
Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Youngsik Yoon 1 Gangbok Lee 2 Sungsoo Ahn 1 2 Jungseul Ok 1 2

Abstract
Graph-based planners have gained significant at-
tention for goal-conditioned reinforcement learn-
ing (RL), where they construct a graph consist-
ing of confident transitions between subgoals as
edges and run shortest path algorithms to exploit
the confident edges. Meanwhile, identifying and
avoiding unattainable transitions are also crucial
yet overlooked by the previous graph-based plan-
ners, leading to wasting an excessive number of
attempts at unattainable subgoals. To address
this oversight, we propose a graph construction
method that efficiently manages all the achieved
and unattained subgoals on a grid graph adap-
tively discretizing the goal space. This enables
a breadth-first exploration strategy, grounded in
the local adaptive grid refinement, that prioritizes
broad probing of subgoals on a coarse grid over
meticulous one on a dense grid. We conducted a
theoretical analysis and demonstrated the effec-
tiveness of our approach through empirical evi-
dence, showing that only BEAG succeeds in com-
plex environments under the proposed fixed-goal
setting. 1

1. Introduction
Many real-world sequential decision-making problems can
be framed as the task of targeting a given goal, e.g., the nav-
igation of walking robots (Schulman et al., 2015; Nachum
et al., 2018; Haarnoja et al., 2019) and the manipulation of
objects using robotic arms (Levine et al., 2016; Andrychow-
icz et al., 2017; Rajeswaran et al., 2018). Goal-conditioned
reinforcement learning (RL) (Schaul et al., 2015; Nasiriany
et al., 2019) aims to solve these problems using a goal-
conditioned policy designed to maximize the return with
respect to the target goal. This offers a versatile policy for
a variety of distinct problems, described by corresponding

1Department of CSE, POSTECH, Pohang, Republic of Korea
2Graduate School of AI, POSTECH, Pohang, Republic of Korea.
Correspondence to: Jungseul Ok <jungseul@postech.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

goals, whereas other RL frameworks often require separate
policies for different tasks. Besides the inherent versatility,
it also enables the hierarchical RL (Vezhnevets et al., 2017;
Nachum et al., 2018; Zhang et al., 2020) which decomposes
a daunting long-horizon goal into a series of manageable
short-horizon subgoals so that the agent can exploit more
confident and learnable transitions between subgoals than
the direct transition to the ultimate goal.

Recent advancements in goal-conditioned RL have wit-
nessed the emergence of graph-based RL equipped with
graph-based planners for this subgoal-based decomposi-
tion (Eysenbach et al., 2019; Huang et al., 2019; Bagaria
et al., 2021; Kim et al., 2021; Lee et al., 2022). At a high
level, these planners construct a graph that encapsulates con-
fident transitions between subgoals as edges. They employ
shortest-path algorithms to leverage the confident edges.
However, there is a significant caveat: these graphs com-
prise only subgoals in the replay buffer, which the agent
has achieved in prior, i.e., the previous planners disregard
unattained subgoals consisting of failed ones in history and
unexplored ones over the goal space. The oversight of
such unattained subgoals leads to wasteful expenditure of
samples to repeatedly attempt similar unexplored or even
impossible subgoals rather than to explore novel ones, as
exemplified in Figure 1.

In response to this challenge, we propose Breadth-first
Exploration on Adaptive Grid (BEAG) for graph-based RL.
Our key idea is to manage both achieved and unattained
subgoals on a grid graph, adaptively discretizing the goal
space during the training process. Our subgoal management
assesses the achievability of all the subgoals on the grid,
including unattained ones, and then probes the subgoals in
a planned order. This systemically prevents consecutive
attempts to unachievable subgoals, whereas the previous
method, e.g., (Lee et al., 2022), expend attempts to ran-
domly ransack unexplored subgoals, as shown in Figure 1.

Specifically, we devise a breadth-first exploration strategy
grounded on local adaptive grid refinement. This strategy
first explores subgoals on a coarse grid and then refines
the grid selectively around the local of unattained subgoals.
The benefits are twofold: (i) it prioritizes broad probing
on a coarse grid over extensive searching on a dense grid;

1https://github.com/ml-postech/BEAG

1

https://github.com/ml-postech/BEAG

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

(a) U-maze task (b) DHRL (Lee et al., 2022) (c) BEAG (ours)

Figure 1: Illustration of breadth-first exploration. We compare the subgoal exploration strategies of DHRL (state-of-the-
art) and BEAG (ours) for U-maze task, depicted in Figure 1a. In Figure 1b and 1c, each plot summarizes the statistics on the
attempted subgoals at 5-th and 10-th training epochs, corresponding to 174K and 219K environment steps, respectively.
DHRL expends a substantial number of attempts on impossible subgoals (on and over the wall), whereas BEAG spends
virtually zero attempts on them. This demonstrates the efficiency of BEAG conducting the breadth-first exploration.

(a) bottleneck-maze task (b) The proposed procedure of adaptive grid refinement

Figure 2: Local adaptive grid refinement. In Bottleneck-maze task of Figure 2a, we visualize how BEAG adaptively refines
the grid of subgoals over training epochs (0, 8, 24, 25), corresponding to environment steps (174K, 246K, 390K, 399K)
respectively. As shown in Figure 2b, our approach adaptively refines around informative subgoals, previously unattainable
and thus disconnected.

and (ii) adaptively refines the grid around more demanding
parts, as elucidated in Figure 2. Our extensive experiments
demonstrate the efficacy of our method, in which BEAG
identifies adaptive grids tailored to various environments
requiring heterogeneous grid resolutions, both at the level
of individual environments and within different parts of a
single environment.

Our main contributions are summarized as follows:

• We show that the previous graph-based planners over-
look unattained subgoals in their graphs, and thus fre-
quently misguide the agent to wastefully attempt to
impossible subgoals.

• To address this oversight, we introduce a grid-based
RL, called BEAG, which efficiently identifies both
achieved and unattained subgoals through the breadth-
first exploration based on the local adaptive grid refine-
ment over the goal space.

• We provide a geometrical analysis showing the adapt-
ability and efficiency in various environments with dif-
fering grid resolution requirements, and an extensive
set of experiments in which our method remarkably
outperforms state-of-the-art methods.

2. Related works
Graph-based RL and graph management Graph-based
RL has emerged as a promising framework for solving com-
plex tasks (Huang et al., 2019; Eysenbach et al., 2019; Kim
et al., 2021; Lee et al., 2022), where deep RL agents plan a
path of manageable subgoals from a challenging goal while
leveraging graph algorithms such as shortest path algorithms
on a subgoal graph. Despite their remarkable advancements,
they discard unattained subgoals and construct graphs of
achieved ones, randomly sampled from the replay buffer,
inheriting the practice originated by (Huang et al., 2019;
Eysenbach et al., 2019). This restricted and random con-
struction of graphs inevitably omits records of unattainable
subgoals, which are beneficial to avoid them in the future.
Consequently, this omission can lead deep RL agents to
fruitlessly pursue impossible subgoals, thereby diluting the
benefits offered by graph algorithms. To address this is-
sue, we introduce a grid-based method to embrace both
attained and unattained subgoals on a grid, systematically
exploring them. Specifically, we introduce the breadth-first
exploration on a local adaptive grid refinement, where the re-
finement mechanism is analogous to the principle in (Berger
& Oliger, 1984).

2

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Structured exploration in RL For efficient RL, explo-
ration strategies have been structured to exploit the prior
knowledge on the environment. This body of work encom-
passes both theoretical (Combes et al., 2017; Ok et al., 2018)
and empirical (Pathak et al., 2017; Tam et al., 2022) studies.
In hierarchical RL, the prior methods to expand the set of
confident subgoals (Zhang et al., 2020; Kim et al., 2021;
Lee et al., 2022) are structured under the assumption that
more distant goals are inherently more challenging. They
prioritize subgoals adjacent to previously identified confi-
dent ones. However, they overlook another valuable piece of
prior knowledge that the achievabilities of similar goals are
likely to be similar. Hence, they are prone to expend similar
attempts around an impossible subgoal even after experienc-
ing consecutive failures, rather than exploring more broadly
for novel attempts. In contrast, our proposed breadth-first
exploration strategy takes into account the prior knowledge
of the similarity, thereby promoting a more efficient explo-
ration. While similar approaches to broaden exploration
ranges have been explored in various RL methods, e.g.,
(Pathak et al., 2017; Tam et al., 2022), our work is, to the
best of our knowledge, the first one tailored for goal explo-
ration. In addition, our adaptive refinement provides further
improvements.

Finally, we underscore that a number of the previous meth-
ods (Eysenbach et al., 2019; Huang et al., 2019; Zhang et al.,
2021; Gieselmann & Pokorny, 2021; Kim et al., 2023) have
bypassed the subgoal exploration problems by randomly
sampling initial state or goal over the feasible space, where
such a random sampling can provide direct information on
the area of achievable subgoals. In our experiment, when
we fix the initial state and goal, only our BEAG can quickly
identify achievable subgoals and learn a set of complex
tasks, whereas the previous methods show extremely poor
performance.

3. Preliminaries
Problem formulation We consider a standard goal-
conditioned Markov decision process (Schaul et al., 2015;
Andrychowicz et al., 2017) ⟨S,G,A, p, r, γ,H⟩ consisting
of state space S , goal space G ⊂ RK , action spaceA, transi-
tion dynamics p(s′|s, a) from state s to state s′ given action
a, reward function r(s, a, s′, g) for transition (s, a, s′) with
respect to goal g, discount factor γ, and horizon H . Then,
the agent’s policy π(a|s, g), conditioned on goal g, is trained
to minimize the time to achieve the goal within a prescribed
tolerance δr > 0, such that ∥ϕ(s′) − g∥2 ≤ δr, where
ϕ : S 7→ RK is a goal-feature function. To be specific, we
consider a sparse reward function defined as:

r(s, a, s′, g) = −1{∥ϕ(s′)− g∥2 > δr} , (1)

which gives 0 only when the agent has successfully reached
goal g and −1 otherwise. Then, the expected number of

time steps to reaching state s to goal g given policy π can
be approximated by a distance function d(s, g):

d(s, g) := logγ(1 + (1− γ)Vπ(s|g)) , (2)

where Vπ(s|g) is the value function given goal g (Lee et al.,
2022).

Graph-based RL A general framework of graph-based
RL (Eysenbach et al., 2019; Kim et al., 2021; 2023; Lee
et al., 2022) maintains a directed graphH = (V, E) where
V ⊂ G is a set of nodes and E is a set of edges. Each
edge (u, v) is associated with a weight function w(u, v) es-
timating the (approximated) time d(s, v) to reach v from
some state s such that ϕ(s) = u. For the agent at state s
given an ultimate goal g, a graph-based planner runs a short-
est path algorithm such as Dijkstra’s algorithm (Dijkstra,
1959) to find a path P = (ϕ(s), v1, v2, ..., vn, g) such that
v1, ..., vn ∈ V . Then, the agent first attempts at subgoal v1
with π(·|·, v1), rather than the ultimate goal g with π(·|·, g),
and proceed along the path P . Such a decomposed guidance
can accelerate the time to reach goal g as targeting each sub-
goal vi along path P is more confident than attempting the
ultimate goal g at once.

Previous methods for graph construction To include
as many confident edges as possible in the graph, graph-
based RL methods commonly adopt the graph construction
approach, called Search on the Replay Buffer (SoRB) (Ey-
senbach et al., 2019). It begins with the node set V by
sampling visited state s’s uniformly at random from the
replay buffer and adding ϕ(s)’s as a node. Then, the edge
set E is constructed by connecting all nodes in a neighbor
of a certain distance τ , i.e., for each u, v ∈ V , edge (u, v) is
assigned weight w(u, v):

w(u, v) =

{
d(s, v) if d(s, v) ≤ τ
∞ otherwise , (3)

where s is the sampled state associated with u = ϕ(s), and
we denote disconnected subgoal pairs by assigning infinite
weights.

Limitation of previous graph-planning Given the afore-
mentioned graph H, for goal g and the agent at state s,
the graph-based planner constructs an augmented graph
H′ = (V ′, E ′) by adding ϕ(s), g to the aforementioned
graphH and run the shortest path algorithm to obtain path
P = (ϕ(s), v1, ..., vn, g) such that v1, ..., vn ∈ V . To max-
imize the confidence of the first and last edges, the aug-
mented graph applies the same edge cut-off of threshold τ
in (3) if possible. However, every distance from subgoals
in V to goal g (or from ϕ(s) to subgoals in V) can be cut
off by τ . In this case, the shortest path is computed by just
connecting g (or ϕ(s)) to the subgoal with the smallest dis-
tance. When goal g is impossible to achieve in a short time,

3

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

such a direct connection is frequent but problematic as it can
hinder the planner from exploring detour paths and lead to
wasteful attempts. Indeed, as depicted in Figure 1, the pre-
vious state-of-the-art, DHRL (Lee et al., 2022), plans paths,
exemplified in orange color, including an edge over the wall
and lack of path planning for proper exploration mainly due
to the absence of unattained subgoals in the graph H. To
address this limitation, we propose a grid-based method
described in Section 4.

4. Proposed method: BEAG
To endue graph-planners with systemic exploration, we pro-
pose Breadth-first Exploration on Adaptive Grid (BEAG),
which constructs and maintains a grid graph including both
attained and unattained subgoals. In what follows, we de-
scribe three key procedures of BEAG: (i) initializing grid
with extended distance function; (ii) identifying unattain-
able subgoals; and (iii) adaptively refining grid. We also
visually illustrate them with an example in Figure 2. For
other details, we provide the pseudo-codes of BEAG in
Appendix A and our implementation in the supplementary
material.

Initializing grid with extended distance function Our
graph management begins with an initial grid H cover-
ing the entire feasible goal space, even including impos-
sible subgoals (e.g., ones inside walls of the maze in
Figure 2). For ease of presentation, we describe an in-
stance of grid initialization given lower bound L and upper
bound U of goal space G ⊂ RK so that we set node set

V =
{
L,L+ δ0, . . . , L+ ⌊U−L

δ0
⌋δ0

}K

with an initial in-
terval δ0 > 0, and edge set E consisting of (u, v)’s such that
∥u− v∥∞ ≤ δ0 for u, v ∈ V . We note that the node set of
the grid is formed independently of the replay buffer. Hence,
extending the distance function d from a visited state to a
goal in (2), we devise a distance function d̃(u, v) from u to
v as follows:

d̃(u, v) = logγ(1 + (1− γ)Ṽπ(u|v)), (4)

where u, v ∈ G and Ṽπ is an estimate of the value function
at a set of state s such that ϕ(s) = u given goal v. By
estimating the distance between nodes in the goal space
in (4), it can be possible to estimate the distance between
visited nodes in situations where transformation from goal
to space is nontrivial (e.g., Reacher3D-wall environment in
Figure 3h). This construction of grid graph H uniformly
cover the entire goal space so that each goal g ∈ G has
nearby subgoals on the grid.

Identifying unattainable subgoals Assuming that the
length of edges between attainable subgoals remains
bounded by the Euclidean distance with a Lipschitz conti-

nuity, we can deduce that nodes failing to reach within spec-
ified timesteps are deemed unattainable. However, marking
subgoals as unattainable after a single failure may cause
problems. For instance, failures generated from the unsta-
ble policy during the early stage of training can occur. For
this, we employ two hyperparameters τt, τn which serve as
thresholds for the failure condition and count, respectively.
To be specific, in our grid, weight w(u, v) for (u, v) ∈ E is
defined as follows:

w(u, v) =

{
d̃(u, v) if ns

v > 0 or na
v ≤ τn

∞ otherwise
, (5)

where ns
v is the number of successes to actually reach v and

na
v is the number of attempts v as the next node, i.e. na

v

increases with each success or failure within a timestep of
τt. By modifying the weight of edges, the planner can find
the shortest path without containing marked unattainable
nodes as illustrated in Figure 1.

Adaptive grid refinement Determining the initial interval
δ0 used in initializing the grid graph is a critical hyperpa-
rameter that significantly influences the performance of the
planner. If δ0 is set small, it results in an exponential num-
ber of subgoals in the graph, leading to high computational
costs for graph management and path planning. On the
contrary, if δ0 is set large, it might fail to generate paths con-
sisting of attainable nodes, depending on the environment.
To ensure the algorithm operates robustly even in such sit-
uations, we propose an adaptive grid refinement technique
that reduces the interval of the grid, creating a dense graph.
To be specific, when the planner fails to plan a path, we
choose one subgoal that requires further exploration. To
prioritize exploration in regions close to unattainable nodes,
which are deemed more valuable to explore than already
successful regions, we opt to refine the unattainable node.
To enhance exploration, we select one of the unattainable
subgoals, prioritizing the less selected subgoals for breadth-
first exploration. Specifically, to refinement, we add to V all
subgoals v near the selected subgoal u = (u1, u2, . . . , uK):

v ∈
K

k=1

{
uk − δ, uk −

δ

2
, uk, uk +

δ

2
, uk + δ

}
, (6)

where × is the Cartesian product of sets and δ is the current
interval around u, which is initialized as δ0 and halved with
each refinement trial. Subsequently, for each v, we initialize
both na

v and ns
v as 0 and update E by connecting edges with

nodes in V where L∞ distance between them is equal to δ
2 .

5. Theoretical analysis of BEAG
In this section, we present a theoretical formalization of
the advantages of our algorithm by analyzing how the path

4

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

found by our algorithm closely approximates the ground-
truth path in the K-dimensional goal space. Precisely, we
prove that (i) any point in the output path of our algorithm
is guaranteed to be near the ground-truth path and (ii) the
length of the output path is bounded by a constant factor of
the length of the ground-truth path.

To begin with, we establish definitions to indicate the valid-
ity of paths based on the existence of actions to follow the
given path.

Definition 5.1. A goal g ∈ G is reachable from state s
if there exists a sequence of actions a1, . . . , aT with the
terminal state sT satisfying ϕ(sT) = g.

Definition 5.2. Consider a continuous path f : [0, T]→ G
as a mapping from time to a compact goal space G. An ϵ-
path is a path when every goal is reachable if it is an element
of the ϵ-covering C(f, ϵ) defined as:

C(f, ϵ) =
⋃

t∈[0,1]

{g : ∥g − f(t)∥∞ ≤ ϵ}.

Next, since the ground-truth path is continuous while our
algorithm outputs a discrete path, we define a mapping from
a discrete path given by our algorithm to a continuous path.

Definition 5.3. Given a grid graphH = (V, E), the contin-
uous grid path P = (g0, . . . , gn) is a continuous path f(t)
satisfying:

f

(
i+ λ

n
T

)
= (1− λ)gi + λgi+1, λ ∈ [0, 1] ,

for i = 0, . . . , n − 1. The sequence g1, . . . , gn−1 forms a
(discrete) path in the grid graphH. Finally, the starting goal
g0 and the final goal gn satisfies

∥g0 − g1∥∞ ≤ δ0, ∥gn−1 − gn∥∞ ≤ δ0,

for the initial interval δ0 of the grid graphH.

We now provide our main theoretical result of which proof
is presented in Appendix B.

Theorem 5.4. Consider a compact goal space G and a ϵ-
path f(·). (i) Our algorithm outputs an adaptive refined
grid graphH with initial interval δ0 and minimum interval
δ ≤ ϵ with a grid path P = (g0, . . . , gn) that is the subset
of the ϵ-path cover C(f, ϵ). (ii) The length of the grid path
P is at most (⌈ l

δ0
⌉ + 1)δ0

√
K where l is the length of the

ϵ-path f(·).

The first statement implies that given a pair of source and
destination points connected by a continuous path f with
sufficient distance ϵ to obstacles, the adaptive refinement of
the sufficiently small minimum interval δ ≤ ϵ can always
find a grid path P from the source to the destination. The

second statement on the suboptimality ratio of the grid-
based planning means that a small δ0 assists in generating
more precise paths, thereby reducing the upper bound on
the length of the grid path. However, there exists a trade-off
where the number of nodes increases proportionally to 1

δ0

K ,
resulting in an escalation of computational costs for node
management and path planning.

6. Experiments
6.1. Experimental setup

Baselines We compare our method, BEAG, with the state-
of-the-art graph-based RL algorithms in the following:

• HIRO (Nachum et al., 2018): HIRO is a vanilla HRL
method that has a 2-level learnable hierarchical policy
and uses no graphs for training or inference.

• HIGL (Kim et al., 2021): HIGL constructs a graph
from the replay buffer by considering both coverage
and novelty. In addition, it employed a shortest-path al-
gorithm to find a path and obtained a restricted subgoal
using an adjacency network.

• DHRL (Lee et al., 2022): DHRL constructs a graph
from the replay buffer based on farthest point sampling
(FPS) algorithm (Arthur et al., 2007), which aids in
generating a uniform graph. Then, it follows the short-
est path from the current state to the subgoal generated
by the high-level policy.

• PIG (Kim et al., 2023): PIG also constructs a graph
based on the FPS algorithm and employs imitation
learning to ensure that the same action is taken for
each subgoal along the shortest path.

Training setups Goal-conditioned RL has various train-
ing setups depending on the initial state space and goal
space, each of which serves a unique purpose. For instance,
there can be a random initial state space and a random goal
space, where the objective is to be able to reach anywhere
from anywhere. However, especially in graph-based RL,
utilizing a random initial state and goal space allows for data
collection across the entire environment without the need
for exploration. Also, in an environment where either the
initial state or goal is randomly generated, the assumption
of awareness regarding reachable goal spaces is necessary.
This makes it a less challenging environment, and the scope
of its utilization becomes limited. Therefore, we conducted
the overall experiments in a fixed initial state and goal. Nev-
ertheless, in Section 6.2, we also provide experiments using
the training environment where a fixed initial state with
randomly generated goals.

5

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

(a) U-maze-easy (b) U-maze-moderate (c) U-maze (d) bottleneck-maze

(e) S-maze (f) π-maze (g) complex-maze (h) Reacher3D-wall

Figure 3: AntMaze and Reacher3D environments. We evaluate graph-based RL methods in the set of MuJoCo environ-
ments depicted above, in challenging setups with sparse rewards over a long horizon. We note that the goal space for the
AntMaze and the Reacher3D utilized 2-dimensional space and 3-dimensional space, respectively.

Evaluation Our primary evaluation metric for RL algo-
rithms is the success rate, a widely adopted metric in prior
works (Lee et al., 2022; Kim et al., 2021; 2023). Specifi-
cally, the success rate is the ratio of successfully achieving
the most challenging goal (marked in Figure 3) in 10 trials.

Environments Our experiments were conducted on a set
of challenging tasks with sparse rewards over a long horizon,
by configuring the MuJoCo environments (AntMaze and
Reacher). Specifically, the following environments are con-
sidered, and visual representations are provided in Figure 3.

• {U, bottleneck, S, π, complex}-maze: We consider a
variety of configurations of AntMaze environments
with maps and ultimate goals, as illustrated in Figure 3.
The size of maps ranges from 24 × 24 to 56 × 56
(U, bottleneck: 24 × 24, S, π: 40 × 40, complex: 56
× 56). The agent is basically tested for one of the
most challenging goals, spotted by red dots in Figure 3.
For further analysis, we also consider U-maze-easy
and U-maze-moderate with ultimate goals with differ-
ent difficulties shown in Figure 3a, b, respectively. It
is worth noting that BEAG used the same hyperpara-
maters (δ0 = 4, τt = 200, τn = 3) for all experiments
in the AntMaze environment.

• Reacher3D-wall: The robotic arm simulates moving
the tip of the hand to the target position in 3D environ-
ment with obstacles, depicted in Figure 3h. The arm
movement cannot pass through the obstacles.

6.2. Comparative results

Exploration in fixed goal setting (Figure 4) As shown
in Figure 4, BEAG demonstrates significant performances
across all environments. While previous baselines gener-
ally fail to achieve the target goal in most environments,
they exhibit comparable performance in easy scenarios, U-
maze-easy and U-maze-moderate. To delve deeper into why
baselines are failing, we utilized the previous state-of-the-art
method DHRL. We examine how the graph-based planner
is providing subgoals (Figure 1) and plot the coverage (Fig-
ure 6a, b) and generated graphs (Figure 7a, b) as learning
progresses. This demonstrates that over time, the success
area of BEAG expands, while DHRL persistently attempts
unattainable subgoals over the wall and continues to suc-
ceed only in the vicinity of the initial state. These findings
underscore the superiority of breadth-first search compared
to the consecutive failures observed in previous graph-based
RL methods.

Exploration in random goal setting (Figure 5) In Fig-
ure 5, we evaluate the baselines and BEAG in random goal
settings, where the training goals are randomly selected over
only the feasible goal space. Previous methods (Nachum
et al., 2018; Kim et al., 2021; Lee et al., 2022) have focused
on these settings. However, our BEAG shows clear superi-
ority compared to the baselines in most environments even
in these settings. Interestingly, BEAG exhibits consistent
performance regardless of the training goal setting, while
DHRL shows a significant increase in performance on the
random goal setting. This is because it is possible to iden-
tify feasible subgoals by simply observing sampled goals,

6

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

BEAG DHRL HIGL HIRO PIG

100K 200K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(a) U-maze-easy

150K 300K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(b) U-maze-moderate

200K 400K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(c) U-maze

1.0M 2.0M
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(d) S-maze

1.0M 2.0M
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(e) π-maze

1.0M 2.0M 3.0M
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(f) complex-maze

200K 400K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(g) Reacher3D-wall

200K 400K 600K 800K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(h) bottleneck-maze

Figure 4: Success rates in various environments (fixed goal). We report the average success rate as a solid line and the
standard deviation as a shaded region. Both BEAG and all other baselines are trained with a fixed initial state and goal
setting. We note that certain baselines may not be visible in specific environments due to overlapping values, especially at
zero success rates.

BEAG DHRL HIGL HIRO PIG

200K 400K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(a) U-maze

1.0M 2.0M
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(b) S-maze

200K 400K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(c) Reacher3D-wall

200K 400K 600K 800K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(d) bottleneck-maze

Figure 5: Success rates in random goal setup. We report the average success rate of BEAG and all other baselines, which
are trained with a fixed initial state and a randomly assigned goal setting.

although the baselines do not explicitly exploit the observed
goal distribution. For example, in U-maze, if sampled goals
are sequentially provided as easy, moderate, and challeng-
ing goals over a few epochs, the graph would progressively
expand, enabling the baselines to generate paths leading
to the challenging goal. On the other hand, BEAG can ex-
plore without the assistant for an exploration coming from
randomly sampled goals, demonstrates faster exploration
performance compared to DHRL, as evident in Figure 6c, d
and Figure 7c, d.

Adaptivity of BEAG (Figure 4h, 5d) The structure of the
bottleneck-maze, presented in Figure 3d, involves a narrow
gate dividing the maze into two parts, requiring the agent to
recognize the bottleneck for effective navigation. Thanks to

adaptive grid refinement, a sparse grid graph facilitates the
discovery of successful paths, as illustrated in Figure 2. As
evident in Figure 4h, BEAG can succeed in bottleneck-maze.
However, despite using the same size of goal space, there
exists a performance difference with U-maze due to the
need for adaptive grid refinement in bottleneck-maze. We
would like to emphasize that we intentionally maintained
consistency in hyperparameters across different environ-
ments, refraining from cherry-picking hyperparameters for
the bottleneck-maze.

6.3. Ablation study

Initial interval of grid (Figure 8a) As shown in Figure 8a,
BEAG demonstrates a slightly delayed increase at interval
1 than 2. That’s because the number of subgoals for which

7

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

1.0 1.0 0.9

0.9

0.20.10.0

1.0 1.0 0.7

0.9

0.80.30.6

1.0 1.0 1.0

1.0

0.90.80.9

(a) BEAG in the fixed goal setting

1.0 0.8 0.0

0.0

0.00.00.0

1.0 0.9 0.0

0.0

0.00.00.0

1.0 0.9 0.0

0.0

0.00.00.0

(b) DHRL in the fixed goal setting

1.0 0.7 0.6

0.3

0.00.00.0

1.0 1.0 0.8

1.0

0.20.50.1

1.0 1.0 0.9

0.9

0.61.00.3

(c) BEAG in the random goal setting

1.0 0.4 0.0

0.0

0.00.00.0

1.0 1.0 0.7

0.7

0.10.00.0

1.0 0.9 1.0

0.7

0.70.60.0

(d) DHRL in the random goal setting

Figure 6: Success rates for each region in U-maze. We visualize the success rates of randomly sampled 10 goals in each
square tile at 5, 10, and 15 epochs (174K, 219K, and 264K environment steps) for BEAG and DHRL, which are trained in
(a,b) fixed goal setting and (c,d) random goal setting.

(a) BEAG in the fixed goal setting (b) DHRL in the fixed goal setting

(c) BEAG in the random goal setting (d) DHRL in the random goal setting

Figure 7: Graphs generated in U-maze. We visualize the graphs generated at 5, 10, and 15 epochs (174K, 219K, and 264K
environment steps) for BEAG and DHRL, which are trained in (a,b) fixed goal setting and (c,d) random goal setting.

the planner needs to determine attainability doubles, leading
to an increase in experiment steps. Nonetheless, BEAG
demonstrates comparable performance at intervals 2 and
4, owing to the agent’s requirement for a larger number of
samples to accurately navigate a distant subgoal. At inter-
val 8, before the policy learns to achieve a distant subgoal,
refinement occurs to interval 4. However, adaptive grid
refinement proceeds with a random order among failed sub-
goals within the same interval level, leading to a significant
standard deviation in the results due to the randomness.

Failure condition and count (Figure 8b, c) To identify
failure, we utilize a count-based method with two thresh-
olds: failure condition τt and failure count τn. Primarily,
we conduct experiments by varying τt to 100, 200, 300,
and 400 steps. As illustrated in Figure 8b, with τt set to
100, a significant number of false negatives (attainable sub-
goals but identified as unattainable) occurred, resulting in
a notably low success rate. Moreover, at τt of 400, there
is a delay in exploration, causing a slightly slower increase
in the success rate. Additionally, we conduct experiments

8

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

200K 400K 600K 800K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

1
2
4
8

(a) Initial interval δ0

200K 400K 600K 800K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

100
200
300
400

(b) Failure condition τt

200K 400K 600K 800K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

1
3
5
7

(c) Failure count τn

200K 400K 600K 800K
Environment step

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

grid (36)
random (50)
random (100)
random (150)

(d) Random graph

Figure 8: Ablation studies. We report the average success rate by varying the parameters of (a) initial intervals of the grid,
(b) failure condition, and (c) failure count. Additionally, we report the average success rate (d) based on the graph structure.
We note that all experiments are conducted in U-maze task.

by varying τn to 1, 3, 5 and 7. Similar to τt, choosing an
appropriate τn is crucial, as a small τn may lead to false
negatives. A notable performance decrease is observed at
τn = 1. To ensure stability, we employed the thresholds
(τt = 200, τn = 3) for BEAG in the other experiments.

Grid vs. random graph (Figure 8d) To construct the
graph, we utilize a grid graph for its uniform distribution,
ensuring the presence of a nearby subgoal even with a lim-
ited number of nodes, regardless of the given goal. However,
even without a grid, graphs that uniformly distributed within
a given goal space, and we can consider a random graph
constructed by uniformly randomly sampled subgoals. In
Figure 8d, we conduct an experiment comparing with our
method on the random graph. Despite a comparable num-
ber of nodes (50), outcomes from randomly sampled nodes
resulted in failures. With a sufficiently larger number of
nodes (100), we observe a significant standard deviation in
the results, indicating instances of failure depending on the
random seed. Achieving a success rate similar to the grid
(36) requires approximately 4 times the number of nodes
(150). Consequently, in complex environments, choosing
the randomly initialized graph may not be favorable when
considering computational costs.

7. Conclusion
In this work, we introduce BEAG, a novel approach that
places a strong emphasis on sample-efficient exploration to
enhance goal achievement. It is noteworthy that we propose
a more constrained experimental setup where a fixed goal is
provided during training, and only BEAG achieved strong
performance in this setting as well. Our experimental find-
ings showcase the rapid expansion of exploration, facilitated
by predictive techniques applied to nodes previously con-
sidered unreachable within a grid graph framework. BEAG
not only surpasses the performance of prior state-of-the-art
methods but also introduces a fresh perspective to the realm
of graph-based reinforcement learning. We also expect that
the breadth-first exploration, which avoids repeated failures

and enables a more diverse range of exploration, can be
applied not only to goal-conditioned RL but also to other
RL frameworks. While we have applied a straightforward
grid refinement approach to a grid graph in this study, we
anticipate the existence of more sophisticated heuristics
for adaptive grid graph construction and the selection of
candidate refinements in the future.

Limitation While BEAG has demonstrated significant
performance improvements in the context of sparse and long-
horizon tasks, several limitations remain to be addressed.
First, in environments with high-dimensional goal spaces,
the number of subgoals to construct graphs increases ex-
ponentially with respect to the dimension K. Accordingly,
notable time and computational resources are required to
manage graphs not only for BEAG but also for graph-based
RL methods (Lee et al., 2022; Kim et al., 2021; Nachum
et al., 2018). This limitation can be mitigated by reducing
the dimensionality of the goal space, such as by utilizing
latent state space (Li et al., 2021). Furthermore, for the sake
of simplicity, we identify a part to be refined using hyper-
parameters τt and τn. However, this design choice can be
problematic in stochastic environments, as it can inevitably
misclassify attainable nodes as unattainable. To address this
limitation, future research could explore methods based on
probabilistic modeling.

Acknowledgments
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-2019-
II191906, Artificial Intelligence Graduate School Program
(POSTECH); No.RS-2021-II212068, Artificial Intelligence
Innovation Hub; No.RS-2024-00436680, Collaborative Re-
search Project with MSRA), Samsung Research Funding &
Incubation Center of Samsung Electronics (SRFC-TF2103-
02), and Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the
Ministry of Education (2022R1A6A1A03052954).

9

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in Neural Information Processing Systems, 30, 2017.

Arthur, D., Vassilvitskii, S., et al. k-means++: The advan-
tages of careful seeding. In Soda, volume 7, pp. 1027–
1035, 2007.

Bagaria, A., Senthil, J. K., and Konidaris, G. Skill discovery
for exploration and planning using deep skill graphs. In
International Conference on Machine Learning, pp. 521–
531. PMLR, 2021.

Berger, M. J. and Oliger, J. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
computational Physics, 53(3):484–512, 1984.

Combes, R., Magureanu, S., and Proutiere, A. Minimal
exploration in structured stochastic bandits. Advances in
Neural Information Processing Systems, 30, 2017.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische Mathematik, pp. 269–271, 1959.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. Advances in Neural Information Process-
ing Systems, 32, 2019.

Gieselmann, R. and Pokorny, F. T. Planning-augmented
hierarchical reinforcement learning. IEEE Robotics and
Automation Letters, 6(3):5097–5104, 2021.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and
Levine, S. Learning to walk via deep reinforcement learn-
ing. In Proceedings of Robotics: Science and Systems,
2019.

Huang, Z., Liu, F., and Su, H. Mapping state space us-
ing landmarks for universal goal reaching. Advances in
Neural Information Processing Systems, 32, 2019.

Kim, J., Seo, Y., and Shin, J. Landmark-guided subgoal
generation in hierarchical reinforcement learning. Ad-
vances in Neural Information Processing Systems, 34:
28336–28349, 2021.

Kim, J., Seo, Y., Ahn, S., Son, K., and Shin, J. Imitating
graph-based planning with goal-conditioned policies. In-
ternational Conference on Learning Representations, 11,
2023.

Lee, S., Kim, J., Jang, I., and Kim, H. J. Dhrl: A graph-
based approach for long-horizon and sparse hierarchical
reinforcement learning. Advances in Neural Information
Processing Systems, 35:13668–13678, 2022.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, 17(39):1–40, 2016.

Li, S., Zhang, J., Wang, J., Yu, Y., and Zhang, C. Active hi-
erarchical exploration with stable subgoal representation
learning. International Conference on Learning Repre-
sentations, 9, 2021.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in Neural
Information Processing Systems, 31, 2018.

Nasiriany, S., Pong, V., Lin, S., and Levine, S. Planning
with goal-conditioned policies. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Ok, J., Proutiere, A., and Tranos, D. Exploration in struc-
tured reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
pp. 2778–2787. PMLR, 2017.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learn-
ing and Demonstrations. In Proceedings of Robotics:
Science and Systems, 2018.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International Confer-
ence on Machine Learning, pp. 1312–1320. PMLR, 2015.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International Con-
ference on Machine Learning, pp. 1889–1897. PMLR,
2015.

Tam, A., Rabinowitz, N., Lampinen, A., Roy, N. A., Chan,
S., Strouse, D., Wang, J., Banino, A., and Hill, F. Seman-
tic exploration from language abstractions and pretrained
representations. Advances in Neural Information Process-
ing Systems, 35:25377–25389, 2022.

10

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549.
PMLR, 2017.

Zhang, L., Yang, G., and Stadie, B. C. World model as a
graph: Learning latent landmarks for planning. In Inter-
national Conference on Machine Learning, pp. 12611–
12620. PMLR, 2021.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. Gen-
erating adjacency-constrained subgoals in hierarchical
reinforcement learning. Advances in Neural Information
Processing Systems, 33:21579–21590, 2020.

11

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

A. Pseudo Algorithm

Algorithm 1 Overview of BEAG

Input: total training episode nepi, initial random episode nrand, refinement frequency nref, max timesteps per episode T ,
failure count threshold τn, failure condition threshold τt, environment Env, policy π, goal-feature function ϕ
for ep← 1 to nepi do

Env.reset()
if ep = nrand then
H(V, E)← GridGraphConstruction

unattained subgoal set Vu ← ∅
H′ ← H

end if
for t← 1 to T do

if ep < nrand then
at is randomly sampled from action space A

else
if t = 0 then
P,H′,Vu ← FindPath(s0, g,H′,Vu)
waypoint index p← 1; tracking time ttr ← 0

end if
if achieved goal g then

P,H′,Vu ← FindPath(st, g,H′,Vu)
p← 1; ttr ← 0

else if achieved waypoint vp then
na
vp ← na

vp + 1
ns
vp ← ns

vp + 1
p← p+ 1; ttr ← 0

else if ttr > τt then
na
vp ← na

vp + 1
H′ ← RemoveSubgoal(H′, vp)
if na

vp
> τn and ns

vp = 0 then
H ← RemoveSubgoal(H, vp)
Vu ← Vu ∪ {vp}

end if
P,H′,Vu ← FindPath(st, g,H′,Vu)
p← 1; ttr ← 0

end if
at ← π(st, vp)

end if
Env.step(at)
TrainingPolicy

ttr ← ttr + 1
end for

end for

12

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Algorithm 2 Training policy

Input: replay buffer B, maximum her step hmax

sample D ← (st, sgt, at, r(st+1, sgt), st+1) ∈ B
relabel sgt ← ˆsgt = ϕ(st+th) where th ∼ Uniform([0,min(ttotal − t, hmax)])
update π and Ṽπ using D

Algorithm 3 Remove Subgoal

Input: graphH, subgoal v
Output: modified graphH

for (u, v) ∈ E do
w(u, v)←∞

end for
for (v, u) ∈ E do
w(v, u)←∞

end for
returnH

Algorithm 4 Grid Graph Construction

Input: grid interval δ0, goal space dimension K, lower bound of goal space L, upper bound of goal space U
Output: graphH

vertex set V ← ∅; edge set E ← ∅
for m← 1 to K do
Vm ← ∅
x← L
while x < U do
Vm ← Vm ∪ {x}
x← x+ δ0

end while
end for
V ← V1 × V2 × ...× VK
for v ∈ V do

interval δv ← δ0
na
v ← 0

ns
v ← 0

end for
for u ∈ V do

for v ∈ V do
if ∥u− v∥∞ = δ0 then
E ← E ∪ {(u, v)}

end if
end for

end for
H ← (V, E)
returnH

13

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Algorithm 5 Find Path

Input: current state s, goal g, graphH, unattained subgoal set Vu, discount factor γ
Output: generated path from current s to g (ϕ(s), v1, v2, · · · , g), refined graphHr, unattained subgoal set Vu

for (u, v) ∈ E do
d̃(u, v) = logγ(1 + (1− γ)Ṽπ(u|v))
w(u, v) = d̃(u, v)

end for
Hr ← H
P ← Dijkstra’s Algorithm(Hr, ϕ(s), g): (ϕ(s), v1, v2, ..., g)
for v ∈ P do

if v ∈ Vu then
Hr ← AdaptiveGridRefinement(Hr,Vu)
for (u, v) ∈ E do
d̃(u, v) = logγ(1 + (1− γ)Ṽπ(u|v))
w(u, v) = d̃(u, v)

end for
P ← Dijkstra’s Algorithm(Hr, ϕ(s), g)

end if
end for
return P,Hr,Vu

Algorithm 6 Adaptive Grid Refinement

Input: graphH, unattained subgoal set Vu
Output: refined graphHr, unattained subgoal set Vu
δ ← maxv∈Vu

δv
u′ ∼ Vu, where δu′ = δ
Vu ← Vu \ {u′}
δu′ ← δu′/2

Vr ←
K

i=1

{
u′
i − δ, u′

i −
δ

2
, u′

i, u
′
i +

δ

2
, u′

i + δ

}
Er ← ∅
for u ∈ Vr do

for v ∈ Vr do
if ∥u− v∥∞ = δu′ then
Er ← Er ∪ {(u, v)}

end if
end for

end for
Vr ← V ∪ Vr
Er ← E ∪ Er
Hr ← (Vr, Er)
returnHr,Vu

14

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

𝛿

𝜖

𝑓(𝑇)

𝑓(0)

(a) ϵ-path

𝑔1

𝑔2

𝑔3 𝑔4

(b) Corresponding nodes

𝑓(𝑡2)

𝑓(𝑡3)

𝑓(𝑡1)

𝑓(𝑡4)

(c) Partitioning (d) grid path

Figure 9: Illustration for understanding notation. (a) ϵ-path f (solid red line) and reachable region (shaded area) (b)
obtaining nearby graph node gi from f(ti) (c) partitioning ϵ-path by the length of δ (d) generated grid path P

B. Proofs of Theorems
Lemma B.1. Given a compact goal space G and a ϵ-path f(·), for a grid graphH = (V, E) with interval δ that satisfies
δ ≤ ϵ and includes a grid path P = (g0, g1, ..., gn) that is subset of the ϵ-path cover C(f, ϵ). The length of the grid path is
at most (⌈ lδ ⌉+ 1)δ

√
K where l is the length of the ϵ-path f(·).

Proof of Lemma B.1

Proof. Let g0 = ϕ(f(0)) and gn = ϕ(f(T)). For any time t, there exists a node g ∈ V such that ∥f(t)− g∥∞ ≤ δ
2 ≤ ϵ,

and these nodes are also reachable goals as illustrated in Figure 9b.

As depicted in Figure 9c, we partition the trajectory f into f(t1) = f(0), f(t2), . . . f(tn−1) = f(T), where the length
of each partition from f(ti) to f(ti+1) ≤ δ. For all i ∈ 1, 2, . . . , n− 1, we find gi ∈ V such that ∥g0 − g1∥∞ ≤ δ and
∥gn−1 − gn∥∞ ≤ δ. Additionally,

∀i ∈ 1, 2, ..., n− 2, ∥gi − gi+1∥∞ ≤ ∥gi − f(ti)∥∞ + ∥f(ti)− f(ti+1)∥∞ + ∥f(ti+1)− gi+1∥∞ <
δ

2
+ δ +

δ

2
= 2δ,

implying (gi, gi+1) belongs to E .

To prove that ∀i,∀λ ∈ [0, 1], (1 − λ)gi + λgi+1 is a reachable goal, we assume the opposite and derive a contradiction.
Let’s suppose that ∃i,∃λ ∈ [0, 1], g′ = (1− λ)gi + λgi+1 is not a reachable goal. Since ∥gi − gi+1∥∞ = δ, it follows that
∥gi − g′∥∞ = λδ and ∥gi+1 − g′∥∞ = (1− λ)δ. Then, either ∥gi − g′∥∞ or ∥gi+1 − g′∥∞ less than δ0

2 , which implies
either ∥f(ti)− g′∥∞ or ∥f(ti+1)− g′∥∞ less than δ by triangular inequality. Since δ ≤ ϵ, g′ is a reachable goal, which
derive a contradiction. Thus, ∀i, ∀λ ∈ [0, 1], (1− λ)gi + λgi+1 is a reachable goal.

As depicted in Figure 9d, we have established that we can find a grid path denoted as P (g0, g1, ..., gn), which is covered by
the ϵ-ball of the given ϵ-path. In the process of finding this grid path, we can bound its length as follows:

(g0, g1) ≤
√
K∥g0 − g1∥∞ ≤

δ

2

√
K,

(gn−1, gn) ≤
√
K∥gn−1 − gn∥∞ ≤

δ

2

√
K,

∀i ∈ 1, 2, ..., n− 2, (gi, gi+1) ≤ δ
√
K,

since (gi, gi+1) ∈ E . Additionally, given the length of each partition from f(ti) to f(ti+1) ≤ δ, n = ⌈ lδ ⌉+ 2. Thus, the
length of path P is upper bounded by (⌈ lδ ⌉+ 1)δ

√
K.

Definition B.2. Let GHs ⊆ G is a coverage of G on the grid graphH(V, E) if ∀g ∈ GHs there exists an grid path from s to g
and Gϵ,s ⊆ G is an ϵ-coverage of G if ∀g ∈ Gϵ,s there exists an ϵ-path from s to g.

15

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

(a) Grid graph coverage and ϵ-coverage (b) Coverage on the refined grid graph (c) ϵ-path and intersecting point

Figure 10: Illustration for understanding notation. (a) Inclusion relationship between Gϵ,s and GHs (b) Expansion of GH′

s

from adaptive refinement (c) ϵ-path has to cross edge between two unattainable nodes

Proof of Theorem 5.4

Proof. Let δ0 is the initial intervals ofH, after breadth first exploration without grid refinement, we can find path on theH
for all g ∈ Gδ0,s from Lemma B.1, i.e. Gδ0,s ⊆ GHs as illustrated in Figure 10a.

To select an infeasible node vi for performing refinement, it is necessary to attempt distinguishing the feasibility of
vi. For such attempts, to initiate the process, it is crucial that at least one connected node vf must be feasible, i.e.
∃vf ∈ V, (vi, vf) ∈ E . After refinement vi, our grid graph exchanged fromH toH′(V ′, E ′), in other wordH′ = H ∪Hvi

where Hvi is refined grid near the vi. Since vf ∈ H, BEAG can explore the Hvi by extending the path s −→ vf . After
breadth first search on the H′, we get H′

vi which consist of the feasible nodes in Hvi . Then, as depicted in Figure 10b a
coverage on the refined grid graphH′ is extended:

GH
′

s = GHs ∪ G
Hvi
vf ∪

H′
vi⋃
v

Gδ0,v. (7)

This process continues until all infeasible nodes are already refined with the intervals of δ0
2 , and we claim that GH′

s ⊇ G δ0
2 ,s

at that time.

Suppose, for the sake of contradiction, that there exists a goal g ∈ G δ0
2 ,s

, i.e. ∃ δ02 -path from s to g, while g /∈ GH′

s . Since

g /∈ GH′

s , g is not connected with feasible nodes inH′, i.e. δ0
2 -path must cross edge between infeasible nodes as illustrated

in Figure 10c. Since all infeasible nodes have already been refined to have intervals of λ
2 , any edge crossed by a δ0

2 -path
has an interval of δ0

2 . Let the two nodes on this edge be denoted as vf1 and vf2 , so that ∥vf1 − vf2 ∥∞ = δ0
2 . If vf3 is the node

where the δ0
2 -path crosses, then ∥vf1 − vf3 ∥∞ + ∥vf3 − vf2 ∥∞ = δ0

2 . Thus, either ∥vf1 − vf3 ∥∞ ≤ δ0
2 or ∥vf3 − vf2 ∥∞ ≤ δ0

2 is
true. Because both vf1 and vf2 are infeasible, leading to a contradiction with the definition of a δ0

2 -path. By contradiction, we
conclude that GH′

s ⊇ G δ0
2 ,s

.

Applying the same approach, we can demonstrate that, for a graph H′ refined up to intervals of δ, the relationship
GH′

s ⊇ Gdelta,s holds true. As δ becomes sufficiently small, s.t.δ < ϵ, then Gϵ,s ⊆ GH
′

s which implies that the existence
of the grid path P on theH′. And, thanks to the Lemma B.1, we can also conclude that the length of the path P is upper
bounded by (⌈ l

δ0
⌉+ 1)δ0

√
K.

16

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

1.0 1.0 1.0 0.9 0.5

0.6

0.80.20.10.40.7

0.0

0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.9 1.0 0.6

0.9

0.90.80.60.80.7

0.8

0.5 0.3 0.6 0.5 0.5

1.0 1.0 1.0 1.0 1.0

0.9

1.00.90.90.60.6

0.9

0.6 0.8 0.8 0.6 0.7

(a) BEAG on fixed goal setting

1.0 0.9 0.3 0.0 0.0

0.0

0.00.00.00.00.0

0.0

0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 0.3 0.1

0.0

0.00.00.00.00.0

0.0

0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.9 0.9 0.2

0.1

0.00.00.00.00.0

0.0

0.0 0.0 0.0 0.0 0.0

(b) DHRL on fixed goal setting

1.0 1.0 0.8 0.9 0.9

0.7

0.60.20.00.00.0

0.0

0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 0.9

1.0

0.70.80.50.60.3

0.3

0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 0.9

0.9

1.00.90.90.71.0

0.8

0.5 0.5 0.4 0.2 0.1

(c) BEAG on random goal setting

0.9 1.0 0.6 0.1 0.0

0.0

0.00.00.00.00.0

0.0

0.0 0.0 0.0 0.0 0.0

1.0 0.9 0.9 0.9 0.8

0.9

0.20.00.00.00.0

0.0

0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 0.9

0.9

0.90.80.40.50.0

0.0

0.0 0.0 0.0 0.0 0.0

(d) DHRL on random goal setting

Figure 11: Success rates for each region in S-maze. We visualize the success rates of randomly sampled 10 goals in each
region at 10, 20, and 30 epochs for BEAG and DHRL.

C. Coverage of the graph planner as learning progresses (S-maze)
To illustrate the exploration performance of algorithms, we visualize the average success rates for each region as learning
progresses. Specifically, we compare the exploration capabilities of BEAG and DHRL in S-maze environments, both with
fixed initial states at the bottom-left corners. Interestingly, BEAG even displays faster exploration performance in the fixed
goal setting. This can be attributed to the absence of wasted episodes, as attainable goals can be derived from random goals,
thereby mitigating unnecessary setbacks in exploration.

17

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

(a) BEAG on fixed goal setting

(b) DHRL on fixed goal setting

(c) BEAG on random goal setting

(d) DHRL on random goal setting

Figure 12: Graphs generated in S-maze. We visualize the graphs generated at 10, 20, and 30 epochs for BEAG and DHRL,
which are trained in each goal setting.

D. Generated graphs from the graph planner as learning progresses (S-maze)
Similar to the coverage visualization depicted in Figure 11, we also visualize the graphs generated as learning progresses in
S-maze environments to illustrate the exploration performance of algorithms. Interestingly, as depicted in Figure 12b, DHRL
struggle with exploration in the fixed goal setting due to walls. In contrast, BEAG efficiently progresses exploration by
eliminating impossible nodes within the walls.

18

Breadth-First Exploration on Adaptive Grid for Reinforcement Learning

Table 1: Hyperparameters for DHRL and BEAG.

DHRL Ours

initial episodes without graph planning 75 -
gradual penalty 1.5-5.0 -

high-level train freq 10 -
Frontier-based Goal Shifting {π, Complex}-maze -

number of landmarks 300-600 36-196 (initial)
hidden layer (256, 256) (256, 256)

actor lr 0.0001 0.0001
critic lr 0.001 0.001

τ 0.005 0.005
γ 0.99 0.99

batch size 1024 1024
target update freq 10 10
actor update freq 2 2

Table 2: Hyperparameters for PIG.

Reacher U-maze π-maze Complex-
maze

Initial random trajectories 20k 100k 400k 800k
Number of nodes in a graph 80 400 500 500

Balancing coefficient λ 0.0001 0.001 0.001 0.001
Skipping temperature α 10.0 10.0 10.0 10.0

Hindsight relabelling range 50 200 200 200
Action L2 0.01 0.5 0.5 0.5

Action noise 0.1 0.2 0.2 0.2
clipping threshold for distances 4.0 38.0 38.0 38.0

Table 3: Hyperparameters for HIGL and HIRO.

HIGL HIRO

higl-level τ 0.005 0.005
πhi lr 0.0001 0.0001
Qhi lr 0.001 0.001

high-level γ 0.99 0.99
low-level τ 0.005 0.005

πlo lr 0.0001 0.0001
Qlo lr 0.001 0.001

low-level γ 0.95 0.95
hidden layer (128, 128) (128, 128)

number of coverage landmarks γ 20-100 -
number of novelty landmarks γ 20-400 -

batch size 128 128

E. Hyperparameter choice
When evaluating the previous Graph-based RL method, we used the same hyperparameters as used in their papers. And, we
conducted additional tuning the number of landmarks for a fair comparison.

19

