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Abstract

As the field of automated machine learning (Au-
toML) advances, it becomes increasingly impor-
tant to incorporate domain knowledge into these
systems. Our approach combines the advantages
of classical ML classifiers (robustness, predictabil-
ity and a level of interpretability) and LLMs
(domain-knowledge and creativity). We introduce
Context-Aware Automated Feature Engineering
(CAAFE), a feature engineering method for tab-
ular datasets that utilizes an LLM to iteratively
generate additional semantically meaningful fea-
tures for tabular datasets based on the description
of the dataset. The method produces both Python
code for creating new features and explanations
for the utility of the generated features.

Despite being methodologically simple, CAAFE
improves performance on 11 out of 14 datasets
- boosting mean ROC AUC performance from
0.798 to 0.822 across all dataset - similar to the
improvement achieved by using a random forest
instead of logistic regression on our datasets.

Furthermore, CAAFE is interpretable by provid-
ing a textual explanation for each generated fea-
ture. CAAFE paves the way for more extensive
semi-automation in data science tasks and empha-
sizes the significance of context-aware solutions
that can extend the scope of AutoML systems to
semantic AutoML. We release our code and a a
simple demo.

1. Introduction

Automated machine learning (AutoML; e.g., (Hutter et al.,
2019)) is very effective at optimizing the machine learning
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Figure 1. CAAFE accepts a dataset as well as user-specified con-
text information and operates by iteratively proposing and evaluat-
ing feature engineering operations.

(ML) part of the data science workflow, but existing systems
leave tasks such as data engineering and integration of do-
main knowledge largely to human practitioners. However,
model selection, training, and scoring only account for a
small percentage of the time spent by data scientists (roughly
23% according to the “State of Data Science”(Anaconda,
2020)). Thus, the most time-consuming tasks, namely data
engineering and data cleaning, are only supported to a very
limited degree by AutoML tools, if at all.

While the traditional AutoML approach has been fruitful
and appropriate given the technical capabilities of ML tools
at the time, large language models (LLMs) may extend the
reach of AutoML to cover more of data science and allow
it to evolve towards automated data science (De Bie et al.,
2022). LLMs encapsulate extensive domain knowledge
that can be used to automate various data science tasks,
including those that require contextual information. They
are, however, not interpretable, or verifiable, and behave less
consistently than classical ML algorithms. E.g., even the
best LLMs still fail to count or perform simple calculations
that are easily solved by classical methods (Hendrycks et al.,
2021; OpenAl Community, 2021).

In this work, we propose an approach that combines the scal-
ability and robustness of classical ML classifiers (e.g. ran-
dom forests (Breiman, 2001)) with the vast domain knowl-
edge embedded in LLMs. We bridge the gap between LLMs
and classical algorithms by using code as an interface that
allows LLMs to interact with classical algorithms and pro-
vides an interpretable interface to users. Our proposed


https://github.com/cafeautomatedfeatures/CAFE
https://colab.research.google.com/drive/1JPgiEAKO1e7aofm2vqXA1yTHRhAqZgTx
https://colab.research.google.com/drive/1JPgiEAKO1e7aofm2vqXA1yTHRhAqZgTx
http://priorlabs.ai/

LLMs for Semi-Automated Data Science

method, CAAFE, generates Python code that creates seman-
tically meaningful features that improve the performance
of downstream prediction tasks in an iterative fashion and
with algorithmic feedback as shown in Figure 1. Further-
more, it provides explanations for the utility of generated
features. This allows for human-in-the-loop, interpretable
AutoML (Lee & Macke, 2020), making it easier for the user
to understand a solution, but also to modify and improve on
it. Our approach combines the advantages of classical ML
(robustness, predictability and a level of interpretability) and
LLMs (domain-knowledge and creativity).

Automating the integration of domain-knowledge into the
AutoML process has clear advantages that extend the scope
of existing AutoML methods. These benefits include: 1)
Reducing the latency from data to trained models; ii) Re-
ducing the cost of creating ML models; iii) Evaluating a
more informed space of solutions than previously possible
with AutoML, but a larger space than previously possible
with manual approaches for integrating domain knowledge;
and iv) Enhancing the robustness and reproducibility of so-
lutions, as computer-generated solutions are more easily
reproduced. CAAFE demonstrates the potential of LLMs
for automating a broader range of data science tasks and
highlights the emerging potential for creating more robust
and context-aware AutoML tools.

2. Background
2.1. Large Language Models (LLMs)

LLMs are neural networks that are pre-trained on large quan-
tities of raw text data to predict the next word in text doc-
uments. Recently, GPT-4 has been released as a powerful
and publicly available LLM (OpenAl, 2023a). It achieves
state-of-the-art performance on various tasks, such as text
generation, summarization, question answering and coding.

LLMs as Tabular Prediction Models Hegselmann et al.
(2023) recently showed how to use LLMs for tabular data
prediction by applying them to a textual representation of
these datasets. A prediction on an unseen sample then in-
volves continuing the textual description of that sample on
the target column. However, this method requires encoding
the entire training dataset as a string and processing it using
a transformer-based architecture, where the computational
cost increases quadratically with respect to N - M, where
N denotes the number of samples and M the number of
features. Furthermore, the predictions generated by LLMs
are not easily interpretable, and there is no assurance that
the LLMs will produce consistent predictions, as these pre-
dictions depend directly on the complex and heterogeneous
data used to train the models. So far, Hegselmann et al.
(2023) found that their method yielded the best performance
on tiny datasets with up to 8 data points, but was outper-

formed for larger data sets.

LLMs for Data Wrangling Narayan et al. (2022) demon-
strated state-of-the-art results using LLMs for entity match-
ing, error detection, and data imputation using prompting
and manually tuning the LLMs. Vos et al. (2022) extended
this technique by employing an improved prefix tuning tech-
nique. Both approaches generate and utilize the LLMs
output for each individual data sample, executing a prompt
for each row. This is in contrast to CAAFE, which uses
code as an interface, making our work much more scalable
and faster to execute, since one LLM query can be applied
to all samples.

2.2. Feature Engineering

Feature engineering refers to the process of constructing
suitable features from raw input data, which can lead to
improved predictive performance. Given a dataset D =
(%i,y;);—,, the goal is to find a function ¢ : X — A’
which maximizes the performance of A(¢(x;),y;) for some
learning algorithm A. Common methods include numerical
transformations, categorical encoding, clustering, group ag-
gregation, and dimensionality reduction techniques, such as
principal component analysis (Wold et al., 1987).

Various strategies for automated feature engineering have
been explored in prior studies. However, none of the existing
methods can harness semantic information in an automated
manner. The potential feature space, when considering the
combinatorial number of transformations and combinations,
is vast. Therefore, semantic information is useful, to serve
as a prior for identifying useful features. By incorporating
semantic and contextual information, feature engineering
techniques can be limited to semantically meaningful fea-
tures enhancing the performance by mitigating issues with
multiple testing and computational complexity and boost-
ing the interpretability of machine learning models. This
strategy is naturally applied by human experts who leverage
their domain-specific knowledge and insights.

3. Method

We present CAAFE, an approach that leverages large lan-
guage models to incorporate domain knowledge into the
feature engineering process, offering a promising direction
for automating data science tasks while maintaining inter-
pretability and performance.

Our method takes the training and validation datasets,
Dirain and Dyqr:4, as well as a description of the con-
text of the training dataset and features as input. From
this information CAAFE constructs a prompt, i.e. instruc-
tions to the LLM containing specifics of the dataset and
the feature engineering task. Our method performs multi-
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Dataset description: Breast Cancer Wisconsin (Original)
Data Set. Features are computed from a digitized
image of a fine needle aspirate (FNA) of a breast
mass. They describe characteristics of the cell
nuclei present in the image. The target feature
records the prognosis (malignant or benign).

# Iteration 1

# Total_Cell_Size: Useful for identifying larger cells
that may be more indicative of malignancy

# Input samples: (’Cell_Size_ Uniformity’: [1.0, 2.0,
6.0], ’'Single_Epi_Cell_Size’: [2.0, 2.0, 10.0])
df ['Total Cell _Size’] = df[’Cell_Size Uniformity’] * df

["Single_Epi_Cell_Size’]

Performance before adding features ROC 0.923, ACC
0.985. Performance after adding features ROC
0.932, ACC 0.991. Improvement ROC 0.008, ACC
0.007. The code was executed and changes to df
were kept.

Figure 2. Exemplary run of CAAFE on the Wisoconsin Breast
Cancer. User-provided input is shown in blue, ML-classifier gen-
erated data shown in red and LLM generated code is shown with
syntax highlighting. The generated code contains a comment per
generated feature that follows a template provided in our prompt
(Feature name, description of usefulness, features used in the gener-
ated code and sample values of these features). In this run, CAAFE
improves the ROC AUC on the validation dataset from 0.0.923 to
0.932 in one feature engineering iteration. More iterations would
be applied afterwards.

ple iterations of feature alterations and evaluations on the
validation dataset, as outlined in Figure 1. In each itera-
tion, the LLM generates code, which is then executed on
the current Dyyq4p, and D54 resulting in the transformed
datasets Dj, ... and D/ ... We then use Dj, ;.. to fit an
ML-classifier and evaluate its performance P’ on D) ;...
If P’ exceeds the performance P achieved by training on
Di¢rain and evaluating on D454, the feature is kept and we
set Dyirgin = D} qin a0d Dygpiq := D) ., Otherwise,
the feature is rejected and Dyqiy, and D459 remain un-
changed. Figure 2 shows a shortened version of one such

run on the Tic-Tac-Toe Endgame dataset.

Prompting LLMs for Feature Engineering Code Here,
we describe how CAAFE builds the prompt that is used
to perform feature engineering. In this prompt, the LLM
is instructed to create valuable features for a subsequent
prediction task and to provide justifications for the added
feature’s utility. It is also instructed to drop unnecessary
features, e.g. when their information is captured by other
created features.

The prompt contains semantic and descriptive information
about the dataset. Descriptive information, i.e. summary
statistics, such as the percentage of missing values is based

solely on the train split of the dataset. The prompt consists
of the following data points:

A A user-generated dataset description, that contains con-
textual information about the dataset (see Section 7 for
details on dataset descriptions for our experiments)

B Feature names adding contextual information and al-
lowing the LLM to generate code to index features by
their names

C Data types (e.g. float, int, category, string) - this adds
information on how to handle a feature in the generated
code

D Percentage of missing values - missing values are an
additional challenge for code generation

E 10 rows of sample data from the dataset - this provides
information on the feature scale, encoding, etc.

Additionally, the prompt provides a template for the ex-
pected form of the generated code and explanations. Adding
a template when prompting is a common technique to im-
prove the quality of responses (OpenAl, 2023b). We use
Chain-of-thought instructions — instructing a series of inter-
mediate reasoning steps —, another effective technique for
prompting (Wei et al., 2023). The prompt includes an ex-
ample of one such Chain-of-thought for the code generation
of one feature: first providing the high-level meaning and
usefulness of the generated feature, providing the names
of features used to generate it, retrieving sample values it
would need to accept and finally writing a line of code. We
provide the complete prompt in Figure 3 in the appendix.

If the execution of a code block raises an error, this error
is passed to the LLM for the next code generation iteration.
We observe that using this technique CAAFE recovered
from all errors in our experiments. One such example can
be found in Table 2.

4. Results

In this section we showcase the results of our method in
three different ways. For the detailed experimental setup
please see Appendix 7. First, we show that CAAFE can im-
prove the performance of a state-of-the-art classifier. Next,
we show how CAAFE interacts with traditional automatic
feature engineering methods and conclude with examples
of the features that CAAFE creates.

Performance of CAAFE CAAFE can improve our
strongest classifier, TabPFN, substantially. If it is used
with GPT-4, we improve average ROC AUC performance
from 0.798 to 0.822, and enhance the performance for 11/14
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Table 1. ROC AUC OVO results using TabPFN. =+ indicates the
standard deviation across 5 splits. [R] indicates datasets where
reduced data was used because TabPFN had 100% accuracy by
default, see Appendix 11.1.

TabPEN
No Feat. Eng. | CAAFE (GPT-3.5) | CAAFE (GPT-4)

airlines 0.6211 .04 0.619 .04 0.6203 +.04
balance-scale [R] 0.8444 +.29 0.844 +.31 0.882 .26
breast-w [R] 0.9783 +.02 0.9809 .02 0.9809 .02
cme 0.7375 .02 0.7383 .02 0.7393 +.02
credit-g 0.7824 £.03 0.7824 £.03 07832 .03
diabetes 0.8427 .03 0.8434 +.03 0.8425 +.03
eucalyptus 0.9319 +.01 0.9317 £.01 0.9319 £.00
jungle_chess.. 0.9334 +.01 0.9361 +.01 0.9453 +.01
pel 0.9035 .01 0.9087 .02 0.9093 +.01
tic-tac-toe [R] 0.6989 +.08 0.6989 +.08 0.9536 +.06
(Kaggle) health-insurance 0.5745 +.02 0.5745 +.02 0.5748 +.02
(K aggle) pharyngitis 0.6976 +.03 0.6976 £.03 0.7078 £.04
(K aggle) kidney-stone 0.7883 +.04 0.7873 +.04 0.7903 +.04
(Kaggle) spaceship-titanic 0.838 .02 0.8383 +.02 0.8405 +.02
Mean ROC AUC 0.798 .05 0.7987 +.05 0.8215 +.04
Mean ROC AUC Rank 243 2.32 1.25

datasets.On the evaluated datasets, this improvement is sim-
ilar (71%) to the average improvement achieved by using
a random forest (AUC 0.783) instead of logistic regression
(AUC 0.749). We can see that CAAFE even improves per-
formance for all of the new datasets from Kaggle. If we
use CAAFE with GPT-3.5 only, we can see that it performs
clearly worse than with GPT-4, and only improves perfor-
mance on 6/14.

There is great variability in the improvement size depending
on whether (1) a problem is amenable to feature engineer-
ing, i.e. is there a mapping of features that explains the data
better and that can be expressed through simple code; and
(2) the quality of the dataset description (e.g., the balance-
scale dataset contains an accurate description of how the
dataset was constructed) Per dataset performance can be
found in Table 3. CAAFE takes 4:43 minutes to run on each
dataset, 90% of the time is spent on the LLM’s code gener-
ation and 10% on the evaluation of the generated features.
Running CAAFE with 10 iterations costs 0.71$ per dataset
on average. For the 14 datasets, 5 splits and 10 CAAFE
iterations, CAAFE generates 52 faulty features (7.4%) in
the generation stage, from which it recovers (see Figure 2).

Feature Engineering Strategies CAAFE shows a diverse
set of examples of feature engineering strategies applied
by our method. We show examples in the Appendix in
Table2 where CAAFE combines features, creates ordinal
versions of numerical features through binning, performs
string transformations, removes superfluous features, and
even recovers from errors when generating invalid code.

5. Conclusion

Our study presents a novel approach to integrating domain
knowledge into the AutoML process through Context-Aware

Automated Feature Engineering (CAAFE). By leveraging
the power of large language models, CAAFE automates
feature engineering for tabular datasets, generating seman-
tically meaningful features and explanations of their util-
ity. Our evaluation demonstrates the effectiveness of this
approach, which complements existing automated feature
engineering and AutoML methods.

This work emphasizes the importance of context-aware so-
lutions in achieving robust outcomes. We expect that LLMs
will also be useful for automating other aspects of the data
science pipeline, such as data collection, processing, model
building, and deployment. As large language models con-
tinue to improve, it is expected that the effectiveness of
CAAFE will also increase.

Dataset descriptions play a critical role in our method;
however, in our study, they were derived solely from web-
crawled text associated with public datasets. If users were
to provide more accurate and detailed descriptions, the ef-
fectiveness of our approach could be significantly improved.

However, our current approach has some limitations. Han-
dling datasets with a large number of features can lead to
very large prompts, which can be challenging for LLMs to
process effectively. The testing procedure for adding fea-
tures is not based on statistical tests, and could be improved
using techniques of previous feature engineering works. Fi-
nally, the usage of LLMs in automated data analysis comes
with a set of societal and ethical challenges. Please see
Section 6 for a discussion on safeguarding code execution,
biases in LLMs and societal implications of automation.

Future research may explore prompt tuning, fine-tuning
language models, and automatically incorporating domain-
knowledge into models in other ways. Also, there may
lie greater value in the interaction of human users with
such automated methods, also termed human-in-the-loop
AutoML (Lee & Macke, 2020), where human and algorithm
interact continuously. This would be particularly easy with
a setup similar to CAAFE, as the input and output of the
LLM are interpretable and easily modified by experts.

6. Broader Impact Statement

Social Impact of Automation The broader implications
of our research may contribute to the automation of data
science tasks, potentially displacing workers in the field.
However, CAAFE crucially depends on the users inputs
for feature generation and processing and provides an ex-
ample of human-in-the-loop AutoML. The automation of
routine tasks could free up data scientists to focus on higher-
level problem-solving and decision-making activities. It
is essential for stakeholders to be aware of these potential
consequences, and to consider strategies for workforce ed-
ucation and adaptation to ensure a smooth transition as Al
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technologies continue to evolve.

Replication of Biases Al algorithms have been observed
to replicate and perpetuate biases observed in their training
data distribution. CAAFE leverages GPT-4, which has been
trained on web crawled data that contains existing social
biases and generated features may be biased on these biases.
When data that contains demographic information or other
data that can potentially be used to discriminate against
groups, we advise not to use CAAFE or to proceed with
great caution, double checking the generated features.

Execution of Al-generated Code The automatic execu-
tion of Al-generated code carries inherent risks, such as
misuse by malicious actors or unintended consequences
from Al systems operating outside of controlled environ-
ments. Our approach is informed by previous studies on Al
code generation and cybersecurity (Rohlf, 2023; Crockett,
2023). We parse the syntax of the generated python code
and use a whitelist of operations that are allowed for exe-
cution. Thus operations such as imports, arbitrary function
calls and others are excluded. This does not provide full
security, however, e.g. does not exclude operations that can
lead to infinite loops and excessive resource usage such as
loops and list comprehensions.

Al Model Interpretability As the adoption of advanced
Al methods grows, it becomes increasingly important to
comprehend and interpret their results. Our approach aims
to enhance interpretability by providing clear explanations
of model outputs and generating simple code, thus making
the automated feature engineering process more transparent.

Risk of increasing Al capabilities We do not believe
this research affects the general capabilities of LLMs but
rather demonstrates their application. As such we estimate
our work does not contribute to the risk of increasing Al
capabilities.
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7. Experimental Setup

Technical Setup The data is stored in a Pandas dataframe (Wes McKinney, 2010), which is preloaded into memory for
code execution. The generated Python code is executed in an environment where the training and validation data frame is
preloaded. The performance is measured on the current dataset with ten random validation splits D,,,;;4 and the respective
transformed datasets D! ., with the mean change of accuracy and ROC AUC used to determine if the changes of a code
block are kept, i.e. when the average of both is greater than 0. We use OpenAI’s GPT-4 and GPT-3.5 as LLMs (OpenAl,
2023a) in CAAFE. We perform ten feature engineering iterations and TabPFN in the iterative evaluation of code blocks.

Setup of Downstream-Classifiers We evaluate our method with Logistic Regression, Random Forests (Breiman, 2001)
and TabPFN (Hollmann et al., 2022) for the final evaluation while using TabPFN to evaluate the performance of added
features. We impute missing values with the mean, one-hot or ordinal encoded categorical inputs, normalized features and
passed categorical feature indicators, where necessary, using the setup of Hollmann et al. (2022) '.

Evaluating LLMs on Tabular Data The LLM’s training data originates from the web, potentially including datasets
and related notebooks. GPT-4 and GPT-3.5 have a knowledge cutoff in September 2021, i.e., almost all of its training data
originated from before this date. Thus, an evaluation on established benchmarks can be biased since a textual description of
these benchmarks might have been used in the training of the LLM.

We use two categories of datasets for our evaluation: (1) widely recognized datasets from OpenML released before September
2021, that could potentially be part of the LLMs training corpus and (2) lesser known datasets from Kaggle released after
September 2021 and only accessible after accepting an agreement and thus harder to access by web crawlers.

From OpenML (Vanschoren et al., 2013; Feurer et al.), we use small datasets that have descriptive feature names (i.e. we do
not include any datasets with numbered feature names). Datasets on OpenML contain a task description that we provide as
user context to our method. When datasets are perfectly solvable with TabPFN alone (i.e. reaches ROC AUC of 1.0) we
reduce the training set size for that dataset. We focus on small datasets with up to 2 000 samples in total, because feature
engineering is most important and significant for smaller datasets.

We describe the collection and preprocessing of datasets in detail in Appendix 11.1.

Evaluation Protocol For each dataset, we evaluate 5 repetitions, each with a different random seed and train- and test split
to reduce the variance stemming from these splits (Bouthillier et al., 2021). We split into 50% train and 50% test samples
and all methods used the same splits.

8. Reproducibility

Code release In an effort to ensure reproducibility, we release code to reproduce our experiments at https://github.
com/cafeautomatedfeatures/CAFE

Availability of datasets All datasets used in our experiments are freely available at OpenML . org (Vanschoren et al., 2014)
or at kaggle . com, with downloading procedures included in the submission.

9. Full LLM Prompt

Figure 3 shows the full prompt for one examplary dataset. The generated prompts are in our repository: https://
github.com/cafeautomatedfeatures/CAFE/tree/main/data/generated_code

1https ://github.com/automl/TabPFN/blob/main/tabpfn/scripts/tabular_baselines.py


https://github.com/cafeautomatedfeatures/CAFE
https://github.com/cafeautomatedfeatures/CAFE
OpenML.org
kaggle.com
https://github.com/cafeautomatedfeatures/CAFE/tree/main/data/generated_code
https://github.com/cafeautomatedfeatures/CAFE/tree/main/data/generated_code
https://github.com/automl/TabPFN/blob/main/tabpfn/scripts/tabular_baselines.py
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The dataframe ‘df‘ is loaded and in memory. Columns are also named attributes .

Description of the dataset in ‘df ° (column dtypes might be inaccurate):

"s#%Tic-Tac—Toe Endgame database:sx

This database encodes the complete set of possible board configurations at the end of tic-tac—-toe games, where "x"

is assumed to have played first. The target concept is "win for x" (i.e., true when "x" has one of 8 possible
ways to create a "three-in-a-row"). "

Columns in ‘df‘ (true feature dtypes listed here, categoricals encoded as int):
top—left —square (int32): NaN-freq [0.0%], Samples [2, 2, 2, 2, 2, 2, 0, 1, 1, 2]
top-middle-square (int32): NaN-freq [0.0%], Samples [0, O, 1, I, 1, 2, 0, 2, 2, 2]
top—right —square (int32): NaN-freq [0.0%], Samples [1, O, I, 2, 1, 1, 1, 0, 2, 1]
middle—-left —square (int32): NaN-freq [0.0%], Samples [1, O, 2, I, 2, 0, 0, 2, 1, 2]
middle -middle-square (int32): NaN-freq [0.0%], Samples [0, 2, 2, 1, 2, 1, 1, 1, 2, 1]
middle-right —square (int32): NaN-freq [0.0%], Samples [1, 1, 2, 2, 2, 2, 0, 0, 0, O]
bottom—-left —square (int32): NaN-freq [0.0%], Samples [2, 1, I, 0, O, 1, 2, O, 1, 1]
bottom-middle-square (int32): NaN-freq [0.0%], Samples [2, O, 0, O, I, 2, 2, 2, 1, 0]
bottom-right —square (int32): NaN-freq [0.0%], Samples [2, 2, 0, 2, 0, I, 2, 1

Class (category): NaN-freq [0.0%], Samples [1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]

This code was written by an expert datascientist working to improve predictions. It is a snippet of code that adds
new columns to the dataset.
Number of samples (rows) in training dataset: 71

This code generates additional columns that are useful for a downstream classification algorithm (such as XGBoost)
predicting "Class".

Additional columns add new semantic information, that is they use real world knowledge on the dataset. They can e.g.
be feature combinations, transformations , aggregations where the new column is a function of the existing
columns .

The scale of columns and offset does not matter. Make sure all used columns exist. Follow the above description of
columns closely and consider the datatypes and meanings of classes.

This code also drops columns, if these may be redundant and hurt the predictive performance of the downstream
classifier (Feature selection). Dropping columns may help as the chance of overfitting is lower, especially if
the dataset is small.

The classifier will be trained on the dataset with the generated columns and evaluated on a holdout set. The
evaluation metric is accuracy. The best performing code will be selected.

Added columns can be used in other codeblocks, dropped columns are not available anymore.

Code formatting for each added column:

‘“‘python

# (Feature name and description)

# Usefulness: (Description why this adds useful real world knowledge to classify "Class" according to dataset
description and attributes.)

# Input samples: (Three samples of the columns used in the following code, e.g. ’top-left-square’: [2, 2, 2], “top—
middle -square *: [0, O, 1], ...)

(Some pandas code using top-left —square’, ’top-middle-square’, ... to add a new column for each row in df)

‘“‘end

Code formatting for dropping columns:
‘“‘python

# Explanation why the column XX is dropped
df.drop(columns=["XX"], inplace=True)
‘“‘end

Each codeblock generates exactly one useful column and can drop unused columns (Feature selection).
Each codeblock ends with ‘“‘‘end and starts with " ‘python"
Codeblock:

Figure 3. Full LLM Prompt for the CMC dataset. The generated code will be the reply to this prompt.

10. Additional Results
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Table 2. Examples of common strategies employed by CAAFE for feature extension. The full code and comments are automatically
generated based on the user-provided dataset descriptions.

Description

Generated code

Combination
Example from the Kaggle Kidney Stone
dataset.

Binning
Example from the Kaggle Spaceship Titanic
dataset.

String transformation
Example from the Kaggle Spaceship Titanic
dataset.

Removing features
Example from the Balance Scale dataset.

Error Recovery

Example from the Kaggle Health Insurance
dataset. The code execution failed because
missing values were not considered in the
dataframe. In the next iteration code is sug-
gested that can handle missing values.

# Usefulness: Fever and rhinorrhea are two of the most common symptoms of
respiratory infections , including GAS pharyngitis. This feature captures their
co—occurrence .

# Input samples: ’temperature ": [38.0, 39.0, 39.5], ’rhinorrhea’: [0.0, 0.0, 0.0]

df[ " fever_and_rhinorrhea’] = ((df[’ temperature’] >= 38.0) & (df[’rhinorrhea’] > 0))
.astype(int)

# Feature: AgeGroup (categorizes passengers into age groups)

# Usefulness: Different age groups might have different likelihoods of being
transported .

# Input samples: “Age’: [30.0, 0.0, 37.0]

bins = [0, 12, 18, 35, 60, 100]

labels = [’Child’, ’'Teen’, ’'YoungAdult’, *Adult’, *Senior’]

df[*AgeGroup’] = pd.cut(df[ Age’], bins=bins, labels=labels)

df[ "AgeGroup’] = df[’AgeGroup’].astype(’ category’)

# Feature: Deck

# Usefulness: The deck information can help identify patterns in the location of
cabins associated with transported passengers.

# Input samples: ’Cabin’: ['F/356/S°, 'G/86/P°, 'C/37/P’]

df['Deck’] = df[’Cabin’].apply (lambda x: x[0] if isinstance(x, str) else ’Unknown’)

# Feature: CabinSide

# Usefulness: The side of the cabin can help identify patterns in the location of
cabins associated with transported passengers.

# Input samples: ’Cabin’: ['F/356/S°, *G/86/P°, 'C/37/P’]

df[’CabinSide’] = df[’Cabin’].apply(lambda x: x.split(’/’)[-1] if isinstance(x, str
) else ’Unknown’)

# Drop original columns

# Explanation: The original columns ’left-weight’, “left—-distance’, ’right-weight’,
and 'right-—distance’ can be dropped as the newly created columns ’left_moment
>, ’right_moment’, and moment_difference’ capture the relevant information
for predicting the ’class’

df.drop(columns=["left —weight’, ’left—-distance’, ’'right-weight’, ’right-distance’],

inplace=True)
# No more additional columns needed

# Feature: Age_difference

# Usefulness: Age difference between upper and lower age can be useful in
determining the likelihood of a person applying for a policy.

# Input samples: ’Upper_Age’: ['C33°, "C2’, "C3’], "Lower_Age’: [’Owned’, ’Rented’,
’Rented ]

df[ " Age_difference’] = df[ Upper_Age’].str.extract(’(\d+)’).astype(int) — df[’
Lower_Age’].str.extract(’(\d+)’).astype(int)

Feedback: failed with error: cannot convert float NaN to integer.

# Feature: Age_difference
# Usefulness: Age difference between upper and lower age can be useful in
determining the likelihood of a person applying for a policy.
# Input samples: ’"Upper_Age’: ['C33°, "C2’, "C3’], 'Lower_Age’: [’Owned’, ’Rented’,
’Rented ]
df[*Age_difference’] = df[ Upper_Age’].str.extract(’ (\d+)’).astype(float).fillna (0)
— df[’Lower_Age’].str.extract(’(\d+)’).astype(float).fillna (0)
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11. Datasets
# Features  # Samples # Classes OpenML ID / Kaggle Name
Name
balance-scale 4 125 3 11
breast-w 9 69 2 15
cmc 9 1473 3 23
credit-g 20 1000 2 31
diabetes 8 768 2 37
tic-tac-toe 9 95 2 50
eucalyptus 19 736 5 188
pel 21 1109 2 1068
airlines 7 2000 2 1169
jungle_chess_2pcs_raw_endgame_complete 6 2000 3 41027
pharyngitis 19 512 2 pharyngitis
health-insurance 13 2000 2 health-insurance-lead-prediction-raw-data
spaceship-titanic 13 2000 2 spaceship-titanic
kidney-stone 7 414 2 playground-series-s3el?2

Table 3. Test datasets used for the evaluation. See Section 7 for a description of the datasets used.

11.1. Dataset Collection and Preprocessing

OpenML datasets We use small datasets from OpenML (Vanschoren et al., 2013; Feurer et al.) that have descriptive
feature names (i.e. we do not include any datasets with numbered feature names). Datasets on OpenML contain a task
description that we provide as user context to our method and that we clean from redundant information for feature
engineering, such as author names or release history. While some descriptions are very informative, other descriptions
contain much less information. We remove datasets with more than 20 features, since the prompt length rises linearly with
the number of features and exceeds the permissible 8,192 tokens that standard GPT-4 can accept. We show all datasets we
used in Table 3 in Appendix 11. When datasets are perfectly solvable with TabPFN alone (i.e. reaches ROC AUC of 1.0)
we reduce the training set size for that dataset to 10% or 20% of the original dataset size. This is the case for the datasets
“balance-scale” (20%), “breast-w” (10%) and “tic-tac-toe” (10%). We focus on small datasets with up to 2 000 samples in
total, because feature engineering is most important and significant for smaller datasets.

Kaggle datasets We additionally evaluate CAAFE on 4 datasets from Kaggle that were released after the knowledge
cutoff of our LLM Model. These datasets contain string features as well. String features allow for more complex feature
transformations, such as separating Names into First and Last Names, which allows grouping families. We drop rows that
contain missing values for our evaluations. Details of these datasets can also be found in Table 3 in Appendix 11.

11.2. Dataset Descriptions

The dataset descriptions used were crawled from the respective datasource. For OpenML prompts uninformative information
such as the source or reference papers were removed.


https://www.kaggle.com/datasets/yoshifumimiya/pharyngitis
https://www.kaggle.com/datasets/owaiskhan9654/health-insurance-lead-prediction-raw-data
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/playground-series-s3e12

