

000 SYMMETRIC BEHAVIOR REGULARIZED 001 POLICY OPTIMIZATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Behavior Regularized Policy Optimization (BRPO) leverages asymmetric (diver-
010 gence) regularization to mitigate the distribution shift in offline Reinforcement
011 Learning. This paper is the first to study the open question of symmetric regu-
012 larization. We show that symmetric regularization does not permit an analytic
013 optimal policy π^* , posing a challenge to practical utility of symmetric BRPO. We
014 approximate π^* by the Taylor series of Pearson-Vajda χ^n divergences and show
015 that an analytic policy expression exists only when the series is capped at $n = 5$. To
016 compute the solution in a numerically stable manner, we propose to Taylor expand
017 the conditional symmetry term of the symmetric divergence loss, leading to a
018 novel algorithm: Symmetric f -Actor Critic (Sf -AC). Sf -AC achieves consistently
019 strong results across various D4RL MuJoCo tasks. Additionally, Sf -AC avoids
020 per-environment failures observed in IQL, SQL, XQL and AWAC, opening up
021 possibilities for more diverse and effective regularization choices for offline RL.
022

023 1 INTRODUCTION 024

025 Behavior regularized policy optimization (BRPO) is a simple, yet effective method that has attracted
026 significant research interest for offline reinforcement learning (RL). By regularizing towards the
027 behavior policy via a divergence penalty, BRPO effectively suppresses distributional shift incurred by
028 out-of-distribution actions that may have spuriously high values. While many works have studied
029 the sensitivity of BRPO to the behavior policy (Kostrikov et al., 2022; Ma et al., 2024), this paper
030 investigates an orthogonal direction by focusing on the role played by distinct divergence regularizers.
031

032 Many BRPO algorithms share the following two steps:
033

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} [Q(s, a) - \tau D_{\text{Reg}}(\pi(\cdot|s) \parallel \pi_{\mathcal{D}}(\cdot|s))], \quad (1)$$

$$\pi_{\theta} = \arg \min_{\theta} \mathbb{E}_{s \sim \mathcal{D}} [D_{\text{Opt}}(\pi^*(\cdot|s) \parallel \pi_{\theta}(\cdot|s))]. \quad (2)$$

034 where \mathcal{D} denotes the dataset, π^* the optimal policy, $\pi_{\mathcal{D}}$ the behavior policy, and π_{θ} a parametrized
035 policy that is being optimized. Here, Eq. (1) defines the theoretical maximizer of the regularized
036 objective. However, this maximizer is not practical since computing π^* is generally intractable. To
037 deal with this issue, Eq. (2) defines an approximation that can be used in practice. D_{Reg} and D_{Opt} are
038 most commonly defined using a KL divergence and their properties as such are well studied in the
039 literature (Wu et al., 2020; Jaques et al., 2020; Chan et al., 2022). Some other well-studied candidates
040 include the α - and Tsallis divergences (Xu et al., 2023; Zhu et al., 2023). All of these divergences
041 belong to the asymmetric class, e.g. $D_{\text{Reg}}(\pi \parallel \mu) \neq D_{\text{Reg}}(\mu \parallel \pi)$ for non-identical policies π, μ .
042

043 There are two primary motivations for our work. First, using a symmetric divergence for D_{Reg} has
044 not been previously studied, nor is it known what is the corresponding symmetry-regularized optimal
045 policy. Recent investigations have shown the benefits of defining D_{Opt} using symmetric divergences:
046 improved performance is observed in alignment of LLM than the standard KL (Wen et al., 2023; Go
047 et al., 2023; Wang et al., 2024).

048 Second, we want to derive algorithms that have $D_{\text{Reg}} = D_{\text{Opt}}$, because we can get suboptimal
049 solutions when there is an inconsistency between the two choices of regularizers. The inconsistency
050 arises because the regularizer D_{Reg} defines a unique regularized optimal policy. If the parametric
051 policy π_{θ} is not optimized with the same divergence, it will be biased towards the optimum of

D_{Opt} rather than D_{Reg} , incurring extra policy error and altering policy improvement dynamics, see Appendix B.3 for detailed discussion. Therefore, a key motivation of this paper lies in improving existing work (Go et al., 2023; Wang et al., 2024) that have KL as its D_{Reg} but symmetric divergence as its optimization objective D_{Opt} . We achieve this by analyzing how symmetric divergences can be utilized in a principled manner in both D_{Reg} and D_{Opt} , bringing maximal consistency.

Given these motivations, we aim to address the following key question in this paper:

Does symmetric regularization permit an analytic optimal policy π^ ?*

In other words, we want to know whether the policy π^* can be expressed using elementary functions. It is possible that some D_{Reg} induce optimal policies π^* that are non-analytic in nature. However, it is vital that π^* possess an analytic expression in order for the optimization Eq.(2) to be usable in practice. In this paper we are interested in the case where D_{Reg} and D_{Opt} use the same symmetric divergences for maximal consistency.

Unfortunately, the answer to this question is *no*. Although we can formulate symmetric regularization using the f -divergence framework, it does not permit an analytic solution in general. To address this challenge, we take advantage of the fact that the Taylor expansion of any f -divergence is an infinite series in the Pearson-Vajda χ^n -divergences (Nielsen & Nock, 2013). We prove that analytic π^* can be obtained when this series is truncated to finite. We call the proposed algorithm: Symmetric f -Actor-Critic (Sf-AC). Table 1 lists all the symmetric divergences that are considered in this paper. To the best of our knowledge, our work is the first to study symmetric BRPO and to derive a corresponding practical algorithm.

We verify that Sf-AC performs competitively on a distribution approximation task and the standard D4RL MuJoCo offline benchmark, opening up new research possibilities for BRPO. Figure 1 summarizes the benefit of using Sf-AC on D4RL MuJoCo. The bars count the number of times an algorithm’s performance is amongst the top-3 based on AUC on 9 D4RL MuJoCo tasks (3 environments with 3 difficulties). We observe that Sf-AC Jensen-Shannon and Jeffreys are less prone to per-environment failures that are encountered by other algorithms. Additionally, ***Sf-AC Jensen-Shannon is the only algorithm which consistently ranked within top-3 across all the tested tasks.*** See Figure 3 for in-depth results.

2 PRELIMINARY

2.1 OFFLINE REINFORCEMENT LEARNING

We focus on discounted Markov Decision Processes (MDPs) expressed by the tuple $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$, where \mathcal{S} and \mathcal{A} denote state space and action space, respectively. P denotes the transition probability, r defines the reward function, and $\gamma \in (0, 1)$ is the discount factor. A policy π is a mapping from the state space to distributions over actions. We define the action value and state value as $Q^\pi(s, a) = \mathbb{E}_\pi [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a]$, $V^\pi(s) = \mathbb{E}_\pi [Q^\pi(s, a)]$. In this paper we focus on the offline RL context where the agent learns from a static dataset $\mathcal{D} = \{s_i, a_i, r_i, s'_i\}$ storing transitions. We denote $\pi_{\mathcal{D}}$ by the behavior policy that generated the dataset \mathcal{D} .

Behavior regularized policy optimization (BRPO) is a simple yet effective method for offline RL. It solves the following objective:

$$\max_{\pi} \mathbb{E}_{\substack{s \sim \mathcal{D} \\ a \sim \pi}} [Q(s, a) - \tau D_{\text{Reg}}(\pi(\cdot|s) || \pi_{\mathcal{D}}(\cdot|s))], \quad (3)$$

Brute-force solving Eq. (3) is intractable for high-dimensional continuous action spaces as it entails solving the integral over actions. Therefore, Eq.(3) is translated into Eqs.(1), (2) in the introduction.

Figure 1: Number of times each algorithm is amongst the top-3 performers on 9 D4RL MuJoCo tasks. Our method (Sf-AC) remains relatively more stable across tasks compared to the baselines.

108 The functional form of π^* can be determined by the convexity of D_{Reg} (Hiriart-Urruty & Lemaréchal,
 109 2004), but it is generally intractable to sample from it due to the normalization constant. Instead,
 110 an easy-to-sample surrogate policy π_θ is computed from π^* by minimizing D_{Reg} . The surrogate can be
 111 considered as an approximate maximizer to the original objective.
 112

113 2.2 f -DIVERGENCES AND ASYMMETRIC BRPO

115 A f -divergence that measures the difference between two continuous policies π, μ is defined as
 116 follows (Ali & Silvey, 1966; Sason & Verdú, 2016).

117 **Definition 1.** The f -divergence from policy μ to π is defined by:

$$119 D_f(\pi(\cdot|s) || \mu(\cdot|s)) := \int_{\mathcal{A}} \mu(a|s) f\left(\frac{\pi(a|s)}{\mu(a|s)}\right) da = \mathbb{E}_\mu \left[f\left(\frac{\pi(a|s)}{\mu(a|s)}\right) \right].$$

122 where f is a convex, lower semi-continuous function satisfying $f(1) = 0$ and we have assumed that
 123 π is absolutely continuous with respect to μ .

124 Framing BRPO using f -divergence helps us choose D_{Reg} by verifying if its f satisfies the
 125 conditions. For instance, KL BRPO corresponds to $f(t) = t \ln t$ and it leads to $\pi^*(a|s) \propto$
 126 $\pi_{\mathcal{D}}(a|s) \exp(\tau^{-1}(Q(s, a) - V(s)))$. Though this policy is intractable to directly compute due
 127 to its normalization constant, it is known that by opting for the same KL as D_{Opt} in Eq. (2) yields
 128

$$129 \pi_\theta = \arg \min_{\theta} \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[-\exp\left(\frac{Q(s, a) - V(s)}{\tau}\right) \ln \pi_\theta(a|s) \right]. \quad (4)$$

131 This method called advantage regression has been extensively applied in the offline context (Peng
 132 et al., 2020; Jaques et al., 2020; Garg et al., 2023). Similarly, we can validate symmetric BRPO
 133 provided that their f functions satisfy the conditions and have an analytic solution π^* . In next section
 134 we define symmetric divergences.
 135

136 2.3 ISSUE WITH ASYMMETRIC D_{Reg} , SYMMETRIC D_{Opt}

138 Existing methods (Go et al., 2023; Wang et al., 2024) have opted for symmetric divergences as D_{Opt} .
 139 We argue this is suboptimal by revisiting the following analysis. First, the policy improvement step is
 140 performed:

$$141 \pi^* = \arg \max_{\pi} \mathbb{E}_{a \sim \pi} [Q(s, a)] - \tau D_{\text{Reg}}(\pi(\cdot|s) || \pi_{\mathcal{D}}(\cdot|s))$$

143 Here, D_{Reg} directly shapes the optimality condition and the shape of the target distribution itself.
 144 Therefore, introducing symmetry into D_{Reg} changes how the policy improves, changing the weightings
 145 of different actions within the support of the behavior dataset. However, existing methods still adopt
 146 asymmetric D_{Reg} due to the intractability. Rather, they have opted for a symmetric loss D_{Opt} , which
 147 corresponds to the projection step: $\pi_\theta = \arg \min_{\theta} D_{\text{Opt}}(\pi(\cdot|s) || \pi_{\mathcal{D}}(\cdot|s))$.

148 If $D_{\text{Opt}} \neq D_{\text{Reg}}$, the resulting policy π_θ is the optimal fit for the target π^* according to the metric D_{Opt} ,
 149 but not D_{Reg} that defined the original regularization problem. **This means π_θ and the Q -function**
 150 **$Q(s, a)$ will be inconsistent with the true regularization objective**, and the fixed point achieved by
 151 the mismatched iteration will be biased away from the true solution π^* , degrading performance and
 152 theoretical guarantees, see Appendix B.3 for detail.
 153

154 3 ISSUES WITH SYMMETRIC BRPO

156 This section investigates the issues with symmetric BRPO. We formally define symmetric divergences
 157 of interest in this paper (Definition 2, 3). We then show that BRPO with the given symmetric
 158 divergences does not permit any analytic policy solution (Theorem 1). Finally, symmetric divergences
 159 as optimization objective can incur numerical issues (Theorem 2).

161 **Definition 2** (Pardo (2006)). Assume that the f function satisfies the conditions in Definition 1, then
 $f(t) + tf\left(\frac{1}{t}\right)$ defines a symmetric divergence.

	Divergence	$D_f(\pi \mu)$	$f(t)$
Asymmetric	Forward KL	$\int \pi(x) \ln \frac{\pi(x)}{\mu(x)} dx$	$t \ln t$
	Reverse KL	$\int \mu(x) \ln \frac{\mu(x)}{\pi(x)} dx$	$-\ln t$
Symmetric	Jeffrey	$\int (\pi(x) - \mu(x)) \ln \left(\frac{\pi(x)}{\mu(x)} \right) dx$	$(t - 1) \ln t$
	Jensen-Shannon	$\frac{1}{2} \int \pi(x) \ln \frac{2\pi(x)}{\pi(x)+\mu(x)} + \mu(x) \ln \frac{2\mu(x)}{\pi(x)+\mu(x)} dx$	$t \ln t - (1+t) \ln \frac{1+t}{2}$
	GAN divergence	$\int \pi(x) \ln \frac{2\pi(x)}{\pi(x)+\mu(x)} + \mu(x) \ln \frac{2\mu(x)}{\pi(x)+\mu(x)} dx - \ln(4)$	$t \ln t - (1+t) \ln (1+t)$

Table 1: Asymmetric and symmetric f -divergences, their definitions and the generator functions. Jeffrey’s divergence equals forward KL adds reverse KL. GAN divergence refers to the modified Jensen-Shannon divergence used by Generative Adversarial Nets (Goodfellow et al., 2014).

Pardo’s definition identifies exactly one symmetric divergence given f , i.e. once f is specified the symmetric divergence is also determined. However, in the machine learning context, researchers are more interested in the following more flexible definition (Nowozin et al., 2016).

Definition 3 (Sason & Verdú (2016)). We consider symmetric divergences defined by $f(t) = t \ln t + g(t)$ where g is an arbitrary convex function called *conditional symmetry function*.

Sason & Verdú’s definition is broad enough to cover all the symmetric divergences of interest in the machine learning community (Sason & Verdú, 2016; Nowozin et al., 2016). These divergences are listed in Table 1. In this paper, we follow Sason & Verdú’s definition and answer the key question posted in Introduction: symmetric regularization does not permit an analytic optimal solution π^* , unlike the popular asymmetric counterpart.

Theorem 1. *Let the symmetric f -divergence be defined by Definition 3. Then if $g'(t)$ does not make $f'(t)$ an affine function in $\ln t$, i.e. $f'(t) \neq a \ln t + b$, the regularized optimal policy π^* does not have an analytic expression.*

Proof. See Appendix A.1 for a proof. \square

It is worth noting that this affine function should be strictly in $\ln t$, excluding terms like $\ln(t+1)$. As an immediate consequence, the symmetric divergences in Table 1 do not have an analytic π^* .

Corollary 1. *The Jeffrey’s, Jensen-Shannon and GAN divergence do not permit an analytic π^* .*

Corollary 1 can be verified by checking that the Jeffrey’s divergence has $g'(t) = -\frac{1}{t}$, the Jensen-Shannon $g'(t) = -\ln \frac{t+1}{2} - 1$, and the GAN $g'(t) = -\ln(t+1) - 1$.

Characterizing the solution of f -divergence regularization has been discussed extensively in both BRPO and the distribution correction estimation (DICE) literature (Nachum et al., 2019; Nachum & Dai, 2020; Lee et al., 2021). In Appendix A.4 we show their characterizations lead to the same conclusion. These methods focused exclusively on asymmetric candidates such as the χ^2 or KL divergence. We are not aware of any published result that discussed symmetric regularization.

We next examine symmetric divergences as optimization objective Eq.(2). It turns out they can also be numerically problematic, especially for finite support policies (i.e. $\exists a, \pi(a|s) = 0$) that can be induced by popular asymmetric divergences like the Tsallis or α -divergences (Li et al., 2023; Xu et al., 2023; Zhu et al., 2025a) that attract increasing interest in recent offline RL studies.

Theorem 2. *Minimizing symmetric divergence losses in Eq. (2) can incur numerical issues when either π^* or π_θ has finite support.*

Proof. This result is a natural consequence of symmetry. Consider the Jeffrey’s divergence (Table 1) for instance, a finite support policy must incur division by zero. \square

It is worth noting that even for full-support policies, the issue can persist when $\pi^* \gg \pi_\theta$ and vice versa. While some candidates like the Jensen-Shannon may not necessarily incur the same issue, existing research has reported instability (Go et al., 2023). It is therefore important to find new tools to circumvent vanilla symmetric divergences.

216 **4 SYMMETRIC BRPO VIA TAYLOR EXPANSION**
 217

218 Our proposed method centers on the Taylor’s series so that it permits both an analytic policy and
 219 stable optimization.
 220

221 **4.1 SYMMETRIC REGULARIZATION VIA THE χ^n SERIES**
 222

223 To address the issues of symmetric divergences, we recall the following classic result establishing
 224 equivalence between a f -divergence and its Taylor series.
 225

226 **Lemma 3** ((Nielsen & Nock, 2013)). *On top of Definition 1, further let f be n -times differentiable.
 227 Then a valid f -divergence permits the following Taylor expansion*

$$227 \quad D_f(\pi(\cdot|s) \parallel \pi_{\mathcal{D}}(\cdot|s)) = \int \pi_{\mathcal{D}}(a|s) \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} \left(\frac{\pi(a|s)}{\pi_{\mathcal{D}}(a|s)} - 1 \right)^n da,$$

230 where $f^{(n)}$ denotes the n -th order derivative of f . Recognize that $\int \pi_{\mathcal{D}}(a|s) \left(\frac{\pi(a|s)}{\pi_{\mathcal{D}}(a|s)} - 1 \right)^n da =$
 231 $\chi^n(\pi(\cdot|s) \parallel \pi_{\mathcal{D}}(\cdot|s))$ is the Pearson-Vajda χ^n divergence.
 232

233 It is perhaps surprising that though χ^n divergence is asymmetric, Lemma 3 establishes an equivalence
 234 between any symmetric f -divergence and the infinite series in χ^n . The equivalence allows us to
 235 formulate symmetric BRPO as:

$$236 \quad \max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \left[Q(s, a) - \tau \sum_{n=0}^N \frac{f^{(n)}(1)}{n!} \chi^n(\pi(\cdot|s) \parallel \pi_{\mathcal{D}}(\cdot|s)) \right], \quad (5)$$

237 When $N = \infty$, we recover Eq. (1) with arbitrary valid f -divergence. However, we again face the
 238 same issue of no analytic solution under symmetry. To this end, we truncate the series to $N < \infty$
 239 to retreat from exact symmetry. The following result, building on the famous Abel-Ruffini theorem
 240 (Ramond, 2022) shows that an analytic solution is available only when $N < 5$.
 241

242 **Theorem 3.** *Let the series in Eq.(5) be truncated to N , i.e. $n = 0, 1, \dots, N$ with $2 \leq N < 5$. Then
 243 the regularized optimal policy π^* can be expressed analytically as*

$$244 \quad \pi^*(a|s) \propto \pi_{\mathcal{D}}(a|s) [1 + Z_N(s, a)]_+,$$

245 where $Z_N(s, a)$ contains N -radicals of $Q(s, a)$ and $[\cdot]_+ := \max\{\cdot, 0\}$. Moreover, when $N = 2$:

$$247 \quad \pi^*(a|s) \propto \pi_{\mathcal{D}}(a|s) \left[1 + \frac{Q(s, a)}{\tau} \right]_+, \quad (6)$$

248 where we absorbed additional constants to τ . $N \geq 2$ because $f^{(0)}(1) = 0$ and $\chi^1 = 0$.
 249

250 *Proof.* See Appendix A.2 for a proof. □
 251

252 Notice that $N = 2$ gives $D_f(\pi \parallel \mu) \approx \frac{f''(1)}{2} \chi^2(\pi \parallel \mu)$, with $f''(1) > 0$ by the strong convexity of f .
 253 When $f(t) = t \ln t$, it recovers the classic result that $\chi^2(\pi \parallel \mu) \approx 2D_{\text{KL}}(\pi \parallel \mu)$. Generally, the series
 254 Eq.(8) allows one to balance between symmetric regularization and the truncation threshold $[Z_N]_+$.
 255 But as shown by Zhu et al. (2023), the threshold can also be fully controlled by τ . Therefore, we can
 256 safely choose $N = 2$ which induces Eq.(6).
 257

258 **4.2 SYMMETRIC OPTIMIZATION BY EXPANDING CONDITIONAL SYMMETRY**
 259

260 The numerical instability of vanilla symmetric divergence could again be addressed by the Taylor
 261 expansion. However, a full Taylor expansion involves purely powers of policy ratio which can be
 262 numerically unstable for minimization. Instead, we draw a key observation from Definition 3 that the
 263 symmetric divergences can be decoupled into two interdependent terms $t \ln t$ and $g(t)$. Therefore, we
 264 can decompose the optimization step as the following:
 265

$$266 \quad \mathcal{L}(\theta) := \mathbb{E}_{s \sim \mathcal{D}} [D_{\text{Opt}}(\pi^*(\cdot|s) \parallel \pi_{\theta}(\cdot|s))] \\ 267 = \underbrace{\mathbb{E}_{s \sim \mathcal{D}} [D_{\text{KL}}(\pi^*(\cdot|s) \parallel \pi_{\theta}(\cdot|s))]}_{t \ln t} + \underbrace{\mathbb{E}_{s \sim \mathcal{D}} \left[\int \pi_{\theta}(a|s) g\left(\frac{\pi^*(a|s)}{\pi_{\theta}(a|s)}\right) da \right]}_{\text{conditional symmetry}}. \quad (7)$$

D_{Opt}	$f(t)$	$g(t)$	$g^{(n)}(1), (n \geq 2)$	Series coefficient
Jeffrey	$(t-1) \ln t$	$-\ln t$	$(-1)^n (n-1)!$	$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n}$
Jensen-Shannon	$t \ln t - (1+t) \ln \frac{1+t}{2}$	$-(1+t) \ln \frac{1+t}{2}$	$(-1)^n (n-2)! \frac{1}{2^{n-1}}$	$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)2^{n-1}}$
GAN Divergence	$t \ln t - (1+t) \ln (1+t)$	$-(1+t) \ln (1+t)$	$(-1)^n (n-2)! \frac{1}{2^{n-1}}$	$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)2^{n-1}}$

Table 2: Symmetric divergences, their f generators, conditional symmetry g , derivatives and Taylor expansion series coefficients. JS and GAN share the same derivatives and series coefficients.

The first term $t \ln t$ corresponds to the advantage regression in Eq.(4). The second term that may vary case by case is called the conditional symmetry term. Note that π^* can be zero for some actions. To ensure the second term is valid, it is required that for actions sampled from π_θ the function g cannot involve terms that flip the ratio e.g. $-\ln t$ that destroys the validity.

To this end, we Taylor-expand the conditional symmetry term $g(t)$ to obtain our final loss objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[- \left[1 + \frac{Q(s,a) - V(s)}{\tau} \right]_+ \ln \pi_\theta(a|s) \right] + \mathbb{E}_{\substack{s \sim \mathcal{D} \\ a \sim \pi_\theta}} \left[\sum_{n=2}^{N_{\text{loss}}} \frac{f^{(n)}(1)}{n!} \left(\frac{\pi^*(a|s)}{\pi_\theta(a|s)} - 1 \right)^n \right]. \quad (8)$$

Table 2 summarizes the series coefficients. Compared to full expansion, expanding only the conditional symmetry part has an additional benefit: for large n with high order policy ratio, its coefficient decays quickly towards zero and lowers the importance of higher order terms.

Our method has an interesting connection to a very recent method (Huang et al., 2025) that proposed the $\text{KL} + \chi^2$ regularization to improve RLHF alignment. Despite different settings, Eq.(8) can be seen as a generalization of their method since we recover their method by truncating the series at $N_{\text{loss}} = 2$, with the coefficient $\frac{f''(1)}{2}$ playing the role of tuning relative importance.

5 SYMMETRIC f -ACTOR-CRITIC

The Taylor series was expanded at around $t = 1$, suggesting that the policy ratio should stay in the neighborhood of 1 for the series to converge. To this end, we clip the ratio to the interval $[1 - \epsilon, 1 + \epsilon]$, $\epsilon > 0$. As such, Taylor expansion provides an interesting interpretation to the proximal policy optimization (PPO) style clipping (Schulman et al., 2017). In fact, we can connect the convergence requirements to empirical clipping which plays a key role in many PPO-type methods (Vaswani et al., 2022; Zhuang et al., 2023), see the related work section for detail. Moreover, we can show that the distance from the clipped truncated series to its exact counterpart is upper-bounded:

Theorem 4. *Assume the ratio π^*/π_θ is clipped to the interval $[1 - \epsilon, 1 + \epsilon]$, on which $g^{(n)}$ is absolutely continuous. Assume further the states are randomly sampled from the dataset. Let \mathcal{L}^∞ denote the infinite series of $g(t)$ and $\widehat{\mathcal{L}}_\epsilon^N(\theta)$ the N -term truncated series with clipping, then*

$$\left| \mathcal{L}^\infty(\theta) - \widehat{\mathcal{L}}_\epsilon^N(\theta) \right| \leq \frac{2\epsilon^{N+1}}{(N+1)!} \|g^{(N+1)}\|_\infty,$$

where $\|g^{(N+1)}\|_\infty := \sup_{t \in [1-\epsilon, 1+\epsilon]} |g^{(N+1)}(t)|$.

Proof. See Appendix A.3 for a proof. \square

Theorem 4 shows that the actual loss objective is not far from the exact infinite Taylor series, and hence D_{Opt} is not far from a symmetric divergence. Consider the Jeffrey's divergence where $g(t) = -\ln t$ and $\epsilon = 0.2$, $N = 5$, then the upper bound yields 8.13×10^{-5} .

To obtain a practical implementation, for simplicity we assume at every policy update the action value Q_ψ parametrized by ψ and state value V_ϕ parametrized by ϕ are available. They are trained by the standard critic learning procedures which will be detailed in the appendix.

We also need to be able to evaluate $\pi^*(a|s)$ for actions sampled from π_θ . To do this, we can either approximately evaluate $\pi_{\mathcal{D}}(a|s) \left[1 + \frac{Q_\psi(s, a) - V_\phi(s)}{\tau} \right]_+$ without the normalization constant but require estimating $\pi_{\mathcal{D}}$, or we parametrize π^* by another network ζ that is trained by advantage regression. We find the latter approach more performing and stable in general. Alg. 1 lists our algorithm Symmetric f -divergence Actor-Critic (S f -AC), where $[\cdot]_\epsilon := \text{clip}(\cdot, 1 - \epsilon, 1 + \epsilon)$.

6 EXPERIMENTS

In the experiments we aim to show that (i) the conditional symmetry expansion is a valid loss function; (ii) S f -AC can perform well on the standard offline benchmark. Section 6.1 verifies (i) and section 6.2 and 6.3 for (ii).

6.1 DISTRIBUTION MATCHING

Every loss divergence in the ideal case should lead to the same optimal solution. As a sanity check, we first verify that our Taylor expansion loss Eq.(8) is valid, in that minimizing it produces similar results to the existing divergence losses. We follow the setting in (Nowozin et al., 2016) to learn a Gaussian π_θ with parameters $\theta = (\mu, \sigma)$ to approximate a univariate mixture of Gaussians. The mixture Gaussian is shown in Figure 2.

Setup. Learning is performed by minimizing the expanded objective Eq.(8) with $N_{\text{loss}} = 5$. The target policy is the mixture and θ a two-layer neural network of 64 hidden dimensions. We minimize the objective by SGD with learning rate 0.001, batch size 128 for 1000 update steps. The optimal Gaussian parameters μ, σ are obtained by numerical integration. We compare them to the parameters obtained by minimizing our objectives and the vanilla divergences.

Method	Jeffrey (values)	Jeffery (abs. error) \downarrow	JS (values)	JS (abs. error) \downarrow
D_f	Optimal	0.0159	—	0.0368
	Vanilla	0.0157	0.0002	0.0682
	Ours	0.0161	0.0002	0.0314
μ	Optimal	0	—	0
	Vanilla	0.0067	0.0067	-0.0778
	Ours	-0.0166	0.0166	-0.0475
σ	Optimal	2.2218	—	2.2868
	Vanilla	2.2396	0.018	4.5559
	Ours	2.4926	0.2707	2.2691

Table 3: Loss objectives D_f and corresponding fit parameters μ, σ . Optimal: values given by numerical integration. Vanilla: minimized the vanilla f -divergence per definition. Ours: minimized our Taylor expansion loss for $N_{\text{loss}} = 5$. Our JS loss brings a better fit than minimizing the vanilla f -divergence.

Results. Table 3 shows the divergence values and fit Gaussian parameters obtained by numerical integration (Optimal), Vanilla (vanilla f -divergence loss per definition) and our method (ours). It is visible that the S f -AC loss is a reasonable objective and induces consistent learned distribution behaviors (dashed curves) with the numerical solution. Moreover, as can be seen in Figure 2, minimizing the vanilla Jensen-Shannon (JS) divergence loss induces a much wider distribution (solid

Algorithm 1: Symmetric f -Actor-Critic

Input: $\mathcal{D}, \tau > 0, N_{\text{loss}} \geq 2, \epsilon > 0$

while learning **do**

sample (s, a) from dataset \mathcal{D} ;
 compute $Q_\psi(s, a)$ and $V_\phi(s)$;
 compute advantage regression $\mathcal{L}_{t \ln t} :=$

$$-\widehat{\mathbb{E}}_{s, a} \left[\left[1 + \frac{Q_\psi(s, a) - V_\phi(s)}{\tau} \right]_+ \ln \pi_\theta(a|s) \right];$$

 sample b from π_θ ;
 compute truncated series $\mathcal{L}_g :=$

$$\widehat{\mathbb{E}}_{s, b} \left[\sum_{n=2}^{N_{\text{loss}}} \frac{f^{(n)}(1)}{n!} \left(\left[\frac{\pi_\zeta(b|s)}{\pi_\theta(b|s)} \right]_\epsilon - 1 \right)^n \right];$$

 update θ by minimizing $\mathcal{L}_{t \ln t} + \mathcal{L}_g$;
 update ζ by minimizing $\mathcal{L}_{t \ln t}$;
end

Figure 2: Approximating a mixture of Gaussians (black) by minimizing vanilla divergence (solid) and S f -AC loss for $N_{\text{loss}} = 5$ (dashed). Vanilla JS loss causes the Gaussian to lose track of optimal σ^* given by numerical integration.

378 blue) with $\sigma = 4.556$. The poor approximation coincides with the observation that exact symmetric
 379 divergence losses can lead to unstable policy behaviors (Wang et al., 2024).
 380

381 6.2 MuJoCo

383 The D4RL MuJoCo suite has been a standard benchmark for testing various offline RL algorithms. In
 384 this section we compare Sf -AC Jensen-Shannon and Jeffreys against the baselines on 9 environment-
 385 difficulty combination. We include AWAC that corresponds to explicit KL regularization (Nair
 386 et al., 2021), XQL to implicit KL regularization (Garg et al., 2023), SQL (Xu et al., 2023) to sparse
 387 α -divergence regularization and IQL (Kostrikov et al., 2022). For Sf -AC, we use $N_{\text{loss}} = 3$, $\epsilon = 100$
 388 and perform grid search over τ and learning rates. For the baselines, we use the published settings,
 389 see Appendix B.1 for detail. All algorithms are run for 10^6 steps and averaged over 5 seeds.
 390

409 Figure 3: Sf -AC Jensen-Shannon and Jeffreys with $N_{\text{loss}} = 3$, $\epsilon = 100$ versus baselines on the D4RL
 410 MuJoCo environments. Solid lines are mean and shaded regions the standard deviation, averaged
 411 over 5 seeds. Only Sf -AC methods are shown with full opacity. Both Jensen-Shannon and Jeffrey's
 412 divergences performed favorably compared to the baselines.
 413

414 Figure 3 shows the full result. Only Sf -AC methods are shown with full opacity. Others are shown
 415 with transparency for uncluttered visualization. Except on Hopper medium and Hopper Medium-
 416 Replay, both symmetric divergences are among the top players on the rest of environments. Recall
 417 that XQL, SQL, IQL are very competent on the MuJoCo tasks, yet it is visible that Sf -AC performs
 418 favorably against these methods. Table 4 confirms this observation. Moreover, Figure 8 demonstrates
 419 that Sf -AC is insensitive to the number of terms used to compute the symmetry divergence. This is
 420 desirable as Sf -AC avoids the burdensome environment-specific parameter tuning to save resources
 421 and gain interpretability.
 422

423 Table 4: Summary of D4RL results. Jeffrey and Jensen-Shannon are with $N = 3$.
 424

Environment	Dataset	Jeffrey	Jensen Shannon	AWAC	IQL	SQL	XQL
HalfCheetah	medexp	0.5791 \pm 0.0265	0.6048 \pm 0.0269	0.0939 \pm 0.0542	0.4856 \pm 0.0317	0.5085 \pm 0.0460	0.4665 \pm 0.0249
	medium	0.4453 \pm 0.0030	0.4433 \pm 0.0040	0.4545 \pm 0.0062	0.4517 \pm 0.0086	0.4560 \pm 0.0019	0.4178 \pm 0.0044
	medrep	0.3791 \pm 0.0094	0.3814 \pm 0.0079	0.3408 \pm 0.0179	0.3862 \pm 0.0127	0.3873 \pm 0.0098	0.3560 \pm 0.0130
Hopper	medexp	0.7358 \pm 0.0455	0.7853 \pm 0.0780	0.2816 \pm 0.0355	0.5935 \pm 0.0744	0.5018 \pm 0.0932	0.5383 \pm 0.0510
	medium	0.5590 \pm 0.0199	0.5891 \pm 0.0284	0.5821 \pm 0.0292	0.4732 \pm 0.0304	0.5758 \pm 0.0348	0.4306 \pm 0.0290
	medrep	0.5196 \pm 0.0695	0.5847 \pm 0.0691	0.6144 \pm 0.0642	0.5700 \pm 0.0671	0.6285 \pm 0.0597	0.4815 \pm 0.1144
Walker2d	medexp	1.0518 \pm 0.0239	1.0660 \pm 0.0193	0.1972 \pm 0.1129	1.0008 \pm 0.0374	1.0858 \pm 0.0066	0.6063 \pm 0.1257
	medium	0.7741 \pm 0.0193	0.7832 \pm 0.0156	0.6054 \pm 0.0780	0.5702 \pm 0.0337	0.7601 \pm 0.0284	0.6749 \pm 0.0240
	medrep	0.6588 \pm 0.0422	0.6394 \pm 0.0499	0.5980 \pm 0.0559	0.3498 \pm 0.0392	0.6299 \pm 0.0438	0.3700 \pm 0.0705

Figure 5: Ablation studies on HalfCheetah. **(A)** Scores of Sf -AC across N_{loss} when $\epsilon = 100$. Scattered dots are evaluations from the last 20% of learning. JS remains stable for large N_{loss} as its series coefficients decay quickly to zero, see Table 2. By contrast, Jeffreys performance decreases as N_{loss} increases. **(B)** Scores under various clipping thresholds ϵ of JS when $N_{loss} = 3$. Dashed vertical line shows the median performance of $\epsilon = 0.2$. Overall, Sf -AC is insensitive towards ϵ .

Figure 4 compares policy evolution of Sf -AC Jensen-Shannon (JS) and AWAC. At step 0 the policies are randomly initialized. Note that AWAC explicitly minimizes forward KL between π^* and π_θ . The allowed action range is $[-1, 1]$ but shown larger here for better visualization. It is visible that both JS and Jeffreys keep policies in the range, while the optimizing forward KL of AWAC increasingly prompts the policy beyond the allowed minimum action -1 (shaded area). Since actions outside the range are clipped (in this case -1), the policy will have an unintended shape and cause significant bias (Lee et al., 2025). Figure 9 in Appendix B.2 runs Sf -AC on the more challenging AntMaze, Franka Kitchen and Adroit Pen and confirms the same conclusion.

6.3 ABLATION STUDIES

From Alg. 1 it is visible that Sf -AC depends on two other hyperparameters: the number of terms for the conditional symmetry expansion N_{loss} and the clipping threshold ϵ . The former controls approximation to the symmetric divergence, and the latter controls the convergence of Taylor series. In this section we examine their effect in detail. Due to the page limit, we include additional results on generalized policy in Appendix B.2.

Number of Terms N_{loss} . We sweep Sf -AC Jensen-Shannon (JS) and Jeffreys over $N_{loss} = 2$ to 7 on HalfCheetah. Figure 5 (A) shows the last 20% of learning. Note that $N_{loss} = 2$ corresponds to χ^2 divergence.

It can be seen that the JS remains stable across N_{loss} , while the Jeffreys performance decreases along with the increase of N_{loss} . This can be due to the JS series coefficients decay much faster to zero for higher order χ^n terms, alleviating the potential numerical issues of powers of policy ratio, see Table 2. By contrast, the Jeffreys series coefficient decays at the slow rate n^{-1} and could be less preferable.

Figure 4: Policy evolution of Sf -AC versus AWAC for the first 20% of learning. Minimizing forward KL of AWAC increasingly prompts the policy beyond the minimum allowed action -1 (shaded area).

486 **Clipping Threshold ϵ .** We also compare different ϵ to see the practical effect of clipping. Figure
 487 5 (B) shows the result on HalfCheetah with $\epsilon = \{0.2, 1, 10, 100\}$. The lower limit $1 - \epsilon$ is set to
 488 0 when negative. The dashed vertical line shows the median performance for $\epsilon = 0.2$ which is a
 489 standard value in PPO. In general Sf -AC is consistent across ϵ .

490 **Asymmetry vs. Symmetry.** Prior works have shown benefits of symmetric divergence when used
 491 in D_{Opt} it is therefore interesting to ablate the contribution of symmetric D_{Reg} to clarify when and
 492 why this leads to tangible gains. To this end, we compare the following four cases: (1) Asymmetric
 493 D_{Reg} , asymmetric D_{Opt} . Specifically we opt for the standard KL divergence for asymmetry. As such,
 494 the resulting algorithm can be instantiated by AWAC. (2) Symmetric D_{Reg} , symmetric D_{Opt} . This
 495 is the proposed method Sf -AC, we opt for the Jensen-Shannon. (3) Symmetric D_{Reg} , asymmetric
 496 D_{Opt} . This corresponds to using a standard KL loss to approximate the policy induced by Eq. 5. (4)
 497 Asymmetric D_{Reg} , symmetric D_{Opt} . In this case, a symmetric loss divergence is adopted to match the
 498 KL-regularized policy. This idea underlies the existing works in LLM alignment (Go et al., 2023).
 499 As a result, Figure 6 shows the comparison on HalfCheetah medium-expert dataset. It can be seen
 500 that symmetric D_{Reg} perform similarly and outperforms asymmetric D_{Reg} by a large margin. This
 501 suggests that symmetric D_{Reg} may be preferred over asymmetric ones, regardless of D_{Opt} .

502 7 RELATED WORK

503 **Taylor expansion in RL.** There are some papers
 504 studying the Taylor expansion in RL. Specifically,
 505 Tang et al. (2020) proposed to expand the action
 506 value difference as an infinite series in the transi-
 507 tion dynamics and liken that to the Taylor series.
 508 Motoki et al. (2024) proposed to modify the ex-
 509 treme Q-learning objective (Garg et al., 2023) by
 510 expanding the exponential function into a MacLau-
 511 ron series to stabilize learning. In this paper, we
 512 utilize the Taylor expansion of f -divergence to ob-
 513 tain a χ^n -series and based on it derive analytic
 514 policy π^* and a tractable minimization objective.

515 **f -divergence in RL.** BRPO requires an analytic
 516 π^* to be used as the target policy in a loss diver-
 517 gence. The existing literature has mostly focused
 518 on asymmetric divergences such as the KL, χ^2 , α
 519 divergences that permit an analytic policy. In other areas such as the goal-conditioned RL (Ma et al.,
 520 2022; Agarwal et al., 2023) or RLHF (Go et al., 2023; Wang et al., 2024), symmetric f -divergences
 521 have been discussed since they require only minimizing the divergence as a loss objective and no π^*
 522 is required. Their objective can be derived by computing only f' and gradient of log-likelihood.

523 **Policy ratio clipping.** Clipping policy ratio into a range $[1 - \epsilon, 1 + \epsilon]$ has been widely studied since
 524 the proximal policy optimization (Schulman et al., 2017; Vaswani et al., 2022). In the offline context
 525 the clipping has been shown to also play a key role (Zhuang et al., 2023). Our method shows that
 526 ϵ can be connected to the convergence requirements of Taylor series. In fact, the clipped χ^n series
 527 shares similarity to the higher order objectives in (Tang et al., 2020) which assumed bounded total
 528 deviation, providing an alternate interpretation for their method.

531 8 CONCLUSION

532 In this paper, we study symmetric divergence regularization for BRPO and show two major issues
 533 limiting the use of symmetric divergences: (1) they do not permit an analytic regularized policy, and
 534 (2) they can incur numerical issues when naively computed. We tackled the two issues by leveraging
 535 the finite Taylor series of symmetric divergences, arriving at Sf -AC, the first BRPO algorithm with
 536 symmetric divergences. Through empirical evaluation, we verified that Sf -AC achieved consistently
 537 strong results. Additionally, while the other baselines suffer from weak performances in some
 538 environments, Sf -AC Jensen-Shannon is the only algorithm which was able to consistently rank
 539 within top-3 across all the tasks.

540 Figure 6: Ablation of symmetric D_{Reg} on
 541 HalfCheetah medexp. Symmetric D_{Reg} per-
 542 forms similarly and outperforms asymmetric
 543 D_{Reg} by a large margin.

540 REPRODUCIBILITY STATEMENT
541542 The code is available as a zip file in the supplementary material. We provide detailed experimental
543 settings in Appendix B including the network architectures, hyperparameters and the number of
544 seeds.
545546 REFERENCES
547548 Siddhant Agarwal, Ishan Durugkar, Peter Stone, and Amy Zhang. f-policy gradients: A general
549 framework for goal-conditioned RL using f-divergences. In *Thirty-seventh Conference on Neural*
550 *Information Processing Systems*, 2023.551 S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution from
552 another. *Journal of the Royal Statistical Society: Series B (Methodological)*, 28:131–142, 1966.
553554 Neil Barnett, Pietro Cerone, S. Dragomir, and Anthony Sofo. Approximating csiszár f-divergence by
555 the use of taylor’s formula with integral remainder. *Mathematical Inequalities & Applications*, 5,
556 2002.557 Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A. Rupam Mahmood, and Martha White.
558 Greedification operators for policy optimization: Investigating forward and reverse kl divergences.
559 *Journal of Machine Learning Research*, 23(253):1–79, 2022.560 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
561 data-driven reinforcement learning, 2020.562 Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
563 without entropy. In *The Eleventh International Conference on Learning Representations*, 2023.564 Dongyoung Go, Tomasz Korbak, Germàn Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
565 man. Aligning language models with preferences through f -divergence minimization. In *Proceed-
566 ings of the 40th International Conference on Machine Learning*, volume 202, pp. 11546–11583,
567 2023.568 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
569 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in Neural*
570 *Information Processing Systems*, volume 27, 2014.571 J.B. Hiriart-Urruty and C. Lemaréchal. *Fundamentals of Convex Analysis*. Grundlehren Text Editions.
572 Springer Berlin Heidelberg, 2004.
573574 Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D. Lee, Wen Sun, Akshay Krishnamurthy, and
575 Dylan J Foster. Correcting the mythos of KL-regularization: Direct alignment without overopti-
576 mization via chi-squared preference optimization. In *The Thirteenth International Conference on*
577 *Learning Representations*, 2025.578 Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
579 Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
580 human preferences in dialog, 2020.581 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
582 q-learning. In *International Conference on Learning Representations*, 2022.583 Ganghun Lee, Minji Kim, Minsu Lee, and Byoung-Tak Zhang. Truncated gaussian policy for
584 debiased continuous control. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
585 2025.586 Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
587 policy optimization via stationary distribution correction estimation. In *Proceedings of the 38th*
588 *International Conference on Machine Learning (ICML)*, 2021.589 Xiang Li, Wenhao Yang, and Zhihua Zhang. A regularized approach to sparse optimal policy in
590 reinforcement learning. In *Advances in Neural Information Processing Systems 32*, pp. 1–11, 2019.
591

594 Yuhang Li, Wenzhuo Zhou, and Ruoqing Zhu. Quasi-optimal reinforcement learning with continuous
 595 actions. In *The Eleventh International Conference on Learning Representations*, 2023.
 596

597 Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
 598 reinforcement learning via $\$f\$$ -advantage regression. In Alice H. Oh, Alekh Agarwal, Danielle
 599 Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.

600 Yi Ma, Jianye Hao, Xiaohan Hu, Yan Zheng, and Chenjun Xiao. Iteratively refined behavior
 601 regularization for offline reinforcement learning. In *Advances in Neural Information Processing
 602 Systems*, pp. 56215–56243, 2024.
 603

604 Liyuan Mao, Haoran Xu, Weinan Zhang, and Xianyuan Zhan. Odice: Revealing the mystery of
 605 distribution correction estimation via orthogonal-gradient update. In *International Conference on
 606 Learning Representations*, 2024.

607 Omura Motoki, Osa Takayuki, Mukuta Yusuke, and Harada Tatsuya. Stabilizing extreme q-learning
 608 by maclaurin expansion. In *Proceedings of the First Reinforcement Learning Conference*, pp. 1–14,
 609 2024.
 610

611 Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. 2020.

612 Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
 613 discounted stationary distribution corrections. In *Advances in Neural Information Processing
 614 Systems*, 2019.

615 Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. {AWAC}: Accelerating online
 616 reinforcement learning with offline datasets, 2021.
 617

618 Frank Nielsen and Richard Nock. On the chi square and higher-order chi distances for approximating
 619 f-divergences. *Signal Processing Letters, IEEE*, 21, 09 2013.
 620

621 Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
 622 using variational divergence minimization. In *Advances in Neural Information Processing Systems*,
 623 volume 29, pp. 1–9, 2016.

624 Leandro Pardo. *Statistical Inference Based on Divergence Measures*. Chapman and Hall/CRC, 2006.
 625

626 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage weighted regression:
 627 Simple and scalable off-policy reinforcement learning, 2020.
 628

629 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John
 630 Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.
 631

632 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 633 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances
 634 in Neural Information Processing Systems*, volume 36, pp. 53728–53741, 2023.

635 Paul Ramond. The abel–ruffini theorem: Complex but not complicated. *The American Mathematical
 636 Monthly*, 129(3):231–245, 2022.

637 I. Sason and S. Verdú. f-divergence inequalities. *IEEE Transactions on Information Theory*, 62:
 638 5973–6006, 2016.
 639

640 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 641 optimization algorithms. *arXiv:1707.06347*, 2017.

642 Yunhao Tang, Michal Valko, and Remi Munos. Taylor expansion policy optimization. In *Proceedings
 643 of the 37th International Conference on Machine Learning*, volume 119, pp. 9397–9406, 2020.
 644

645 Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Mueller, Matthieu Geist, Marlos C.
 646 Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surrogate functions
 647 for stable and efficient reinforcement learning. In *Proceedings of the Twenty Fifth International
 Conference on Artificial Intelligence and Statistics*, 2022.

648 Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
 649 Leverage the average: an analysis of regularization in rl. In *Advances in Neural Information*
 650 *Processing Systems 33*, pp. 1–12, 2020.

651 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse KL: Generaliz-
 652 ing direct preference optimization with diverse divergence constraints. In *The Twelfth International*
 653 *Conference on Learning Representations*, 2024.

654 Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-divergence minimization for sequence-level
 655 knowledge distillation. In *Proceedings of the 61st Annual Meeting of the Association for Compu-
 656 tational Linguistics (Volume 1: Long Papers)*, pp. 10817–10834. Association for Computational
 657 Linguistics, 2023.

658 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
 659 2020.

660 Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample soft-
 661 max for offline reinforcement learning. In *The Eleventh International Conference on Learning*
 662 *Representations*, 2023.

663 Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xianyuan
 664 Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regularization. In
 665 *The Eleventh International Conference on Learning Representations*, 2023.

666 Lingwei Zhu, Zheng Chen, Matthew Schlegel, and Martha White. Generalized munchausen rein-
 667 forcement learning using tsallis kl divergence. In *Advances in Neural Information Processing*
 668 *Systems (NeurIPS)*, 2023.

669 Lingwei Zhu, Haseeb Shah, Han Wang, Yukie Nagai, and Martha White. q-exponential policy
 670 optimization. *International Conference on Learning Representations (ICLR)*, 2025a.

671 Lingwei Zhu, Han Wang, and Yukie Nagai. Fat-to-thin policy optimization: Offline rl with sparse
 672 policies. In *International Conference on Learning Representations (ICLR)*, 2025b.

673 Zifeng Zhuang, Kun LEI, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
 674 optimization. In *The Eleventh International Conference on Learning Representations*, 2023.

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 703 704 705 Appendix 706 707

708 A MATHEMATICAL DETAILS AND PROOF 709

710 A.1 PROOF OF THEOREM 1 711

712 Let us write out the Lagrangian of the objective (Li et al., 2019; Xu et al., 2023):
713

$$714 \mathcal{L}(\pi, \alpha, \beta) = \sum_s d^{\pi^D}(s) \sum_a \left[\pi(a|s) Q(s, a) - \tau \mathbb{E}_\mu \left[f \left(\frac{\pi(a|s)}{\mu(a|s)} \right) \right] \right] \\ 715 - \sum_s d^{\pi^D}(s) \left[\alpha(s) \left(\sum_a \pi(a|s) - 1 \right) - \sum_a \beta(a|s) \pi(a|s) \right]. \quad (9)$$

720 where d^{π^D} is the stationary state distribution of the behavior policy. α and β are Lagrangian
721 multipliers for the equality and inequality constraints, respectively. The KKT conditions are:
722

$$723 \text{Primal feasibility: } \sum_a \pi(a|s) = 1, \quad \pi(a|s) \geq 0, \\ 724$$

$$725 \text{Dual feasibility: } \beta(a|s) \geq 0,$$

$$727 \text{Stationarity: } \frac{\partial \mathcal{L}}{\partial \pi(a|s)} = Q(s, a) - \tau \mu(a|s) f' \left(\frac{\pi(a|s)}{\mu(a|s)} \right) \frac{1}{\mu(a|s)} - \alpha(s) + \beta(a|s) = 0,$$

$$730 \text{Complementarity: } \beta(a|s) \pi(a|s) = 0$$

732 Following (Li et al., 2019; Xu et al., 2023), we eliminate d^{π^D} since we assume all policies induce an
733 irreducible Markov chain. For any action with $\pi(a|s) > 0$, we have $\beta(a|s) = 0$. Therefore, we can
734 derive the solution as:

$$735 f' \left(\frac{\pi(a|s)}{\mu(a|s)} \right) = \frac{Q(s, a) - \alpha(s)}{\tau} \Rightarrow \pi^*(a|s) = \left[(f')^{-1} \left(\frac{Q(s, a) - \alpha(s)}{\tau} \right) \right]_+,$$

739 where $\alpha(s)$ is the normalization constant that ensures π^* sums to 1.

740 For π^* to be analytic, we need to know how to compute $\alpha(s)$. Since $f(t)$ begins with a $t \ln t$ term, so
741 $f'(t) = \ln t + 1 + g'(t)$. If $g'(t)$ is not a function such that $f'(t) = a \ln t + b$ for some constants a, b ,
742 then $\alpha(s)$ cannot be calculated from the constraint $\sum_a \pi^*(a|s) = 1$.
743

744 A.2 PROOF OF THEOREM 3 745

747 To prove Theorem 3, we need to show that (i) the policy expression when $N = 2$ and (ii) when
748 $N > 5$ the solution does not have an analytic expression. To show (i), we study regularization with
749 the sole, general χ^n . Again let us write out the Lagrangian similar to Eq.(9):
750

$$751 \mathcal{L}(\pi, \alpha, \beta) = \sum_s d^{\pi^D}(s) \sum_a \left[\pi(a|s) Q(s, a) - \tau \frac{(\pi(a|s) - \mu(a|s))^N}{\mu(a|s)^{N-1}} \right] \\ 752 - \sum_s d^{\pi^D}(s) \left[\alpha(s) \left(\sum_a \pi(a|s) - 1 \right) - \sum_a \beta(a|s) \pi(a|s) \right].$$

756 where d^{π_D} , α and β are carry the same meaning as Eq.(9). The KKT conditions are now:
 757

758 Primal feasibility: $\sum_a \pi(a|s) = 1, \quad \pi(a|s) \geq 0,$
 759

760 Dual feasibility: $\beta(a|s) \geq 0,$
 761

762 Stationarity: $\frac{\partial \mathcal{L}}{\partial \pi(a|s)} = Q(s, a) - \tau \frac{N(\pi(a|s) - \mu(a|s))^{N-1}}{\mu(a|s)^{N-1}} - \alpha(s) + \beta(a|s) = 0,$
 763

764 Complementarity: $\beta(a|s) \pi(a|s) = 0$
 765

766 Following a similar procedure, we can obtain
 767

768
$$Q(s, a) - \alpha(s) = \tau \frac{N(\pi(a|s) - \mu(a|s))^{N-1}}{\mu(a|s)^{N-1}}$$

 769
 770
$$\Rightarrow (\pi(a|s) - \mu(a|s))^{N-1} = \mu(a|s)^{N-1} \frac{(Q(s, a) - \alpha(s))}{N\tau}$$

 771
 772
$$\Rightarrow \pi^*(a|s) = \mu(a|s) \left[1 + \left(\frac{Q(s, a) - \alpha(s)}{N\tau} \right)^{\frac{1}{N-1}} \right]_+,$$

 773
 774
 775

776 where $\alpha(s)$ is the normalization constant ensuring $\sum_a \pi^*(a|s) = 1$. When $N = 2$, this becomes
 777

778
$$\pi^*(a|s) = \mu(a|s) \left[1 + \frac{Q(s, a) - \alpha(s)}{2\tau} \right]_+$$

 779
 780

781 by redefining $\tau' = 2\tau$ we conclude the proof of (i).
 782

783 Now let us consider the case where we have χ^2 and χ^3 appearing together, all other KKT conditions
 784 remain the same except for the stationarity:
 785

786
 787
$$\frac{\partial \mathcal{L}}{\partial \pi(a|s)} = Q(s, a) - 2\tau \frac{f^{(2)}(1)}{2!} \frac{\pi(a|s) - \mu(a|s)}{\mu(a|s)}$$

 788
 789
$$- 3\tau \frac{f^{(3)}(1)}{3!} \left(\frac{(\pi(a|s) - \mu(a|s))}{\mu(a|s)} \right)^2 - \alpha(s) - \beta(a|s) = 0,$$

 790
 791

792 Now let us define
 793

794
$$W(a|s) := \frac{\pi(a|s) - \mu(a|s)}{\mu(a|s)}, \quad \tau_2 := 2\tau \frac{f^{(2)}(1)}{2!}, \quad \tau_3 := 3\tau \frac{f^{(3)}(1)}{3!}$$

 795
 796
 797
$$\Rightarrow W(a|s) = \frac{-\tau_2 + \sqrt{\tau_2^2 + 4\tau_3(Q(s, a) - \alpha(s))}}{2\tau_3}$$

 798
 799
$$\Rightarrow \pi^*(a|s) = \mu(a|s) \left[1 + \frac{-\tau_2 + \sqrt{\tau_2^2 + 4\tau_3(Q(s, a) - \alpha)}}{2\tau_3} \right]_+.$$

 800
 801

802 Though the reciprocal term becomes more complex, the role it plays still lies in determining the
 803 threshold for truncating actions. We can similarly derive the solution for $\sum_{n=2}^{N=4} f^{(n)}(1)\chi^n/n!$ with
 804 more complex (and tedious) algebra, but their solutions still take the form $\mu(a|s) [1 + Z(s, a)]_+$,
 805 where Z contains the radicals over $Q(s, a)$. As have shown by (Zhu et al., 2023), the truncation effect
 806 can be fully controlled by specifying τ . Therefore, we opt for the simplest case where $n = 2$.
 807

808 The series $\sum_{n=2}^N f^{(n)}(1)\chi^n/n!$ is an N -th order polynomial in the policy ratio. Therefore, for
 809 $N \geq 5$, by the famous Abel-Ruffini theorem (Ramond, 2022) we conclude that it is impossible to
 have any analytic solution.

810 A.3 PROOF OF THEOREM 4
811812 We follow (Barnett et al., 2002, Theorem 1) in proving this result. We start with the following Taylor
813 representation with the integral remainder:

814
815
$$f(t) = f(z) + \sum_{n=0}^N \frac{(t-z)^n}{n!} f^{(n)}(z) + \frac{1}{N!} \int_z^t (t-a)^N f^{(N+1)}(a) da.$$

816
817

818 Specifically by (2.4) of (Barnett et al., 2002) we have
819

820
821
$$\left| f(t) - f(z) - \sum_{n=0}^N \frac{(t-z)^n}{n!} f^{(n)}(z) \right| \leq \frac{1}{N!} \left| \int_z^t |t-a|^N |f^{(N+1)}(a)| da \right|$$

822
823
$$\leq \frac{1}{N!} \sup_{a \in [1-\epsilon, 1+\epsilon]} |f^{(N+1)}(a)| \left| \int_z^t |t-a|^N da \right|$$

824
825
$$= \frac{1}{(N+1)!} \|f^{(N+1)}\|_{\infty} |t-z|^{N+1}$$

826
827
$$= \frac{1}{(N+1)!} \|f^{(N+1)}\|_{\infty} \epsilon^{N+1},$$

828
829

830 where in the last equation we let $t = \pi^*/\pi_\theta$ clipped to $1 + \epsilon$ and $z = 1$. Now we can repeat the same
831 procedure for $t = 1 - \epsilon$. Since states are sampled from the dataset randomly, we have
832

833
$$\mathbb{E}_{s \sim \mathcal{D}} \left[\frac{2\epsilon^{N+1}}{(N+1)!} \|f^{(N+1)}\|_{\infty} \right] = \sum_s \frac{1}{|\mathcal{D}|} \frac{2\epsilon^{N+1}}{(N+1)!} \|f^{(N+1)}\|_{\infty} = \frac{2\epsilon^{N+1}}{(N+1)!} \|f^{(N+1)}\|_{\infty}.$$

834
835

836 We conclude the proof of Theorem 4 by changing f to g .
837838 A.4 EXISTING CHARACTERIZATIONS OF π^* .
839840 We review related work on characterizing the solution of f -divergence regularization. They are
841 mainly two ways for characterization, which we discuss in detail below.
842

Regularization Characterization

843
844 (R1) $\pi^*(a|s) > 0 \Rightarrow \pi_{\mathcal{D}}(a|s) > 0$;
845 (R2) $h_f(t) := t f(t)$ is strictly convex;
846 (R3) $f(t)$ is continuously differentiable.
847**Result:**

848
$$\pi^*(a|s) \propto \left[(h'_f)^{-1} \left(\frac{Q(s,a)}{\tau} \right) \right]_+.$$

849
850

DICE Characterization

851
852 (D1) $d^{\pi^*}(s, a) > 0 \Rightarrow d^{\pi_{\mathcal{D}}}(s, a) > 0$;
853 (D2) $f(t)$ is strictly convex;
854 (D3) $f(t)$ is continuously differentiable.
855**Result:**

856
$$\frac{d^{\pi^*}(s,a)}{d^{\pi_{\mathcal{D}}}(s,a)} \propto \left[(f')^{-1} \left(\frac{Q(s,a)}{\tau} \right) \right]_+.$$

857
858

859 A.4.1 REGULARIZATION CHARACTERIZATION.
860861 We call the first class Regularization Characterization as they exactly studied Eq. (1) (Li et al.,
862 2019; Xu et al., 2023). Here, \propto indicates *proportional to* up to a constant not depending on actions.
863 Assumptions (R2) does not hold for symmetric divergences in general.
864865 **Jeffrey's divergence.** $D_{\text{Jeffrey}}(\pi^* \parallel \pi_\theta) = D_{\text{KL}}(\pi^* \parallel \pi_\theta) + D_{\text{KL}}(\pi_\theta \parallel \pi^*)$ is induced by $f(t) =$
866 $(t-1)\ln t$. We see that $h_f(t) = (t^2 - t)\ln t$, and therefore $h'_f(t) = (2t-1)\ln t + t - 1$;
867 $h''_f(t) = 2\ln t + 3 - \frac{1}{t}$, which can be negative and in turn indicates that h_f is not strictly convex.
868 Therefore, Jeffrey's divergence does not satisfy their Assumption (R2).
869870 **Jensen-Shannon Divergence.** Recall the Jensen-Shannon divergence is defined by
871

872
$$f(t) := t \ln t - (t+1) \ln \frac{t+1}{2}.$$

873
874

864 We examine Assumption (R2) of regularization characterization (Li et al., 2019; Xu et al., 2023):
 865

$$\begin{aligned} 866 \quad h_f(t) &:= t f(t) = t^2 \ln t - t^2 \ln \frac{t+1}{2} - t \ln \frac{t+1}{2}, \\ 867 \\ 868 \quad \Rightarrow h'_f(t) &= 2t \ln t + t - 2t \ln \left(\frac{t+1}{2} \right) - \frac{t^2}{t+1} - \ln \left(\frac{t+1}{2} \right) - \frac{t}{t+1}, \\ 869 \\ 870 \quad \Rightarrow h''_f(t) &= 2 \ln \left(\frac{2t}{t+1} \right) + \frac{1}{t+1}. \\ 871 \\ 872 \end{aligned}$$

873 suggesting that $h_f(t)$ is not a convex function and does not meet their Assumption (R2).

874 **GAN Divergence.** From Table 1 the GAN divergence is defined by
 875

$$876 \quad f(t) = t \ln t - (t+1) \ln(t+1).$$

877 Again we focus on its second assumption:
 878

$$\begin{aligned} 879 \quad h_f(t) &= t^2 \ln t - t^2 \ln(t+1) - t \ln(t+1) \\ 880 \\ 881 \quad \Rightarrow h'_f(t) &= 2t \ln \left(\frac{t}{t+1} \right) - \ln(t+1) \\ 882 \\ 883 \quad \Rightarrow h''_f(t) &= 2 \ln \left(\frac{t}{t+1} \right) + \frac{1}{t+1}. \\ 884 \end{aligned}$$

885 $h''_f(t)$ can be negative, therefore Assumption (R2) is not satisfied.
 886

887 A.4.2 DICE CHARACTERIZATION

888 DIistribution Correction Estimation (DICE) methods estimate stationary distribution ratios that correct
 889 the discrepancy between the data distribution and the optimal policy's stationary distribution (Nachum
 890 et al., 2019; Nachum & Dai, 2020).

891 In the offline context, the optimal solution is the ratio between the stationary distributions
 892 $d\pi^*(s, a)/d\pi^\pi(s, a)$ (Lee et al., 2021; Mao et al., 2024). The optimal policy can then be uniquely
 893 identified by $\pi^*(a|s) = d\pi^*(s, a)/\sum_b d\pi^*(s, b)$ (Puterman, 1994). Assumptions (D1)-(D3) can be
 894 satisfied by the symmetric divergences in Table 1. However, the issue lies in that $(f')^{-1}$ in general
 895 does not have a closed-form expression.

896 **Jeffrey's divergence.** $f(t) = (t-1) \ln t$, the inverse function of $f'(t) = \ln t + 1 - \frac{1}{t}$ involves the
 897 Lambert W function which does not have an analytic expression (Nowozin et al., 2016).

898 **Jensen-Shannon Divergence.** The generator function of Jensen-Shannon divergence is:
 899

$$\begin{aligned} 900 \quad f(t) &:= t \ln t - (t+1) \ln \frac{t+1}{2} \quad \Rightarrow \quad f'(t) = \ln t - \ln \frac{t+1}{2}, \\ 901 \\ 902 \quad \Rightarrow \pi^*(a|s) &\propto \max \left\{ 0, (f')^{-1} \left(\frac{Q(s, a)}{\tau} \right) \right\} = \max \left\{ 0, \frac{\exp \left(\frac{Q(s, a)}{\tau} \right)}{2 - \exp \left(\frac{Q(s, a)}{\tau} \right)} \right\}. \\ 903 \\ 904 \\ 905 \\ 906 \end{aligned}$$

907 To make sure the policy is a valid distribution, we need to find the normalization constant. However,
 908 the integral of $(f')^{-1}$ diverges to infinity, suggesting that no such normalization constant exists.
 909

910 B IMPLEMENTATION AND ADDITIONAL RESULTS

911 B.1 IMPLEMENTATION DETAILS

912 We use the MuJoCo suite from D4RL (Apache-2/CC-BY licence) (Fu et al., 2020) for offline
 913 experiments. The D4RL offline datasets all contain 1 million samples generated by a partially
 914 trained SAC agent. The name reflects the level of the trained agent used to collect the transitions.
 915 The Medium dataset contains samples generated by a medium-level (trained halfway) SAC policy.
 916 Medium-expert mixes the trajectories from the Medium level and that produced by an expert agent.
 917

918	Dataset	Sf-AC JS	Sf-AC Jeffreys	AWAC	IQL	XQL	SQL
919	HalfCheetah-Medium-Expert	0.001	0.001	0.0003	0.0003	0.0002	0.0002
920	HalfCheetah-Medium-Replay	0.001	0.001	0.0003	0.0003	0.0002	0.0002
921	HalfCheetah-Medium	0.001	0.001	0.0003	0.0003	0.0002	0.0002
922	Hopper-Medium-Expert	0.001	0.001	0.001	0.001	0.0002	0.0002
923	Hopper-Medium-Replay	0.001	0.001	0.0003	0.0003	0.0002	0.0002
924	Hopper-Medium	0.001	0.001	0.0003	0.001	0.0002	0.0002
925	Walker2d-Medium-Expert	0.001	0.001	0.001	0.0003	0.0002	0.0002
926	Walker2d-Medium-Replay	0.001	0.001	0.0003	0.0003	0.0002	0.0002
927	Walker2d-Medium	0.001	0.001	0.001	0.001	0.0002	0.0002

Table 5: The best learning rate across environments. Published settings were used for baselines.

929	Dataset	Sf-AC JS	Sf-AC Jeffreys	AWAC	IQL	XQL	SQL
930	HalfCheetah-Medium-Expert	0.01	0.01	1.00	0.33	2.00	5.00
931	HalfCheetah-Medium-Replay	0.01	0.01	1.00	0.33	2.00	5.00
932	HalfCheetah-Medium	0.01	0.01	0.50	0.33	2.00	5.00
933	Hopper-Medium-Expert	0.01	0.01	1.00	0.33	2.00	2.00
934	Hopper-Medium-Replay	0.01	0.01	0.50	0.33	2.00	2.00
935	Hopper-Medium	0.01	0.01	0.50	0.33	2.00	5.00
936	Walker2d-Medium-Expert	0.01	0.01	0.10	0.33	2.00	5.00
937	Walker2d-Medium-Replay	0.01	0.01	0.10	0.33	2.00	5.00
938	Walker2d-Medium	0.01	0.01	0.10	0.33	2.00	5.00

Table 6: The best τ across environments. Published settings were used for baselines.

Medium-replay consists of samples in the replay buffer during training until the policy reaches the medium level of performance. In summary, the ranking of levels is Medium-expert > Medium > Medium-replay. The codebase¹ used in this paper is from public repositories (Xiao et al., 2023; Zhu et al., 2025a).

Figure 7: Generalized parametric policy π_θ versus the standard Squashed Gaussian policy. Dots are from the last 50% of learning evaluation. Generalized π_θ can better capture the characteristics of finite-support π^* and improves Sf-AC performance.

Experiment settings: We conducted the offline experiment using 9 datasets provided in D4RL: halfcheetah-medium-expert, halfcheetah-medium, halfcheetah-medium-replay, hopper-medium-expert, hopper-medium, hopper-medium-replay, walker2d-medium-expert, walker2d-medium, and walker2d-medium-replay. We run 6 agents: Sf-AC Jensen-Shannon (JS), Sf-AC Jeffreys, AWAC, IQL, XQL, and SQL, all with the Squashed Gaussian policy parametrization. Each agent was trained for 1×10^6 steps. The policy was evaluated every 1000 steps. The score was averaged over 5 rollouts in the real environment; each had 1000 steps.

¹https://github.com/hwang-ua/inac_pytorch
<https://github.com/lingweizhu/qexp>

Hyperparameter	Value
Learning rate	Swept in $\{3 \times 10^{-3}, 1 \times 10^{-3}, 3 \times 10^{-4}, 1 \times 10^{-4}\}$ See the best setting in Table 5
Temperature	Same as the number reported in the publication of each algorithm. Swept in $\{1.0, 0.5, 0.01\}$. See the setting in Table 6
IQL Expectile	0.7
Discount rate	0.99
Hidden size of Value network	256
Hidden layers of Value network	2
Hidden size of Policy network	256
Hidden layers of Policy network	2
Minibatch size	256
Adam. β_1	0.9
Adam. β_2	0.99
Number of seeds for sweeping	5
Number of seeds for the best setting	10

Table 7: Default hyperparameters and sweeping choices.

Figure 8: S_f -AC is insensitive to the number of terms used to compute the symmetry divergence.

Parameter sweeping: S_f -AC results in the paper were generated by the best parameter setting after sweeping. For the baselines, their published settings were used. The best learning rates are reported in Table 5, and the temperatures are listed in Table 6. We list other parameter settings in Table 7.

Computation Overhead: All experiments were run on a NVIDIA DGX Station A100 with 128 CPU cores but no GPUs were used. In terms of computation time, S_f -AC Jensen-Shannon took on average ≈ 10 hours for 1 million steps, while the Jeffreys took ≈ 6 hours.

B.2 ADDITIONAL RESULTS

By fixing the policy ratio to be $\pi^*(a|s)/\pi_\theta(a|s)$, S_f -AC avoids the numerical issue when $\pi^*(a|s) = 0$ due to the q -exponential. Some papers have reported that utilizing a generalized parametric policy π_θ can significantly improve the performance to capture the characteristics of such finite-support π^* (Zhu et al., 2025b). To this end, we run S_f -AC with the same setting $\epsilon = 100$, $N_{\text{loss}} = 3$ but with generalized parametric policy.

Figure 7 compares the performance of the generalized parametric policy against the standard Squashed Gaussian. Dots are from the evaluation of the last 50% of learning. It can be seen that a generalized parametric policy indeed significantly improves the performance in terms of median across environment-dataset combinations and greatly reduce variance: low-score red dots do not appear for the generalized policy.

It is visible from Figure 8 that S_f -AC is insensitive to the number of terms used to compute the symmetry divergence. This is desirable as S_f -AC avoids the burdensome environment-specific parameter tuning to save resources and gain interpretability.

Figure 9 shows the result on more difficult environments Adroit Pen, Franka Kitchen and Antmaze-umaze-diverse. Again the published settings are used for XQL and IQL. It is visible that S_f -AC

1026

Table 8: Averaged wallclock time (minutes) for *Sf*-AC across N and baselines.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

performs competitively against XQL and IQL and is never the worst across tasks. Figure 10 compares the same algorithms on Adroit Relocate, Hammer, Door ”v0” environments, with dataset levels ”human” and ”cloned”. It can be seen that *Sf*-AC is on par with or better than the baselines.

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

Table 8 lists the wallclock time of *Sf*-AC across the number of terms and against the baselines. It is visible that increasing the number of terms does not increase the computation time and *Sf*-AC is on the same magnitude as XQL, which takes slightly more time than IQL and SQL. The computation of *Sf*-AC does not require storing intermediate results or variables and hence no extra memory is required. The following code snippet computes the series for *Sf*-AC Jeffrey, and it is clear that only the resulting sum is needed. All the wallclock time is recorded for 1 million steps using CPU Intel 8457C and GPU Nvidia A6000.

1058

1059

1060

1061

1062

1063

1064

1065

1066

Figure 9: *Sf*-AC compares against IQL and XQL on extra environments Adroit Pen, Franka Kitchen and Antmaze umaze-diverse. It is visible that *Sf*-AC is never the worst performer across the tasks.

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Listing 1: The conditional symmetry term of Jeffrey divergence.

$$\begin{cases} \pi^*(a|s) = \arg \max_{\pi} \mathbb{E}_{\substack{a \sim \pi \\ s \sim \mathcal{D}}} [Q^*(s, a) - D_{\text{Reg}}(\pi(\cdot|s) || \pi_{\mathcal{D}}(\cdot|s))], \\ \pi_{\theta} = \arg \min_{\theta} \mathbb{E}_{\substack{a \sim \pi_{\theta} \\ s \sim \mathcal{D}}} [D_{\text{Opt}}(\pi^*(\cdot|s) || \pi_{\theta}(\cdot|s))], \\ Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{\substack{a' \sim \pi_{\theta} \\ s' \sim \mathcal{D}}} [Q^*(s', a') - D_{\text{Reg}}(\pi_{\theta}(\cdot|s') || \pi_{\mathcal{D}}(\cdot|s'))], \end{cases} \quad (10)$$

The core argument for setting $D_{\text{Reg}} = D_{\text{Opt}}$ is fixed-point consistency. The overall algorithm seeks a fixed point where π^* is consistent with the current Q -function, and this consistency is defined by the metric D_{Reg} . If $D_{\text{Opt}} \neq D_{\text{Reg}}$, the resulting π_{θ} is the optimal policy for a **different optimization problem** than the one defined by D_{Reg} . This introduces an optimization mismatch error, causing the iterative process to converge to a point inconsistent with the true regularized optimal policy π^* .

Motivating Example: D_{Reg} as KL. Let us assume that D_{Reg} is the KL divergence. The overall goal is to find a policy π^* that is a fixed point of the iterative optimization process. This fixed point is defined by the MaxEnt Bellman Equation (Vieillard et al., 2020), which is intrinsically derived using

Figure 10: Comparison between Sf-AC Jensen-Shannon against IQL and XQL on the Adroit relocate, hammer and door ”v0” environments. Sf-AC performs favorably against the baselines.

D_{Reg} . In this case π^* is well-defined and given by the Boltzmann-type policy:

$$\pi^*(a|s) \propto \pi_{\mathcal{D}}(a|s) \exp\left(\frac{1}{\tau}Q(s, a)\right),$$

If $D_{\text{Opt}} = D_{\text{Reg}} = D_{\text{KL}}(\pi^* || \pi_{\theta})$, the projection step then ensures that the $\arg \min_{\theta} D_{\text{KL}}(\pi^* || \pi_{\theta})$ is a consistent and optimal way to fit the exponential family target π^* to the parameterized policy π_{θ} . This ensures the iterative updates are consistent, allowing the algorithm to converge to the true optimal solution π^* .

Symmetric D_{Reg} and D_{Opt} vs. only symmetric D_{Opt} . We apply the same analysis to the symmetric regime and compare against the existing works that employ a KL D_{Reg} but symmetric D_{Opt} (Go et al., 2023; Wang et al., 2024), this setting is inherited from DPO (Rafailov et al., 2023). If $D_{\text{Opt}} \neq D_{\text{Reg}}$, the resulting policy π_{θ} is the optimal fit for the target π^* according to the metric D_{Opt} , but not D_{Reg} that defined the original regularization problem. **This means π_{θ} and the Q -function $Q(s, a)$ (last step of Eq. (10)) will be inconsistent with the true regularization objective**, and the fixed point achieved by the mismatched iteration will be biased away from the true solution π^* , degrading performance and theoretical guarantees. Consider an extreme case where $D_{\text{Opt}} = L_2$, that prioritizes matching the mean but can completely ignore the shape that is defined by D_{Reg} . Mathematically, we can decompose the policy error into two terms:

$$\epsilon_{\text{Total}} = \epsilon_{\text{Rep}} + \epsilon_{\text{Mismatch}}, \quad (11)$$

where ϵ_{Rep} is the unavoidable representation error resulting from representing π^* that is not in the class $\{\pi_{\theta}\}$. $\epsilon_{\text{Mismatch}}$ is an avoidable error incurred from the optimality mismatch $D_{\text{Reg}} \neq D_{\text{Opt}}$. In this case, we notice that this optimization mismatch error can be described by the solution $\pi_{\theta}^{\text{Opt}} = \arg \min_{\theta} D_{\text{Opt}}(\pi^* || \pi_{\theta})$:

$$\epsilon_{\text{Mismatch}} = D_{\text{KL}}\left(\pi^* || \pi_{\theta}^{\text{Opt}}\right) - \min_{\theta} D_{\text{KL}}(\pi^* || \pi_{\theta}), \quad (12)$$

Therefore, the first term describes how much the solution $\pi_{\theta}^{\text{Opt}}$ deviates from the true optimum given by the KL D_{Reg} , and the second term is the true optimization objective in this setting.

We can generalize the analysis to arbitrary $D_{\text{Reg}} \neq D_{\text{Opt}}$ and characterize $\epsilon_{\text{Mismatch}}$ by:

$$\epsilon_{\text{Mismatch}} = D_{\text{Reg}}(\pi^* || \arg \min D_{\text{Opt}}(\pi^* || \pi_{\theta})) - \min_{\theta} D_{\text{Reg}}(\pi^* || \pi_{\theta}), \quad (13)$$

where the first term depicts the far the best fit deviates from the solution to a different divergence $D_{\text{Opt}} \neq D_{\text{Reg}}$. Again this error is avoidable in Eq. (11). It is context-dependent that whether ϵ_{Rep} would outweigh $\epsilon_{\text{Mismatch}}$, but we can conclude that ϵ_{Total} is strictly smaller if we set $D_{\text{Reg}} = D_{\text{Opt}}$.