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Abstract: How can robot manipulation policies generalize to novel tasks involv-1

ing unseen object types and new motions? In this paper, we provide a solution2

in terms of predicting motion information from web data through human video3

generation and conditioning a robot policy on the generated video. Instead of at-4

tempting to scale robot data collection which is expensive, we show how we can5

leverage video generation models trained on easily available web data, for en-6

abling generalization. Our approach Gen2Act casts language-conditioned manip-7

ulation as zero-shot human video generation followed by execution with a single8

policy conditioned on the generated video. To train the policy, we use an order9

of magnitude less robot interaction data compared to what the video prediction10

model was trained on. Gen2Act doesn’t require fine-tuning the video model at all11

and we directly use a pre-trained model for generating human videos. Our results12

on diverse real-world scenarios show how Gen2Act enables manipulating unseen13

object types and performing novel motions for tasks not present in the robot data.14

Keywords: video generation, diverse manipulation15

Figure 1: Gen2Act learns to generate a human video followed by robot policy execution conditioned on the
generated video. This enables diverse real-world manipulation in unseen scenarios.

1 INTRODUCTION16

To realize the vision of robot manipulators helping us in the humdrum everyday activities of messy17

living rooms, offices, and kitchens, it is crucial to develop robot policies capable of generalizing18

to novel tasks in unseen scenarios. In order to be practically useful, it is desirable to not require19

adapting the policy to new tasks through test-time optimizations and instead being able to directly20

execute it given a colloquial task specification such as language instructions. Further, such a policy21

should be able to tackle a broad array of everyday tasks like manipulating articulated objects, pour-22

ing, re-orienting objects, wiping tables without the need to collect robot interaction data for every23
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Figure 2: Architecture of the translation model of Gen2Act (closed-loop policy πθ). Given an image of
a scene I0 and a language-goal description of the task G, we generate a human video Vg with a pre-trained
video generation model V(I0,G). During training of the policy, we incorporate track prediction from the
policy latents as an auxiliary loss in addition to a behavior cloning loss. Dotted pathways show training-
specific computations. During inference, we do not require track prediction and only use the video model V in
conjunction with the policy πθ(It−k:t,Vg).

task unlike recent efforts on behavior cloning with robot datasets [1, 2, 3, 4]. This is because col-24

lecting large robot datasets that cover the diversity of everyday scenarios is extremely challenging25

and might be deemed impractical.26

In order to mitigate issues with purely scaling robotic datasets, a line of recent works have sought27

to incorporate additional behavioral priors in representation learning by pre-training visual encoders28

with non-robotic datasets [5, 6, 7, 8, 9] and co-training policies with vision-language models [10,29

11, 12]. Going beyond abstract representations, other works have learned attributes from web videos30

more directly informative of motion in the form of predicting goal images [13, 14, 15], hand-object31

mask plans [16], and embodiment-agnostic point tracks [17]. These approaches show promising32

signs of generalization to tasks unseen in the robot interaction datasets, but training such specific33

predictive models from web video data requires utilizing other intermediate models for providing34

ground-truths and thus are hard to scale up.35

Our key insight for enabling generalization in manipulation is to cast motion prediction from web36

data in the very generic form of zero-shot video prediction. This lets us directly leverage advances37

in video generation models, by conditioning a robot policy on the generated video for new tasks38

that are unseen in the robot datasets. We posit that as video generation models get better due to39

large interest in generative AI [18, 19, 20] beyond robotics, an approach that relies on learning a40

policy conditioned on zero-shot video prediction can effectively scale and generalize to increasingly41

diverse real-world scenarios. For performing a manipulation task in a novel scene, a generated video42

conditioned on the language description of the task is particularly useful for conveying what needs43

to be done and in capturing motion-centric information of how to perform the task that can then44

be converted to robot actions through a learned policy. Compared to a generated video, a language45

description or a goal image alone only conveys what the task is.46

We develop Gen2Act by instantiating language-conditioned manipulation as human video gener-47

ation followed by generated human video to robot translation with a closed-loop policy (Fig. 1).48

We opt for generating human videos as opposed to directly generating robot videos since video49

generation models are often trained with human data on the web, and they are able to generate hu-50

man videos zero-shot given a new scene. We then train a translation model that needs some offline51

robot demonstrations and corresponding generated human videos. We generate these corresponding52

human videos offline with an off-the-shelf model [20] by conditioning on the first frame of each53

trajectory (the first frame doesn’t have the robot in the scene) and the language description of the54

task. We instantiate this translation model as a closed loop policy that is conditioned on the history55

of robot observations in addition to the generated human video so that it can take advantage of the56

visual cues in the scene and adjust its behavior reactively.57

In order to capture motion information beyond that implicitly provided by visual features from the58

generated video, we extract point tracks from the generated human video and the video of robot59
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observations (through an off-the-shelf tracker [21]) and optimize a track prediction auxiliary loss60

during training. The aim of this loss function is to ensure that the latent tokens of the closed-loop61

policy are informative of the motion of points in the scene. We train the policy to optimize the62

typical behavior cloning loss for action prediction combined with this track prediction loss. For63

deployment, give a language description of a task to be performed, we generate a human video and64

run the policy conditioned on this video.65

The diverse real-world manipulation results of Gen2Act (featured in Fig. 1) demonstrate the broad66

generalization capabilities enabled by learning to infer motion cues from web video data through67

zero-shot video generation combined with motion extraction through point track prediction for solv-68

ing novel manipulation tasks in unseen scenarios. For generalization to novel object types and69

novel motion types unseen in the robot interaction training data, we show that Gen2Act achieves70

on average ∼ 30% higher absolute success rate over the most competitive baseline. Further, we71

demonstrate how Gen2Act can be chained in sequence for performing long-horizon activities like72

“making coffee” consisting of several intermediate tasks.73

2 Related Works74

We discuss prior works in imitation learning with visual observations, learning representations from75

non-robotic datasets, and approaches for conditional behavior cloning.76

Visual Imitation. Visual imitation is a scalable approach for robotic manipulation [22, 23, 24] and77

end-to-end policy learning more broadly [25, 26]. While early works in multi-task imitation learning78

collected limited real-world data [27, 28], more recent approaches [29, 1, 30] collect much larger79

datasets. In fact, recent works that have attempted to directly scale this for training large models80

have required years of expensive data collection [1, 10, 2] and have still been restricted to limited81

generalization especially with respect to novel object types and novel motions in unseen scenarios.82

Visual Representations for Manipulation. To enable generalization, many recent works propose83

using pre-trained visual representations trained primarily on non-robot datasets [31, 32], for learning84

manipulation policies [5, 8, 6, 33, 6, 34, 7, 9, 35, 36]. However, they are primarily limited to learning85

task-specific policies [5, 8, 37, 38] as they rely on access to a lot of in-domain robot interaction data.86

Apart from training visual encoders, a line of works augment existing robot datasets with semantic87

variations using generative models [39, 40, 41, 2, 42]. While this enables policies to generalize to88

unseen scenes and become robust to distractors, generalization to unseen object types and motion89

types still remains a challenge.90

Conditional Behavior Cloning. Some prior works train robotic policies conditioned on human91

videos but require paired in-domain human-robot data [43, 44, 45, 46, 47, 48] and are not capable92

of leveraging web data. Others use curated data of human videos to leverage human hand motion93

information [49, 50] for learning task-specific policies (instead of a single model across generic94

tasks). Towards learning structure more directly related to manipulation from web videos, some95

works try to predict visual affordances in the form of where to interact in an image, and local96

information of how to interact [51, 52, 53, 54, 55]. While these could serve as good initializations97

for a robotic policy, they are not sufficient on their own for accomplishing tasks, and so are typically98

used in conjunction with online learning, requiring several hours of deployment-time training and99

robot data [56, 53, 13]. Others learn to predict motion from web data more directly in the form of100

masks of hand and objects in the scene [16] and tracks of how arbitrary points in the scene should101

move [17], for conditional behavior cloning. However, training such predictive models from web102

videos requires reliance on intermediate models for providing ground-truth information and are thus103

hard to scale up broadly.104

3 APPROACH105

We develop a language-conditioned robot manipulation system, Gen2Act that generalizes to novel106

tasks in unseen scenarios. To achieve this, we adopt a factorized approach: 1) Given a scene and a107
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task description, using an existing video prediction model generate a video of a human solving the108

task, 2) Conditioned on the generated human video infer robot actions through a learned human-109

to-robot translation model that can take advantage of the motion cues in the generated video. We110

show that this factorized strategy is scalable in leveraging web-scale motion understanding inherent111

in large video models, for synthesizing how the manipulation should happen for a novel task, and112

utilizing orders of magnitude less robot interaction data for the much simpler task of translation113

from a generated human video to what actions the robot should execute.114

3.1 Overview and Setup115

Given a scene specified by an image I0 and a goal G describing in text the task to be performed,116

we want a robot manipulation system to execute actions a1:H for solving the task. To achieve117

this in unseen scenarios, we learn motion predictive information from web video data in the form118

of a video prediction model V(I0,G) that zero-shot generates a human video of the task, Vg . In119

order to translate this generated video to robot actions, we train a closed-loop policy πθ(It−k:t,Vg)120

conditioned on the video and the last k robot observations, through behavior cloning on a small121

robot interaction dataset Dr. In order to implicitly encode motion information from Vg in the122

policy πθ, we extract point tracks from both Vg and It−k:t, respectively τg and τr, and incorporate123

track prediction as an auxiliary loss Lτ during training. Fig. 2 shows an overview of this setup.124

3.2 Human Video Generation125

Figure 3: Visualization of zero-shot video generation
for different tasks. The blue frame and the language
description are input to the video generation model
of Gen2Act and the black frames show sub-sampled
frames of the generated video. These results demon-
strate the applicability of off-the-shelf video genera-
tion models for image+text conditioned video genera-
tion that preserves the scene and performs the desired
manipulation task.

We use an existing video generation model for126

the task of text+image conditioned video gen-127

eration. We find that current video generation128

models are good at generating human videos129

zero-shot without requiring any fine-tuning or130

adaptation (some examples in Fig. 3). Instead131

of trying to generate robot videos as done by132

some prior works [57, 58], we focus on just133

human video generation because current video134

generation models cannot generate robot videos135

zero-shot and require robot-specific fine-tuning136

data for achieving this. Such fine-tuning often137

subtracts the benefits of generalization to novel138

scenes that is inherent in video generation mod-139

els trained on web-scale data.140

For training, given an offline dataset of robot141

trajectories Dr along with language task in-142

structions G, we create a corresponding gen-143

erated human video dataset Dg by generating144

videos conditioned on the first frame of the145

robot trajectories and the language instruction. This procedure of generating paired datasets146

{Dr,Dg} is fully automatic and does not require manually collecting human videos as done by147

prior works [59, 46]. We do not require the generated human videos to have any particular structure148

apart from looking visually realistic, manipulating the relevant objects plausibly, and having mini-149

mal camera motion. As seen in the qualitative results in Fig. 3, all of this is achieved zero-shot with150

a pre-trained video model.151

During evaluation, we move the robot to a new scene I0, specify a task to be performed in language152

G, and then generate a human video Vg = V(I0,G) that is fed into the human-to-robot translation153

policy, described in Section 3.3. Our approach is not tied to a specific video generative model and154

as video models become better, this stage of our approach will likely scale upwards. We expect the155

overall approach to generalize as well since the translation model is tasked with a simpler job of156
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inferring motion cues from the generated human video in novel scenarios, and implicitly converting157

that to robot actions. As we show through results in Section 3.3 only a small amount of diverse robot158

trajectories (∼ 400) combined with existing offline datasets is enough to train a robust translation159

model.160

3.3 Generated Human Video to Robot Action Translation161

We instantiate generated human video to robot action translation as a closed loop policy πθ. Given162

a new scene and a task description, the generated human video provides motion cues for how the163

manipulation should happen in the scene, and the role of the policy is to leverage relevant informa-164

tion from the generated video, combined with observations in the robot’s frame, for interacting in165

the scene. Instead of attempting to explicitly extract waypoints from the generated video based on166

heuristics, we adopt a more end-to-end approach that relies on general visual features of the video,167

and general point tracks extracted from the video. This implicit conditioning on the generated video168

is helpful in mitigating potential artifacts in the generation and in making the approach more robust169

to mismatch in the video and the robot’s embodiment. Note that we perform human video generation170

and ground-truth track extraction completely offline for training.171

Visual Feature Extraction. For each frame in the generated human video Vg and the robot video172

It−k:k, we first extract features, ig and ir through a ViT encoder χ. The number of video tokens ex-173

tracted this way is very large and they are temporally uncorrelated, so we have Transformer encoders174

Φg and Φr that process the respective video tokens through gated Cross-Attention Layers based on175

a Perceiver-Resampler architecture [60] and output a fixed number N = 64 of tokens. These tokens176

respectively are zg = Φg(ig) and zr = Φr(ir).177

In addition to visual features from the generated video, we encode explicit motion information in178

the human-to-robot translation policy through point track prediction.179

Point Track Prediction. We run an off-the-shelf tracking model [61, 21] on the generated video180

Vg to obtain tracks τg of a random set of points in the first frame P 0. In order to ensure that the181

latent embeddings from the generated video zg can distill motion information in the video, we set182

up a track prediction task conditioned on the video tokens. For this, we define a track prediction183

transformer ψg(P
0, i0g, zg) to predict tracks τ̂g and define an auxiliary loss ||τg − τ̂g||2 to update184

tokens ge.185

Similarly, for the current robot video It−k:k
r , we set up a similar track prediction auxiliary loss. We186

run the ground-truth track prediction once over the entire robot observation sequence (again with187

random points in the first frame P0), but during training, the policy is input a chunk of length k188

in one pass. So here, the track prediction transformer ψr(P
t−k, it−k

r ., zt−k:t
r ) is conditioned on189

the points in the beginning of the chunk Pt−k, the image features at that time-step it−k and the190

observation tokens for the chunk zr.191

BC Loss. For ease of prediction, we discretize the action space such that each dimension has 256192

bins. We optimize a Behavior Cloning (BC) objective by minimizing error between the predicted193

actions ât:t+h and the ground-truth at:t+h through a cross-entropy loss.194

In Gen2Act, we incorporate track prediction as an auxiliary loss during training combined with the195

BC loss and the track prediction transformer is not used at test-time. This is helpful in reducing196

test-time computations for efficient deployment.197

3.4 Deployment198

For deploying Gen2Act to solve a manipulation task, we first generate a human video conditioned on199

the language description of the task and the image of the scene. We then roll out the generated video200

conditioned closed-loop policy. For chaining Gen2Act to perform long-horizon activities consisting201

of several tasks, we first use an off-the-shelf LLM (e.g. Gemini) to obtain language descriptions of202

the different tasks. We chain Gen2Act for the task sequence by using the last image of the previous203

policy rollout as the first frame for generating a human video of the subsequent task. We do this204
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Figure 4: Visualization of the closed-loop policy rollouts (bottom row) conditioned on the generated human
videos (top row) for four tasks. The red frame and the language description are input to the video generation
model of Gen2Act . The black frames show sub-sampled frames of the generated video, and the blue frames
show robot executions conditioned on the generated video.

chaining in sequence as opposed to generating all the videos from the first image because the final205

state of the objects in the scene might be different after the robot execution of an intermediate task.206

4 EXPERIMENTS207

We perform experiments in diverse kitchen, office, and lab scenes, across a wide array of manipula-208

tion tasks. Through these experiments we aim to answer the following questions:209

• Is Gen2Act able to generate plausible human videos of manipulation in diverse everyday210

scenes?211

• How does Gen2Act perform in terms of varying levels of generalization with new scenes,212

objects, and motions?213

• Can Gen2Act enable long-horizon manipulation through chaining of the video generation214

and video-conditioned policy execution?215

• Can the performance of Gen2Act for new tasks be improved by co-training with a small216

amount of additional diverse human tele-operated demonstrations?217

4.1 Details of the Evaluation Setup218

Following prior works in language/goal-conditioned policy learning, we quantify success in terms of219

whether the executed robot trajectory solves the task specified in the instruction, and define success220

rate over different rollouts for the same task description. We categorize evaluations with respect to221

different levels of generalization by following the terminology of prior works [17, 1]: Mild Gener-222

alization (MG): unseen configurations of seen object instances in seen scenes; organic scene varia-223

tions like lighting and background changes. Standard Generalization (G): unseen object instances in224

seen/unseen scenes. Object-Type Generalization (OTG): completely unseen object types, in unseen225

scenes. Motion-Type Generalization (MTG): completely unseen motion types, in unseen scenes226

Here, seen vs. unseen is defined with respect to the robot interaction data, and the assumption is that227

the video generation model has seen diverse web data including things that are unseen in the robot228

data.229

4.2 Dataset and hardware details230

For video generation, we use an existing video model, VideoPoet [20] For obtaining tracks on the231

generated human video and the robot demo, we use an off-the-shelf tracking approach [61, 21]. For232

robot experiments, we use a mobile manipulator with compliant two finger-grippers, and operate233
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Table 1: Comparison of success rates for Gen2Act with different baselines and an ablated variant for the
different levels of generalization as defined in Section 4.1

Mild
(MG)

Standard
(G)

Obj. Type
(OTG)

Motion. Type
(MTG) Avg.

RT1 68 18 0 0 22
RT1-GC 75 24 5 0 26

Vid2Robot 83 38 25 0 37
Gen2Act (w/o track) 83 58 50 5 49

Gen2Act 83 67 58 30 60

this robot for policy deployment through end-effector control. The arm is attached to the body of the234

robot on the right. We manually move the robot around across offices, kitchens, and labs and ask it235

to manipulate different objects in these scenes. We operate the robot for manipulation at a frequency236

of 3Hz. Before each task, we reset the robot arm to a fixed pre-defined reset position such that the237

scene is not occluded through the robot’s camera.238

4.3 Baselines and Comparisons239

We perform comparisons with baselines and ablations with variants of Gen2Act. In particular, we240

compare with a language-conditioned policy baseline (RT1) [1] trained on the same robot data as241

Gen2Act. We also compare with a video-conditioned policy baseline trained on paired real hu-242

man and robot videos (Vid2Robot) [46], a goal-image conditioned policy baseline trained with the243

same real and generated videos of Gen2Act but by conditioning on just the last video frames (i.e.244

goal image) of the generated human videos (RT1-GC). Finally, we consider an ablated variant of245

Gen2Act without the track prediction loss.246

4.4 Analysis of Human Video Generations247

Fig. 3 shows qualitative results for human video generation in diverse scenarios. We can see that the248

generated videos correspond to plausibly manipulating the scene in the initial image as described249

by the text instruction. We can see that the respective object in the scene is manipulated while pre-250

serving the background and without introducing camera movements and artifacts in the generations.251

This is exciting because these generations are zero-shot in novel scenarios and can be directly used252

in a robot’s context to imagine how an unseen object in an unseen scene should be manipulated by253

a human.254

4.5 Generalization of Gen2Act to scenes, objects, motions255

In this section we compare performance of Gen2Act with baselines and ablated variants for different256

levels of generalization. Table 1 shows success rates for tasks averaged across different levels of257

generalization. We observe that for higher levels of generalization, Gen2Act achieves much higher258

success rates indicating that human video generation combined with explicitly extracting motion259

information from track prediction is helpful in unseen tasks.260

4.6 Chaining Gen2Act for long-horizon manipulation261

We now analyze the feasibility of Gen2Act for solving a sequence of manipulation tasks through262

chaining. Table 3 shows results for long-horizon activities like “Making Coffee” that consist of263

multiple tasks to be performed in sequence. We obtain this sequence of tasks through Gemini [62],264

and for each task, condition the video generation on the last image of the scene from the previous265

execution and execute the policy for the current task conditioned on the generated human video. We266

repeat this in sequence for all the stages, and report success rates for successful completion upto267

each stage over 5 trials. Fig. 5 visually illustrates single-take rollouts from four such long-horizon268

activities.269
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Figure 5: Robot executions for a sequence of tasks. The last frame of the previous execution serves as the
conditioning frame for next stage video generation.

Table 2: Analysis of co-training with an additional dataset of diverse tele-operated robot demonstrations (∼
400 trajectories).

Co-Training Mild
(MG)

Standard
(G)

Obj. Type
(OTG)

Motion. Type
(MTG) Avg.

Gen2Act (w/o co-train) 83 67 58 30 60
Gen2Act (w/ co-train) 85 75 62 35 64

4.7 Co-Training with additional teleop demonstrations270

The offline dataset we used for experiments in the previous section had limited coverage over scenes271

and types of tasks thereby allowing less than 60% success rate of Gen2Act for higher levels of gen-272

eralization (OTG and MTG in Table 1). In this section, we perform experiments to understand if273

adding a small amount of additional diverse tele-operated trajectories, for co-training with the exist-274

ing offline dataset, can help improve generalization. We keep the video generation model fixed as275

usual. From the results in Table 2 we see improved performance of Gen2Act with such co-training.276

This is exciting because it suggests that with only a small amount of diverse demonstrations, the277

translation model of Gen2Act can be improved to better condition on the generated videos for higher278

levels of generalization where robot data support is limited.279

4.8 Analysis of Failures280

Here we discuss the type of failures exhibited by Gen2Act. We observe that for MG and to some281

extent in G, inaccuracies in video generation are less correlated with failures of the policy. While, for282

the higher levels of generalization, object type (OTG) and motion type (MTG), if video generation283

yields implausible videos, then the policy doesn’t succeed in performing the tasks. This is also284

evidence that the policy of Gen2Act is using the generated human video for inferring motion cues285

while completing a task, and as such when video generation is incorrect in scenarios where robot286

data support is limited (e.g. in OTG and MTG), the policy fails.287

5 Discussion and Conclusion288

Summary. In this work, we developed a framework for learning generalizable robot manipulation289

by combining zero-shot human video generation from web data with limited robot demonstrations.290

Broadly, our work is indicative of how motion predictive models trained on non-robotic datasets291

like web videos can be used to used to enable generalization of manipulation policies to unseen292

scenarios, without requiring collection of robot data for every task.293

Limitations. Our work focused on zero-shot human video generation combined with point track294

prediction on the videos as a way for providing motion cues to a robot manipulation system for295

interacting with unseen objects and performing novel tasks. As such, the capabilities of our system296

are limited by the current capabilities of video generation models, like inability to generate realistic297

hands and thereby limited ability to perform very dexterous tasks.298

Future Work. It would be an interesting direction of future work to explore recovering more dense299

motion information from the generated videos beyond point tracks, like object meshes for address-300

ing some of the limitations. Another important direction would be to enable reliable long-horizon301

manipulation by augmenting chaining with learning recovery policies for intermediate failures.302
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Appendix477

Here we provide additional details on the method and experiments of Gen2Act.478

5.1 Human Video Generation479

We use a pre-trained VideoPoet model [20] directly without any adaptation or fine-tuning. The input480

to the model for video generation is a language description of a task (the prompt) and a square-481

shaped image. By virtue of being trained on diverse large-scale video datasets (> 270M videos)482

we find that this model generalizes well to everyday tasks we develop Gen2Act for. It can gener-483

ate realistic and plausible videos of humans manipulating objects, without introducing significant484

camera motions/artifacts in the generated videos. We ensure that the image of the scene input to485

the model doesn’t have the robot in the frame (the initial reset position of the robot is such that486

the arm is mostly out of camera view). The language prompt to the model is of the form “A per-487

son task-name, static camera” e.g. for the task ‘opening the microwave’ the input prompt is “A488

person opening the microwave, static camera.”489

5.2 Closed-Loop Policy490

For each frame in the generated human video Vg and the robot video It−k:k, we first extract features,491

ig and ir through a ViT encoder χ. The number of video tokens extracted this way is very large492

and they are temporally uncorrelated, so we have Transformer encoders Φg and Φr that process493

the respective video tokens through gated Cross-Attention Layers based on a Perceiver-Resampler494

architecture [60] and output a fixed numberN = 64 of tokens. We use 2 Perceiver-Resampler layers495

for both the generated video token processing and the robot observation history video processing.496

These tokens respectively are zg = Φg(ig) and zr = Φr(ir). During training we sample a fixed497

sequence of 16 frames from the generated video ensuring that we always sample the first and last498

frames. For the robot history, we choose the last 8 frames of robot observations. We resize all499

images to 224x224 dimensions.500

We run an off-the-shelf tracking model [61, 21] on the generated video Vg to obtain tracks τg of501

a random set of points in the first frame P 0. In order to ensure that the latent embeddings from502

the generated video zg can distill motion information in the video, we set up a track prediction task503

conditioned on the video tokens. For this, we define a track prediction transformer ψg(P
0, i0g, zg)504

to predict tracks τ̂g and define an auxiliary loss ||τg − τ̂g||2 to update tokens ge. Similarly, for the505

current robot video It−k:k, we set up a similar track prediction auxiliary loss. We run the ground-506

truth track prediction once over the entire robot observation sequence (again with random points in507

the first frame P0), but during training, the policy is input a chunk of length k in one pass. So here,508

the track prediction transformer ψr(P
t−k, it−k, r

t−k:t
e ) is conditioned on the points in the beginning509

of the chunk Pt−k, the image features at that time-step it−k and the observation tokens for the chunk510

zr. The track prediction transformer has 6 self-attention layers with 8 heads and its role is solely511

to make the input tokens from generated video / robot observations informative of motion cues.512

Note that any ground-truth track prediction model can be used for this, and recent advances in point513

tracking can help improve this step [63, 64]514

For ease of prediction, we discretize the action space such that each dimension has 256 bins. So515

each action dimension can take values in the range [0, 255]. The bins are uniformaly distributed516

within the bounds of each dimension. We predict actions in the end-effector space, and also predict517

whether to terminate the episode, and whether the gripepr should be open/close. We optimize a518

Behavior Cloning (BC) objective by minimizing error between the predicted actions ât:t+h and the519

ground-truth at:t+h through a cross-entropy loss. This discrete action-space for prediction is based520

on prior works in multi-task imitation learning [1].521
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Table 3: Comparison of success rates for long-horizon activities via chaining of different tasks. We first
obtain sub-tasks for activities with an off-the-shelf LLM and then rollout Gen2Act in sequence for the different
intermediate tasks.

Activity Stages (from Gemini) Success %
Stage 1, Stage 2, Stage 3

St
ow

in
g

A
pp

le

1. Open the Drawer
2. Place Apple in Drawer
3. Close the Drawer

80, 60, 60

M
ak

in
g

C
of

fe
e

1. Open the Lid
2. Place K-Cup Pod inside
3. Close the Lid

40, 20, 20

C
le

an
in

g
Ta

bl
e

1. Pick Tissues from Box
2. Press the Sanitizer Dispenser
3. Wipe the Table with Tissues

60, 40, 40

H
ea

tin
g

So
up

1. Open the Microwave
2. Put Bowl inside Microwave
3. Close the Microwave

40, 20, 20

5.3 Chaining Gen2Act for Long-Horizon Manipulation522

For deploying Gen2Act to solve a manipulation task, we first generate a human video conditioned on523

the language description of the task and the image of the scene. We then roll out the generated video524

conditioned closed-loop policy. For chaining Gen2Act to perform long-horizon activities consisting525

of several tasks, we first use an off-the-shelf LLM (e.g. Gemini) to obtain language descriptions of526

the different tasks. We chain Gen2Act for the task sequence by using the last image of the previous527

policy rollout as the first frame for generating a human video of the subsequent task. We do this528

chaining in sequence as opposed to generating all the videos from the first image because the final529

state of the objects in the scene might be different after the robot execution of an intermediate task.530

This iterative sequencing of video generation after the previous robot execution is made possible by531

the fast generation capabilities of the Video model we use, VideoPoet (it takes less than 10 seconds532

to generate a new video after generating the very first video).533

We provide examples of the prompt to Gemini and the subsequent outputs for task decomposition534

below:535

Cleaning the Table. Q. What are the steps involved in cleaning a table with sanitizer dispenser and536

tissues? (write three steps)537

A: Steps for Cleaning a Table with Sanitizer Dispenser and Tissues:538

• Gather materials: Pick tissues from the box.539

• Apply sanitizer: Press the sanitizer dispenser onto the tissue.540

• Wipe: Gently wipe the table surface with the sanitizer-dampened tissues.541
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Figure 6: Analysis of failures of Gen2Act. The tasks here correspond to object type generalization. We can
see that most of the failures of robot execution (top 3 rows) are correlated with incorrect video generations. In
the last row the video generation is plausible but the execution is incorrect in following the trajectory of the
generated video afetr grasping the object.

Making Coffee. Q. What are the steps involved in making coffee with a Keurig? (write first three542

steps)543

A: Steps for Making Coffee with a Keurig:544

• Open the lid: Open the lid of the Keurig machine.545

• Insert K-Cup: Place a K-Cup pod into the machine.546

• Close the lid: Close the lid of the Keurig machine.547

Videos for these tasks are best viewed in the project website.548

5.4 Analysis of Failures549

Here we discuss the type of failures exhibited by Gen2Act. We observe that for MG and to some550

extent in G, inaccuracies in video generation are less correlated with failures of the policy. While, for551

the higher levels of generalization, object type (OTG) and motion type (MTG), if video generation552

yields implausible videos, then the policy doesn’t succeed in performing the tasks. This is also553

evidence that the policy of Gen2Act is using the generated human video for inferring motion cues554

while completing a task, and as such when video generation is incorrect in scenarios where robot555

data support is limited (e.g. in OTG and MTG), the policy fails. Fig. 6 shows some examples of556

failures of Gen2Act in different tasks. Most of the failures are correlated with video generation (first557

three rows) but generating a video plausibly (fourth row) is not a guarantee of the policy succeeding558

because there might be issues with grasping the object correctly and following the trajectory of the559

object post grasp. This indicates potential for future work to explore recovering more dense motion560

information from the generated videos beyond point tracks, like object meshes for mitigating some561

of the failures.562
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