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ABSTRACT

Reconstructing high-quality images from spike data remains a challenging task,
particularly under low-light and high-motion conditions where spike noise and
motion blur are prominent. To tackle these challenges, we propose WaveAt-
tNet, a novel Wavelet-Guided Attention Network for spiking image reconstruc-
tion. WaveAttNet comprises two ky components: (1) a Wavelet-Guided Attention
(WGA) module that performs frequency-aware noise suppression by emphasizing
informative subbands and suppressing noisy ones through discrete wavelet trans-
form and attention weighting; and (2) a Multi-scale Temporal Attention (MTA)
module that captures and fuses temporal features across multiple time scales to
mitigate both short-exposure noise and long-exposure motion blur. Extensive ex-
periments on both synthetic (Spike-REDS) and real-world (Real-Captured) spike
datasets demonstrate that WaveAttNet outperforms state-of-the-art approaches in
terms of perceptual quality and quantitative metrics.

1 INTRODUCTION

Spike cameras (Huang et al. (2023)), inspired by the asynchronous processing of biological vision
systems, offer several distinct advantages over traditional frame-based sensors. These include ultra-
high temporal resolution, high dynamic range, and low power consumption (Gehrig et al. (2018);
Maqueda et al. (2018)). Such properties enable spike cameras to capture high-speed motion and
operate reliably under dynamic lighting conditions, scenarios that are often challenging for conven-
tional vision systems.

Extensive research has been devoted to spike image reconstruction, which can be broadly catego-
rized into early model-based approaches and learning-based methods. Early model-based methods,
such as TFP (Zhu et al. (2019)) and TFI (Zhu et al. (2019)), rely on the physical principles of
spike generation and focus on interpreting spike timing statistics. While these methods are inter-
pretable and computationally lightweight, they are often vulnerable to motion blur and noise ampli-
fication, particularly under low-light conditions where spike activity is sparse and irregular. To en-
hance spike image reconstruction, researchers have increasingly turned to learning-based methods,
especially those based on convolutional neural networks (CNNs) and Transformers. CNN-based
models (e.g., Spk2ImgNet (Zhao et al. (2021)), WGSE (Zhang et al. (2023))) leverage hierarchical
spatial-temporal feature extraction to enhance reconstruction quality and robustness. In contrast,
Transformer-based models (e.g., SpikeFormer (She & Qing (2022)), SwinSF (Jiang et al. (2024)))
utilize attention mechanisms to capture long-range dependencies and fine-grained temporal dynam-
ics. Both approaches have demonstrated substantial performance gains over traditional approaches.

However, reconstructing high-quality images from spike streams remains challenging due to inher-
ent limitations in spike sensing and the accumulations process: (1) Noise under short exposures
(Zhang et al. (2023)). In low-light conditions, short exposure periods lead to low photon counts and
high variability in light arrival, resulting in significant noise. Most reconstruction methods struggle
to handle such noise effectively, resulting in images with considerable noise and reduced brightness.
(2) Motion blur under long exposures (Yin et al. (2025)). To suppress noise, longer exposure pe-
riods are often used. However, in scenes with fast-moving objects, this leads to motion blur. As
objects change position over time, their spikes are spatially accumulated, resulting in blurred edges,
ghosting artifacts, and distorted shapes in the reconstructed image.
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To overcome these challenges, we propose WavelAttNet, a novel wavelet attention-based network
for spike image reconstruction. It integrates two key components: First, a wavelet-guided atten-
tion module that effectively suppresses noise and enhances temporal feature representation. This
module applies DWT to decompose the spike stream into multi-scale wavelet coefficients, naturally
separating the signal into different frequency bands. This separation helps distinguish informative
high-frequency features from high-frequency noise. The attention mechanism further strengthens
meaningful coefficients while filtering out irrelevant or noisy ones. Second, an attention-based
multi-scale temporal fusion module that handles motion blur and low-light issues by aggregating
spike features across multiple temporal scales. Short exposure windows preserve fine details and
fast motion but often suffer from noise and weak signals in low-light conditions. In contrast, long
exposure windows reduce noise through temporal averaging but introduces motion blur. To bal-
ance these trade-offs, the attention mechanism enables the model to adaptively focus on the most
informative features–emphasizing short-scale features in dynamic regions and long-scale features
in noisy, low-light area–resulting in improved overall image quality. The main contribution of this
work can be summarized as follows:

• We propose a novel wavelet attention-based network for spike image reconstruction, where
a wavelet-guided attention (WGA) module is introduced to effectively suppress noise and
enhance temporal feature representation.

• We introduce a multi-scale temporal attention (MTA) module that addresses motion blur
and low-light challenges through attention mechanisms that capture informative dynamics
across varying temporal scales.

• Extensive experiments on the Spike-REDS and Real-Captured benchmarks consistently
demonstrate that our method outperforms state-of-the-art baselines across multiple eval-
uation metrics, delivering higher reconstruction accuracy, sharper structural details, and
superior perceptual quality.

2 RELATED WORK

2.1 SPIKE CAMERAS IN VISUAL TASKS

Spike cameras, as bio-inspired neuromorphic sensors, have enabled breakthroughs in various visual
tasks (Yang et al. (2024); Dong et al. (2024); Chang et al. (2024)) by leveraging their ultra-high tem-
poral resolution, low latency, and wide dynamic range. Unlike conventional frame-based cameras
that capture images at fixed intervals, spike cameras operate asynchronously, recording absolute light
intensity at each pixel by firing binary spikes whenever the accumulated light exceeds a predefined
threshold. This continuous, event driven sensing allows for high-frequency, low-power operation,
making spike cameras particularly attractive for capturing dynamic scenes with high-speed motion
or changing illumination.

In recent years, spike cameras have been increasingly applied to low-level vision tasks, especially
image reconstruction. However, despite substantial progress, spike data presents several challenges
that complicate the reconstruction process. One major issue is noise, especially in low-light condi-
tions (Chen et al. (2025); Zhu et al. (2023)). When the lighting is limited, the sensor captures only
a small number of photons, leading to sparse and unreliable spike outputs. This results in recon-
structed images that appear noisy, with low contrast and poor texture details. Another challenge is
motion blur in high-speed scenes (Yin et al. (2025); Zhang et al. (2023)). To reduce noise, longer
exposure windows are often used, but this causes problems when objects move quickly. As a re-
sult, motion gets averaged across multiple pixels, leading to blurry edges and ghosting effects in the
reconstructed images. These challenges underscore the need for adaptive, context-aware reconstruc-
tion methods that can effectively handle the noise, motion blur, and complex spatiotemporal patterns
inherent in spike data, which result from its asynchronous and random nature.

2.2 SPIKE-TO-IMAGE RECONSTRUCTION

Spike image reconstruction, a fundamental task for neuromorphic spike cameras, aims to recover
high-quality intensity images from dense, asynchronous binary spike streams. Over the years, re-
search in this area has evolved from model-driven physical methods to data-driven deep learning
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approaches, with efforts to address key challenges such as high-speed motion blur, noise, and low-
light conditions.

Early model-driven methods–such as TFP (Zhu et al. (2019)) and TFI (Zhu et al. (2019))–rely on
the underlying physical principles of spike generation to estimate light intensity, offering strong
interpretability and no need for large labeled datasets. However, they struggle to handle complex
noise (especially in low-light environments) and fast, irregular motion, often resulting in blurry
or unstable reconstructions. In contrast, learning-based methods utilize deep neural networks to
learn the mapping from spike streams to intensity images, enabling more effective feature extraction
from data. These methods can be broadly categorized by their backbone architectural backbones,
including CNN-based networks (e.g. Spk2ImgNet (Zhao et al. (2021)), WGSE (Zhang et al. (2023)),
RSIR (Zhu et al. (2023))), transformer-based models (e.g., SwinSF (Jiang et al. (2024)), Spikeformer
(She & Qing (2022))), and Mamba-based architectures (e.g. Spk2ImgMamba (Yin et al. (2025))).
Through ongoing innovations in network design, learning-based approaches continue to improve in
terms of accuracy and adaptability, while still facing trade-offs between precision, efficiency, and
robustness to real-world variability.

3 METHODOLOGY

Fig. 1 illustrates the overview of WaveAttNet, a novel wavelet-guided attention network designed
for spike image reconstruction. The architecture comprises two key components: First, the wavelet-
guided attention module is introduced to effectively suppress temporal noise and enhance temporal
feature representation. Second, the multi-scale temporal attention module tackles motion blur and
low-light challenges by selectively capturing informative features across multiple temporal scales,
enhancing the model’s generalization to real-world scenarios.

3.1 WAVELET-GUIDED ATTENTION (WGA) MODULE

The motivation behind the wavelet-guided attention module is to first apply multi-level DWT to
decompose the input signal into multi-level low- and high-frequency components, allowing infor-
mative high-frequency features (such as edges and textures) to be separated from high-frequency
noise. An attention mechanism is then used to selectively enhance meaningful subbands while sup-
pressing irrelevant or noisy ones.

Let the input spike stream be S ∈ RT×W×H , where T is the number of time steps, and W,H denote
spatial dimensions. At each spatial location (i, j), the spike sequence over time is defined as:

S(i, j) = {St(i, j)}Tt=1 ∈ RT

We apply a multi-level DWT along the temporal axis at each pixel location to decompose the signal
into multi-level low- and high-frequency components.

First-Level Decomposition. At pixel (i, j), the 1D spike signal Si,j is filtered with low-pass DL

and high-pass DH filters:

SL1 = (2 ↓)(DL ∗ Sij), SH1 = (2 ↓)(DH ∗ Sij)

where ∗ denotes convolution and (2 ↓) indicating downsampling by a factor of 2.

Multi-Level Decomposition. Low-frequency outputs from each level are recursively decomposed:

SLk = (2 ↓)(DL ∗ SL(k−1)), SHk = (2 ↓)(DH ∗ SL(k−1))

where k indicates the k-th level decomposition. After N levels, the full coefficient/subband set is:

W(S) = {SH1, SH2, ..., SHN , SLN}

Here, SHn(n = 1, ..., N ) are the high-frequency coefficients, and SLN is the low-frequency coeffi-
cient from the last decomposition level.

To adaptively weigh the importance of each subband, we use an attention mechanism that highlights
useful subbands and suppresses less relevant ones. Denote the subbands as:

W(S) = {Sl ∈ RTl}N+1
l=1
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Figure 1: Overview of (a) WaveAttNet, which includes a (b) wavelet-guided attention module for
noise reduction and temporal-frequency feature enhancement, and a (c) multi-scale temporal atten-
tion module designed to capture informative dynamics across varying temporal scales, effectively
addressing motion blur and low-light challenges.

where l = 1, ..., N are high-frequency subbands, and l = N + 1 is the low-frequency subband. We
extract features from each subband using a shallow CNN, then compute a global descriptor for each
subband through average pooling:

gl =
1

Tl

Tl∑
t=1

Sl(t)

These descriptors are passed through two fully connected layers with a ReLU activation, followed
by a sigmoid function to produce the attention weights:

w = Softmax(FC(ReLU(FC(g)))) (1)

where w = [w1, w2, . . . , wN+1] ∈ RN+1 represents the attention weights for each subband.

Next, each wavelet subband is scaled by its corresponding weight:

Ŝl = wl · Sl l = 1, . . . , N + 1

The weighted subbands are reconstructed into spike streams using inverse DWT, resulting noise-
reduced and enhanced feature representations. This attention mechanism enables the model to focus
on important frequency components while effectively suppressing noise.

3.2 MULTI-SCALE TEMPORAL ATTENTION (MTA) MODULE

Multi-scale temporal feature extraction offers significant advantages over single-scale approaches
for spike data by capturing a broader range of temporal dynamics, which is critical for real-world
scenarios. We propose a multi-scale temporal attention module to tackle two major challenges in
spike-based imaging: First, noise under short exposures. In low-light conditions, short exposure
durations lead to fewer photons and high variability, resulting in noisy spike data. Second, motion
blur under long exposures. Although longer exposures reduce noise, they often blur fast-moving
objects because spike events from different positions accumulate over time, leading to smeared edges
and ghosting artifacts. To handle both problems, the MTA module use multiple parallel branches,
each processing a short-term spike segment centered on the same temporal midpoint but with a
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different temporal window size. This design allows the model to balance noise reduction and motion
preservation by learning from multiple temporal perspectives.

Let the input spike stream be S = {St ∈ RW×H}Tt=1, where T is the number of time steps, and
define the central temporal index as tc =

⌊
T
2

⌋
. The module consists of N parallel branches, each

extracting features from a distinct short-term temporal window centered at tc, but with varying
temporal lengths. It operates in several sequential stages:

Temporal Segments at Different Scales. For each branch n ∈ {1, 2, . . . , N}, we define a temporal
window length Tn. The spike segment for branch n is:

S(n) = {Stc−Tn
2
, . . . , Stc+

Tn
2
} ∈ RTn×W×H

Each branch processes its corresponding temporal segment S(n), allowing the network to capture
distinct and complementary temporal features across different time scales.

Feature Extraction Per Branch. Each branch includes an independent CNN-based extractor f (n)

that extracts temporal-spatial features:

F (n) = f (n)(S(n))

Attention Weighting Across Scales. To adaptively weigh the contribution of each temporal scale,
an attention map αn is computed for each branch. This is achieved using two convolutional layers
with ReLU and softmax activations, respectively:

αn = Softmax(Conv2(ReLU(Conv1(F
(n)))))

The attention map αn modulates the feature response in each branch. The final multi-scale temporal
feature Fout is obtained by applying the learned attention weight to each branch independently:

Fout = {αn · F (n)} n = 1, . . . , N

The outputs from all branches are then be concatenated and passed to the downstream reconstruction
module.

4 EXPERIMENTAL SETUP

In this section, we present the experimental setup, covering the datasets, evaluation metrics, and
implementation details.

4.1 DATASETS

For training, we use the widely adopted synthesized Spike-REDS dataset (Zhao et al. (2021)), which
provides both spike streams and corresponding ground truth images at a resolution of 250×400.
To evaluate the generalization ability of WaveAttNet, we conduct testing on both the test set of
Spike-REDS and the diverse Real-Captured spike dataset previously used in (Yin et al. (2025)).
The Real-Captured dataset includes sequences from the recVidarReal2019 (Zhu et al. (2020)) and
momVidarReal2021 (Zheng et al. (2023)) datasets, featuring a resolution of 400×250. This dataset
contains challenging high-speed motion scenarios under complex indoor and outdoor conditions,
providing a robust benchmark for assessing generalization performance.

4.2 EVALUATION METRICS.

On the paired Spike-REDS dataset, which provides both spike data and corresponding ground truth
images, we evaluate performance using three commonly used full-reference metrics: PSNR, SSIM,
and LPIPS (Zhang et al. (2018)). For the Real-Captured dataset, where ground truth images are un-
available, we rely on no-reference metrics–NIQE (Mittal et al. (2012b)) and BRISQUE (Mittal et al.
(2012a))–for evaluation. Additionally, we provide a more comprehensive comparison by reporting
model size (in millions of parameters) and computational cost (in GFLOPs).
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4.3 IMPLEMENTATION DETAILS

The WaveAttNet framework is implemented in PyTorch using a convolutional neural network
(CNN) architecture. Training is performed on a workstation with an NVIDIA RTX 4090 GPU
and an Intel Xeon Platinum 8470Q CPU. A batch size of 16 is used. The model is optimized using
Adam, with an initial learning rate of 1e-4, which is reduced to 1e-5 after 25 epochs.

Table 1: Quantitative performance comparison of various spike image reconstruction methods on
Spike-REDS.

Methods Backbones Params (M) FLOPs (G) PSNR↑ SSIM↑ LPIPS ↓
TFP – – – 22.37 0.5801 0.3035
TFI – – – 24.94 0.7150 0.3716
TFSTP – – – 22.37 0.7300 0.3254

WGSE CNN 3.81 415.26 38.88 0.9774 0.0212
Spk2ImgNet CNN 3.76 1000.5 38.44 0.9767 0.0229

SSIR SNN 0.382 23.8 16.32 0.8451 0.1234

SwinSF Transformer 1.8 415.82 39.34 0.9803 0.0184
SpikeFormer Transformer 7.58 67.88 37.18 0.9738 0.0580

Spk2ImgMamba Mamba 0.282 9.9 15.15 0.8463 0.1248

WaveAttNet CNN 3.78 1037.73 39.35 0.9810 0.0178

Table 2: Quantitative performance comparison of various spike image reconstruction methods on
Real-Captured.

Methods Backbones Params (M) FLOPs (G) NIQE ↓ BRISQUE ↓
TFP – – – 21.7393 82.0609
TFI – – – 16.1018 63.9647
TFSTP – – – 52.3297 83.1865

WGSE CNN 3.81 415.26 8.3484 30.3575
Spk2ImgNet CNN 3.76 1000.5 6.9135 32.7683

SSIR SNN 0.382 23.8 7.4298 19.5845

SwinSF Transformer 1.8 415.82 8.3614 26.7702
SpikeFormer Transformer 7.58 67.88 6.3051 30.4309

Spk2ImgMamba Mamba 0.282 9.9 6.7393 17.5177

WaveAttNet CNN 3.78 1037.73 6.3031 21.6980

5 RESULTS AND DISCUSSIONS

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We conduct an extensive comparison of the proposed WaveAttNet against a wide range of state-
of-the-art approaches, including traditional model-based methods (e.g., TFP (Zhu et al. (2019)),
TFI (Zhu et al. (2019)), TFSTP (Zheng et al. (2021))), CNN-based frameworks (e.g., Spk2ImgNet
(Zhao et al. (2021)), WGSE (Zhang et al. (2023))), SNN-based models (e.g., SSIR (Zhao et al.
(2023))), Transformer-based approaches (e.g., SpikeFormer (She & Qing (2022)), SwinSF (Jiang
et al. (2024))), and the recent Mamba-based model (e.g., Spk2ImgMamba (Yin et al. (2025))).

Tables 1 and 2 present the quantitative comparison of various spike image reconstruction methods
on the Spike-REDS and Real-Captured datasets, repectively. The proposed WaveAttNet achieves
the best performance across all three full-reference metrics (PSNR, SSIM, and LPIPS) on Spike-
REDS, and also records the best NIQE score on the Real-Captured dataset. These results highlight
the effectiveness of our wavelet-guided attention module in suppressing noise through frequency-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Visual comparison of spike image reconstruction methods on the Spike-REDS dataset.

Figure 3: Visual comparison of spike image reconstruction methods on the Real-Captured dataset.

aware filtering and the multi-scale temporal attention module in capturing temporal dynamics, which
together improve generalization to low-light and fast-motion scenes.

However, WaveAttNet lags behind Spk2ImgMamba and SSIR in terms of the BRISQUE score. We
believe this is due to BRISQUE’s bias toward natural image statistics. As a no-reference quality met-
ric, BRISQUE favors images with typical luminance, texture, and statistical distributions commonly
found in natural scenes. Spike-based reconstructed images often lack these natural details, espe-
cially after strong noise removal or exposure correction. Although WaveAttNet improves overall
image quality and performs well on PSNR and SSIM, its filtering process may smooth out textures.
This makes the images look less “natural” to BRISQUE, leading to lower scores.

In contrast, the SNN-based SSIR and Mamba-based Spk2ImgMamba models perform unexpectedly
poorly on the Spike-REDS dataset, primary due to their tendency to generate overly bright images
with unrealistic illumination that deviates significantly from the ground truth, as illustrated in Fig.
2. This performance gap is largely attributed to the lack of dedicated illumination handling mecha-
nisms, such as the multi-scale temporal attention module, which adaptively adjusts the importance of
temporal scales based on varying lighting conditions. As illustrated in Fig. 3, WaveAttNet produces
more natural lighting and preserves finer image details.

Table 3: Ablation results of the wavelet-guided attention module on the Spike-REDS (REDS) and
Real-Captured (REAL) datasets. ’CNN’ and ’Attention’ denote the CNN and the attention blocks
within the module, respectively.

Datasets CNN Attention PSNR SSIM LPIPS Datasets CNN Attention NIQE BRISQUE

REDS
✗ ✗ 38.36 0.9707 0.0231

REAL
✗ ✗ 6.9006 32.9598

✓ ✗ 38.96 0.9795 0.0193 ✓ ✗ 6.5456 25.3307
✓ ✓ 39.35 0.9810 0.0178 ✓ ✓ 6.3031 21.6980
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Table 4: Impact of wavelet decomposition levels (Decomp Level) on the performance of the Spike-
REDS (REDS) and Real-Captured (REAL) datasets.

Datasets Decomp Level PSNR SSIM LPIPS Datasets Decomp Level NIQE BRISQUE

REDS

2 39.22 0.9791 0.0183

REAL

2 6.5450 23.0038
3 39.31 0.9788 0.0181 3 6.4087 22.0334
4 39.35 0.9804 0.0179 4 6.3192 21.5390
5 39.35 0.9810 0.0178 5 6.3031 21.6980

Table 5: Ablation results for the multi-scale temporal attention (MTA) module on the Spike-REDS
(REDS) and Real-Captured (REAL) datasets.

Datasets MTA PSNR SSIM LPIPS Datasets MTA NIQE BRISQUE

REDS w/o MTA 38.77 0.9780 0.0209 REAL w/o MTA 6.6683 26.8290
w/ MTA 39.35 0.9810 0.0178 w/ MTA 6.3031 21.6980

5.2 ABLATION STUDY

5.2.1 EVALUATION OF THE WAVELET-GUIDED ATTENTION (WGA) MODULE.

The wavelet-guided attention (WGA) module consists of three key components: a Discrete Wavelet
Transform (DWT) for frequency decomposition, an attention mechanism for noise suppression and
frequency feature enhancement, and an Inverse DWT (IDWT) for spike stream reconstruction. The
attention mechanism itself includes a CNN block for deep frequency feature extraction and an at-
tention block for adaptive frequency weighting.

To assess the effectiveness of the WGA module, we conduct ablation studies using three model
variants: (1) the full model with the complete WGA module, (2) the model without the WGA
module, and (3) the model with WGA but excluding the attention block. The ablation results of
the WGA module are presented in Table 3, from which we observe that incorporating CNN block
improves performance, likely because it transforms raw wavelet coefficients into more expressive
and informative representations. The attention block further boosts performance, as it adaptively
reweighs the frequency subbands, highlighting informative frequency components such as motion
and texture while suppressing noisy or irrelevant ones. In contrast, CNN block alone treats all
features uniformly without such selective enhancement.

5.2.2 EVALUATION OF DECOMPOSITION LEVEL IN WGA.

The number of decomposition levels in the Wavelet-Guided Attention (WGA) module has a strong
impact on reconstruction performance. With too few levels (e.g., 2), the model struggles to separate
high-frequency noise from informative high-frequency features such as motion and texture. As
shown in Table 4, performance improves as the level increases from 2 to 4 and then stabilizes.
Excessive decomposition, however, cause oversmoothing and loss of fine motion details, especially
in sparse spike streams. Therefore, we set the decomposition level to 5 in our experiments.

5.2.3 EVALUATION OF THE MULTI-SCALE TEMPORAL ATTENTION (MTA) MODULE

Table 5 presents the ablation results of WaveAttNet with (w/) and without (w/o) the proposed
multi-scale temporal attention (MTA) module on the Spike-REDS and Real-Captured datasets. The
model equipped with MTA consistently outperforms its counterpart without MTA, demonstrating
the effectiveness of multi-scale temporal feature extraction for spike data. The improvements are
attributed to MTA’s ability to capture a wider range of temporal dynamics, which is essential in
real-world conditions. The MTA module employs multiple parallel branches, each operating at
a different temporal scale. The integrated attention mechanism further weighs the contributions
from each temporal scale, enabling the model to effectively balance noise suppression and motion
preservation by learning from diverse temporal contexts.
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Figure 4: Quantitative performance (PSNR) and computational efficiency (FLOPs and model size)
across representative spike image reconstruction models.

6 CONCLUSION

In this paper, we proposed WaveAttNet, a wavelet-guided attention network for spike image recon-
struction that effectively addresses the challenges of temporal noise and motion blur. The proposed
Wavelet-Guided Attention (WGA) module enhances informative frequency components while sup-
pressing noise, and the Multi-scale Temporal Attention (MTA) module adaptively captures temporal
dynamics at multiple scales to balance motion preservation and noise reduction. Extensive exper-
iments demonstrate that WaveAttNet achieves state-of-the-art reconstruction performance across
both synthetic and real-world spike datasets, outperforming existing approaches on PSNR, SSIM,
LPIPS, and NIQE metrics.

However, as shown in Fig. 4, WaveAttNet has the largest model size and FLOPs among all com-
pared methods. While this contributes to its strong performance, it also raises concerns about com-
putational efficiency and deployment practicality. Therefore, improving model compactness and
reducing computational overhead will be important directions for future work.
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A APPENDIX

A.1 USE OF LLMS

Large Language Models (LLMs) were used solely to assist with writing and polishing the text.
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