event o eapey sl et v y
Coarse-grained labels BackGround [l Apnea Event Coarse-grained labels BackGround [l FOG Event
o p— I T— |
0 2 4 6 8 10 12 o 4 12 16 20 24 28
Fine-grained labels Fine-grained labels
] O —) B) E—
3.53-;75 8.48 8.85 Time(s) 534 1241139 21.09 Time(min)
(a) Obstructive sleep apnea detection (b) Freezing of gait detection in Parkinson’s disease

Figure 1: Differences between coarse-grained and fine-grained event detection labels. (a) Compared
with coarse-grained labels, fine-grained labels can accurately mark the duration of apnea events,
thus be used to assess the severity of a patient’s condition. (b) In Parkinson’s freeze of gait (FOG)
detection task, the coarse-grained labels merge two events into one, making an inaccurate event count.

Thus, a kind of fine-grained time series event detection is required. As shown in Fig. [T} unlike
coarse-grained tasks, it localizes events at the frame level (point level), precisely marking onsets
and offsets and enabling accurate event counts. Such precision supports diverse tasks—including
sleep spindle detection, Parkinsonian freezing of gait (FOG), obstructive sleep apnea (OSA), and

Under review as a conference paper at ICLR 2026

ECG waveform delineation [Kaulen et al.| (2022)); Bikias et al.| (2021); [Levy et al.|(2023); [Urteaga
et al.| (2025)—providing clinicians with reliable, objective measures of disease severity. However, to
the best of our knowledge, few studies address fine-grained event detection, and existing efforts are
task-specific with several unresolved challenges:

How to build a universal fine-grained event detection model is a challenge. The difficulty arises
from two core issues: (1) Fine-grained event detection has high requirements for the localization of
the start and end time (event boundaries), while few existing studies address this You et al.| (2021);
Kaulen et al.[(2022)). (2) Moreover, event durations vary widely—for example, sleep spindles last
0.5-2 s|Iber et al.[(2007), while obstructive apnea can span 1045 s|Levy et al.| (2023).

The key to solving these problems is enhancing the model’s comprehension of the ongoing develop-
ment status of events. Drawing on insights from human event cognition [Zacks & Tversky|(2001);
Zacks et al|(2007); Iber et al.| (2007), we decompose medical events into multi-aspect functional
pieces, then implement this decomposition through four targeted learning tasks. We term these
Human Comprehension (HC) tasks, which leverage four distinct annotation schemes to guide models
in hierarchically assembling event understanding from multiple perspectives, piece by piece.

In the scenario of this study, while many auxiliary tasks carrying a variety of valuable knowledge
are stacked on the model, effective knowledge transfer across tasks via multi-task training remains
difficult with a simple framework, presenting our second challenge.

How to effectively transfer knowledge from auxiliary tasks to the model is the second challenge.
Traditional auxiliary task framework employs a task-shared encoder for common features shared by
all tasks, while each task has a dedicated decoder to generate its specific output (see Appendix
for more details). This design poses two key issues: (1) Knowledge Transfer Restriction: Valuable
knowledge relevant to the main task is captured by auxiliary task-specific decoders but tends to
remain isolated within these decoders during the subsequent optimization process, without being
effectively transferred to the task-shared area. (2) Model Parameter Increase: Incorporating many
task-specific decoders brings a certain load to the amount of parameters of the model, making
optimization more challenging and causing redundant parameter usage. To address these, we propose
a task-deep-coupling framework to maximize the task-shared area while keeping parameter growth in
check.

To sum up, the contributions of this study are as follows: (1) We propose EventCompreNet for
fine-grained medical time series event detection. To the best of our knowledge, it is the first universal
network in this research area. (2) Referring to human detection and comprehension patterns of events,
we introduce four human comprehension tasks to enhance the model’s understanding of events from
multiple perspectives. (3) We develop a task-deep-coupling framework that improves the inter-task
knowledge transfer while avoiding parameter growth caused by adding tasks. (4) Experimental
results on four datasets demonstrate that the proposed model achieves state-of-the-art performance.
Furthermore, model visualizations illustrate its capability to comprehend events. The source code for
the proposed model is provided in the supplementary materials.

2 RELATED WORK

Traditional fine-grained medical time series event detection methods commonly rely on thresholding
techniques |Yicelbas et al.| (2018)); [Lacourse et al.| (2019b). They tailor the filter range based on
time and frequency domain characteristics. These methods perform well for simple events, but
require manual design of filtering schemes tailored to different events, which becomes challenging
for complex events. The emergence of traditional machine learning methods Hekmatmanesh et al.
(2017) has provided new technical means for detecting complex time series events, but they still rely
on the manual design of features. With the prevalence of deep learning methods, models are now
capable of automatically extracting complex features. However, deep learning-based approaches for
fine-grained event detection in this domain remain limited. Most existing studies have focused on
specific tasks such as sleep spindle detection and ECG waveform identification. For sleep spindle
wave detection, SpindleNet |[Kulkarni et al.[(2019) uses the CNN+RNN structure to implement an
online spindle detection model. It has high efficiency and good detection accuracy. SpindleU-Net
You et al.|(2021) introduces a U-Net structure network for sleep spindle wave detection. It develops
an attention module to focus on the salient spindle region and designs a new loss function for the

Under review as a conference paper at ICLR 2026

class imbalance problem. SUMO |[Kaulen et al.|(2022)) is another sleep spindle detection network
based on U-Net structure. Its detection results are more similar to the expert-labeled results and have
lower model complexity. For ECG waveforms detection, recent works such as|Urteaga et al.| (2025);
Wang et al.| (2023)); Liu et al.|(2021)) propose deep learning-based methods for precise delineation of
characteristic waveforms include P wave, QRS wave and T wave, showing strong performance on
clinically challenging cardiac events. Other medical time series event detection tasks largely remain
at the coarse-grained detection stage Levy et al.|(2023); Hu et al.|(2023); Tang et al.|(2022); [Liu et al.
(2024).

In general, many valuable fine-grained detection tasks have not been fully explored in medical
time series. Moreover, few models provide solutions for event boundary localization or event
duration adaptation. In addition, there is less research yet on constructing a universal framework for
fine-grained medical time series event detection.

3 PRELIMINARIES

Fine-grained time series event detection: The fine-grained time series event detection task can

be defined: Providing an input time series X = {1, 2, ..., 2z} with a fixed window length L,
judge the event class for each frame of X as Y = {y1,y2,...,yr}. The label in a time frame
tisy: € {0,1,...,k}, where {1,2,...,k} denotes the class of events and number 0 means the

background class. Assuming no overlap between events, each y; has a single class.

Multi-task model: The multi-task model can be defined: Given an input time series X and a task
identity m (task ID), predict the corresponding task result Y,,,.

4 MULTI-PERSPECTIVE COMPREHENSION NETWORK

We propose EventCompreNet for fine-grained medical time series event detection as shown in Figure
[l The backbone of the EventCompreNet is designed according to the U-Net structure Ronneberger
et al.|(2015). With different inputs of task IDs, the network can output four kinds of HC tasks and a
fine-grained time series event detection task (main task), respectively.

We summarize 4 key ideas of the network: (1) Four kinds of HC tasks are designed to improve
the depth of the model’s understanding of time series events. (2) A task-deep-coupling framework
is developed to maximize the degree of information interaction between tasks by maximizing the
task-shared area. (3) The coarse-grained event perception task in HC tasks is also used to filter
background sequences, which provides a relative class-balanced environment for detection. (4) The
proposed network no longer designs specific layers for different tasks. This reduces the complexity
of the network and makes it easier to optimize.

Layer Information Deeply Coupled Information Interaction

Task-Shared Area

Encoder

Convx2

Layer Input Layer | | Output Layer l_ Fine-grained event detection
Digogref Convx2 Decoder
Y Layer Boundary localization
Convx2 Encoder | Skip Connection Upsampling
Output Layer| Convx1 Layer & Concat
Task Embed | Linearx2 Pooling Lifetime analysis Coarse-grained perception
Decoder N
Layer AN~ [
¥
e\ Encoder | Skip Connection | Upsampling
Layer & Concat
IDimain . Fine-grained detection
Pooling -
IDcenter O~ Center localization
D Task Encoder A A it
edge Embed Layer % L N Boundary localization
IDlife Y Lifetime analysis
[Deg [Task-Specific Information I Coarse-grained perception
One task ID input at a time One output at a time

Figure 2: The main structure of EventCompreNet. The model is built on the U-Net structure. It takes
time series signals as input and uses task IDs as a switch to control the output task. By maximizing
the task-shared area, 4 human comprehension tasks and main task get deep information interaction,
which makes the model possess a deep comprehension of the events from different perspectives.

3

Under review as a conference paper at ICLR 2026

4.1 MULTI-PERSPECTIVE HUMAN COMPREHENSION TASKS

By breaking down the process of human understanding time series events, as shown in Figure 3] we
propose 4 human comprehension tasks from different perspectives that guide the model to increase its
comprehension of the event piece by piece. The four HC tasks are coarse-grained event perception,
center localization, boundary localization, and lifetime analysis. Train on these four tasks improves
the ability of the model to detect the presence, center, boundaries, and life cycle of the event, which
makes the model understand the event from multiple perspectives. These HC tasks are eventually
represented by their specific labels, which can be generated from the fine-grained event detection
label. The model outputs the predicted labels for these tasks, thus providing an explicit interface
for measuring and optimizing the performance of these HC tasks. This allows us to optimize all
tasks using supervised learning. Including the fine-grained event detection task, the purpose and
construction details of these tasks are described below. In order to facilitate the description, the
following introduction is described from a binary classification perspective (classify one event and
the background).

] g o P e v P s e P e

| bl [T tabel | — | Labet | l
(a) Fine-grained detection (b) Center localization (c) Boundary localization (d) Lifetime analysis

Label | Background (0) | |Backgrnund (0) I | Latent event (1) | | Background (0) |

Label [

Signal l e «||«-V\.,.;.»M-\|| S\

(e) Coarse-grained event perception

Figure 3: The multi-perspective human comprehension tasks with their labels. Figure (a) is the origin
fine-grained time series event detection task, plotted here to compare with other tasks.

Fine-Grained Event Detection Task (Main Task): As shown in Figure [3a] the mission of fine-
grained event detection is to detect the event at frame-level. From a binary classification perspective,
the event detection label with input window length L is represented as:

Ymain:{yhy%-'-ayL}, y16{071} (1)

where Y4, means the label series of main task, and y; (i € {0,1,..., L}) denotes the i-th time
frame of label. In the background frame y; is marked as number O and in the event frame y; is marked
as number 1.

Center Localization Task: As shown in Figure the target of the center localization task is to
locate the approximate center of the event and prepare for finer detection. It helps the model to focus
on the core region for event detection.

The Gaussian distribution function is suitable for gradually marking the center of the event|Dai et al.
(2022)). The closer to the center the higher its activation. Given S = {¢;, o, ..., t1} as the timeline
of input, the marking process can be defined as:

1 _ (i —12‘)2 @
ex 20 ,
V2mo P

G(S,pu;0) ={y1,y2,---,yL}, (3)

where Gaussian(-, ;o) and G (-, p; o) are the frame-level and sequence-level Gaussian distribution
generating function, respectively. Given N as the event number in the input signal, £{ ., and d° as the
center time and duration of the e-th event, the label of center localization task Y e, is generated as:

y; = Gaussian (¢, u;0) =

Hceenter :G(’ ’Ie"ﬂld’de/z)’ €= 1727"'7N7 (4)
Yeenter = e:{nQaX NHceenteT’ ®)
where H, ;.. 1s the center label of event e. ;2 and ¢ in Gaussian distribution function is chosen as

t¢ ;4 and d°/2, respectively. When multiple event labels overlap at the same time point, the maximum
value is taken.

Under review as a conference paper at ICLR 2026

Boundary Localization Task: As shown in Figure|3c| the boundary localization trains the model
to concentrate on the signs of the start and end of the event. The ideal boundary label should only
have two labels at the event start frame and end frame, which makes it difficult for the model to mine
valuable information. Therefore, in order to gradually guide the model to discover the harbingers of
event occurrence and termination in context, we use the Gaussian distribution function to make a
progressive activation curve centered on the boundaries:

H: =G(S,t5;d°/6), a= start,end 6)

Youn ary — Hea 7

b dary a:slgliifend @ ()
e=1,2,....N

where £, and ¢, ; are the start and end time of event e. H¢, ., and HZ , are the boundary labels
of the e-th event. ¢ in the Gaussian distribution function is chosen as d¢/ 6 Yioundary 1s the boundary

localization label. The closer to the boundaries, the higher the activation of the label.

Lifetime Analysis Task: As shown in Figure[3d] the target of the lifetime analysis task is to infer the
progress of events at each frame, which makes it the most challenging task of all HC tasks. This task
is used to help the model understand all stages of the event development process. Thereby, the model
has a complete comprehension of the event life cycle.

An interval from O to 1 is used to map the percentage process of events. Given the event duration d,
the event lifetime label is generated as:

. 0 it ¢ [start» end]
= . e
yq/ % ’tl € [tgta’f‘t7 t;nd] ’ (8)
lefe {ylay%"'ayZ}? (9)
Yige= _max Hi.. (10)

=1,2,...,

where Hp; ;. is the lifetime label of event e, and Yj; r¢ is the integrated lifetime label of input signal.

Coarse-Grained Event Perception Task: As shown in Figure 3¢] the target of the coarse-grained
event perception task is to be aware of whether there are latent events in the segment level input
sequences. Fine-grained event detection usually has a stronger class imbalance with a huge amount
of background class. This task helps the model learn features that can be used to exclude background
data and help with class balance. The label of coarse-grained event perception task is denoted as:

chg _ {Oa max (Ymain) =0

11
1, max (Yiain) =1 (1

where Y., is the label of coarse-grained event perception task, and max (-) chooses the max number
in series Y, qin-

4.2 TASK-DEEP-COUPLING FRAMEWORK

As shown in Figure the task-shared area of the traditional multi-task framework has certain
limitations. This inhibits the space for information interaction and causes knowledge transfer
restrictions on task-specific decoders. Therefore, in order to solve the above problems, we propose a
task-deep-coupling framework (TDC framework). The following describes its implementation.

Task-Shared Area Maximization: As shown in Figure in the TDC framework, the decoder is
changed from a task-specific layer to a task-shared layer with a task ID switch to control the output
task type. This makes the decoder a new task information interaction area. In addition, it avoids the
knowledge transfer restriction through parameter sharing. Eventually, all data processing layers (the
encoder and decoder) of the model are shared by all tasks to maximize information combination
space. The learning process of the model on different tasks is deeply coupled. Given input sequence
X and task number I D,y the process of TDC framework can be defined as:

H = Encoder (X), (12)
Tiast, = Embed (IDtask') , (13)

Under review as a conference paper at ICLR 2026

Task-Shared Area x

! D¢ sk

Encoder Encoder
//F\
Task 1 Task 2 Task 2
Dec?der Deci)der Dec?der Decfder T ———
}71 172 173 ?task
(a) Traditional framework (b) TDC framework

Figure 4: Traditional multi-task framework and task-deep-coupling framework. (a) Traditional
framework have task-specific decoders, which bring certain limitations to information exchange.
(b) Task-Deep-Coupling (TDC) framework maximizes the task-shared area and deeply couples the
learning processes of different tasks.

Va5 = Decoder (H + Tiask) , (14)

where Encoder and Decoder are the encode and decode function, respectively. Embed is the task
embed operation. H is the encoded feature map, T}4s1 is the embedding of I Dy,4i. The H and
Tiask are fused by point-wise addition and fed into the decoder to get task result Ymsk. The TDC
framework no longer designs task-specific decoders, thereby avoiding a number of parameters brought
by auxiliary tasks.

The task-shared decoder only provides a sequence output with length L. Therefore, for the coarse-
grained perception task, we apply a max pooling function with kernel size L to transform the decoder
output without extra parameter cost.

Task Synchronous Training: Simultaneous training of multiple tasks is the most important way
to enhance information interaction between tasks. Based on the TDC structure mentioned above,
we propose a task as sample view to transfer multi-task data and labels for synchronous training:
Both task ID and input signal are combined into a new sample, and the new label is corresponding
to the original task label. These can be defined as: X,,c.p = {X, I Dtask }s Ynew = Yiask, where
task = {0,1, ..., k} represents the number of task, X,,.,, and Y,,.,, are the new sample and new
label. Assuming that the original sample size is 7, for a scenario with k tasks, the process will provide
r - k samples. In this way, traditional multi-task learning patterns are converted into a multi-class
sample learning pattern. We shuffle the complete set of new samples so that multiple task types
appear in one training batch. This allows the model to optimize multiple tasks in one optimization
process, thereby exploring complementary information between tasks.

In addition, according to different tasks in a batch, we use the corresponding loss function to calculate
the loss and attach the weight of the task. Specifically, the main task and coarse-grained perception
task use cross-entropy loss, and other tasks use mean squared error (MSE) loss.

4.3 CLASS-BALANCED FILTERING

The proposed method use coarse-grained event perception task as a class-balanced filter before event
detection (The data flow is shown in Appendix [C). First, the coarse-grained event perception task
works on segment level sequences to initially filter the input sequences that are unlikely to have
events. In this way, a class-imbalanced environment with a large number of background classes
is transformed into into a relatively class-balanced environment. Ideally, each input sequence in
the relative class-balanced environment contains at least one event. Next, the data in the relative
class-balance environment is used for further fine-grained event identification.

Due to the different data environments in the prediction period, it is necessary to change the training
environment for each task. Specifically, the coarse-grained perception task is trained on all data,
while the other tasks are trained using all the sequences with events. The sample size for each task is
repeatedly sampled to align with the largest sample size task.

4.4 NETWORK BACKBONE

As shown in Figure[2] the body of the network is built according to U-NetRonneberger et al.| (2015),
thus ensuring the same length of input and output sequences. There are 3 Encoder layers and 2

Under review as a conference paper at ICLR 2026

Decoder layers which use double 1D convolutions. The input layer consists of 2 convolution layers
for expanding the channels and extracting preliminary features. The output layer uses one convolution
layer with kernel size 1 to map the channel to the number of event classes. The maximum pooling
layer is used for the downsampling operation, while the deconvolution layer is used for the upsampling
operation. Except for the output layer, each convolution layer is followed by a batch normalization
layer and the ReLU activation function. In addition, the task embedding layer consists of 2 linear
layers.

5 EXPERIMENT

We evaluate the performance of proposed model on four fine-grained event detection tasks with
different signal types and event durations: FOG detection, sleep spindle wave detection, OSA
detection, and QRS complexes wave detection.

5.1 DATASETS AND PREPROCESSING

TDCS-FOG Dataset || It collects lower-back 3-channel 128 Hz acceleration data from 62 subjects
and labels the FOG event of three freezing types (Start Hesitation, Turn, and Walking).

DREAMS Dataset Devuyst et al.[(2006): It collects 30 minutes sleep electroencephalogram (EEG)
data fragment from the 6 subjects which contain sleep spindle wave labels.

SHHS dataset|Zhang et al. (2018); |Quan et al.[(1997): It contains obstructive apnea labels of SpO-
signals from 5793 subjects sleeping. The first 1000 subjects are selected for OSA detection.

QT dataset Urteaga et al. (2025): An ECG recording Dataset with 112,497 QRS complexes
annotated by experts. 71 subjects are selected in our experiment. The details of these datasets are
given in Appendix D]

5.2 BASELINE METHODS

We adapted three specific medical event detection methods and evaluated them across all experimental
tasks: sleep spindle wave detectors SpindleU-Net |You et al. (2021) and SUMO Kaulen et al.| (2022),
as well as a latest QRS wave detection model QRSU-Net |[Urteaga et al.[(2025)), published in 2025.
Meanwhile, a hand-crafted spindle wave detector called A7|Lacourse et al.|(2019a) is used to compare
with data-driven methods. Besides, in order to make up for the lack of technical perspective in fine-
grained medical time series event detection, we introduce an effective model in the field of video
action (event) detection: MS-TCT Dai et al.|(2022). Meanwhile, some time series universal feature
extraction models are also selected as the baselines: TimesNet |Wu et al.| (2023)); Informer Zhou et al.
(2021)); Non-stationary Transformer (NSTransformer) Liu et al.|(2022); TimeMixer Wang et al.
(2024), an advanced baseline for general time series modeling. The details of these baseline methods
are given in Appendix [E]

5.3 EXPERIMENT SETTINGS

Training and Hyperparameter Settings: We implement the proposed model based on PyTorch
framework. The Adam optimizer is used to train the model. On the {FOG, DREAMS, SHHS, QT}
datasets, the learning rate is set to {1073, 1073, 10=%, 1073}, and the batch size is set to {512, 128,
256, 32}. All data are divided into input sequences using non-overlapping sliding windows. The
input sequence lengths of the models on the four datasets are {320, 3840, 320, 256}. The model is
trained for 150 epochs with a early-stop patience of 20. We use 5-fold cross-validation to evaluate all
method. In each fold, 20% of the data is the test set, and the remaining 80% of the data is divided
into the training and validation sets by 8 : 2. Other experiment and hyperparameter settings including
the baseline models are detailed in Appendix

Evaluation Metrics: We evaluate the results of the model from both event and point levels, and report
them as the mean and standard deviation over 5-fold cross-validation. (1) Event-level evaluation:

I'TDCS-FOG dataset was acquired at |https://www.kaggle.com/competitions/
tlvmc-parkinsons—-freezing-gait-prediction/data.

https://www.kaggle.com/competitions/tlvmc-parkinsons-freezing-gait-prediction/data
https://www.kaggle.com/competitions/tlvmc-parkinsons-freezing-gait-prediction/data

Under review as a conference paper at ICLR 2026

Event downstream measurements such as event start and end time positioning, and duration mea-
surement all rely on event-level detection, making event-level metrics very important. In event-level
evaluation, the consecutive positive points in prediction sequence are combined into one event. Refer-
ring to previous work Kaulen et al.|(2022); You et al.| (2021), we use event-level F1-score to measure
the performance of the model (See Appendix [F|for more details). (2) Point-level evaluation: Each
point is evaluated as an independent classification task. We use F1-score as the point-level metrics.
When calculating multiple classes, the metrics of all classes (except background) are averaged for the
final result.

5.4 COMPARISON WITH OTHER BASELINES

Table [T] shows the results of EventCompreNet and other baseline methods on four fine-grained
event detection datasets. The proposed model achieves state-of-the-art results compared with other
baselines. In addition, event-level F1-score is the most valuable metric, and EventCompreNet has
outstanding event-level detection performance.

Table 1: Performance comparison with baseline methods on four fine-grained medical time series
event detection tasks. Event-F1 and Point-F1 means the event-level and point-level F1-Score,
respectively. A7 is a hand-crafted detector which can only be used for spindle wave detection.

TDCS-FOG Dataset DREAMS Dataset SHHS Dataset QT Dataset

Method Event-F1 Point-F1 Event-F1 Point-F1 Event-F1 Point-F1 Event-F1 Point-F1
A7 - - 0.262 +0.090 0.361 = 0.064 - - - -
TimesNet 0.391 +£0.012 0.441 +£0.011 0.186 £0.101 0.337 £0.063 0.178 +0.019 0.287 £0.013 0.821 +0.082 0.804 £ 0.053
Informer 0.431£0.016 0.50240.023 0.103 £0.115 0.191 +£0.098 0.163 +0.006 0.234 £0.006 0.857 & 0.030 0.830 = 0.008
NSTransformer 0.250 £ 0.011 0.4224+0.019 0.147 £0.149 0.235+0.119 0.168 +0.045 0.239 £0.014 0.778 +0.083 0.769 = 0.066
TimeMixer 0.455 +0.019 0.5344+0.015 0.228 £0.030 0.447 £0.034 0.073 £ 0.017 0.206 £0.015 0.654 4 0.023 0.830 £ 0.010
MS-TCT 0.449 £ 0.008 0.539 +0.005 0.297 £0.038 0.490 +0.024 0.273 +£0.011 0.353 £0.008 0.769 & 0.091 0.759 = 0.065
SUMO 0.4224+0.014 0.614+0.013 0.402 £0.005 0.543 +0.036 0.285+0.049 0.366 =0.031 0.893 4+ 0.042 0.857 £ 0.021
SpindleU-Net 0.4324+0.012 0.657 +0.005 0.444 £0.051 0.577 +0.042 0.28540.042 0.375 £ 0.030 0.923 4 0.032 0.829 £ 0.018
QRSU-Net 0.450 £ 0.017 0.622 4 0.022 0.557 £0.035 0.608 4 0.029 0.291 +0.023 0.375 £0.023 0.904 4 0.021 0.854 £ 0.010

EventCompreNet 0.466 + 0.024 0.668 + 0.026 0.616 £ 0.058 0.610 4 0.051 0.310 £ 0.011 0.389 4 0.011 0.946 £ 0.012 0.901 4 0.008

Compared to deep learning methods, A7 uses hand-crafted features, which limits its performance in
sleep spindle wave detection tasks. Among the time series universal baselines, Informer achieves
good event-level detection performance on the FOG task, but shows mediocre results on the other
two datasets. Neither TimesNet nor NSTransformer achieves outstanding results in fine-grained
event detection tasks. Although these models incorporate advanced feature extraction components
such as TimesBlock and Transformer, their overall frameworks are not well suited for fine-grained
event detection. TimeMixer exhibits second-best event-F1 on the TDCS dataset, ranking just behind
our model and outperforming other universal baselines. Even so, it still demonstrates noticeable
limitations regarding event-level detection of certain fine-grained events, such as OSA events in
the SHHS dataset. In contrast, MS-TCT can effectively fuse multi-scale features for fine-grained
event detection and attains a secondary event-level Fl-score on the FOG task. However, due to
the differences in data characteristics between video action detection and medical time series event
detection, its performance on other datasets remains moderate. SpindleU-Net and SUMO, adopting
convolution-based U-Net structures, are specifically designed for sleep spindle detection. They have
demonstrated excellent performance on other fine-grained detection tasks. Similarly, QRSU-Net,
which is tailored for ECG QRS wave detection, also shows reliable event-capturing capabilities
in fine-grained detection settings. These results suggest that although powerful feature extraction
components like Transformers are worth attention, it is even more important to design frameworks
(like U-Net) that are inherently suitable for fine-grained event detection.

The proposed EventCompreNet employs a task-deep-coupling framework that efficiently transfers
knowledge from multiple HC tasks into the model. This enables a comprehensive understanding
of event existence, centers, boundaries, and life cycles. As a result, EventCompreNet achieves
state-of-the-art performance across four different tasks, making it a highly valuable and universal
model for fine-grained medical time series event detection.

In addition, Appendix |Gl also includes experiments on class-balanced filter performance and Ap-
pendix [Hfincludes the model’s performance under different IoU thresholds.

Under review as a conference paper at ICLR 2026

5.5 ABLATION STUDY

As shown in Table [} we perform Table 2: Ablation study on the DREAMS dataset.
an ablation study on the proposed
HC tasks and the TDC framework Framework Tag Coarse Center Boundary Lifetime Event-F1
on the DREAMS dataset. Four ab- Basic (@ 0.565 = 0.025
lation frameworks are considered: ® v 0.560 + 0.055
(1) Basic: Model without auxiliary (©) v 0.538 £ 0.077
iee . s Traditional () v 0.574 = 0.048
tasks: (2) Traditional: Traditional © s 0581.L0045
auxiliary task framework, each task O v v v 0.572 £ 0.041
has its specific decoder. (3) TDC: ® v 0.572 + 0.030
Task-Deep-Coupling framework. (4) (h) v 0.570 == 0.054
TDC + Balanced Filtering: Based TPC 8; v . g‘ggg i 8'81‘11
on the TDC framework, the coarse- ® v v v v 0.601 + 0.042

grained perception task is used to

TDC + Balanced Filtering (1) v/ v v v 0.616 + 0.058
filter the background sequence.

The Coarse, Center, Boundary, and Lifetime are the proposed HC tasks. Compared with the non-
auxiliary task model (a), not all auxiliary tasks work well on the traditional auxiliary task framework
(b—f). When using the TDC framework (g—k), all HC tasks bring positive improvements to the basic
model (a) and are better than the traditional framework (b—f). This demonstrates the effectiveness of
the TDC framework in improving inter-task information interaction. When class-balanced filtering is
added (1), the performance of the model is further improved. This shows that the proposed model can
create an effective relative class-balanced environment to improve model performance. In addition,
the TDC framework does not generate new parameters as the task number increases (see Appendix[l),
thus effectively controlling the complexity of the model.

5.6 VISUALIZATION OF COMPREHENSION TASKS

As shown in Figure[5] we visualize HC task outputs sleep spindle wave and FOG detection. The
model correctly labels the center, boundaries and process of the spindle wave, yielding precise
fine-grained event detections and demonstrating that it effectively learns the knowledge injected by
the HC tasks. In contrast, since the main task integrates the knowledge of all HC tasks, when some
HC tasks are not well mastered, it may also slightly affect the main task. As shown in Figure [5a]
when the lifetime prediction result remains active slightly after the event ends, the end time judged
by the main task is also delayed from ground truth. It may reflect a minor limitation of our approach.

AcchL : :

FOG Eventin |~ " |
Acceleration Signals o ‘ﬂ" "
1 1

Event detection | /‘:’ E\ I Event detection | I
Center localization | A J Center localization | J
Boundary localization L‘v‘\’j\v&———j Boundary localization | /__/:\ I

T
Lifetime analysis M J Lifetime analysis | J
) 01 2 5 4556 7 6 51011 1213
Time(s) Time(s)
(a) (b)

Figure 5: Visualization of EventCompreNet outputs on spindle wave and FOG detection. The model
can identify the center, boundaries, and lifetime of events to a certain extent.

Sleep Spindle Wave
in EEG Signal

o
N
w
IS
3

6 CONCLUSION

This study proposes a universal framework for fine-grained medical time series event detection.
Inspired by the process by that human comprehend events, we design four human comprehension
tasks to enhance the model’s comprehension of events from multiple perspectives. Meanwhile, we
develop a task-deep-coupling framework to enhance knowledge interaction between tasks. The
experiments show the proposed model achieves a state-of-the-art performance. In addition, the
proposed method can also provide new ideas for other time series tasks.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study adheres to the ICLR Code of Ethics and to all relevant regulations for research integrity,
data privacy, and human-subject protection. All datasets used are publicly released with documented
institutional ethics approvals, and no new data were collected from human subjects by the authors.

DATA SOURCES AND REPRESENTATIVENESS

We employ four publicly available physiological time-series datasets—TDCS-FOG, DREAMS,
SHHS, and QT—covering gait, EEG, SpO-, and ECG signals respectively. Each dataset provides
either formal IRB approval or equivalent documentation. A statistical summary of demographic and
signal characteristics, along with a bias analysis, is provided in Table [3|to ensure transparency.

Table 3: Statistical summary of datasets used in this study.

Dataset | Summary

Subjects: 62, Avg. Age: 69.37, Age Range: 51-94,
Gender (M:F): 70%:30%, Race: —, Total Time: 15.3 h,
TDCS-FOG Event Count: 1166, Avg. Event Duration: 17.51 s,
Duration Range: 0.18-581.98 s, Sampling: 128 Hz,
Signal: Gait (Wearable), Public: Yes (Kaggle), Ethics: Yes

Subjects: 6, Avg. Age: 45.67, Age Range: 31-53,

Gender (M:F): 50%:50%, Race: —, Total Time: 3.0 h,
DREAMS Event Count: 538, Avg. Event Duration: 0.98 s,

Duration Range: 0.39-1.80 s, Sampling: 256 Hz (upsampled),
Signal: EEG, Public: Yes (Zenodo), Ethics: Yes

Subjects: 997, Avg. Age: 57.41, Age Range: 39-89,

Gender (M:F): 50%:50%, Race (White:Black): 87%:13%,
SHHS Total Time: 8132.9 h, Event Count: 26053,

Avg. Event Duration: 25.49 s, Duration Range: 2-185 s,
Sampling: 1 Hz, Signal: SpOa2, Public: Yes (NSRR), Ethics: Yes

Subjects: 71, Demographics: —,
QT Total Time: 146.5 h, Event Count: 2156,
Avg. Event Duration: 27.64 s, Duration Range: 12-67 s,
Sampling: 250 Hz, Signal: ECG, Public: Yes (PhysioNet), Ethics: Yes

Most datasets focus on adult and elderly populations, consistent with their clinical context (e.g.,
Parkinson’s disease, sleep apnea). DREAMS and SHHS are gender-balanced, while TDCS-FOG
shows a male skew consistent with epidemiological prevalence. Only SHHS provides race metadata,
limiting subgroup fairness analysis.

PRIVACY, SECURITY, AND COMPLIANCE

All datasets are de-identified and distributed under their original open-data licenses (Kaggle, Zenodo,
NSRR, PhysioNet). No personally identifiable information is accessible to the authors. Data handling
complies with HIPAA/GDPR where applicable.

POTENTIAL SOCIETAL IMPACT

Our methods substantially advance micro-event detection in physiological signals, providing a strong
foundation for clinical research and future diagnostic tools, with significant potential to accelerate
clinical research and inform next-generation diagnostic systems. While they are not yet intended for
direct clinical decision-making, we proactively address potential algorithmic bias and will release
code and model weights to enable independent verification and continued fairness evaluation.

In summary, this work complies with ethical guidelines, documents dataset characteristics and
limitations, and reflects our commitment to fairness, privacy, and responsible research practice.

10

https://iclr.cc/public/CodeOfEthics

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

While the full code will be released with the final version, we have already provided the core
implementation as described in Appendix[K] Moreover, comprehensive model descriptions, along with
thorough training and evaluation schemes, are provided to ensure faithful reproduction. Parameter
choices and tuning ranges for both our method and baselines are documented in Appendix|L} Appendix
and Appendix|N| Together with the publicly available datasets, these resources are sufficient for
independent researchers to replicate our methodology and results once the paper is published.

11

Under review as a conference paper at ICLR 2026

REFERENCES

[jaz Ahmad, Xin Wang, Danish Javeed, Prabhat Kumar, Oluwarotimi Williams Samuel, and Shixiong
Chen. A hybrid deep learning approach for epileptic seizure detection in eeg signals. IEEE Journal
of Biomedical and Health Informatics, pp. 1-12, 2023. doi: 10.1109/JBHI.2023.3265983.

Thomas Bikias, Dimitrios Iakovakis, Stelios Hadjidimitriou, Vasileios Charisis, and Leontios J
Hadjileontiadis. Deepfog: an imu-based detection of freezing of gait episodes in parkinson’s
disease patients via deep learning. Frontiers in Robotics and Al, 8:537384, 2021.

Rui Dai, Srijan Das, Kumara Kahatapitiya, Michael S Ryoo, and Francois Brémond. Ms-tct: multi-
scale temporal convtransformer for action detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20041-20051, 2022.

Stéphanie Devuyst, Thierry Dutoit, Jean-Francois Didier, Francois Meers, Etienne Stanus, Patricia
Stenuit, and Myriam Kerkhofs. Automatic sleep spindle detection in patients with sleep disorders.
In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp.
3883-3886. IEEE, 2006.

Amin Hekmatmanesh, Mohammad Mikaeili, Khosrow Sadeghniiat-Haghighi, Huapeng Wu, Heikki
Handroos, Radek Martinek, and Homer Nazeran. Sleep spindle detection and prediction using a
mixture of time series and chaotic features. Advances in Electrical and Electronic Engineering, 15
(3):435-447, 2017.

Kun Hu, Shaohui Mei, Wei Wang, Kaylena A Ehgoetz Martens, Liang Wang, Simon JG Lewis,
David D Feng, and Zhiyong Wang. Multi-level adversarial spatio-temporal learning for footstep
pressure based fog detection. IEEE Journal of Biomedical and Health Informatics, 2023.

C. Iber, S. Ancoli-Israel, A. L. Chesson, S. F. Quan, et al. The AASM manual for the scoring of
sleep and associated events: rules, terminology and technical specifications, volume 1. American
academy of sleep medicine Westchester, IL, 2007.

Ziyu Jia, Youfang Lin, Jing Wang, Xuehui Wang, Peiyi Xie, and Yingbin Zhang. Salientsleepnet:
Multimodal salient wave detection network for sleep staging. In Zhi-Hua Zhou (ed.), Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2614-2620.
International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
ijcai.2021/360. URL |https://doi.org/10.24963/1ijcai.2021/360, Main Track.

Lars Kaulen, Justus TC Schwabedal, Jules Schneider, Philipp Ritter, and Stephan Bialonski. Advanced
sleep spindle identification with neural networks. Scientific Reports, 12(1):7686, 2022.

Prathamesh M Kulkarni, Zhengdong Xiao, Eric J Robinson, Apoorva Sagarwal Jami, Jianping Zhang,
Haocheng Zhou, Simon E Henin, Anli A Liu, Ricardo S Osorio, Jing Wang, et al. A deep learning
approach for real-time detection of sleep spindles. Journal of neural engineering, 16(3):036004,
2019.

Karine Lacourse, Jacques Delfrate, Julien Beaudry, Paul Peppard, and Simon C. Warby. A sleep
spindle detection algorithm that emulates human expert spindle scoring. Journal of Neuro-
science Methods, 316:3—11, 2019a. ISSN 0165-0270. doi: https://doi.org/10.1016/j.jneumeth.
2018.08.014. URL https://www.sciencedirect.com/science/article/pii/
S0165027018302504. Methods and models in sleep research: A Tribute to Vincenzo Crunelli.

Karine Lacourse, Jacques Delfrate, Julien Beaudry, Paul Peppard, and Simon C Warby. A sleep
spindle detection algorithm that emulates human expert spindle scoring. Journal of neuroscience
methods, 316:3-11, 2019b.

Jeremy Levy, Daniel Alvarez, Félix Del Campo, and Joachim A Behar. Deep learning for obstructive
sleep apnea diagnosis based on single channel oximetry. Nature Communications, 14(1):4881,
2023.

Hongmei Liu, Haibo Zhang, Baozhu Li, Xinge Yu, Yuan Zhang, and Thomas Penzel. Msleepnet: A
semi-supervision based multi-view hybrid neural network for simultaneous sleep arousal and sleep
stage detection. IEEE Transactions on Instrumentation and Measurement, 2024.

12

https://doi.org/10.24963/ijcai.2021/360
https://www.sciencedirect.com/science/article/pii/S0165027018302504
https://www.sciencedirect.com/science/article/pii/S0165027018302504

Under review as a conference paper at ICLR 2026

Jinlei Liu, Yunqing Liu, Yanrui Jin, Xiaojun Chen, Liqun Zhao, and Chengliang Liu. P-wave detection
using a parallel convolutional neural network in electrocardiogram. In 2021 4th International
Conference on Information Communication and Signal Processing (ICICSP), pp. 157-161. IEEE,
2021.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:
9881-9893, 2022.

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O’Connor,
David M Rapoport, Susan Redline, John Robbins, Jonathan M Samet, et al. The sleep heart health
study: design, rationale, and methods. Sleep, 20(12):1077-1085, 1997.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention—-MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part II1
18, pp. 234-241. Springer, 2015.

Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost,
Daniel Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved
electroencephalographic seizure analysis. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=k9bx1EfHI_-.

Jon Urteaga, Andoni Elola, Daniel Herrdez, Anders Norvik, Eirik Unneland, Abhishek Bhardwaj,
David Buckler, Benjamin S Abella, Eirik Skogvoll, and Elisabete Aramendi. A deep learning
model for grs delineation in organized rhythms during in-hospital cardiac arrest. International
Journal of Medical Informatics, pp. 105803, 2025.

Duoduo Wang, Lishen Qiu, Wenliang Zhu, Yanfang Dong, Huimin Zhang, Yuhang Chen, et al.
Inter-patient ecg characteristic wave detection based on convolutional neural network combined
with transformer. Biomedical Signal Processing and Control, 81:104436, 2023.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=70LshfEIC2.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=ju_Ugw3840q.

Jiaxin You, Dihong Jiang, Yu Ma, and Yuanyuan Wang. Spindleu-net: An adaptive u-net framework
for sleep spindle detection in single-channel eeg. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 29:1614—-1623, 2021.

Ciineyt Yiicelbas, Sule Yiicelbas, Seral Ozsen, Giilay Tezel, Serkan Kiiggiiktiirk, and Sebnem
Yosunkaya. Automatic detection of sleep spindles with the use of stft, emd and dwt methods.
Neural Computing and Applications, 29:17-33, 2018.

Jeffrey M Zacks and Barbara Tversky. Event structure in perception and conception. Psychological
bulletin, 127(1):3, 2001.

Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. Event
perception: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007.

Guo-Qiang Zhang, Licong Cui, Remo Mueller, Shigiang Tao, Matthew Kim, Michael Rueschman,
Sara Mariani, Daniel Mobley, and Susan Redline. The national sleep research resource: towards a
sleep data commons. Journal of the American Medical Informatics Association, 25(10):1351-1358,
2018.

13

https://openreview.net/forum?id=k9bx1EfHI_-
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=ju_Uqw384Oq
https://openreview.net/forum?id=ju_Uqw384Oq

Under review as a conference paper at ICLR 2026

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(12):11106-11115, May 2021. doi: 10

1609/aaai.v35i12.17325. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17325.

14

https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325

Under review as a conference paper at ICLR 2026

A THE KEY POINTS THAT HUMANS DETECT AND COMPREHEND EVENTS

Fine-grained time series event detection

- - -~ -~
- - - - = = ~ ~
Coarse-grained event perception Event center localization
!/\
O v Ty \V,(/' I mnrn] e, AN]
Infer whether a segment has target events. Event Center: convert from a positive peak

to a negative peak.

Event boundary localization Event lifetime analysis
T NNURPNUVL | /\I‘ AN e P / \ﬂw«v"’\.\,_/w
Event Begin: sudden rise from average value. First 33% lifetime: swift ascent.

Event End: slow jittered return to average value. Middle 33% lifetime: swift descent.
Last 33% lifetime: slow ascent with minor
fluctuations.

Figure 6: The main job for humans to detect and comprehend time series events. The process of
comprehension includes perceiving the existence of an event at a coarse-grained level, learning the
center and boundaries of it, and analyzing the development stage of the event throughout its lifetime.

Our framework is grounded in the cognitive strategies that clinical physicians employ when inter-
preting long-term PSG recordings, rather than merely imitating everyday sensory processing. This
perspective motivates the design of our four HC tasks, each reflecting a key stage of human event
understanding.

* Coarse-grained perception: Physicians scan the night’s recordings to filter background
and focus on likely event segments—corresponding to our coarse-grained perception task,
similar to discarding background frames in video action localization.

* Event localization (Center & Boundary): In these segments, physicians identify the core
region of an event (analogous to the action climax). The center task infers the event extent
from the center outward. The boundary task determines start/end times, complementing the
center task by refining event boundaries “outside in.”

* Event integrity judgment (Lifetime): Physicians also assess event completeness, corre-
sponding to our lifetime task, which models event continuity.

These processes are multi-view and interactive, not strictly sequential. The four HC tasks mirror these
perspectives—progressing coarse-to-fine, inside-out, and outside-in, while modeling event integrity.
References [Iber et al.| (2007); [Zacks et al.| (2007)); Zacks & Tversky| (2001) on event perception
and event structure theories also inspired our task design, highlighting that humans perceive events
through dynamic, hierarchical segmentation. This provides crucial cognitive-theoretical inspiration
for the design of HC tasks.

B THE KNOWLEDGE TRANSFER RESTRICTION OF TRADITIONAL AUXILIARY
TASK FRAMEWORK

Knowledge Transfer Restriction: As shown in Figure [/} the task-shared area pertains to the data
processing layer that is common to all tasks. It serves as a crucial space for the model to uncover
and integrate relevant knowledge across tasks. Typically, optimization enhances the performance
of auxiliary tasks, while it does not necessarily improve the performance of the primary task. One
possible reason is that the valuable knowledge for the main task is learned by auxiliary task-specific
decoders and is continuously retained in these decoders during training, without being effectively
transferred to the task-shared area.

15

Under review as a conference paper at ICLR 2026

X
} Knowledge that is valuable
Task-Shared to the main task may be
Encoder retained in private spaces.
Main Task HC Task 1 HC Task 2 HC Task 3 HC Task 4
Decoder Decoder Decoder Decoder Decoder

Figure 7: Traditional auxiliary task framework. The proposed HC tasks act as examples. The model is
expected to learn better task-shared feature representations, but valuable information may be retained
in task-specific decoders. In addition, each decoder imposes a burden on the number of parameters in
the model.

C DETAILS OF CLASS-BALANCED FILTERING

Figure [§] shows the prediction process of the proposed network. The proposed method uses the
coarse-grained event perception task as a class-balanced filter before event detection. First, the
coarse-grained event perception task works on segment-level sequences to initially filter the input
sequences that are unlikely to have events. In this way, a class-imbalanced environment with a
large number of background classes is transformed into into a relatively class-balanced environment.
Ideally, each input sequence in the relatively class-balanced environment contains at least one event.
Next, the data in the relatively class-balanced environment is used for further fine-grained event
identification.

Class-Imbalanced }MATM,«‘ FMTNﬁA‘ |_,MM/|\/JV| F,Aﬂrm,‘l

Environment

Coarse-Grained Perception ‘ EventComprehensionNet ‘

__ i_______________________-
! ! }

Relative | Background || Background ||Latent event|| Background |
Class-Balanced

Environment l
X X

Fine-Grained Event Detection ‘ EventComprehensionNet ‘

Figure 8: The prediction process of the proposed model. The coarse-grained perception task is used
to filter background input sequences, providing a relatively class-balanced environment for the model.

D DETAILS OF EXPERIMENTAL DATASETS

TDCS-FOG: It collects lower-back 3D accelerometer data from subjects, and identified the precise
start and end times when the subject experienced three types of freezing of gait (Start Hesitation, Turn,
and Walking). It contains 833 fragments from 62 subjects (128 Hz; three axes: vertical, mediolateral,
and anteroposterior).

16

Under review as a conference paper at ICLR 2026

DREAMS: It collects 30-minute sleep EEG data fragments from subjects which contain sleep spindle
wave labels. According to|You et al.|(2021)), the labeled EEG channel is upsampled to 256 Hz for
detection.

SHHS: Subset SHHS-1 contains obstructive apnea (OSA) labels of SpO, signals from 5793 subjects
sleeping throughout the night. We select the first 1000 subjects for OSA detection (1 Hz sampling).

QT: An ECG dataset with expert annotations for QRS complexes, containing diverse morphologies
and high-quality labels to evaluate precise delineation.

E DETAILS OF BASELINE METHODS

SpindleU-Net (You et al.,|2021): U-Net structure with attention for spindle detection and a loss to
alleviate class imbalance.

SUMO (Kaulen et al., 2022): U-Net based, producing detection results close to expert labels with
lower complexity.

MS-TCT (Dai et al., 2022): Video action detection model combining convolution and Transformers
with multi-scale fusion; includes an auxiliary center branch.

TimesNet (Wu et al., [2023): Universal backbone leveraging TimesBlock to discover multi-periodicity
and complex temporal variations.

Informer (Zhou et al., 2021): Long sequence forecasting model with strong classification ability in
some settings.

Non-Stationary Transformer (NSTransformer) (Liu et al.,[2022): Addresses over-stationarization
in forecasting; effective in some classification tasks.

TimeMixer (Wang et al.,[2024): Fully-MLP backbone with past/future mixing blocks for general
time series modeling.

QRSU-Net (Urteaga et al., [2025): U-Net tailored for ECG QRS detection with morphological
constraints and multi-scale context encoding.

F CALCULATION OF EVENT-LEVEL F1-SCORE

The intersection over union (IoU) of the predicted event and the ground-truth (GT) event is used
to measure whether the prediction hits the GT. When multiple predictions hit the same GT, only
the one with the highest IoU counts as true positive (TP). Predictions not hitting any GT are false
positives (FP), and GT events not hit by any prediction are false negatives (FN). Event-level F1-score
is computed as F1 =2-TP/(2-TP + FP + FN). We use IoU=0.5 by default.

G EFFECTIVENESS OF CLASS-BALANCED FILTERING

Figure[9 shows the confusion matrix of the coarse-grained event awareness task on the TDCS-FOG
test set. 82% of background sequences are filtered out, and the remaining 18% of background
sequences and 88% of event sequences are sent to the subsequent event detection process, yielding a
relatively class-balanced environment.

17

Under review as a conference paper at ICLR 2026

Background

Event
Sequence

Event
Sequence

Background

0.8
0.7
0.6
0.5
0.4
0.3
0.2

Figure 9: Confusion matrix of the coarse-grained event awareness task on TDCS-FOG (test).

DREAMS: all test samples
1.0

0.8 —

/

Event-F1
=)
S
./
./

0.2 \

%90 0.2 0.4 0.6 0.8 1.0
loU

DREAMS: boundary samples only
1.0

0.8

Event-F1
o
o

o
'S

0.2

O'%.O 0.2 0.4 0.6 0.8 1.0

DREAMS

0 40 80 120 160

all test samples 14

boundary samples 7

SHHS: all test samples
1.0

0.8

o
o

Event-F1

/

0.2

%90 0.2 0.4 0.6 0.8 1.0
loU

SHHS: boundary samples only
1.0

0.8

Event-F1
IS
o

1N
IS

0.2

%90 0.2 0.4 0.6 0.8 1.0
loU

SHHS

0 500 1000 1500 2000 2500

all test samples 218!

boundary samples 707|

TDCS-FOG: all test samples
1.0

0.8

Event-F1
=)
o

e
IS

0.2

%90 0.2 0.4 0.6 0.8 1.0
loU

TDCS-FOG: boundary samples only
1.0

0.8

Event-F1
o
o

o
IS

0.2

0'%.0 0.2 0.4 0.6 0.8 1.0

TDCS-FOG
0 1000 2000 3000 4000 5000

all test samples 433

boundary samples 42! ‘

Figure 10: Trends of event-level F1-score under different IoU thresholds across datasets, and the
numbers of total and boundary test samples.

H EVENT-LEVEL DETECTION WITH DIFFERENT IOU THRESHOLDS

Figure [T0]shows event-level F1 under different IoU thresholds on all samples and on boundary-only
samples. A “boundary sample” contains both event and background frames within the input window,
while a “non-boundary sample” contains frames of only one class. Because event durations can be

18

Under review as a conference paper at ICLR 2026

much longer than the model window on some datasets (e.g., TDCS), only a small fraction of windows
are boundary samples, making boundary localization harder and more sensitive to IoU.

I PARAMETER ADVANTAGE OF TDC FRAMEWORK

Figure|l 1|shows the parameter growth comparison between the Traditional and TDC frameworks. The
TDC framework maintains a constant parameter count as the number of tasks increases, effectively
reducing model complexity and memory footprint compared with the traditional framework.

Parameter Growth: Traditional vs TDC

—e— Traditional Framework
2254 TDC Framework

Parameters (M)

Basic 1 Aucxiliary Task 4 Auxiliary Tasks

Figure 11: Parameter growth: Traditional vs TDC Framework.

J DIFFERENCES BETWEEN FINE-GRAINED EVENT DETECTION AND
ANOMALY DETECTION

Time series anomaly detection methods often target outliers, which may not coincide with clinically
meaningful events. Events of interest in this work are not necessarily outliers, and outliers may not
correspond to target events. Therefore, anomaly detection approaches are not universally applicable
to fine-grained event detection tasks considered here.

K MODEL SOURCE CODE

We provide core code in the supplementary materials (EventCompreNet_code): model building
(EventCompreNet.py), data loading (load_data.py), and training/testing (train_and_test.py). The full
code and baselines will be open-sourced upon acceptance.

L IMPLEMENTATION DETAILS AND HYPERPARAMETER SETTINGS

All models undergo class-balance pre-processing during training (minority event-containing se-
quences are resampled to match the majority background sequences). Each model adds a smoothing
layer to smooth frame-level outputs (Kaulen et al.,[2022). On SHHS, as apnea manifests on SpO,
after 8—10 seconds, an input delay is used as a tunable hyperparameter.

19

Under review as a conference paper at ICLR 2026

Table 4: Best hyperparameters for EventCompreNet.

Hyperparameter \ TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.001 0.0001 0.001
batch_size 512 128 256 32
window _size 320 3840 320 256
weight_decay 0.0002 0.0000 0.0002 0.0005
dropout_rate 0.0 0.1 0.0 0.0
convchannels 256 64 128 8
kernel_size 13 13 7 5
sampling_scale [2,2,2.2] [104.22] [104,2,2] [10,2,2.2]
class_weight_0 1.0 0.3 0.2 0.1
class_weight_1 1.0 0.5 0.8 1.0
class_weight_2 2.0 - - -
class_weight_3 2.5 - - -
main_task_weight 1.0 0.9 0.9 0.7
center_task_weight 0.6 0.6 0.6 0.1
boundary_task_weight 0.4 0.1 0.5 0.1
lifetime_task_weight 0.8 1.2 0.4 0.1
coarse_task_weight 0.5 17.5 16.5 10.0
coarse_filter_rate 0.4 0.2 0.3 0.5
avg_window 320 100 1 20
offset - - 10 -
M HYPERPARAMETER SETTINGS OF BASELINE METHODS
Table 5: Best hyperparameters for MS-TCT
Hyperparameter \ TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.001 0.003 0.001
batch_size 256 32 256 32
window _size 128 256 128 256
weight_decay 0.0002 0.0004 0.0004 0.0005
firstchannel 8 8 4 8
num_heads 8 2 2 1
num_block 3 4 2 3
class_weight_0 0.6 0.1 1.0 0.1
class_weight_1 2.5 0.8 500.0 1.0
avg_window 128 200 50 20
offset - - 8 -
Table 6: Best hyperparameters for TimesNet
Hyperparameter \ TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.0005 0.001 0.001
batch_size 64 32 128 32
window_size 64 256 240 256
weight_decay 0.0004 0.0002 0.0000 0.0005
d_model 8 8 8 16
top_k 13 13 5 5
num _kernels 2 3 3 7
e_layers 2 2 2 2
class_weight_0 0.3 0.2 0.3 0.1
class_weight_1 1.0 0.5 0.8 1.0
avg_window 1 256 10 20
offset - - 0 -

20

Under review as a conference paper at ICLR 2026

Table 7: Best hyperparameters for Informer

Hyperparameter | TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.003 0.001 0.001
batch_size 128 16 128 32
window _size 256 512 60 128
weight_decay 0.0002 0.0004 0.0002 0.0005
d_model 32 32 32 16
n_heads 1 2 1 16
e_layers 2 1 1 2
factor 1 4 6 1
class_weight_0 0.3 0.1 0.3 0.1
class_weight_1 1.0 0.5 0.8 1.0
avg_window 256 100 50 20
offset - - 10 -

Table 8: Best hyperparameters for Non-Stationary Transformer

Hyperparameter | TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.001 0.001 0.001
batch_size 32 64 64 32
window _size 256 256 120 256
weight_decay 0.0002 0.0006 0.0000 0.0005
d_model 8 16 32 8
n_heads 1 1 4 4
e_layers 2 2 1 2
factor 8 8 8 1
p-hidden_dims [16,16] [4,4] [8,8] [4,4]
p-hidden _layers 2 2 2 1
class_weight_0 0.3 0.2 0.3 0.1
class_weight_1 0.5 0.8 0.8 1.0
avg_window 1 256 25 20
offset - - 10 -

Table 9: Best hyperparameters for SpindleU-Net
Hyperparameter | TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.0005 0.003 0.001
batch_size 64 32 256 32
window _size 512 2048 960 1536
weight_decay 0.0002 0.0004 0.0000 0.0005
kernel_size 7 5 5 5
class_weight_0 0.6 0.1 0.3 0.1
class_weight_1 2.0 0.5 0.8 1.0
avg_window 500 100 25 7
offset - - 10

21

Under review as a conference paper at ICLR 2026

Table 10: Best hyperparameters for SUMO

Hyperparameter | TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.0005 0.001 0.001
batch_size 64 32 64 32
window_size 256 2048 2560 256
weight_decay 0.0004 0.0002 0.0002 0.0005
convchannels 128 64 64 32
class_weight 0 0.6 0.2 0.3 0.1
class_weight_1 2.0 2.0 1.0 1.0
avg_window 200 100 10 20
offset - - 8 -
Table 11: Best hyperparameters for QRSU-Net
Hyperparameter | TDCS-FOG DREAMS SHHS QT
learning_rate 0.001 0.001 0.001 0.001
batch_size 64 64 64 64
window _size 256 2048 960 256
weight_decay 0.0002 0.0002 0.0002 0.0005
kernel_size 18 18 18 5
convchannels 24 24 24 24
class_weight_0 0.6 0.1 0.3 0.1
class_weight_1 2.0 1.0 0.8 0.8
avg_window 200 25 25 100
offset - - 8 -
Table 12: Best hyperparameters for TimeMixer
Hyperparameter | TDCS-FOG DREAMS SHHS QT
learning_rate 0.0001 0.0001 0.0001 0.001
batch_size 256 16 64 32
window _size 256 512 256 256
weight_decay 0.0000 0.0005 0.0000 0.0005
ff_dim 64 512 64 256
hidden_dim 1024 2048 2048 1024
e_layers 2 6 2 2
down_sampling_layers 1 1 1 1
down_sampling_window 2 2 2 2
top_k 5 5 5 5
class_weight_0 0.3 0.1 0.1 0.1
class_weight_1 2.0 1.0 1.0 1.0
avg_window 400 200 20 25
offset - - 8 -

22

Under review as a conference paper at ICLR 2026

N TUNING RANGES OF ALL MODELS

Due to space limits, we summarize representative tuning ranges below. Full ranges are consistent with the

appendix and can be provided as supplementary files upon request.

Table 13: Hyperparameter tuning range of MS-TCT on TDCS-FOG

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 64, 128, 256

window_size
weight_decay
firstchannel
num_heads
num_block
class_weight_0
class_weight_1
avg_window

128, 256, 512, 1024, 1280
0.0000, 0.0002, 0.0004
4,8, 16
1,
1

s T

b b 4
0.1,0.2,0.4,0.6,0.8, 1.0
04,0.8,1.0,2.0,2.5,3.0

)

o
S WA

1, 10, 25, 50, 100, 128, 200, 500, 1000, 1280

Table 14: Hyperparameter tuning range of MS-TCT on DREAMS

Hyperparameter |

Range

learning_rate
batch_size
window_size
weight_decay
firstchannel
num_heads
num_block
class_weight 0
class_weight_1
avg_window

0.003, 0.001, 0.0005, 0.0001
32, 64, 128, 256
256, 512, 1024, 2048
0.0000, 0.0002, 0.0004
4,8,16
1,2,4,8
1,2,3,4
1,02
0.5,0.8,1.0,2.0
10, 25, 50, 100, 200, 500, 1000, 2048

S WA

Table 15: Hyperparameter tuning range of MS-TCT on SHHS

Hyperparameter ‘ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 128, 256, 512

window _size
weight_decay
firstchannel
num_heads
num_block
class_weight 0
class_weight_1
avg_window
offset

64, 128, 256, 512, 640, 960, 1280, 2048
0.0000, 0.0002, 0.0004, 0.001

16, 32, 64, 128
1,2,4
2,3,4

0.1,0.2,0.3
0.5,0.8,1.0,2.0,2.5
1, 10, 25, 50, 100, 500, 1000, 2048
0,8,10,12, 18

23

Under review as a conference paper at ICLR 2026

Table 16: Hyperparameter tuning range of MS-TCT on QT

Hyperparameter | Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 128, 256, 512

window_size
weight_decay
firstchannel
num_heads
num_block
class_weight 0
class_weight_1
avg_window

64, 128, 256, 512, 640, 960, 1024, 1536, 2048
0.0000, 0.0002, 0.0005, 0.001
2,4,8,12, 16, 32, 64, 128
1,2,4
1,2,3,4
0.1,0.2,0.3
0.5,0.8,1.0,2.0,2.5
1, 10, 15, 20, 25, 50, 100, 500, 1000

Table 17: Hyperparameter tuning range of TimesNet on TDCS-FOG

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64

window _size
weight_decay

64,256, 1024, 1920
0.0000, 0.0002, 0.0004

d_model 8,16, 32,64
top_k 5,9,13
num_kernels 1,2,3,4
e_layers 1,2
class_weight_0 0.1,0.3
class_weight_1 0.5,0.7,1.0, 2.0
class_weight_2 0.5,0.7, 1.0, 2.0
class_weight_3 0.5,0.7,1.0,2.0

avg_window

1, 100, 500, 1000, 1920

Table 18: Hyperparameter tuning range of TimesNet on DREAMS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64, 128

window _size
weight_decay
d_model

top_k
num_kernels
e_layers
class_weight_0
class_weight_1
avg_window

256, 512, 768, 1024, 1280, 2560, 3840

0.0000, 0.0002, 0.0004, 0.0006

8, 16, 32, 64

5,7,9,11, 13

2,3,4,5
1,2
0.1,0.2,0.3
0.5,0.8,1.0,2.0,3.0

1, 10, 100, 256, 500, 1000, 3840

24

Under review as a conference paper at ICLR 2026

Table 19: Hyperparameter tuning range of TimesNet on SHHS

Hyperparameter |

Range

learning_rate
batch_size
window_size
weight_decay
d_model

top_k
num_kernels
e_layers
class_weight_0
class_weight_1
avg_window
offset

0.003, 0.001, 0.0005, 0.0001
16, 32, 128, 256
60, 120, 240, 480, 512, 960, 1024, 2048
0.0000, 0.0002, 0.0004
8,16, 32
5,13
2,3,4
1,2
0.2,0.3
0.5,0.8,1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000, 2048
0,8,12

Table 20: Hyperparameter tuning range of TimesNet on QT

Hyperparameter |

Range

learning_rate
batch_size
window_size
weight_decay
d_model

top_k
num_kernels
e_layers
class_weight_0
class_weight_1
avg_window

0.003, 0.001, 0.0005, 0.0001
16, 32, 64, 128, 256
64, 128, 256, 512, 1024, 1536, 2048
0.0000, 0.0002, 0.0005

8,16, 32

5,7,9,13
2,3,5,7

1,2,3
0.1,0.2,0.3
0.5,0.8,1.0,2.0
1, 10, 15, 20, 25, 50, 100, 200, 500, 1000

Table 21: Hyperparameter tuning range of Informer on TDCS-FOG

Hyperparameter | Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64, 128

window_size

weight_decay

d_model
n_heads
e layers
factor

64,256, 1024, 1920
0.0000, 0.0002, 0.0004
8,16, 32, 64
1,2,4
1,2
1,4,8

class_weight_0
class_weight_1
avg_window

0.1,0.3
0.5,0.7,1.0,2.0
1, 100, 256, 500, 1000, 1920

Table 22: Hyperparameter tuning range of Informer on DREAMS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005
batch_size 16, 32, 64, 128

window _size
weight_decay
d_model
n_heads
e_layers

factor
class_weight 0
class_weight_1
avg_window

64, 128, 256, 512, 768, 1024
0.0001, 0.0002, 0.0004, 0.0006
32,64
2,4
1,2
1,2,3,4,5
0.1,0.2
0.5,0.8,1.0,1.5,2.0
1, 10, 25, 50, 100, 200, 250, 500

25

Under review as a conference paper at ICLR 2026

Table 23: Hyperparameter tuning range of Informer on SHHS

Hyperparameter \ Range
learning_rate 0.001, 0.0005, 0.0001
batch_size 64, 128

window _size
weight_decay
d_model
n_heads
e_layers

factor
class_weight_0
class_weight_1
avg_window
offset

60, 120, 240, 480, 512, 960
0.0000, 0.0002, 0.0004
8,16, 32

0,10, 12, 14

Table 24: Hyperparameter tuning range of Informer on QT

Hyperparameter ‘ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64, 128

window _size
weight_decay
d_model
n_heads
e_layers

factor
class_weight 0
class_weight_1
avg_window

64, 128, 256, 512, 960
0.0000, 0.0002, 0.0005
4,8, 16,32, 64
1,2,4,8,16
1,2
1,2,6,8
0.1,0.2,0.3
0.8,1.0,2.0

1, 10, 15, 20, 25, 50, 100, 200, 500

Table 25: Hyperparameter tuning range of Non-Stationary Transformer on TDCS-FOG

Hyperparameter | Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32

window _size 64,256, 1024
weight_decay 0.0000, 0.0002, 0.0004
d_model 8

n_heads 1,2

e_layers 1,2

factor 1,4,8
p-hidden_dims [8,8], [16,16]
p-hidden_layers 1,2
class_weight_0 0.1,0.3
class_weight_1 0.5,0.7,1.0, 2.0

avg_window

1, 100, 500, 1000, 1024

26

Under review as a conference paper at ICLR 2026

Table 26: Hyperparameter tuning range of Non-Stationary Transformer on DREAMS

Hyperparameter ‘ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 32, 64, 128

window _size
weight_decay
d_model
n_heads
e_layers

factor
p-hidden_dims
p-hidden_layers
class_weight_0
class_weight_1
avg_window

64, 128, 256, 512, 768, 1024
0.0000, 0.0002, 0.0004, 0.0006
8,16, 32
1,2
1,2
1,2,4,6
[4,4], [8.8], [16,16]

1,2
0.1,0.2,0.3
0.5,2.0,2.5
1, 10, 25, 50, 100, 200, 256, 500

Table 27: Hyperparameter tuning range of Non-Stationary Transformer on SHHS

Hyperparameter | Range
learning_rate 0.001, 0.0005, 0.0001
batch_size 16, 32, 64

window _size
weight_decay
d_model
n_heads
e_layers

factor
p-hidden_dims
p-hidden_layers
class_weight_0
class_weight_1
avg_window
offset

60, 120, 240, 480, 512, 960
0.0000, 0.0002, 0.0004

16, 32
2,4
1,2
1,2,4,8
[4,4], [8.8], [16,16]
1,2
0.1,0.2,03
0.5,0.8, 1.0, 3.0
1, 10, 25, 50, 100, 200, 500, 960
0,8,9, 10, 12

Table 28: Hyperparameter tuning range of Non-Stationary Transformer on QT

Hyperparameter ‘ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64

window_size
weight_decay
d_model
n_heads
e_layers

factor
p-hidden_dims
p-hidden _layers
class_weight_0
class_weight_1
avg_window

64, 128, 256, 512, 1024
0.0000, 0.0002, 0.0005
4,8, 16,32
1,2,4
1,2
1,2,4,8
[4,4], [8.8], [16,16]
1,2
0.1,0.2,0.3
0.5,0.8,1.0,3.0

1, 10, 15, 20, 25, 50, 100, 200, 500, 1000

27

Under review as a conference paper at ICLR 2026

Table 29: Hyperparameter tuning range of TimeMixer on TDCS-FOG

Hyperparameter |

Range

learning_rate
batch_size
window_size
weight_decay

ff_dim

hidden_dim

e_layers
down_sampling_layers
down_sampling_window
top_k

class_weight_0
class_weight_1
avg_window

0.003, 0.001, 0.0005, 0.0001
8, 16, 32, 64, 128, 256
64,256,512, 1024
0.0000, 0.0002, 0.0005
8,32, 64, 128, 256, 512, 1024, 2048
8, 32, 64, 128, 256, 512, 1024, 2048, 3072, 4096
1,2,3
1,2
2,4
57,9
0.1,0.3
0.5,0.7,1.0,2.0
1, 50, 100, 200, 300, 400, 500, 1000

Table 30: Hyperparameter tuning range of TimeMixer on DREAMS

Hyperparameter | Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 8, 16, 32, 64, 128, 256

window_size
weight_decay

ff_dim

hidden_dim

e_layers
down_sampling_layers
down_sampling_window
top_k

class_weight_0
class_weight_1
avg_window

64,256,512, 1024
0.0000, 0.0002, 0.0005
8,32, 64, 128, 256, 512, 1024, 2048
8,32, 64, 128, 256, 512, 1024, 2048, 3072, 4096
1,2,3,4,5,6
1,2
2,4
57,9
0.1,0.3
0.5,0.7,1.0,2.0
1, 50, 100, 200, 300, 400, 500, 1000

Table 31: Hyperparameter tuning range of TimeMixer on SHHS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 8, 16, 32, 64, 128, 256

window _size
weight_decay

ff_dim

hidden_dim

e_layers
down_sampling_layers
down_sampling_window
top_k

class_weight_0
class_weight_1
avg_window

offset

64,256,512, 1024
0.0000, 0.0002, 0.0005
8,32, 64, 128, 256, 512, 1024, 2048
8,32, 64, 128, 256, 512, 1024, 2048, 3072, 4096
1,2,3
1,2
2,4
57,9
0.1,0.3
0.5,0.7,1.0,2.0
1, 10, 15, 20, 25, 50, 100, 200, 500, 1000
0,7,8,9,10,12

28

Under review as a conference paper at ICLR 2026

Table 32: Hyperparameter tuning range of TimeMixer on QT

Hyperparameter | Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 8, 16, 32, 64, 128, 256

window _size
weight_decay

ff_dim

hidden_dim

e_layers
down_sampling_layers
down_sampling_window
top-k

class_weight 0
class_weight_1
avg_window

64,256,512, 1024
0.0000, 0.0002, 0.0005
8,32, 64, 128, 256, 512, 1024, 2048
8,32, 64, 128, 256, 512, 1024, 2048, 3072, 4096

1,2,3
1,2
2,4

5,7,9

0.1,0.3

0.5,0.7,1.0,2.0
1, 10, 15, 20, 25, 50, 100, 200, 500, 1000

Table 33: Hyperparameter tuning range of SpindleU-Net on TDCS-FOG

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 64, 128, 256, 512

window _size
weight_decay
kernel_size
class_weight_0
class_weight_1
class_weight_2
class_weight 3
avg_window

128, 256, 512, 1024, 2048
0.0000, 0.0002, 0.0004
3,5,7,11,13
0.4,0.6
0.1, 2.0
0.2,1.0
1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000, 2048

Table 34: Hyperparameter tuning range of SpindleU-Net on DREAMS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 32, 64, 128, 256, 512

window_size
weight_decay
kernel_size
class_weight 0
class_weight_1
avg_window

256, 512, 1024, 2048
0.0000, 0.0002, 0.0004
3,5,7,11,13
0.1,0.2
0.5,0.8,1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000

Table 35: Hyperparameter tuning range of SpindleU-Net on SHHS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 64, 128, 256, 512

window _size
weight_decay
kernel_size
class_weight_0
class_weight_1
avg_window
offset

64, 256, 640, 960, 2048
0.0000, 0.0002, 0.0004
3,5,7,11,13
0.2,0.3
0.5,0.8,1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000, 2048
0,8, 10,12, 18

29

Under review as a conference paper at ICLR 2026

Table 36: Hyperparameter tuning range of SpindleU-Net on QT

Hyperparameter |

Range

learning_rate
batch_size
window _size
weight_decay
kernel_size
class_weight_0
class_weight_1

0.003, 0.001, 0.0005, 0.0001
16, 32, 64, 128, 256, 512

64, 128, 256, 512, 1024, 1536, 2048

0.0000, 0.0002, 0.0005
3,5,7,11,13
0.1,0.2,0.3
0.5,0.8,1.0,2.0

avg_window 1,5,7,9, 25,50, 100, 200, 500, 1000

Table 37: Hyperparameter tuning range of SUMO on TDCS-FOG

Hyperparameter \ Range

learning_rate
batch_size
window_size

weight_decay
convchannels
class_weight 0
class_weight_1
class_weight_2
class_weight 3

avg_window

0.003, 0.001, 0.0005, 0.0001
64, 128, 256, 512
64, 128, 256, 512, 1024, 1920
0.0000, 0.0002, 0.0004
16, 32, 64, 128
0.1,0.2,04,0.6,0.8, 1.0
0.1,04,038,1.0,2.0
0.1,0.2,0.6, 1.0, 2.0
0.1,0.8, 1.0, 2.0
1, 10, 50, 100, 200, 500, 1000

Table 38: Hyperparameter tuning range of SUMO on DREAMS

Hyperparameter |

Range

learning rate

batch_size

window _size
weight_decay
convchannels
class_weight_0
class_weight_1

avg_window

0.003, 0.001, 0.0005, 0.0001
32, 64, 128, 256, 512
256, 512, 1024, 2048

0.0000, 0.0002, 0.0004
16, 32, 64, 128
0.1,0.2
0.5,0.8,1.0,2.0
1, 100, 500, 1000

30

Under review as a conference paper at ICLR 2026

Table 39: Hyperparameter tuning range of SUMO on SHHS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 64, 128, 256

window_size

weight_decay
convchannels
class_weight_0
class_weight_1
avg_window
offset

64, 128, 256, 480, 640,

960, 2560, 3840, 5120
0.0000, 0.0002, 0.0004
32,64, 128
0.2,0.3
0.5,0.8,1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000
0,8,10,12

Table 40: Hyperparameter tuning range of SUMO on QT

Hyperparameter | Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64, 128, 256

window_size

weight_decay
convchannels
class_weight_0
class_weight_1
avg_window

64, 128, 256, 480, 640,
960, 2560, 3840, 5120
0.0000, 0.0002, 0.0005
32,64, 128
0.1,0.2,0.3
0.5,0.8,1.0,2.0

1, 10, 15, 20, 25, 50, 100, 200, 500, 1000

Table 41: Hyperparameter tuning range of QRSU-Net on TDCS-FOG

Hyperparameter |

Range

learning_rate
batch_size
window _size
weight_decay
kernel_size
convchannels
class_weight_0
class_weight_1
class_weight_2
class_weight_3
avg_window

0.003, 0.001, 0.0005, 0.0001
32, 64, 128, 256
64, 128, 256, 512, 1024, 2048
0.0000, 0.0002, 0.0004
3,5,7,9,18
16, 24, 32, 64, 128
0.1,0.2,04,0.6,0.8, 1.0
0.1,0.4,0.38,1.0,2.0
0.1,0.2,0.6, 1.0, 2.0
0.1,0.8, 1.0, 2.0
1, 10, 50, 100, 200, 500, 1000

Table 42:

Hyperparameter tuning range of QRSU-Net on DREAMS

Hyperparameter |

Range

learning_rate
batch_size
window_size
weight_decay
kernel size
convchannels
class_weight_0
class_weight_1
avg_window

0.003, 0.001, 0.0005, 0.0001
32, 64, 128, 256, 512
256, 512, 1024, 2048

0.0000, 0.0002, 0.0004
3,5,7,9,18
16, 24, 32, 64, 128
0.1,0.2
0.5,0.8,1.0,2.0
1,25, 50, 100, 500, 1000

31

Under review as a conference paper at ICLR 2026

Table 43: Hyperparameter tuning range of QRSU-Net on SHHS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 32,64, 128, 256

window_size

weight_decay
kernel_size
convchannels
class_weight_0
class_weight_1
avg_window
offset

64, 128, 256, 480, 640,

960, 2560, 3840, 5120
0.0000, 0.0002, 0.0004
3,5,7,9,18
16, 24, 32, 64, 128
0.1,0.2,0.3
0.5,0.8,1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000
0,8,10,12

Table 44: Hyperparameter tuning range of QRSU-Net on QT

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 32, 64, 128, 256

window_size

weight_decay
kernel_size
convchannels
class_weight 0
class_weight_1
avg_window

64, 128, 256, 480, 640,

960, 2560, 3840, 5120
0.0000, 0.0002, 0.0005
3,5,7,9,18
16, 24, 32, 48, 64, 128
0.1,0.2,0.3
0.5,0.8,1.0,2.0
1, 10, 25, 50, 100, 200, 500, 1000

Table 45: Hyperparameter tuning range of EventCompreNet on TDCS-FOG

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 64, 128, 256, 512

window _size
weight_decay
dropout_rate
convchannels
kernel_size

sampling_scale

class_weight_0
class_weight_1
class_weight_2
class_weight_3
main_task_weight
center_task_weight
boundary_task_weight
lifetime_task_weight
coarse_task_weight
coarse_filter_rate
avg_window

320, 640, 960, 1280, 1600, 1920
0.0000, 0.0002, 0.0004
0.0,0.1,0.2,0.3,0.4, 0.5
64, 128, 256
7,9,13, 15
[2,2,2,2],[10, 4,2, 2],
[8,5,2,2],18,5,4,2]
0.1,0.2,0.4,0.6,0.8,1.0
0.4,0.8,1.0,2.0,25,3.0
0.2,0.6,1.0,2.0,2.5,3.0
0.8,1.0,2.0,25,3.0
0.3,09,1.0,1.2
04,0.6,0.8,1.0,1.2
0.1,0.2,0.3,0.4
0.2,0.8,1.0
0.5,16.5,17.5
0.1,0.2,0.3,0.4
10, 100, 200, 320, 500, 1000, 1920

32

Under review as a conference paper at ICLR 2026

Table 46: Hyperparameter tuning range of EventCompreNet on DREAMS

Hyperparameter \ Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 32, 64, 128, 256
window_size 320, 640, 1280, 2560, 3840
weight_decay 0.0000, 0.0002, 0.0004
dropout_rate 0.0,0.1,0.2,0.3,04, 0.5
convchannels 16, 32, 64, 128
kernel_size 7,11, 13, 15

(2,2,2,2],[10,4,2,2],

sampling_scale [8,5,2,2],[8,5,4,2]

class_weight 0 0.1,0.2,0.3
class_weight_1 0.5,0.8,1.0,2.0,3.0
main_task_weight 0.3,0.5,0.7,09,1.0,1.2
center_task_weight 0.2,04,0.6,0.8,1.0,1.2
boundary_task_weight 0.1,0.3, 0.5, 0.7
lifetime_task_weight 04,0.6,0.8,1.0,1.2
coarse_task_weight 0.3,0.5,16.5,17.5
coarse_filter_rate 0.1,0.2,0.3,04
avg_window 1, 100, 500, 1000, 3840

Table 47: Hyperparameter tuning range of EventCompreNet on SHHS

Hyperparameter \ Range

learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 32, 64, 128, 256, 512
window_size 160, 320, 640, 960, 1280, 2560, 3840
weight_decay 0.0000, 0.0002, 0.0004
dropout_rate 0.0,0.1,0.2,0.3,04, 0.5
convchannels 32,64, 128

kernel_size 7,11, 15

[2,2,2,2],[10, 4,2, 2],

sampling_scale [8,5,2,2],[8,5,4,2]

class_weight_0 0.1,0.2

class_weight_1 0.5,0.8,1.0
main_task_weight 0.7,09,1.0,1.2
center_task_weight 04,06,0.8,1.0,1.2
boundary_task_weight 0.5,0.7,0.9

lifetime _task_weight 0.2,04,0.6,0.8,1.0
coarse_task_weight 0.5,16.5,17.5
coarse_filter_rate 0.1,0.2,0.3,04
avg_window 1, 10, 25, 50, 100, 200, 500, 1000, 3840
offset 0,8,10, 12, 18

33

Under review as a conference paper at ICLR 2026

Table 48: Hyperparameter tuning range of EventCompreNet on QT

Hyperparameter Range
learning_rate 0.003, 0.001, 0.0005, 0.0001
batch_size 16, 32, 64, 128, 256, 512

window_size
weight_decay
dropout_rate
convchannels
kernel_size

sampling_scale

class_weight 0
class_weight_1
main_task_weight
center_task_weight
boundary _task_weight
lifetime_task_weight
coarse_task_weight
coarse_filter_rate
avg_window

64, 128, 256, 512, 1024, 1536, 2048, 3840

0.0000, 0.0002, 0.0004
0.0,0.1,0.2,0.3,0.4, 0.5
8, 16, 32, 64, 128
3,5,7,11, 15
[2,2,2,2],[10, 4,2, 2], [10, 2, 2, 2]
[8,5,2,2],18,5,4,2]
0.1,0.2
0.5,0.8,1.0
0.7,09,1.0,1.2
0.1,0.4,0.6,0.8,1.0,1.2
0.1,0.5,0.7,0.9
0.1,0.2,0.4,0.6,0.8, 1.0
0.5, 10.0, 15.5, 16.5, 17.5
0.1,0.2,0.3,0.4, 0.5

1, 10, 15, 20, 25, 50, 100, 200, 500, 1000

34

Under review as a conference paper at ICLR 2026

O USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) are used solely for language editing and clarity improvement.

Purpose: We use OpenAl’s ChatGPT (GPT-5, released 2025) only to polish grammar, refine wording, and
improve readability of drafts.

Scope: No model output is included verbatim as research content. All conceptual contributions, analyses, data
interpretation, and conclusions are entirely our own.

Verification: We review and, when necessary, revise every LLM-suggested edit to ensure factual accuracy and
compliance with ethical publishing standards.

35

	Introduction
	Related Work
	Preliminaries
	Multi-Perspective Comprehension Network
	Multi-Perspective Human Comprehension Tasks
	Task-Deep-Coupling Framework
	Class-Balanced Filtering
	Network Backbone

	Experiment
	Datasets and Preprocessing
	Baseline Methods
	Experiment Settings
	Comparison with Other Baselines
	Ablation Study
	Visualization of Comprehension Tasks

	Conclusion
	The Key Points That Humans Detect and Comprehend Events
	The Knowledge Transfer Restriction of Traditional Auxiliary Task Framework
	Details of Class-Balanced Filtering
	Details of Experimental Datasets
	Details of Baseline Methods
	Calculation of Event-Level F1-Score
	Effectiveness of Class-Balanced Filtering
	Event-Level Detection with Different IoU Thresholds
	Parameter Advantage of TDC Framework
	Differences between Fine-Grained Event Detection and Anomaly Detection
	Model Source Code
	Implementation Details and Hyperparameter Settings
	Hyperparameter Settings of Baseline Methods
	Tuning Ranges of All Models
	Use of Large Language Models

