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Abstract
We consider non-parametric estimation and inference of conditional moment models in high di-
mensions. We show that even when the dimension D of the conditioning variable is larger than the
sample size n, estimation and inference is feasible as long as the distribution of the conditioning
variable has small intrinsic dimension d, as measured by locally low doubling measures. Our es-
timation is based on a sub-sampled ensemble of the k-nearest neighbors (k-NN) Z-estimator. We
show that if the intrinsic dimension of the covariate distribution is equal to d, then the finite sample
estimation error of our estimator is of order n�1/(d+2) and our estimate is n1/(d+2)-asymptotically
normal, irrespective of D. The sub-sampling size required for achieving these results depends on
the unknown intrinsic dimension d. We propose an adaptive data-driven approach for choosing this
parameter and prove that it achieves the desired rates. We discuss extensions and applications to
heterogeneous treatment effect estimation.
Keywords: non-parametric statistics, inference, intrinsic dimension, conditional moment equation

1. Introduction

Many non-parametric estimation problems in econometrics and causal inference can be formulated
as finding a parameter vector ✓(x) 2 Rp that is a solution to a set of conditional moment equations:

E[ (Z; ✓(x))|X = x] = 0 , (1)

when given n i.i.d. samples (Z1, . . . , Zn) from the distribution of Z, where  : Z ⇥ Rp ! Rp is
a known vector valued moment function, Z is an arbitrary data space, X 2 X ⇢ RD is the feature
vector that is included Z. Examples include non-parametric regression1, quantile regression2, het-
erogeneous treatment effect estimation3, instrumental variable regression4, local maximum likeli-
hood estimation5 and estimation of structural econometric models (see e.g., Reiss and Wolak (2007)
and examples in Chernozhukov et al. (2016); Chernozhukov et al. (2018b)). The study of such con-
ditional moment restriction problems has a long history in econometrics (see e.g., Newey (1993); Ai
and Chen (2003); Chen and Pouzo (2009); Chernozhukov et al. (2015); Chen et al. (2016)). How-
ever, the majority of the literature assumes that the conditioning variable X is low dimensional, i.e.
D is a constant as the sample size n grows (see e.g., Athey et al. (2019)).6

1. Z = (X,Y ), where Y 2 Rp is the dependent variable, and  (Z; ✓(x)) = Y � ✓(x).
2. Z = (X,Y ) and  (Z; ✓(x)) = 1{Y  ✓(x)}� ↵, for some ↵ 2 [0, 1] that denotes the target quantile.
3. Z = (X,T, Y ), where T 2 Rp is a vector of treatments, and  (Z; ✓(x)) = (Y � h✓(x), T i)T .
4. Z = (X,T,W, Y ), where T 2 R is a treatment, W 2 R an instrument and  (Z; ✓(x)) = (Y � ✓(x)T )W .
5. Where the distribution of Z admits a known density f(z; ✓(x)) and  (Z; ✓(x)) = r✓ log(f(Z; ✓(x)).
6. Notable exceptions include high dimensional models under parametric assumptions on ✓(x), such as sparse linear

forms (see e.g., Chernozhukov et al. (2018a)). There is also work that addresses the fully non-parametric setup
(see e.g., Lafferty and Wasserman (2008); Dasgupta and Freund (2008); Kpotufe (2011); Biau (2012); Scornet et al.
(2015)) but those are focused on the estimation problem, and do not address inference (i.e., constructing asymptoti-
cally valid confidence intervals).
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Recent studies demonstrate the success of non-parametric methods (see e.g., Lewis and Syrgka-
nis (2018)) for solving conditional moment equations even in the high-dimensional settings. Yet,
there are limited theoretical results that explain why these methods work well. Indeed without any
further structural assumptions on the problem, the exponential in dimension rates of approximately
n1/D (see e.g., Stone (1982)) cannot be avoided. Thereby estimation is in-feasible even if D grows
very slowly with n.

One hypothesis is that the intrinsic dimension of the conditioning variables is low (i.e. even
though X is high dimensional, its coordinates are highly correlated), and that causal machine learn-
ing estimators are adaptive to this hidden low dimensional structure in the data.7 Our work makes
this argument, establishing estimation and asymptotic normality results for the general conditional
moment problem, with rates that only depend on the intrinsic dimension, independent of the explicit
dimension of the conditioning variable.

We build on two literatures. The statistical machine learning literature introduces the notion
of intrinsic dimension, which is defined by saying that the distribution of X has a small doubling
measure around the target point x. Under assumptions of low intrinsic dimension papers in this
literature establish fast estimation rates in high-dimensional kernel regression settings (Dasgupta
and Freund, 2008; Kpotufe, 2011; Kpotufe and Garg, 2013; Xue and Kpotufe, 2018; Chen and
Shah, 2018; Kim et al., 2018; Jiang, 2017). However these results do not apply to the conditional
moment problems we study here. In the econometrics literature, the pioneering work of Wager and
Athey (2018); Athey et al. (2019) does address estimation and inference of conditional moment
models, but only in the low dimensional regime.8 Relative to these literatures, our contributions are
as follows:

• We extend the asymptotic normality results of Wager and Athey (2018); Athey et al. (2019) to
general sub-sampled kernel estimators and for vector valued parameters ✓(x). Our analysis also
allows us to establish rates in the high-dimensional low intrinsic dimension regime. Given sam-
ples S = (Z1, . . . , Zn), our estimator solves a locally weighted empirical conditional moment
equation

✓̂(x) solves :
nX

i=1

K(x,Xi, S) (Zi; ✓) = 0 , (2)

where K(x,Xi, S) is a kernel capturing the proximity of Xi to the target point x. We consider
weights K(x,Xi, S) that take the form of an average over B base weights: K(x,Xi, S) =
1
B

P
B

b=1K(x,Xi, Sb) 1{i 2 Sb}, where each K(x,Xi, Sb) is calculated based on a randomly
drawn sub-sample Sb of size s < n from the original sample.

• Our main estimation and asymptotic normality results (see Theorems 6 and 7), are stated in
terms of two high-level quantities, specifically an upper bound ✏(s) on the rate at which the

7. This observation builds on a long line of work in machine learning (Dasgupta and Freund, 2008; Kpotufe, 2011;
Kpotufe and Garg, 2013).

8. These results have been extended in multiple directions, such as improved rates through local linear smoothing
Friedberg et al. (2018), robustness to nuisance parameter estimation error Oprescu et al. (2018) and improved bias
analysis via sub-sampled nearest neighbor estimation Fan et al. (2018). However, they all require low dimensional
setting and the rate provided by the theoretical analysis is roughly n�1/D , translating to ⌦(✏�D) samples for getting a
confidence interval of size ✏, which is prohibitive in most target applications of machine learning based econometrics.
In particular, Wager and Athey (2018) consider regression and heterogeneous treatment effect estimation with a scalar
✓(x) and prove n1/D-asymptotic normality of a sub-sampled random forest based estimator and Athey et al. (2019)
extend it to the general conditional moment settings.
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kernel “shrinks” and a lower bound ⌘(s) on the “incrementality” of the kernel. Notably, the
explicit dimension of the conditioning variable D does not enter the theorem, so it suffices in
what follows to show that ✏(s) and ⌘(s) depend only on d. The shrinkage rate ✏(s) is defined
as the `2-distance between the target point x and the farthest point on which the kernel places
positive weight Xi, when trained on a data set of s samplesIncrementality of a kernel describes
how much information is revealed about the weight of a sample i solely by knowledge of Xi, and
is captured by the second moment of the conditional expected weight The sub-sampling size s
can be used to control both shrinkage and incrementality and for trading-off correctly between
bias and variance. We also prove that incrementality can be lower bounded as a function of kernel
shrinkage, so that having a sufficiently low shrinkage rate enables both estimation and inference.
Corollary 11 and Lemma 13), rather than the explicit dimension D. In particular, we show that
✏(s) = O(s�1/d) and ⌘(s) = ⇥(1/s), which lead to our main theorem that the sub-sampled
k-NN estimate achieves an estimation rate of order n1/(d+2) and is also n1/(d+2)-asymptotically
normal (Theorems 12 and 15).

• We provide a closed form characterization of the asymptotic variance of the sub-sampled k-NN
estimate, based on the conditional variance moments defined as �2(x) = Var ( (Z; ✓) | X = x)
(Theorem 14 and Eq. (14)). For example, for the 1-NN kernel, the asymptotic variance is
Var(✓̂(x)) = �

2(x)s2

n(2s�1) . This strengthens prior results of Fan et al. (2018) and Wager and Athey
(2018), which only proved the existence of an asymptotic variance without providing an explicit
form (and thereby relied on bootstrap approaches for the construction of confidence intervals).
Our Monte Carlo study shows that our constructed confidence intervals provide great finite sam-
ple coverage in a high dimensional regression setup (see Figure 1)9.

• The sub-sampling size required to achieve optimal rates depends on the intrinsic dimension which
is unknown. We discuss an adaptive data-driven approach for picking the sub-sample size s so
as to achieve near-optimal estimation or asymptotic normality rates, adapting to the unknown
intrinsic dimension of data (see Propositions 16 and 17). Figure 2 depicts the performance of our
adaptive approach compared to two benchmarks, one constructed based on theory for intrinsic
dimension d which may be unknown, and the other one constructed naı̈vely based on the known
but sub-optimal extrinsic dimension D. As can be observed, our adaptive approach selects s close
to the value suggested by the theory and therefore leads to a compelling finite sample coverage10.

Structure of the paper. The rest of the paper is organized as follows. In §2, we provide prelimi-
nary definitions, in §2.1 and §2.2 we explain our algorithms, in §2.3 we explain doubling dimension
(see Appendix B for examples). In §3 we state our assumptions, in §4 we provide general estimation
and inference results for kernels that satisfy shrinkage and incrementality conditions, and in §5 we
apply such results to the k-NN kernel and prove estimation and inference rates for such kernels that
only depend on intrinsic dimension. We discuss the extension to heterogeneous treatment effect
estimation in §6 and and defer technical proofs to Appendices.

2. Preliminaries

Suppose we have a data set M of n observations Z1, Z2, . . . , Zn drawn independently from some
distribution D over the observation domain Z . We focus on the case that Zi = (Xi, Yi), where Xi

9. See Appendix C for detailed explanation of our simulations
10. Code is available via https://anonymous.4open.science/r/inference-intrinsic-dimension-E037
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Figure 1: Left: distribution of estimates over 1000 Monte Carlo runs for k = 1, 2, 5. Right: the quantile-quantile plot comparison
with theoretical asymptotic normal distribution of estimates stemming from our characterization. Means are 0.676, 0.676, 0.676 and
standard deviations are 0.058, 0.055, 0.049, respectively. n = 20000, D = 20, d = 2, E[Y |X] = 1

1+exp{�3X[0]} , � = 1. Test
point: x[0] ⇡ 0.245, E[Y |X = x] ⇡ 0.676.

is the vector of covariates and Yi is the outcome. In Appendix 6, we briefly discuss how our results
can be extended to the setting where nuisance parameters and treatments are included in the model.

Suppose that the covariates space X ⇢ RD is contained in a ball with unknown diameter �X .
Denote the marginal distribution of X by µ and the empirical distribution of X on n sample points
by µn. Let B(x, r) =

�
z 2 RD : kx� zk2 < r

 
be the `2-ball centered at x with radius r and

denote the standard basis for Rp by {e1, e2, . . . , ep}.
Let  : Z ⇥ Rp ! Rp be a score function that maps observation Z and parameter ✓ 2 Rp to

a p-dimensional score  (Z; ✓). For x 2 X and ✓ 2 Rp define the expected score as m(x; ✓) =
E[ (Z; ✓) | X = x]. The goal is to estimate the quantity ✓(x) via local moment condition, i.e.

✓(x) solves: m(x; ✓) = E[ (Z; ✓) | X = x] = 0.

2.1. Sub-Sampled Kernel Estimation

Base Kernel Learner. Our learner Lk takes a data set S containing m observations as input and a
realization of internal randomness !, and outputs a kernel weighting function K! : X ⇥X ⇥Zm !
[0, 1]. In particular, given any target feature x and the set S, the weight of each observation Zi in
S with feature vector Xi is K!(x,Xi, S). Define the weighted score on a set S with internal
randomness ! as  S(x; ✓) =

P
i2S K!(x,Xi, S) (Zi; ✓). When it is clear from context we will
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omit ! from our notation for succinctness and essentially treat K as a random function. For the rest
of the paper, we are going to use notations ↵S,!(Xi) = K!(x,Xi, S) interchangeably.

Averaging over B sub-samples of size s. Suppose that we consider B random and independent
draws from all

�
n

s

�
possible subsets of size s and internal randomness variables ! and look at their

average. Index these draws by b = 1, 2, . . . , B where Sb contains samples in bth draw and !b is the
corresponding draw of internal randomness. We can define the weighted score as

 (x; ✓) =
1

B

BX

b=1

 Sb,!b(x; ✓) =
1

B

BX

b=1

X

i2Sb

↵Sb,!b(Xi) (Zi; ✓) . (3)

Estimating ✓(x). We estimate ✓(x) as a vanishing point of  (x; ✓). Letting ✓̂ be this point, then
 (x; ✓̂) = 1

B

P
B

b=1

P
n

i=1 ↵Sb,!b(Xi) (Zi; ✓̂) = 0. This procedure is explained in Algorithm 1.

Figure 2: Confidence interval and true values for 100 randomly sampled test points on a single run for k = 1, 2, 5 and when (1) left:
s = s⇣ is selected via Proposition 17 with ⇣ = 0.1, (2) second from the left: s = n

1.05d/(d+2), and (3) middle: s = n
1.05D/(D+2).

Second from the right: coverage over 1000 runs for methods considered. Right: average value of s⇣ selected via Proposition 17
for ⇣ = 0.1 for different test points compared to the theoretical value s = n

1.05d/(d+2). Here n = 20000, D = 20, d = 2,
E[Y |X] = 1

1+exp{�3X[0]} , � = 1. Nominal coverage: 0.98.
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2.2. Sub-Sampled k-NN Estimation

We especially focus on the case that the weights are distributed across the k-NN of x. In other words,
given a data set S, the weights are given according to K!(x,Xi, S) = 1 {Xi 2 Hk(x, S)} /k,
where Hk(x, S) are k-NN of x in the set S. The pseudo-code for this can be found in Algorithm 2.

Complete U -statistic. The expression in Equation (3) is an incomplete U -statistic. Complete U -
statistic is obtained if we allow each subset of size s from n samples to be included in the model
exactly once. In other words, this is achieved if B =

�
n

s

�
, all subsets S1, S2, . . . , SB are distinct,

and we also take expectation over the internal randomness !. Denoting this by  0(x; ✓), we have

 0(x; ✓) =

✓
n

s

◆�1 X

S2[n]:|S|=s

E!

"
X

i2S
↵S,!(Xi) (Zi; ✓)

#
. (4)

Note in the case of k-NN estimator we can also represent  0 in terms of order statistics, i.e.,  0 is
an L-statistics (see e.g., Serfling (2009)). By sorting samples in X = {X1, X2, . . . , Xn} based on
their distance with x as kX(1) � xk  kX(2) � xk  · · ·  kX(n) � xk, we can write  0(x; ✓) =P

n

i=1 ↵(X(i)) (Z(i); ✓) where the weights are given by

↵(X(i)) =

(
1
k

�
n

s

��1 �n�i

s�1

�
if i  k

1
k

�
n

s

��1 Pk�1
j=0

�
i�1
j

��
n�i

s�1�j

�
if i � k + 1 .

2.3. Local intrinsic dimension

We are interested in settings that the distribution of X has some low dimensional structure on a
ball around the target point x. The following notions are adapted from Kpotufe (2011), which we
present here for completeness.

Definition 1 The marginal µ is called doubling measure if there exists a constant Cdb > 0 such
that for any x 2 X and any r > 0 we have µ(B(x, r))  Cdbµ(B(x, r/2)).

An equivalent definition of this notion is that, the measure µ is doubling measure if there exist
C, d > 0 such that for any x 2 X , r > 0, and ✓ 2 (0, 1) we have µ(B(x, r))  C✓�dµ(B(x, ✓r)).

One example is given by Lebesgue measure on the Euclidean space Rd, where for any r >
0, ✓ 2 (0, 1) we have vol(B(x, ✓r)) = vol(B(x, r))✓d. Building upon this, let X 2 RD be a subset
of d-dimensional hyperplane and suppose that for any ball B(x, r) in X we have vol(B(x, r)\X ) =
⇥(rd). If µ is almost uniform, then we also have µ(B(x, ✓r))/µ(B(x, r)) = ⇥(✓d).

Unfortunately, this global notion of doubling measure is restrictive and most probability mea-
sures are globally complex. Rather, once restricted to local neighborhoods, they become lower
dimensional and intrinsically less complex. The following definition captures this intuition better.

Definition 2 Fix x 2 X and r > 0. The marginal µ is (C, d)-homogeneous on B(x, r) if for any
✓ 2 (0, 1) we have µ(B(x, r))  C✓�dµ(B(x, ✓r)).

Intuitively, this definition requires the marginal µ to have a local support that is intrinsically
d-dimensional. This definition covers low-dimensional manifolds, mixture distributions, d-sparse
data, and also any combination of these examples. These examples are explained in Appendix B.
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Algorithm 1 Sub-Sampled Kernel Estimation

1: Input. Data {Zi = (Xi, Yi)}ni=1, moment
 , kernel K, sub-sampling size s, number
of iterations B

2: Initialize. ↵(Xi) = 0, 1  i  n for b  
1, B do

3:
end
Sub-sampling. Draw set Sb by sam-

pling s points from Z1, Z2, . . . , Zn without
replacement.

4: Weight Updates. ↵(Xi)  ↵(Xi) +
K!b(x,Xi, Sb)

5:
6: Weight Normalization. ↵(Xi)  
↵(Xi)/B

7: Estimation. Denote ✓̂ as a solution of
 (x; ✓) =

P
n

i=1 ↵(Xi) (Zi; ✓) = 0

Algorithm 2 Sub-Sampled k-NN Estimation

1: Input. Data {Zi = (Xi, Yi)}ni=1, moment
 , sub-sampling size s, number of itera-
tions B, number of neighbors k

2: Initialize. ↵(Xi)  0, 1  i  n for b  
1, B do

3:
end
Sub-sampling. Draw set Sb by sam-

pling s points from Z1, Z2, . . . , Zn without
replacement

4: Weight Updates. ↵(Xi)  ↵(Xi) +
1 {Xi 2 Hk(x, Sb)} /k

5:
6: Weight Normalization. ↵(Xi)  
↵(Xi)/B

7: Estimation. Denote ✓̂ as a solution of
 (x; ✓) =

P
n

i=1 ↵(Xi) (Zi; ✓) = 0

3. Assumptions

For non-parametric sub-sampled estimators, the bias and asymptotic variance are tightly connected
to the kernel shrinkage and incrementality, formally defined below.

Definition 3 (Kernel Shrinkage in Expectation) The function ✏(s) defines a kernel shrinkage in
expectation if given a set S containing s i.i.d. observations drawn from distribution D, it satisfies

✏(s) := E [sup {kx�Xik2 : K(x,Xi, S) > 0}] . (5)

Definition 4 (Kernel Shrinkage in Probability) The function ✏(s, �) defines a kernel shrinkage in
probability if given a set S containing s i.i.d. observations drawn from distribution D w.p. 1� � it
satisfies

sup {kx�Xik2 : K(x,Xi, S) > 0}  ✏(s, �) . (6)

Definition 5 (Incrementality of Kernel) The incrementality of kernel K when provided with s
i.i.d. observations from distribution D is defined as

⌘(s) = E
h
E [K(x,Xi, S)|Xi]

2
i
. (7)

As shown in Wager and Athey (2018), for trees that satisfy some regularity condition, ✏(s)  s�c/D

for a constant c. We are interested in shrinkage rates that scale as s�c/d, where d is the local intrinsic
dimension of µ on B(x, r). Similar to Oprescu et al. (2018); Athey et al. (2019), we rely on the
following assumptions on the moment and score functions.

Assumption 1 The moment and score functions satisfy the following:
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1. The moment m(x; ✓) corresponds to the gradient w.r.t. ✓ of a �-strongly convex loss L(x; ✓).
This also means that the Jacobian M0 = r✓m(x; ✓(x)) has minimum eigenvalue at least �.

2. For any fixed parameters ✓, m(x; ✓) is a Lm-Lipschitz function in x for some constant Lm.
3. There exists a bound  max such that for any observation z and any ✓, k (z; ✓)k1   max.
4. The bracketing number N[](F , ✏, L2) of the function class: F = { (·; ✓) : ✓ 2 ⇥}, satisfies

log(N[](F , ✏, L2)) = O(1/✏).

Assumption 2 The moment and score functions satisfy the following:

1. For any coordinate j of the moment vector m, the Hessian Hj(x; ✓) = r2
✓✓
mj(x; ✓) has

eigenvalues bounded above by a constant LH for all ✓.
2. Maximum eigenvalue of M0 is upper bounded by LJ .
3. Second moment of  (x; ✓) defined as Var ( (Z; ✓) | X = x) is Lmm-Lipschitz in x, i.e.,

kVar ( (Z; ✓) | X = x)�Var
�
 (Z; ✓) | X = x0

�
kF  Lmmkx� x0k2 .

4. Variogram is Lipschitz: supx2X kVar( (Z; ✓)�  (Z; ✓0) | X = x)kF  L k✓ � ✓0k2.

The condition on variogram always holds for a  that is Lipschitz in ✓. This larger class of
functions  allows estimation in more general settings such as ↵-quantile regression that involves a
 which is non-Lipschitz in ✓. Similar to Athey and Imbens (2016); Athey et al. (2019), we require
kernel K to be honest and symmetric.

Assumption 3 The kernel K, built using samples {Z1, Z2, . . . , Zs}, is honest if the weight of
sample i given by K(x,Xi, {Zj}sj=1) is independent of Yj conditional on Xj for any j 2 [s].

Assumption 4 The kernel K, built using samples {Z1, Z2, . . . , Zs}, is symmetric if for any per-
mutation ⇡ : [s] ! [s], the distribution of K(x,Xi, {Zj}sj=1) and K(x,X⇡(i),

�
Z⇡(j)

 
s

j=1
) are

equal. In other words, the kernel weighting distribution remains unchanged under permutations.

For a deterministic kernel K, the above condition implies that K(x,Xi, {Zj}sj=1) = K(x,Xi, {Z⇡(j)}sj=1),
for any i 2 [s]. In the next section, we provide general estimation and inference results for a general
kernel based on the its shrinkage and incrementality rates.

4. Guarantees for sub-sampled kernel estimators

Our first result establishes estimation rates, both in expectation and high probability, for kernels
based on their shrinkage rates. The proof of this theorem is deferred to Appendix D.

Theorem 6 (Finite Sample Estimation Rate) Let Assumptions 1 and 3 hold. Suppose that Algo-
rithm 1 is executed with B � n/s. If the base kernel K satisfies kernel shrinkage in expectation,
with rate ✏(s), then w.p. 1� �

k✓̂ � ✓(x)k2 
2

�

✓
Lm✏(s) +O

✓
 max

r
p s

n
(log log(n/s) + log(p/�))

◆◆
. (8)

Moreover,
r
E
h
k✓̂ � ✓(x)k22

i
 2

�

✓
Lm✏(s) +O

✓
 max

r
p s

n
log log(p n/s)

◆◆
. (9)
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The next result establishes asymptotic normality of sub-sampled kernel estimators. In particular, it
provides coordinate-wise asymptotic normality of our estimate ✓̂ around its true underlying value
✓(x). For this result, in addition to the shrinkage, we require the incrementality of the kernel to
satisfy some conditions. The proof of this theorem is deferred to Appendix E.

Theorem 7 (Asymptotic Normality) Let Assumptions 1, 2, 3, and 4 hold. Suppose that Algorithm
1 is executed with B � (n/s)5/4 and the base kernel K satisfies kernel shrinkage, with rate ✏(s, �)
in probability and ✏(s) in expectation. Let ⌘(s) be the incrementality of kernel K defined in Equation
(7) and s grow at a rate such that s ! 1, n⌘(s) ! 1, and ✏(s, ⌘(s)2) ! 0. Consider any fixed
coefficient � 2 Rp with k�k  1 and define the variance as

�2
n,�

(x) =
s2

n
Var

"
E

"
sX

i=1

K(x,Xi, {Zj}sj=1)
⌦
�,M�1

0  (Zi; ✓(x))
↵
| Z1

##
.

Then it holds that �n,�(x) = ⌦
⇣
s
p
⌘(s)/n

⌘
. Moreover, suppose that

max

✓
✏(s), ✏(s)1/4

⇣ s
n

log log(n/s)
⌘1/2

,
⇣ s
n

log log(n/s)
⌘5/8◆

= o(�n,�(x)) . (10)

Then, D
�, ✓̂ � ✓(x)

E

�n,�(x)
!d N(0, 1) .

Theorems 6 and 7 generalize existing estimation and asymptotic normality results of Athey et al.
(2019); Wager and Athey (2018); Fan et al. (2018) to an arbitrary kernel that satisfies appropriate
shrinkage and incrementality rates (see Remark 24 in Appendix E). The following lemma relates
these two and provides a lower bound on the incrementality in terms of kernel shrinkage. The proof
uses the Paley-Zygmund inequality and is left to Appendix F.

Lemma 8 For any symmetric kernel K (Assumption 4) and for any � 2 [0, 1]:

⌘(s) = E
h
E
⇥
K(x,X1, {Zj}sj=1) | X1

⇤2i � (1� �)2 (1/s)2

inf⇢>0 (µ(B(x, ✏(s, ⇢))) + ⇢ s/�)
.

Thus if µ(B(x, ✏(s, 1/(2s2)))) = O(log(s)/s), then picking ⇢ = 1/(2s2) and � = 1/2 implies that
E[E[K(x,X1, {Zj}sj=1)|X1]2] = ⌦(1/s log(s)).

Corollary 9 If ✏(s, �) = O((log(1/�)/s)1/d) and µ satisfies a two-sided version of the dou-
bling measure property on B(x, r), defined in Definition 2, i.e., c✓dµ(B(x, r))  µ(B(x, ✓r)) 
C✓dµ(B(x, r)) for any ✓ 2 (0, 1). Then, E[E[K(x,X1, {Zj}sj=1)|X1]2] = ⌦(1/(s log(s))).

Even without this extra assumption, we can still characterize the incrementality rate of the k-NN
estimator, as we observe in the next section.

5. Main theorem: adaptivity of k-NN estimator

In this section, we provide estimation guarantees and asymptotic normality of the k-NN estimator
by using Theorems 6 and 7. We first establish shrinkage and incrementality rates for this kernel.
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5.1. Estimation guarantees for the k-NN estimator

In this section we provide shrinkage results for the k-NN kernel. As observed in Theorem 6, shrink-
age rates are sufficient for bounding the estimation error. The shrinkage result that we present in the
following would only depend on the local intrinsic dimension of µ on B(x, r).

Lemma 10 (High probability shrinkage for the k-NN kernel) Suppose that the measure µ is (C, d)-
homogeneous on B(x, r). Then, for any � satisfying 2 exp (�µ(B(x, r))s/(8C))  �  1

2 exp(�k/2),

w.p. at least 1� � we have kx�X(k)k2  ✏k(s, �) = O
⇣
log(1/�)

s

⌘1/d
.

We can turn this result into a shrinkage rate in expectation as follows. In fact, by the very con-
venient choice of � = s�1/d combined with the fact that X has diameter �X , we can establish
O
�
(log(s)/s)1/d

�
rate on expected kernel shrinkage. However, a more careful analysis would help

us to remove the log(s) dependency in the bound and is stated in the following corollary:

Corollary 11 (Expected shrinkage for the k-NN kernel) Suppose that the conditions of Lemma
10 hold. Let k be a constant and ✏k(s) be the expected shrinkage for the k-NN kernel. Then, for any
s larger than some constant we have ✏k(s) = E

⇥
kx�X(k)k2

⇤
= O

�
1
s

�1/d.

We are now ready to state our estimation result for the k-NN kernel, which is honest and sym-
metric. Therefore, we can substitute the expected shrinkage rate established in Corollary 11 in
Theorem 6 to derive estimation rates for this kernel.

Theorem 12 (Estimation Guarantees for the k-NN Kernel) Suppose that µ is (C, d)-homogeneous
on B(x, r), Assumption 1 holds and that Algorithm 2 is executed with B � n/s. Then, w.p. 1� �:

k✓̂ � ✓(x)k2 
2

�

✓
O
⇣
s�1/d

⌘
+O

✓
 max

r
p s

n
(log log(n/s) + log(p/�))

◆◆
, (11)

and r
E
h
k✓̂ � ✓(x)k22

i
 2

�

 
O
⇣
s�1/d

⌘
+O

 
 max

r
s p log log(p n/s)

n

!!
. (12)

By picking s = ⇥
�
nd/(d+2)

�
and B = ⌦

�
n2/(d+2)

�
we get

r
E
h
k✓̂ � ✓(x)k22

i
= Õ

�
n�1/(d+2)

�
.

5.2. Asymptotic normality of the k-NN estimator

In this section we prove asymptotic normality of k-NN estimator. We first provide a bound on the
incrementality of the k-NN kernel.

Lemma 13 (k-NN Incrementality) Let K be the k-NN kernel and let ⌘k(s) denote the incremen-
tality rate of this kernel. Then, the following holds:

⌘k(s) = E
h
E
⇥
K(x,X1, {Zj}sj=1) | X1

⇤2i
=

1

(2s� 1) k2

 
2k�2X

t=0

at
bt

!
,

where sequences {at}2k�2
t=0 and {bt}2k�2

t=0 are defined as

at =

min{t,k�1}X

i=max{0,t�(k�1)}

✓
s� 1

i

◆✓
s� 1

t� i

◆
and bt =

tX

i=0

✓
s� 1

i

◆✓
s� 1

t� i

◆
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We can substitute ⌘k(s) in Theorem 7 to prove asymptotic normality of the k-NN estimator. The
following theorem takes a step further and derives the asymptotic variance of this estimator �n,j(x).

Theorem 14 (Asymptotic Variance of k-NN) Let j 2 [p] be one of coordinates. Suppose that k
is constant while s!1. Then, for the k-NN kernel

�2n,j(x) =
s2

n

�2
j
(x)

k2 (2s� 1)
⇣k + o(s/n) , (13)

where �2
j
(x) = Var

⇥⌦
ej ,M

�1
0  (Z; ✓(x))

↵
| X = x

⇤
and ⇣k = k +

P2k�2
t=k

2�t
P

k�1
i=t�k+1

�
t

i

�
.

Combining results of Theorem 7, Theorem 14, Corollary 11, and Lemma 13 we have:

Theorem 15 (Asymptotic Normality of k-NN Estimator) Suppose that µ is (C, d)-homogeneous
on B(x, r). Let Assumptions 1, 2 hold and suppose that Algorithm 2 is executed with B � (n/s)5/4

iterations. Suppose that s grows at a rate such that s!1, n/s!1, and also s�1/d(n/s)1/2 !
0. Let j 2 [p] be one of coordinates and �2

n,j
(x) be defined in Equation (13). Then,

✓̂j(x)� ✓j(x)
�n,j(x)

! N(0, 1) .

Finally, if s = n� and B � n
5
4 (1��) with � 2 (d/(d+ 2), 1). Then, ✓̂j(x)�✓j(x)

�n,j(x)
! N(0, 1) .

Plug-in confidence intervals. Observe that the Theorem 14 implies that if we define �̃2
n,j

(x) =

s
2

n

�
2
j (x)

2s�1
⇣k
k2

as the leading term in the variance, then
�
2
n,j(x)

�̃
2
n,j(x)

!p 1. Thus, due to Slutsky’s theorem

✓̂j � ✓j
�̃2
n,j

(x)
=
✓̂j � ✓j
�2
n,j

(x)

�2
n,j

(x)

�̃2
n,j

(x)
!d N(0, 1) . (14)

Hence, we have a closed form solution to the variance in our asymptotic normality theorem. If
we have an estimate �̂2

j
(x) of the variance of the conditional moment around x, then we can build

plug-in confidence intervals based on the normal distribution with variance s
2

n

�̂
2
j (x)

2s�1
⇣k
k2

. Note that ⇣k
can be calculated easily for desired values of k. For instance, we have ⇣1 = 1, ⇣2 =

5
2 , and ⇣3 = 33

8

and for k = 1, 2, 3 the asymptotic variance becomes s
2

n

�̂
2
j (x)

2s�1 ,
5
8
s
2

n

�̂
2
j (x)

2s�1 , and 11
24

s
2

n

�̂
2
j (x)

2s�1 respectively.

5.3. Selecting s adaptively

According to Theorem 12, s = ⇥(nd/(d+2)) would trade-off between bias and variance terms.
Also, according to Theorem 15, picking s = n� with d/(d+2) < � < 1 would result in asymptotic
normality of the estimator. However, both choices depend on the unknown intrinsic dimension of µ
on the ball B(x, r). Inspired by Kpotufe (2011), we explain a data-driven way for estimating s.

Suppose that � > 0 is given. Let Cn,p,� = 2 log(2pn/�) and pick� � �X . For any k  s  n,
let H(s) be the U -statistic estimator for ✏(s) defined as H(s) =

P
S2[n]:|S|=s

maxXi2Hk(x,S) kx�
Xik2/

�
n

s

�
. Each term in the summation computes the distance of x to its k-nearest neighbor on

S and H(s) is the average of these numbers over all
�
n

s

�
possible subsets S (see Remark 34 in

Appendix G regarding to efficient computation of H(s)). Define G�(s) = �
p
Cn,p,�ps/n. Iterate
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over s = n, · · · , k. Let s2 be the smallest s for which we have H(s) > 2G�(s) and let s1 = s2+1.
Note that ✏k(s) is decreasing in s and G�(s) is increasing in s. Therefore, there exists a unique
1  s⇤  n such that ✏k(s⇤)  G�(s⇤) and ✏k(s⇤ � 1) > G�(s⇤ � 1). We have following results.

Proposition 16 (Adaptive Estimation) Let Assumptions of Theorem 12 hold. Suppose that s1
is the output of the above process. Let s⇤ = 9s1 + 1 and suppose that Algorithm 2 is executed
with s = s⇤ and B � n/s⇤. Then w.p. at least 1 � 2� we have k✓̂ � ✓(x)k2 = O(G�(s⇤)) =

O

✓⇣
n

p log(2pn/�)

⌘�1/(d+2)
◆

. Further, for � = 1/n we have
r
E
h
k✓̂ � ✓(x)k22

i
= Õ

�
n�1/(d+2)

�
.

Proposition 17 (Adaptive Asymptotic Normality) Let Assumptions of Theorem 15 hold. Let s1
be the output of the above process when � = 1/n and s⇤ = 9s1 + 1. For any ⇣ 2 (0, (log(n) �
log(s1) � log log2(n))/ log(n))) define s⇣ = s⇤n⇣ . Suppose that Algorithm 2 is executed with

s = s⇣ and B � (n/s⇣)5/4, then for any coordinate j 2 [p], we have ✓̂j(x)�✓j(x)
�n,j(x)

! N(0, 1) .

6. Nuisance parameters and heterogeneous treatment effects

Using the techniques of Oprescu et al. (2018), our work easily extends to the case where the mo-
ments depend on, potentially infinite dimensional, nuisance components h0, that also need to be
estimated, i.e.,

✓(x) solves: m(x; ✓, h0) = E[ (Z; ✓, h0) | x] = 0. (15)
If the moment m is orthogonal with respect to h and assuming that h0 can be estimated on a separate
sample with a conditional MSE rate of

E[(ĥ(z)� h0(z))2|X = x] = op(✏(s) +
p

s/n) , (16)

then using the techniques of Oprescu et al. (2018), we can argue that both our finite sample estima-
tion rate and our asymptotic normality rate, remain unchanged, as the estimation error only impacts
lower order terms. This extension allows us to capture settings like heterogeneous treatment effects,
where the treatment model also needs to be estimated when using the orthogonal moment as

 (z; ✓, h0) = (y � q0(x,w)� ✓(t� p0(x,w))) (t� p0(x,w)) , (17)

where y is the outcome of interest, t is a treatment, x,w are confounding variables, q0(x,w) =
E[Y |X = x,W = w] and p0(x,w) = E[T |X = x,W = w]. The latter two nuisance functions
can be estimated via separate non-parametric regressions. In particular, if we assume that these
functions are sparse linear in w, i.e.:

q0(x,w) = h�(x), wi , p0(x,w) = h�(x), wi . (18)

Then we can achieve a conditional mean-squared-error rate of the required order by using the kernel
lasso estimator of Oprescu et al. (2018), where the kernel is the sub-sampled k-NN kernel, assuming
the sparsity does not grow fast with n.

Conclusion

In this work we studied non-parametric inference when solving general conditional moment equa-
tions in high-dimensions and provided estimation and inference guarantees that only depend on the
local intrinsic dimension of the covariate space. We confirmed our theoretical findings via numerical
simulations.
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