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Abstract

Spectral reconstruction from RGB images often suffers from a metameric dilemma,
where distinct spectral distributions map to nearly identical RGB values, making
them indistinguishable to current models and leading to unreliable reconstructions.
In this paper, we present Diff-Spectra that integrates supervised physics-aware
spectral estimation and unsupervised high-fidelity spectral regularization for HSI
reconstruction. We first introduce an Adaptive illumiChroma Decoupling (AICD)
module to decouple illumination and chrominance information, which learns in-
trinsic and distinctive feature distributions, thereby mitigating the metameric issue.
Then, we incorporate the AICD into a learnable spectral response function (SRF)
guided hyperspectral initial estimation mechanism to mimic the physical image
formation and thus inject physics-aware reasoning into neural networks, turning
an ill-posed problem into a constrained, interpretable task. We also introduce a
metameric spectra augmentation method to synthesize comprehensive hyperspec-
tral data to pre-train a Spectral Diffusion Module (SDM), which internalizes the
statistical properties of real-world HSI data, enforcing unsupervised high-fidelity
regularization on the spectral transitions via inner-loop optimization during in-
ference. Extensive experimental evaluations demonstrate that our Diff-Spectra
achieves competitive performance on both Spectral reconstruction and downstream
HSI classification.

1 Introduction

Hyperspectral imaging captures hundreds of spectral bands, allowing for precise identification of
materials and illumination conditions that are often indistinguishable from RGB imaging. It has been
widely applied in remote sensing [1, 2], medical diagnosis [3, 4] and agriculture[5, 6].

Traditional hyperspectral imaging methods show limitations in time-consuming acquisition pro-
cesses with limited spatial resolution. Recent advances in deep learning within the computer vision
community have paved the way for hyperspectral image reconstruction from RGB inputs using data-
driven methodologies [7, 8]. Early model-based methods, such as sparse coding [9] and low-rank
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Figure 1: Motivation. (a) shows metamer and standard HSIs. In (b), standard and metamer RGB
inputs are produced by the same SRF from corresponding HSIs. In (d), Left: the dashed and solid
red highlighted points are two pixels from the fake and real peppers from the CAVE dataset [19],
respectively; Right: Corresponding ground-truth spectral curves of the two pixels, and reconstructed
spectral curves of CESST [8] (grey) and our method (blue). The fake and real peppers are in similar
colors but have different spectra. Existing methods (e.g., CESST) fail to distinguish either the two
spectra from each other or from their true spectra, while our method can reconstruct faithfully.

representation [10], rely predominantly on manually crafted priors. In contrast, modern learning-
based approaches [7, 11, 12, 13] leverage deep learning frameworks such as convolutional neural
networks [14, 15, 16] and Vision Transformers [7, 8] to achieve superior reconstruction performance.

Limitations. However, we observe that most existing methods [7, 11, 12] suffer from a metameric
dilemma [17, 18], where distinct spectral distributions map to nearly identical RGB values, making
them indistinguishable to current models and leading to unreliable reconstructions, as shown in
Fig.1. We argue that this stems from the direct nonlinear mapping from the sRGB input space to
the hyperspectral output space, leading to three key limitations in terms of data, methodologies, and
pipelines: (i) Data Poverty: Existing hyperspectral datasets lack diversity in rich metameric examples,
forcing existing models to memorize a limited subset of spectra rather than internalizing the full
spectral manifold; (ii) Spectral Manifold Blindness: Existing methods overlook the explicit modeling
of the real-world spectral distribution, leading to hallucinated outputs that minimize pixel-wise losses
(e.g., MSE) but violate physical laws (e.g., unnatural spectral intensity in Fig. 1); (iii) Architecture
Myopia: Existing methods treat spectral radiance as a monolithic entity, conflating illumination
and chrominance. It amplifies metameric failures that networks cannot distinguish whether RGB
variations stem from lighting or material properties.

It raises a fundamental question: Can we introduce auxiliary information to address the above-
mentioned metameric dilemma, thus achieving high-fidelity Spectral reconstruction? If so, how?

To this end, we propose Diff-Spectra, a semi-supervised model for HSI reconstruction that integrates
supervised physics-aware spectral estimation and unsupervised high-fidelity spectral regularization.
Specifically, to deal with architecture myopia, we first introduce an Adaptive IllumiChroma Decou-
pling (AICD) module by factorizing RGB inputs into independent illumination and chrominance
subspace via orthogonal decoupling. Then, the AICD is incorporated into a SRF-guided HSI initial
estimation (SRF-guided HIE) mechanism to estimate the target spectral signal in a supervised manner.
This process mimics the physical image formation and thus injects physics-aware reasoning into
neural networks, turning an ill-posed problem into a constrained, interpretable task. To deal with the
data poverty, we introduce a metameric spectra augmentation method to synthesize a comprehensive
HSI dataset with diverse metamer samples and spectral perturbations, transforming sparse spectral
data into a rich prior that can guide reconstruction beyond RGB ambiguities. To deal with the spectral
manifold blindness, we introduce a spectral diffusion module (SDM) that learns to denoise corrupted
spectra during pre-training on the comprehensive HSI dataset, which internalizes the statistical proper-
ties of real-world hyperspectral data. During reconstruction, the pre-trained SDM serves as a spectral
prior that regularizes the coarsely estimated HSI signal from the SRF-guided HIE mechanism with
high-fidelity real-world spectral distributions via our proposed unsupervised inner loop optimization.
The main contributions are given as follows:

• We propose a semi-supervised paradigm, Diff-Spectra, to deal with the metameric dilemma
in spectral reconstruction. It integrates supervised physics-aware spectral estimation and
unsupervised high-fidelity spectral regularization.
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• We introduce an Adaptive IllumiChroma Decoupling (AICD) module based on orthogonal
decoupling to effectively factorize illumination and chrominance information, serving as an
IllumiChroma prior. It learns distinctive image features, alleviating the metameric dilemma.

• We design a lightweight, learnable SRF-guided HIE mechanism to obtain an initial HSI esti-
mation, which formulates the reconstruction model with physical constraints and enhances
the interpretability.

• We introduce a metameric spectra augmentation method to synthesize a comprehensive HSI
dataset to pre-train a Spectral Diffusion Module (SDM) to capture the real-world spectral
distribution, serving as a spectral prior to improve spectral fidelity.

• Extensive experiments on both spectral reconstruction and HSI classification demonstrate
that our Diff-Spectra framework significantly outperforms SOTA methods.

2 Related Work

2.1 Hyperspectral Image Reconstruction

Early efforts [9, 16] utilized model-based approaches that incorporated fidelity terms and physical
priors to constrain the target solutions. For example, Arad et al. [9] improved this interpolation
challenge using hyperspectral priors to forge a sparse dictionary of HSIs alongside their RGB
counterparts. Despite their contributions, these model-based strategies depend on manually tailored
priors, constricting their representational capability. Learning-based methods [11, 12, 20, 21],
shifted the focus to data-driven approaches, learning implicit mappings from RGB to hyperspectral
domains using specifically designed architectures. Notably, the HSCNN model [14] revolutionizes
the field by mapping the input RGB image into hyperspectral feature space via a convolutional layer
and harnessing deep residual convolutional blocks to approximate the enriched HSI. Cai et al. [7]
proposed a transformer-based approach to capture the long-range channel-wise correlations that
compute the self-attention map along the channel dimension, tailored for HSI reconstruction. Wang
et al. [22] introduced an intrinsic image decomposition (IID) framework to decompose input images
into reflectance and shading features and then reconstruct them in the spectral domain separately.
However, all existing learning-based methods directly learn mappings between sRGB and HSI feature
spaces, neglecting the intrinsic spectral distribution of HSIs and lacking physical constraints, thus
encountering the challenges posed by the metameric dilemma.

2.2 Diffusion-based HSI Image Reconstruction

Diffusion models [23, 24] have witnessed an explosion of continuously growing capability and capac-
ity architectures. In the context of HSI image reconstruction, Pang et al. [25] proposed HIR-Diff that
leverages a powerful pre-trained diffusion prior and a product-of-experts guidance scheme to remove
degradations and recover clean hyperspectral images in an unsupervised manner, demonstrating
strong generalization across scenes and noise types. Wu et al. [26] proposed a conditional denoising
transformer to fuse high-resolution multi-spectral images and low-resolution hyperspectral images to
generate target high-resolution HSI images. Liu et al. [27] proposed incorporating the deep generative
prior of diffusion models to constrain the high-resolution multi-spectral image and low-resolution
hyperspectral image fusion process. While these works focus on restoration and reconstruction,
diffusion’s representational advantages have also benefited HSI classification, suggesting transferable
priors for reconstruction. Chen et al. [28] proposed a spatial-spectral diffusion module to generate
high-dimensional HSI signals for HSI classification, indicating the great potential of diffusion-based
generative models in spectral distribution modeling. Beyond natural HSI classification, Sigger et
al. [29] proposed a multistage unsupervised diffusion framework to extract complementary high- and
low-level spectral features for challenging biomedical HSI classification, underscoring diffusion’s
capacity to model fine-grained spectral structure. However, applying diffusion models for practical
HSI systems still faces trade-offs among cost, complexity, and acquisition speed. Moreover, directly
reconstructing full hyperspectral cubes from RGB inputs with diffusion remains comparatively under-
explored, presenting an opportunity to combine diffusion priors with cross-modal spectral constraints
and measurement-aware conditioning for faithful RGB-to-HSI recovery grounded in both spectral
accuracy and spatial details.
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Figure 2: Overall framework of Diff-Spectra. Our model has three training stages. In Stage 1, the
SRF-guided HIE and AICD are pre-trained using Eq. 10 to initialize a coarse-level HSI signal while
freezing the SDM. In Stage 2, the SDM is pre-trained using Eq.13 to learn the spectral distribution of
HSI signals while freezing the SRF-guided HIE and AICD. In Stage 3, we fine-tune the SRF-guided
HIE and AICD using the objective function Eq. 14, which regularizes the initialized HSI signal in
Stage 1 with the spectral prior of SDM in Stage 2. During inference, we further introduce an inner
loop optimization as a test-time adaptation with Eq. 13 to generate refined HSI signals by following
the spectral reverse generative sequence of SDM.

3 Methodology

3.1 Problem Definition

The RGB imaging process can be formulated as a sub-sampling process of the target HSI signal:

X = YA+ ϵ, A ∈ RC×c, (1)

where X ∈ RH×W×c denotes the observed RGB image, with H , W and c representing height, width,
and channel (c << C) of X, respectively. Y ∈ RH×W×C and A ∈ RC×c are the target HSI signal
and the spectral response function (SRF) of the RGB sensor, respectively. ϵ is the noise or residual
terms that arise in the image processing pipeline. The HSI reconstruction task can be formulated as a
maximum a posteriori problem: maxY p(Y | X,A). Applying Bayes’ theorem, the posterior can be
further reformulated as:

p(Y | X,A) =
p(X,A | Y)p(Y)

p(X,A)
, (2)

Taking the negative logarithm and discarding irrelevant terms X,A, we obtain the objective function:

min
Y

{− log p(X,A | Y)− log p(Y)}, (3)

where log p(X,A | Y) is the log-likelihood that depicts the degradation processes of RGB sampling
from the HSI signal, and Y is the spectral prior that will contribute to the restoration of Y.

3.2 Motivation and Solution

Existing HSI reconstruction methods [7, 8] only consider the first term in Eq. 3 (i.e., log p(X,A | Y))
and directly map RGB inputs to hyperspectral feature space, overlooking subtle variations in RGB
feature distributions, thereby leading to the metameric dilemma, as shown in Fig. 1 and further
demonstrated by the experimental results in Section 4.3.

In this paper, we would like to consider this challenging spectral reconstruction problem as supervised
physics-aware spectral estimation and unsupervised high-fidelity spectral regularization. Thus, in
terms of supervised physics-aware spectral estimation, which corresponds to to optimize the first

4



term − log p(X,A | Y) in Eq. (3), we introduce an Adaptive IllumiChroma Decoupling (AICD)
module by factorizing RGB inputs into independent illumination (U) and chrominance (V) subspace
via orthogonal decoupling to explore intrinsic clues and distinguish image features, which effectively
eliminates redundancy and enhances distinctive patterns among metameric hyperspectral data. Then,
the AICD is incorporated into the SRF-guided HSI Initial Estimation (SRF-guided HIE) module
to estimate the target spectral signal in a supervised manner. This process mimics the physical
image formation and thus injects physics-aware reasoning into neural networks, turning an ill-posed
problem into a constrained, interpretable task. Now, we express the first term − log p(X,A | Y) as
the following according to Eq. (1):

LY (Y) = ∥(X,U,V)−YA− ϵ∥2. (4)

Then, we assume the second prior term, i.e., log p(Y), as unsupervised high-fidelity spectral regular-
ization for the estimated spectra, which further constrains the estimation via transferring distribution
prior knowledge from a pre-trained model leveraging our metameric spectra dataset.

3.3 Supervised Physics-Aware Spectral Estimation

3.3.1 Adaptive IllumiChroma Decoupling

A spectral radiance Y(λ) can be represented as Y(λ) = E(λ)S(λ), where, λ,E(λ),S(λ) represents
the spectral entity, illumination and surface chrominance, respectively. Existing deep learning
methods treat Y(λ) as a monolithic entity, failing to disentangle illumination and chrominance.
This conflation amplifies metameric ambiguities, as networks struggle to distinguish whether RGB
variations stem from lighting changes E(λ) or material properties S(λ). This dilemma is the same
with RGB inputs. As such, we introduce AICD that aims to extract intrinsic and distinctive image
features that are robust against different light variations. However, as shown in Fig. 3, we find that
merely relying on reflectance R and illumination L decomposition based on the Retinex theory [30]
cannot distinguish between metameric examples.

Considering that HSIs capturing often exhibit low-light characteristics that lead to potential informa-
tion loss, we first customize an illumination sensitivity parameter Sk, which enables image-specific

adjustment as: Sk = k

√
sin(πL

′

2 ) + τ , where k ∈ Q+, τ = 1×10−8. In specific, different from exist-
ing decomposition methods [31, 32, 33] that decompose images in a deterministic manner, which may
not appropriately capture the diverse and complex imaging and lighting conditions that are specific to
downstream tasks, we introduce trainable parameters to enable adaptive learning of intrinsic image fea-
tures in an end-to-end manner, thereby enhancing compatibility with downstream tasks. Specifically,
we employ convolutional layers to obtain embedded features: R

′
= Conv(R), L

′
= Conv(L).

Stand/Metamer Illumination Reflectance AICD

Indistinct Indistinct Indistinct Distinct

Figure 3: Difference between the decomposition
methods of Retinex and AICD. The top row is
based on standard data, while the bottom row
is based on metamer data. AICD can transform
metamer counterparts into more discriminative fea-
tures than reflectance and illumination maps.

Orthogonal Decoupling. As discussed, decom-
posed reflectance and illumination components
cannot well distinguish metamer data. Inspired
by the orthogonal decoupling method in [34, 35],
which effectively eliminates redundancy and en-
hances distinctive patterns among visual fea-
tures, we further deployed orthogonal UV trans-
form to extract more distinctive features. We
define the horizontal (U) and vertical (V) plane
as:
U = Sk⊙R

′
⊙h, V = Sk⊙R

′
⊙v, (5)

where ⊙ denotes Hadamard production. Note
that we orthogonalize the UV-planes using the
two intermediate variables h = cos(2πR

′
) and

v = sin(2πR
′
). Finally, the decomposed features (U, and V) will serve as the illumichroma prior

for SRF-guided HIE.

3.3.2 SRF-guided HSI Initial Estimation

Note that the SRF matrix A in Eq. 1 that projects the HSI to an RGB frame has a row-full rank,
enabling a right-inverse solution based on the matrix inversion rule. Thus, there exists a transpose
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matrix AT of A such that the following equation obtained from Eq. 1 holds

XAT − ϵAT = YAAT , (6)

AAT is a square matrix, and there exists an inverse matrix of AAT such that the following equation
holds:

γXAT (AAT )−1 − ϵAT (AAT )−1 = YAAT (AAT )−1, (7)
We can rewrite Eq. 7 as

Y = XAT (AAT )−1 − ϵAT (AAT )−1, (8)
Direct inversion of RGB images into spectral space via SRFs may be suboptimal due to variations in
SRFs across different spectral cameras and disturbances arising from factors such as RGB format
compression and noise, and can not distinguish metamers. To address these challenges, we incorporate
the AICD into a spectral response function (SRF) guided HSI initial estimation (SRF-guided HIE)
mechanism to estimate the target spectral signal in a supervised manner. This process mimics the
physical image formation and thus injects physics-aware reasoning into neural networks, turning an
ill-posed problem into a constrained, interpretable task. Specifically, we incorporate the decomposed
illumichroma prior from the AICD module and then estimate the coarse HSI signal via the SRF-guided
HIE function:

Ỹ = F(H(X,U,V)AT
(
AAT

)−1
, (9)

where F denotes a neural network mapping function (a standard UNet-based network [7]), H denotes
a fusion operator (via concatenation and convolution) and Ỹ denotes the SRF-guided HIE output.
Now, Eq. (4) is implemented as:

LY (Y) = ∥Y −F(H(X,U,V)AT
(
AAT

)−1
)∥2, (10)

3.4 Unsupervised High-Fidelity Spectral Regularization

We introduce spectral diffusion models (SDMs) [27, 36] as spectral priors to refine the initial HSI
estimated by the SRF-guided HIE and achieve accurate reconstruction. However, three key challenges
must be addressed: (i) SDMs struggle to capture metameric feature distributions, limiting their ability
to model subtle spectral variations. (ii) Directly modeling the spatial-spectral distribution of 3D
hyperspectral data incurs a significant computational burden due to the high dimensionality of the data.
(iii) A notable domain discrepancy exists between SRF-guided HIE results and real hyperspectral
images (HSIs), suggesting that directly applying SDMs may result in suboptimal performance. To
address these challenges, we introduce three key improvements for effectively integrating SDMs into
spectral reconstruction: (1) metameric spectral augmentation, which creates comprehensive training
data to enhance feature representation, (2) a lightweight spectral diffusion architecture to reduce
computational complexity, and (3) gradient-based inner loop optimization to bridge the domain gap
and improve reconstruction accuracy.

Metameric spectra augmentation. Metameric augmentation leverages an orthogonal subspace
decomposition [37] of a spectrum S into a component that lies in the sensor-response range subspace
and a residual in the null space, enabling different spectra to produce the same RGB response under a
given spectral sensitivity [38]. With a spectral response matrix A, a new metameric spectrum S† can
be synthesized following the concept of metameric black [39]:

S† = J + βJ †, (11)

where we project S onto the range space as J = A(ATA)
−1

ATS and define the residual null space
as J † = S− J . New metamer spectra are then synthesized by varying the scalar β. Because J †

lies in the null space of the response, changing β does not alter the RGB tristimulus, so S and S†

are colorimetric matches while differing spectrally. This property reflects the broader fact that rich
spectra are reduced to three sensor channels in trichromatic systems, making metamers common and
exploitable for augmentation.

We adopt this as a spectral-wise augmentation (rather than spatial flips or crops) to expand the diversity
of training spectra while preserving color consistency seen by RGB sensors. Such augmentation
can enhance robustness in spectral reconstruction pipelines, a concept established in color science
as a way to explore spectra that map to the same color. Practically, we generate metamer data by
sampling β uniformly from [0, 1); note that setting β = 1 recovers the original spectrum, while other
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values yield alternative metamers that share the same RGB under A. We produce metamers at a
1 : 1 ratio with standard spectra, doubling the dataset and providing both the original and augmented
hyperspectral inputs for pre-training.

Lightweight spectral diffusion architecture. HSI signals exhibit significant spatial sparsity [40, 41],
suggesting that direct modeling of 3-D data cubes might be suboptimal. As such, we introduce a
1-D spectral diffusion model to capture the spectral distribution of HSI signals to address the second
term in Eq. (3). Our SDM employs two iterative processes, following the standard DDPM [42], a
forward diffusion process, and a reverse denoising process, as illustrated in Fig. 2. Unlike existing
diffusion-based variations [33, 28], we adopt a 1-D MLP-based UNet denoising network to ensure
that the diffusion model is compatible with 1-D spectral data. While it is feasible to capture the
spectral distribution of HSI signals via our proposed SDM, the key question is: how can the trained
SDM be incorporated to solve the second prior term − log p(Y) of Eq. (3)?

In our work, we assume that any spectral vector y ∈ RC of the target HSI Y are i.i.d. (independently
identically distributed), i.e., − log p(Y) = −

∑
y∈Y log p(y), and each spectrum sample follows the

spectral distribution learned by our proposed SDM, the deep generative prior, i.e., y = y0 ∼ q(y0).
Consequently, the optimization problem Eq. (3) can be rewritten as:

min
Y

LY (Y) + λ
∑
t,y

Lkl(q(yt−1|yt,y)||pθ(yt−1|yt)), (12)

where λ and Lkl denote a balance hyperparameter and the KL divergence, respectively. Subsequently,
we can use the parameterization trick to rewrite the second term in Eq. (3) as

(13)

With the above derivation, the final objective function of the proposed Diff-Spectra can be formulated
as

min
Y

LY (Y) + λ
∑
t,y

Lθ(y, t). (14)

Note that this objective function is adopted during the fine-tuning process in Stage 3, where λ is set
to 0.1 empirically.

Inner loop optimization. It is impractical to optimize Eq. (14) simultaneously for all time steps.
This is because an inherent domain gap exists between the spectral distribution learned by the
SDM and the spectral distribution of the coarse-level HSI learned by the SRF-guided HIE network.
Simply assuming these two spectral distributions are consistent without further adaptation can lead
to suboptimal results. As such, we propose an inner loop optimization during each time step in the
inference phase that performs gradient descent K times for each t, which serves as the test-time
adaptation.

4 Experiments and Analysis

4.1 Implementation Details and Datasets

We implemented Diff-Spectra using Pytorch. In Stage 1, we pre-train the SRF-guided HIE and AICD
on the training dataset for 300 epochs with the Adam optimizer following [7]. Empirically, we set the
learning rate to 4× 10−4 and the batch size is 20. In Stage 2, we pre-train the SDM on our generated
metamer dataset for 300 epochs with the Adam optimizer. The learning rate is set to 1× 10−2. The
batch size is 1024, and the total diffusion steps T is 5000. In Stage 3, we fine-tune the SRF-guided
HIE and AICD, while freezing the SDM for 100 epochs with the Adam optimizer. Empirically, we set
the learning rate to 1× 10−4 and the batch size is 20. During inference, we input RGB images from
the testing dataset and load the pre-trained SRF-guided HIE and AICD to obtain coarse-level HSIs.
We then treat the coarse-level HSIs as learnable parameters and load the pre-trained SDM to update
the parameters and generate refined HSIs, using a learning rate of 1× 10−4 with diffusion steps of
S = 50 and inner loop K = 5. To evaluate the generalization and fidelity of our method, we use two
HSI reconstruction datasets (ARAD-1K [43] and ICVL [9]) and two classification datasets (Indian
Pines [1] and Pavia University [44]). Further details for implementation and dataset descriptions are
provided in the Appendix A.2.
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Figure 4: Visual comparisons on a randomly selected scene from the validation set of the ARAD-1K
dataset with 4 spectral channels. The spectral curves (bottom-left) correspond to the selected blue
Box of the RGB image. Please zoom in for a better comparison.

Table 1: Comparison with SOTA methods on ARAD-1K [43] and ICVL [9] datasets. The best and
second are shown in red and blue, respectively. Our method achieves the best performance on most
metrics with relatively fewer parameters.

Method Venue Params (M) ARAD-1K Dataset ICVL Dataset
ERGAS (↓) SAM (↓) SSIM (↑) PSNR (↑) ERGAS (↓) SAM (↓) SSIM (↑) PSNR (↑)

AWAN [45] CVPRW’20 4.04 17.45 9.83 0.909 31.22 8.32 4.59 0.918 31.92
HDNet [46] CVPR’22 2.66 14.16 10.24 0.913 32.13 7.58 4.17 0.924 31.85
HINet [47] CVPR’21 5.21 15.16 8.18 0.916 32.51 7.93 4.19 0.928 32.01
MST-L [48] CVPR’22 2.45 12.53 7.47 0.922 33.90 5.44 3.51 0.935 32.87
MST++ [7] CVPRW’22 1.62 9.18 6.05 0.928 34.32 4.82 3.04 0.941 32.44
PADUT [49] ICCV’23 6.38 7.39 5.53 0.946 34.51 4.15 3.11 0.948 33.07
SST [50] IJSWIS’24 12.74 8.29 6.01 0.933 33.95 4.67 3.71 0.935 32.71
CESST [8] AAAI’24 1.54 7.85 5.88 0.931 34.74 4.09 3.27 0.939 32.96
SPECAT [51] CVPR’24 0.37 8.62 6.10 0.930 33.48 4.92 3.81 0.944 32.54
Diff-Spectral (ours) – 2.49 4.63 3.96 0.940 35.47 2.84 2.39 0.941 34.71

4.2 Hyperspectral Image Reconstruction

We present quantitative and qualitative comparisons with 9 state-of-the-art methods including
AWAN [45], HINet [47], HDNet [46], MST-L [48], MST++ [7],SST [50], PADUT [49], CESST [8]
and SPECAT [51].

Qualitative Comparison. Visual Comparisons are given in Fig. 4 and Fig. 5. Fig. 4 compares the
reconstructed HSIs with four randomly selected spectral channels using nine SOTA methods and
our Diff-Spectra on the validation set of the ARAD-1K dataset. Fig. 5 shows the MSE error map
between generated and ground-truth HSIs, calculating along the spectral dimension. It is observed that
existing HSI reconstruction methods struggle with spectral intensity estimation and detail recovery,
particularly in regions with high-frequency details such as the sky. In contrast, our approach excels
at restoring intricate textures and achieving superior pixel-level smoothness. This improvement is
attributed to the novel illumiChroma prior learned by the AICD module and the spectral prior learned
by the SDM. The AICD module facilitates intrinsic image decomposition, such as illuminance and
color information, guiding the initial estimation of the HSI signal with perceptually pleasing spatial
features, while the SDM captures spectral distributions that refine the coarse-level HSI generated by
the SRF-guided HIE, ensuring spectral consistency.

Quantitative Comparison. We evaluate the performance using metrics including ERGAS, SAM,
SSIM, and PSNR. The first two metrics assess spectral quality, while the latter two evaluate spatial
quality. Lower ERGAS and SAM values indicate better spectral quality, while higher SSIM and PSNR
values signify better spatial quality. As shown in Table 1, our method achieves the best performance
over most metrics on both the ARAD-1K dataset and the ICVL dataset. Our approach, Diff-Spectra,
outperforms state-of-the-art methods by delivering the highest PSNR and lowest ERGAS (best
spectral and spatial reconstruction quality) with significantly lower computational complexity.

4.3 Metameric Dilemma Evaluation

To demonstrate that existing methods suffer from the metameric dilemma and to validate the effec-
tiveness of our proposed Diff-Spectra in mitigating this issue, we generate metamer HSI data from
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HDNet MST-L MST++ HINetAWAN SST SPECATPADUT CESST Diff-Spectra

Figure 5: The MSE error maps obtained from the validation subset of the ICVL dataset, which are
calculated along the spectral direction, showcasing the discrepancies between the reconstructed HSIs
and the corresponding ground truths.

Table 2: Metameric dilemma Evaluation and HSI classification comparison.

Method Data ERGAS ↓ SAM ↓ SSIM ↑ PSNR ↑

MST++ [7] std 9.18 6.05 0.928 34.32
meta 84.77 50.92 0.8696 27.14

PADUT [49] std 7.39 5.53 0.946 34.51
meta 80.07 47.91 0.872 27.90

SST [50] std 8.29 6.01 0.933 33.95
meta 70.11 52.38 0.884 27.88

CESST [8] std 7.85 5.88 0.931 34.74
meta 59.82 40.74 0.885 28.59

SPECAT [51] std 8.62 6.10 0.930 33.48
meta 48.90 63.59 0.8701 26.63

Diff-Spectral (ours) std 4.63 3.96 0.940 35.47
meta 21.98 24.11 0.906 31.61

(a) Comparison with SOTA methods on standard (std)
and metamer (meta) data.

Class No. AWAN [45] MST++ [7] PADUT [49] MST-L [48] Ours
1 82.71 81.45 87.49 90.47 92.72
2 59.36 84.27 92.35 86.56 91.45
3 73.65 60.33 62.54 88.47 89.97
4 80.04 95.14 91.87 89.58 89.71
5 99.46 99.17 100.00 99.47 100.00
6 95.19 90.62 84.28 47.59 90.68
7 78.42 76.04 75.61 89.55 81.83
8 81.47 98.15 93.46 70.43 69.39
9 94.83 90.52 94.88 82.64 98.44

OA (%) 75.26 82.37 85.48 81.45 89.02
AA (%) 83.35 85.19 86.93 82.97 88.15

κ 0.7124 0.7941 0.8039 0.7355 0.8349

(b) Quantitative comparison of different methods in terms
of the accuracy for each class.

the original ARAD-1K dataset following [52] and use metamer HSI data to synthesize corresponding
RGB images (i.e., metamer). Next, we test several pre-trained models using both standard RGB
images and metamer RGB images (Note that these models are pre-trained on standard data), including
MST++ [7], CESST [8], PADUT [49], SST [50], SPECAT [51], and our proposed Diff-Spectra. The
quantitative results are given in Table 2(a). As can be seen, all the existing methods experience
catastrophic performance drops in terms of PSNR and SAM in the presence of metamers, which is
also known as the metameric dilemma.

4.4 Evaluation on HSI Classification

To further evaluate the fidelity and verify the reliability of the hyperspectral images generated by our
method, we conduct experiments on the hyperspectral image classification task based on a pre-trained
HSI classification model, SpectralFormer [53]. We compare our approach with existing methods
on two widely used HSI classification datasets: the Indian Pines dataset and the Pavia University
dataset, conducting both quantitative and qualitative analyses. For our evaluation, we reconstruct
HSI images using assorted pre-trained HSI reconstruction methods. Subsequently, these synthesized
HSI images are employed as the input to a pre-trained HSI classification model, SpectralFormer [53],
which serves as a benchmark for performance evaluation.

Evaluations. We evaluate the quantitative performance on the Pavia University dataset using three
widely adopted metrics: Overall Accuracy (OA), Average Accuracy (AA), and the Kappa Coefficient
(κ), as shown in Table 2(b). As can be seen, our method achieves the best OA (89.02%), AA (88.15%),
and κ (0.8349). It ranks first in Classes 1, 3, and 9 and ties for first in Class 5, while remaining
competitive in the remaining classes.

4.5 Ablation Study

Break-down Ablation. We perform bread-down ablation to investigate the effectiveness of each
module in Table 3(a) and Figure 6. Comparing Variant 1 with SimDiff-Spectra (i.e., a UNet-based
HSI reconstruction network, which is similar to [7]), we find that the AICD primarily contributes
to the spatial details recovery of the HSI signal, which aligns with our original design intention.
Comparing Variant 1 with Variant 2, we observe that the SRF-guided HIE mechanism enhances
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Table 3: Ablation studies of our proposed modules and inner loop mechanism.

Method AICD SRF SDM IP PSNR SAM
SimDiff-Spectral 32.57 7.52
Variant 1 ✓ 34.18 6.08
Variant 2 ✓ ✓ 34.95 5.41
Variant 3 ✓ ✓ ✓ 34.19 5.84
Diff-Spectral ✓ ✓ ✓ ✓ 35.47 3.96

(a) Break-down ablations of our proposed Diff-Spectra, where IP de-
notes the inner loop.

Setting K PSNR SAM
Diff-Spectral 1 34.19 5.84
Diff-Spectral 4 35.41 4.07
Diff-Spectral 5 35.47 3.96
Diff-Spectral 7 35.25 4.31
Diff-Spectral 10 35.01 4.33

(b) The right sub-table investigate the in-
ner loop steps (K) in the SDM.

both spatial and spectral performance due to the incorporation of physical constraints. Notably,
by comparing Variant 2 with Variant 3, we find that simply incorporating SDM causes a severe
performance drop. Finally, comparing Variant 3 with the full Diff-Spectra model, we find that the
inner loop facilitates effective integration of SDM and primarily contributes to spectral recovery via
the learned spectral distribution regularization.

Inner Loop Analysis. We analyze the impact of the inner loop step parameter K of the SDM in
Table 3(b). The results indicate that performance improves significantly when K is greater than 1 as
compared to when K = 1. Note that when K = 1, the performance is even worse than Variant 2.
This is because a domain gap exists between the spectral distribution learned by the SDM and the
spectral distribution of the coarse-level HSI learned by the SRF-guided HIE network. Assuming these
two spectral distributions are consistent without further adaptation can lead to suboptimal results.
Directly assuming these two spectral distributions are consistent will introduce an inferior influence.

Variant 1 Variant 3RGB Variant 2 Diff-Spectra

Figure 6: Break-down ablation study. The reconstruction MSE error map evaluation on the validation
set of the ICVL dataset.

5 Conclusion

In this paper, we propose Diff-Spectra, which integrates supervised physics-aware spectral estimation
and unsupervised high-fidelity spectral regularization for spectral reconstruction. Especially, the
supervised physics-aware spectral estimation consists of an adaptive illumichroma decoupling (AICD)
and a learnable SRF-guided HIE mechanism, mimicking the physical image formation, and thus in-
jecting physics-aware reasoning into neural networks, turning an ill-posed problem into a constrained,
interpretable task. We further introduce an unsupervised high-fidelity spectral regularization by incor-
porating a pre-trained spectral diffusion model (SDM) to regularize the coarsely estimated HSI signal
from the SRF-guided HIE mechanism with high-fidelity real-world spectral distributions. Extensive
experiments on both spectral reconstruction and HSI classification demonstrate that Diff-Spectra
significantly outperforms SOTA methods. Future work will focus on the investigation of the spectral
distribution gap between the HSI estimated by the SRF-guided HIE and the distribution learned by
the SDM, such as quantizing each distribution into a dictionary and calculating their distance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction outline the key challenges addressed, our contri-
butions, and a summary of the experimental findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitation of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the experimental details and submitted our code together
with the submission. The code will be made publicly available upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We used the public dataset and submitted our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the limited computational resources, we conducted each experiment
only once.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix ??.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators or original owners of the assets used,
such as code, data, and models. We also have correctly cited the relevant literature.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided the source code of our proposed model.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details and Datasets.

A.1 Implementation Details

Three-stage Training Scheme. We implement our proposed Diff-Spectra in the PyTorch framework.
Specifically, our proposed Diff-Spectra adopts a three-stage training strategy:

• Stage 1, we follow [7] that utilizes RGB-HSI pairs from the training dataset to pre-train
the SRF-guided HIE network F(·), fuse-and-conv operation H(·), and AICD module G(·)
jointly, optimized with the corresponding loss (i.e., Eq. 10 in the main content), while
freezing the parameters of the SDM;

• Stage 2, we follow the standard diffusion model DDPM [42] that utilizes HSI from the
training dataset to pre-train the SDM, optimized with the loss Eq. 13, while freezing the
parameters of the SRF-guided HIE;

• Stage 3, to align the distribution gap between the estimated HSI from the SRF-guided HIE
network and the learned spectral prior from SDM, we use Eq. 14 in the main content to
fine-tune the SRF-guided HIE network and AICD module for 100 epochs, while freezing
the SDM. Note that the SDM is treated as a regularizer in this stage. Empirically, we set the
learning rate to 1× 10−4 and the batch size is 20.

Test-time Adaptation. The pre-trained SRF-guided HIE is applied to RGB images from the testing
dataset to generate an initial coarse-level HSI signal Ỹ. Next, we treat Ỹ as trainable parameters,
and a spectrum ỹ is sampled from Ỹ. We assume each sampled spectrum satisfies the spectral
distribution learned by the SDM, i.e., ỹ = ys ∼ q(y0), where s ∈ (0, T ) and T is the time step
trained in Stage 2. Now, we can use Eq. 13 (in the main content) to refine the coarse-level HSI signal
Ỹ during the sampling process of SDM. However, it is impractical to optimize Eq. 13 for all t due to
the inherent distribution difference between the HSI signal generated by SRF-guided HIE and the
spectral distribution learned by SDM. Thus, we perform the gradient update K times in each time
step t, which we named as the inner loop optimization.

A.2 Datasets.

ARAD-1K Dataset [43]. The ARAD-1K dataset includes 950 RGB-HSI pairs, with 900 for training
and 50 for validation, at a 482×512 resolution across 31 spectral channels (400–700nm). This dataset
not only stands as the largest collection available for HSI reconstruction tasks but also integrates
content from preceding compilations, notably the NTIRE 2020 HSI dataset [54]. Each HSI in this
collection is captured with a spatial resolution of 482× 512, spanning 31 spectral channels ranging
from 400nm to 700nm.

ICVL Dataset [9]. The ICVL dataset contains 201 HSIs with a resolution of 1300 × 1392. As
it lacks the provision of aligned RGB images, we use the spectral sampling method proposed by
Magnusson et al. [55] to generate the corresponding RGB images. Given that 18 of these images have
different resolutions, we leverage the remaining 183 image pairs that maintain resolution consistency,
allocating 147 pairs for training and 36 for testing.

Indian Pine Dataset [1]. The Indian Pine dataset records the landscape over an area in North-
Western Indiana, USA, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.
It comprises 145 × 145 pixels, each with a ground sampling distance (GSD) of 20 meters, and
encompasses 220 spectral bands that span the wavelength range from 400 nanometers to 2500
nanometers, achieving a spectral resolution of 10 meters. Following the elimination of 20 bands
characterized by noise and water absorption, 200 spectral bands were kept, specifically bands 1-103,
109-149, and 164-219. The scene under investigation features 16 primary categories, including corn,
oats, buildings, etc.

Pavia University Dataset [44]. It is collected by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor, which surveyed the area surrounding Pavia University in Pavia, Italy. Capable of
capturing 103 spectral bands that range from 430 nanometers to 860 nanometers, the resulting image
is composed of 610× 340 pixels, each with a ground sampling distance (GSD) of 1.3 meters. This
particular scene encompasses 9 distinct land cover classes, including asphalt, grass, trees, etc.
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Table 4: Quantitative comparison of different methods in terms of the accuracy for each class, as well
as the overall performance using metrics - Overall Accuracy (OA), Average Accuracy (AA), and
Kappa coefficient (κ) on the Indian Pines dataset. The best one is shown in bold.

Class No. AWAN [45] HDNet [46] HINet [47] SPECAT [51] MST-L [48] MST++ [7] PADUT [49] Diff-Spectra (Ours)
1 54.16 55.69 72.74 61.71 66.48 68.32 70.15 67.41
2 40.21 57.38 71.47 74.24 72.34 74.35 75.18 78.72
3 73.82 82.14 91.74 91.38 95.54 90.16 94.27 96.46
4 85.68 84.17 90.67 90.05 96.24 85.48 83.74 96.72
5 81.11 78.63 93.45 83.48 85.21 91.52 92.45 94.01
6 96.75 96.03 98.42 94.17 96.72 95.92 97.22 94.94
7 66.31 76.54 72.81 73.88 76.18 77.51 80.92 73.48
8 48.38 59.44 65.59 64.02 59.18 60.17 62.30 67.44
9 44.69 63.19 71.32 72.42 80.03 68.27 65.27 70.02

10 96.70 95.88 100.00 95.32 100.00 100.00 100.00 98.87
11 73.14 89.57 85.11 90.54 91.26 84.58 85.52 85.77
12 17.25 55.42 82.47 89.27 89.81 85.92 84.88 90.25
13 90.44 98.31 100.00 98.93 94.42 100.00 100.00 100.00
14 32.27 57.45 40.25 87.34 76.54 62.51 67.24 91.91
15 81.82 81.82 100.00 100.00 100.00 100.00 100.00 100.00
16 40.00 100.00 80.00 100.00 100.00 80.00 100.00 100.00

OA (%) 58.26 70.41 73.02 77.32 76.36 74.15 75.85 78.14
AA (%) 62.73 76.66 82.25 85.42 86.25 82.79 84.95 87.21

κ 0.5161 0.5918 0.6844 0.7088 0.7304 0.7008 0.7344 0.7571

HDNet MST-L MST++ HINet Diff-Spectra Ground truth AWAN SST SPECATPADUT CESST

RGB PatchRGB Image

400 nm

500 nm

600 nm

700 nm

Figure 7: Visual comparisons on a randomly selected scene from the validation set of the ARAD-1K
dataset with 4 spectral channels. The RGB patch corresponds to the selected red box of the RGB
image. The spectral curves (bottom-left) correspond to the selected blue Box of the RGB image.
Please zoom in for a better comparison.

B Additional Experiment Results

Hyperspectral Image Classification. We further provide more quantitative comparisons on the
Indian Pines dataset in Table 4. In this table, we further add three methods for more generalized
comparisons, including HDNet [46], HINet [47], and SPECAT [51]. As can be seen, our method
outperforms existing methods on most classes, and enjoys the best performance over the three metrics:
Overall Accuracy (OA), Average Accuracy (AA), and Kappa coefficient (κ).

Hyperspectral Image Reconstruction. We provide more visual comparisons in Fig. 7 and Fig. 8.
Specifically, Fig. 7 illustrates the false color results on four spectrum bands, 400nm, 500nm, 600nm
and 700nm, respectively, which is the “ARAD-1K-0901” image chosen from the validation set of
ARAD-1K dataset. In the top-left corner of Fig. 7, the RGB patch corresponds to the selected red
box of the RGB image. The spectral curves (bottom left) correspond to the selected blue Box of the
RGB image. Please zoom in for a better comparison. Fig. 8 illustrates the false color images on four
spectrum bands, 440nm, 500nm, 600nm and 700nm, respectively, which is the “nachal-0823-1147”
image chosen from the testing set of ICVL dataset. In the top-left corner of Fig. 8, the RGB patch
corresponds to the selected red box of the RGB image. The spectral curves (bottom left) correspond
to the selected blue Box of the RGB image. Please zoom in for a better comparison. As can be seen,
our method can recover more precise texture information and better pixel-level smoothness over other
SOTA methods. In addition, both spectral intensity curves in Fig. 7 and Fig. 8 show that our method
can recover more precise spectral values and the spectral distribution of our method is closer to the
ground truth compared with existing methods, especially in the long-wavelength spectrum (e.g., from
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HDNet MST-L MST++ HINet Diff-Spectra Ground truth AWAN SST SPECATPADUT CESST

RGB PatchRGB Image

440 nm

500 nm

600 nm

700 nm

Figure 8: Visual comparisons on a randomly selected scene from the validation set of the ICVL HSI
dataset with 4 spectral channels. The RGB patch corresponds to the selected red box of the RGB
image. The spectral curves (bottom left) correspond to the selected blue Box of the RGB image.
Please zoom in for a better comparison.

600nm− 700nm), which is benefited by both image-level prior and spectral-level prior introduced
in our model.
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