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ABSTRACT

Behavior Regularized Policy Optimization (BRPO) leverages asymmetric (diver-
gence) regularization to mitigate the distribution shift in offline Reinforcement
Learning. This paper is the first to study the open question of symmetric regu-
larization. We show that symmetric regularization does not permit an analytic
optimal policy 7*, posing a challenge to practical utility of symmetric BRPO. We
approximate 7* by the Taylor series of Pearson-Vajda x™ divergences and show
that an analytic policy expression exists only when the series is capped at n = 5. To
compute the solution in a numerically stable manner, we propose to Taylor expand
the conditional symmetry term of the symmetric divergence loss, leading to a
novel algorithm: Symmetric f-Actor Critic (Sf-AC). S f-AC achieves consistently
strong results across various D4RL MuJoCo tasks. Additionally, S f-AC avoids
per-environment failures observed in IQL, SQL, XQL and AWAC, opening up
possibilities for more diverse and effective regularization choices for offline RL.

1 INTRODUCTION

Behavior regularized policy optimization (BRPO) is a simple, yet effective method that has attracted
significant research interest for offline reinforcement learning (RL). By regularizing towards the
behavior policy via a divergence penalty, BRPO effectively suppresses distributional shift incurred by
out-of-distribution actions that may have spuriously high values. While many works have studied
the sensitivity of BRPO to the behavior policy (Kostrikov et al., 2022; Ma et al., 2024), this paper
investigates an orthogonal direction by focusing on the role played by distinct divergence regularizers.

Many BRPO algorithms share the following two steps:

7% = arg max EZ:E [Q(s,a) — TDgeg(7(+|s) || 7p(:]5))] s 1
o = argmin Eowp [Don(r (1) | mo(15)]. @

where D denotes the dataset, 7* the optimal policy, 7p the behavior policy, and 7y a parametrized
policy that is being optimized. Here, Eq. (1) defines the theoretical maximizer of the regularized
objective. However, this maximizer is not practical since computing 7* is generally intractable. To
deal with this issue, Eq. (2) defines an approximation that can be used in practice. Dgeg and Doy are
most commonly defined using a KL divergence and their properties as such are well studied in the
literature (Wu et al., 2020; Jaques et al., 2020; Chan et al., 2022). Some other well-studied candidates
include the a- and Tsallis divergences (Xu et al., 2023; Zhu et al., 2023). All of these divergences
belong to the asymmetric class, e.g. Dgeg(7||1t) # Dreg(p]|7) for non-identical policies 7, fu.

There are two primary motivations for our work. First, using a symmetric divergence for Dgeg has
not been previously studied, nor is it known what is the corresponding symmetry-regularized optimal
policy. Recent investigations have shown the benefits of defining Doy, using symmetric divergences:
improved performance is observed in alignment of LLM than the standard KL (Wen et al., 2023; Go
et al., 2023; Wang et al., 2024).

Second, we want to derive algorithms that have Dreg = Dop, because we can get suboptimal
solutions when there is an inconsistency between the two choices of regularizers. The inconsistency
arises because the regularizer Dg., defines a unique regularized optimal policy. If the parametric
policy 7y is not optimized with the same divergence, it will be biased towards the optimum of
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Doy rather than Dy, incurring extra policy error and altering policy improvement dynamics, see
Appendix B.3 for detailed discussion. Therefore, a key motivation of this paper lies in improving
existing work (Go et al., 2023; Wang et al., 2024) that have KL as its Dge, but symmetric divergence
as its optimization objective Dop. We achieve this by analyzing how symmetric divergences can be
utilized in a principled manner in both Dges and Doy, bringing maximal consistency.

Given these motivations, we aim to address the following key question in this paper:

Does symmetric regularization permit an analytic optimal policy 7* ?

In other words, we want to know whether the policy 7* can be expressed using elementary functions.
It is possible that some Dgeg induce optimal policies 7* that are non-analytic in nature. However,
it is vital that 7* possess an analytic expression in order for the optimization Eq.(2) to be usable in
practice. In this paper we are interested in the case where Dge, and Doy use the same symmetric
divergences for maximal consistency.

Unfortunately, the answer to this question is no. Al- Number of MujoCo Tasks
Where Algorithm Is In Top-3

though we can formulate symmetric regularization
using the f-divergence framework, it does not permit

an analytic solution in general. To address this chal- Ycﬂ’
lenge, we take advantage of the fact that the Taylor & o
expansion of any f-divergence is an infinite series in é{\&\\

the Pearson-Vajda x"-divergences (Nielsen & Nock, c},v(’\ Ny
2013). We prove that analytic 7* can be obtained

when this series is truncated to finite. We call the pro- &
posed algorithm: Symmetric f-Actor-Critic (S f-AC). ¢

Table 1 lists all the symmetric divergences that are &
considered in this paper. To the best of our knowl-

edge, our work is the first to study symmetric BRPO 0 > 7 . 5
and to derive a corresponding practical algorithm. Occurrences Within Top-3

Max = 9 Tasks

We verify that S f-AC performs competitively on

a distribution approximation task and the standard Figure 1: Number of times each algorithm
D4RL MuJoCo offline benchmark, opening up new is amongst the top-3 performers on 9 D4RL
research possibilities for BRPO. Figure 1 summarizes MuJoCo tasks. Our method (S f-AC) remains
the benefit of using S f-AC on DARL MuJoCo. The relatively more stable across tasks compared
bars count the number of times an algorithm’s per- to the baselines.

formance is amongst the top-3 based on AUC on 9

D4RL MuJoCo tasks (3 environments with 3 difficulties). We observe that S f-AC Jensen-Shannon
and Jeffreys are less prone to per-environment failures that are encountered by other algorithms.
Additionally, S f-AC Jensen-Shannon is the only algorithm which consistently ranked within top-3
across all the tested tasks. See Figure 3 for in-depth results.

2  PRELIMINARY

2.1 OFFLINE REINFORCEMENT LEARNING

We focus on discounted Markov Decision Processes (MDPs) expressed by the tuple (S, A, P,r,7),
where S and A denote state space and action space, respectively. P denotes the transition probability,
r defines the reward function, and v € (0, 1) is the discount factor. A policy 7 is a mapping
from the state space to distributions over actions. We define the action value and state value as
Q™ (s,a) = Ex [Y ;2o v'r(se,ar)|so = s,a0 = al, V™(s) = E. [Q™ (s, a)]. In this paper we focus
on the offline RL context where the agent learns from a static dataset D = {s;, a;, 7, s} storing
transitions. We denote 7p by the behavior policy that generated the dataset D.

Behavior regularized policy optimization (BRPO) is a simple yet effective method for offline RL. It
solves the following objective:

max Es~p [Q(s, @) = TDreg(n(-[3)[[7n(-[5))], ©)
Brute-force solving Eq. (3) is intractable for high-dimensional continuous action spaces as it entails
solving the integral over actions. Therefore, Eq.(3) is translated into Egs.(1), (2) in the introduction.
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The functional form of 77* can be determined by the convexity of Dgee (Hiriart-Urruty & Lemaréchal,
2004), but it is generally intractable to sample from it due to the normalization constant. Instead, an
easy-to-sample surrogate policy 7y is computed from 7* by minimizing Dgc,. The surrogate can be
considered as an approximate maximizer to the original objective.

2.2 f-DIVERGENCES AND ASYMMETRIC BRPO

A f-divergence that measures the difference between two continuous policies 7, 1 is defined as
follows (Ali & Silvey, 1966; Sason & Verdu, 2016).

Definition 1. The f-divergence from policy p to 7 is defined by:

Dy(aCls) o)) = [ atalo)s (Do) da =, | r(Z2)|.

where f is a convex, lower semi-continuous function satisfying f(1) = 0 and we have assumed that
7 is absolutely continuous with respect to .

Framing BRPO using f-divergence helps us choose Dg., by verifying if its f satisfies the
conditions. For instance, KL BRPO corresponds to f(t) = tInt and it leads to 7*(a|s)
mp(als)exp (771 (Q(s,a) — V(s))). Though this policy is intractable to directly compute due
to its normalization constant, it is known that by opting for the same KL as Dqy, in Eq. (2) yields

(M) lnﬂg(a|s)} . @

g = argmin E(, 4)p [ exp
0
This method called advantage regression has been extensively applied in the offline context (Peng
et al., 2020; Jaques et al., 2020; Garg et al., 2023). Similarly, we can validate symmetric BRPO
provided that their f functions satisfy the conditions and have an analytic solution 7*. In next section
we define symmetric divergences.

2.3 ISSUE WITH ASYMMETRIC Dggg, SYMMETRIC Dgpr

Existing methods (Go et al., 2023; Wang et al., 2024) have opted for symmetric divergences as Dop.
We argue this is suboptimal by revisiting the following analysis. First, the policy improvement step is
performed:

s)llmo(-ls))

Here, Dy, directly shapes the optimality condition and the shape of the target distribution itself.
Therefore, introducing symmetry into Dg., changes how the policy improves, changing the weightings
of different actions within the support of the behavior dataset. However, existing methods still adopt
asymmetric Dge, due to the intractability. Rather, they have opted for a symmetric loss Doy, which
corresponds to the projection step: 7y = arg ming Doy (7 (+|s)||mp(+]$)).

7" = argmax E,[Q(s,a)] — TDgeg(7(-

If Dope 7 Dreg, the resulting policy 7 is the optimal fit for the target 7* according to the metric Doy,
but not Dy, that defined the original regularization problem. This means 7 and the ()-function
Q (s, a) will be inconsistent with the true regularization objective, and the fixed point achieved by
the mismatched iteration will be biased away from the true solution 7*, degrading performance and
theoretical guarantees, see Appendix B.3 for detail.

3 ISSUES WITH SYMMETRIC BRPO

This section investigates the issues with symmetric BRPO. We formally define symmetric divergences
of interest in this paper (Definition 2, 3). We then show that BRPO with the given symmetric
divergences does not permit any analytic policy solution (Theorem 1). Finally, symmetric divergences
as optimization objective can incur numerical issues (Theorem 2).

Definition 2 (Pardo (2006)). Assume that the f function satisfies the conditions in Definition 1, then
f(t)+tf (3) defines a symmetric divergence.
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Divergence Dy (ml||w) f(t)
Forward KL Jm(z)ln WE;; dz tint
Asymmetric "
Reverse KL J (@) In Zgi dx —Int
Jeffrey (r(x) — p(z)) In (Z2) dz t—1)Int
. p(z)
Symmetric Jensen-Shannon [ w(z)In W(j;'ff‘)m + p(z) In "(j;‘iz)(m) dz tnt — (1+¢)ln1ft

GAN divergence [ (z)In 28— + p(2) In 248~ do —In(4)  tInt— (14+t)In(1+1)

Table 1: Asymmetric and symmetric f-divergences, their definitions and the generator functions.
Jeffrey’s divergence equals forward KL adds reverse KL. GAN divergence refers to the modified
Jensen-Shannon divergence used by Generative Adversarial Nets (Goodfellow et al., 2014).

Pardo’s definition identifies exactly one symmetric divergence given f, i.e. once f is specified the
symmetric divergence is also determined. However, in the machine learning context, researchers are
more interested in the following more flexible definition (Nowozin et al., 2016).

Definition 3 (Sason & Verdi (2016)). We consider symmetric divergences defined by f(¢) =
tlnt + g(t) where g is an arbitrary convex function called conditional symmetry function.

Sason & Verdu’s definition is broad enough to cover all the symmetric divergences of interest in the
machine learning community (Sason & Verdu, 2016; Nowozin et al., 2016). These divergences are
listed in Table 1. In this paper, we follow Sason & Verdi’s definition and answer the key question
posted in Introduction: symmetric regularization does not permit an analytic optimal solution 7,
unlike the popular asymmetric counterpart.

Theorem 1. Let the symmetric f-divergence be defined by Definition 3. Then if ¢'(t) does not make
f'(t) an affine function inInt, i.e. f'(t) # alnt+ b, the regularized optimal policy ™ does not have
an analytic expression.

Proof. See Appendix A.1 for a proof. O

It is worth noting that this affine function should be strictly in In ¢, excluding terms like In(¢ + 1). As
an immediate consequence, the symmetric divergences in Table 1 do not have an analytic 7*.

Corollary 1. The Jeffrey’s, Jensen-Shannon and GAN divergence do not permit an analytic 7*.

Corollary 1 can be verified by checking that the Jeffrey’s divergence has ¢'(t) = —%, the Jensen-
Shannon ¢/(t) = — In 4 — 1, and the GAN ¢/(t) = —In(t + 1) — 1.

Characterizing the solution of f-divergence regularization has been discussed extensively in both
BRPO and the distribution correction estimation (DICE) literature (Nachum et al., 2019; Nachum
& Dai, 2020; Lee et al., 2021). In Appendix A.4 we show their characterizations lead to the same
conclusion. These methods focused exclusively on asymmetric candidates such as the x? or KL
divergence. We are not aware of any published result that discussed symmetric regularization.

We next examine symmetric divergences as optimization objective Eq.(2). It turns out they can also
be numerically problematic, especially for finite support policies (i.e. Ja, w(als) = 0) that can be
induced by popular asymmetric divergences like the Tsallis or a-divergences (Li et al., 2023; Xu
etal.,, 2023; Zhu et al., 2025a) that attract increasing interest in recent offline RL studies.

Theorem 2. Minimizing symmetric divergence losses in Eq. (2) can incur numerical issues when
either ™ or wy has finite support.

Proof. This result is a natural consequence of symmetry. Consider the Jeffrey’s divergence (Table 1)
for instance, a finite support policy must incur division by zero.

It is worth noting that even for full-support policies, the issue can persist when 7* > 7y and vice
versa. While some candidates like the Jensen-Shannon may not necessarily incur the same issue,
existing research has reported instability (Go et al., 2023). It is therefore important to find new tools
to circumvent vanilla symmetric divergences.
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4 SYMMETRIC BRPO VvIiIA TAYLOR EXPANSION

Our proposed method centers on the Taylor’s series so that it permits both an analytic policy and
stable optimization.

4.1 SYMMETRIC REGULARIZATION VIA THE X" SERIES

To address the issues of symmetric divergences, we recall the following classic result establishing
equivalence between a f-divergence and its Taylor series.

Lemma 3 ((Nielsen & Nock, 2013)). On top of Definition 1, further let f be n-times differentiable.
Then a valid f-divergence permits the following Taylor expansion

= fm 7(als "
Dy sl (19) = [ mofals) 3 (T 1) e

n! mp(als

n=0

where f) denotes the n-th order derivative of f. Recognize that [ wp(a|s)( mals) _ 1yndq =

7p(als)

X" (w(:|s)||mp(-|s)) is the Pearson-Vajda x™ divergence.

It is perhaps surprising that though x™ divergence is asymmetric, Lemma 3 establishes an equivalence
between any symmetric f-divergence and the infinite series in x". The equivalence allows us to
formulate symmetric BRPO as:

N r(n)
Q(s,a) —TZfT(l)X” (w(~|s)||7rv(-s)>1, ®)
n=0 ’

When N = oo, we recover Eq. (1) with arbitrary valid f-divergence. However, we again face the
same issue of no analytic solution under symmetry. To this end, we truncate the series to N < oo
to retreat from exact symmetry. The following result, building on the famous Abel-Ruffini theorem
(Ramond, 2022) shows that an analytic solution is available only when N < 5.
Theorem 3. Let the series in Eq.(5) be truncated to N, i.e. n =0,1,..., N with2 < N < 5. Then
the regularized optimal policy ™ can be expressed analytically as

m*(als) oc mp(als) [L + Zn(s,a)], ,

where Zn (s, a) contains N-radicals of Q(s,a) and [-]+ := max{-,0}. Moreover, when N = 2:

max Esop
T

a~T

5,a
T (ol mlals) |14 20| ©
T 1y
where we absorbed additional constants to 7. N > 2 because f° (1) = 0 and x* = 0.
Proof. See Appendix A.2 for a proof. O

Notice that N = 2 gives Dy(w||p) = f/lz(l)XQ (7||p), with f(1) > 0 by the strong convexity of f.
When f(t) = tInt, it recovers the classic result that x? (||u) ~ 2Dgy (7 || 11). Generally, the series
Eq.(8) allows one to balance between symmetric regularization and the truncation threshold [Zy] .
But as shown by Zhu et al. (2023), the threshold can also be fully controlled by 7. Therefore, we can
safely choose N = 2 which induces Eq.(6).

4.2 SYMMETRIC OPTIMIZATION BY EXPANDING CONDITIONAL SYMMETRY

The numerical instability of vanilla symmetric divergence could again be addressed by the Taylor
expansion. However, a full Taylor expansion involves purely powers of policy ratio which can be
numerically unstable for minimization. Instead, we draw a key observation from Definition 3 that the
symmetric divergences can be decoupled into two interdependent terms ¢ In ¢ and g(t). Therefore, we
can decompose the optimization step as the following:

£(0) = B [Dope (7" (1) |70 (-15))]
— E.op [Dxw (1" (1s) | m0(|)] + Eaor U ro(als) 9<7T MS)) d“} ' @

mo(als)

tint

conditional symmetry
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Dot f(t) g(t) g™ (1), (n>2) Series coefficient
Jeffrey (t—1)Int —Int (=1)"(n —1)! S, (-1
Jensen-Shannon tlnt— (1+t)ln it —(1+¢)In L (=1)"(n —2)! 52 S, #
GAN Divergence tint — (1+1t)In(1+1) (4l +t) () (- 2)l5 Yy T

Table 2: Symmetric divergences, their f generators, conditional symmetry g, derivatives and Taylor
expansion series coefficients. JS and GAN share the same derivatives and series coefficients.

The first term ¢ In ¢ corresponds to the advantage regression in Eq.(4). The second term that may vary
case by case is called the conditional symmetry term. Note that 7* can be zero for some actions. To
ensure the second term is valid, it is required that for actions sampled from 7y the function g cannot
involve terms that flip the ratio e.g. — In ¢ that destroys the validity.

To this end, we Taylor-expand the conditional symmetry term g(¢) to obtain our final loss objective:

+E,op [NZ ) <ﬂ*(a|s> 1) n] .

avmy | =l mo(als)
®)

Table 2 summarizes the series coefficients. Compared to full expansion, expanding only the condi-
tional symmetry part has an additional benefit: for large n with high order policy ratio, its coefficient
decays quickly towards zero and lowers the importance of higher order terms.

Q(s,a)—V (s

L(0)=E(s q)np . ()} In 7y (als)
+

i

Our method has an interesting connection to a very recent method (Huang et al., 2025) that proposed
the KL + x? regularization to improve RLHF alignment. Despite different settings, Eq.(8) can be
seen as a generalization of their method since we recover their method by truncating the series at

Nioss = 2, with the coefficient ! nél) playing the role of tuning relative importance.

5 SYMMETRIC f-ACTOR-CRITIC

The Taylor series was expanded at around ¢t = 1, suggesting that the policy ratio should stay in
the neighborhood of 1 for the series to converge. To this end, we clip the ratio to the interval
[l —¢,1+¢€], € > 0. As such, Taylor expansion provides an interesting interpretation to the proximal
policy optimization (PPO) style clipping (Schulman et al., 2017). In fact, we can connect the
convergence requirements to empirical clipping which plays a key role in many PPO-type methods
(Vaswani et al., 2022; Zhuang et al., 2023), see the related work section for detail. Moreover, we can
show that the distance from the clipped truncated series to its exact counterpart is upper-bounded:

Theorem 4. Assume the ratio ©* /my is clipped to the interval [1 — €,1 + €|, on which g™ is
absolutely continuous. Assume further the states are randomly sampled from the dataset. Let L™

denote the infinite series of g(t) and Eév (0) the N-term truncated series with clipping, then

2=0) - 22(0)] < 2= g
where Hg(NJrl) ”oo = Supte[lfe,lJre] ’g(N+1)(t)’
Proof. See Appendix A.3 for a proof. O

Theorem 4 shows that the actual loss objective is not far from the exact infinite Taylor series, and hence
Doy is not far from a symmetric divergence. Consider the Jeffrey’s divergence where ¢(¢) = —Int
and € = 0.2, N = 5, then the upper bound yields 8.13 x 1075,

To obtain a practical implementation, for simplicity we assume at every policy update the action
value ()., parametrized by 1) and state value V4 parametrized by ¢ are available. They are trained by
the standard critic learning procedures which will be detailed in the appendix.
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We also need to be able to evaluate 7*(a|s) for actions sampled from my. To do this, we can

either approximately evaluate 7p(als) |1 + M} without the normalization constant

+
but require estimating 7p, or we parametrize 7* by another network ( that is trained by advantage
regression. We find the latter approach more performing and stable in general. Alg. 1 lists our
algorithm Symmetric f-divergence Actor-Critic (S f-AC), where [ := clip(-,1 —€,1+€).

6 EXPERIMENTS

In the experiments we aim to show that (i) the _ —
conditional symmetry expansion is a valid loss Algorithm 1: Symmetric f-Actor-Critic
function; (ii) Sf-AC can perform well on the Input: D, 7 > 0, Njos > 2, > 0

standard offline benchmark. Section 6.1 verifies while learning do

(1) and section 6.2 and 6.3 for (ii). sample (s, a) from dataset D ;

compute Qy (s, a) and Vy(s);

compute advantage regression L1, :=

_IES’GHI + 7@’(8’2_‘/“’(8)} In 7r9(a|s)];
+

6.1 DISTRIBUTION MATCHING

Every loss divergence in the ideal case should

lead to the same optimal solution. As a sanity sample b from 7y ;

check, we first verify that our Taylor expansion compute truncated series L, :=

loss Eq.(8) is valid, in that minimizing it pro- B {ZN.W (1) ({ﬂ—C(b\s)} _1)71} ‘
duces similar results to the existing divergence 8:b| Zun=2""nl mo(bls) | ’
losses. We follow the setting in (Nowozin et al., update 6 by minimizing L;15+ + Lg;
2016) to learn a Gaussian mg with parameters update ¢ by minimizing L; 1, ¢;

6 = (u, o) to approximate a univariate mixture end
of Gaussians. The mixture Gaussian is shown in
Figure 2.

Setup. Learning is performed by minimizing the expanded objective Eq.(8) with Nj,ss = 5. The
target policy is the mixture and 6 a two-layer neural network of 64 hidden dimensions. We minimize
the objective by SGD with learning rate 0.001, batch size 128 for 1000 update steps. The optimal
Gaussian parameters u, o are obtained by numerical integration. We compare them to the parameters
obtained by minimizing our objectives and the vanilla divergences.

Approximate Distributions

Jeffreys === Jeffreys N =5
Method  Jeffrey (values) Jeffery (abs. error) | JS (values) IS (abs. error) | — IS -==- JSN=5
Optimal 0.0159 = 0.0368 = [
Dy Vanilla 0.0157 0.0002 0.0682 0.0314
Ours 0.0161 0.0002 0.0387 0.0019 >
Optimal 0 = 0 - g
I Vanilla 0.0067 0.0067 —0.0778 0.0778 o
Ours —0.0166 0.0166 —0.0475 0.0475
Optimal 2.2218 = 2.2868 =
o Vanilla 2.2396 0.018 4.5559 2.2691
Ours 2.4926 0.2707 2.5438 0.2570

Table 3: Loss objectives Dy and corresponding fit pa-

rameters u, 0. Optimal: values given by numerical in-

tegration. Vanilla: minimized the vanilla f-divergence Figure 2: Approximating a mixture of

per definition. Ours: minimized our Taylor expansion Gaussians (black) by minimizing vanilla di-

loss for N, = 5. Our JS loss brings a better fit than vergence (solid) and S f-AC loss for Nie =

minimizing the vanilla f-divergence. 5 (dashed). Vanilla JS loss causes the Gaus-
sian to lose track of optimal o* given by
numerical integration.

Results. Table 3 shows the divergence values and fit Gaussian parameters obtained by numerical
integration (Optimal), Vanilla (vanilla f-divergence loss per definition) and our method (ours). It
is visible that the S f-AC loss is a reasonable objective and induces consistent learned distribution
behaviors (dashed curves) with the numerical solution. Moreover, as can be seen in Figure 2,
minimizing the vanilla Jensen-Shannon (JS) divergence loss induces a much wider distribution (solid
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blue) with 0 = 4.556. The poor approximation coincides with the observation that exact symmetric
divergence losses can lead to unstable policy behaviors (Wang et al., 2024).

6.2 MuloCo

The D4RL MulJoCo suite has been a standard benchmark for testing various offline RL algorithms. In
this section we compare S f-AC Jensen-Shannon and Jeffreys against the baselines on 9 environment-
difficulty combination. We include AWAC that corresponds to explicit KL regularization (Nair
etal., 2021), XQL to implicit KL regularization (Garg et al., 2023), SQL (Xu et al., 2023) to sparse
a-divergence regularization and IQL (Kostrikov et al., 2022). For S f-AC, we use Njpss = 3, € = 100
and perform grid search over 7 and learning rates. For the baselines, we use the published settings,
see Appendix B.1 for detail. All algorithms are run for 10° steps and averaged over 5 seeds.

Sf-AC versus baselines on MuJoCo

—— Sf-AC Jensen-Shannon —— Sf-AC Jeffreys — SQL XQL — IQL — AWAC
Walker2d Walker2d Walker2d
Medium-Expert Medium Medium-Replay
1k
0.5F 0.5

c OEL 0.0kL 0.0
*E Hopper Hopper Hopper
o Medium-Expert Medium Medium-Replay
g 05 051 'J 0.5} W
]
=

0.0&L n 0.0L n = 0.0L n .

HalfCheetah HalfCheetah HalfCheetah
Medium-Expert Medium Medium-Replay
0.5 e Y
0.25¢ 0.25
0.0t L . 0.00F X . 0.00F . )
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
x 108 x 108 x 100
Steps

Figure 3: S f-AC Jensen-Shannon and Jeffreys with Ny,s = 3, € = 100 versus baselines on the D4RL
MuJoCo environments. Solid lines are mean and shaded regions the standard deviation, averaged
over 5 seeds. Only S f-AC methods are shown with full opacity. Both Jensen-Shannon and Jeffrey’s
divergences performed favorably compared to the baselines.

Figure 3 shows the full result. Only S f-AC methods are shown with full opacity. Others are shown
with transparency for uncluttered visualization. Except on Hopper medium and Hopper Medium-
Replay, both symmetric divergences are among the top players on the rest of environments. Recall
that XQL, SQL, IQL are very competent on the MuJoCo tasks, yet it is visible that S f-AC performs
favorably against these methods. Table 4 confirms this observation. Moreover, Figure 8 demonstrates
Sf-AC is insensitive to the number of terms used to compute the symmetry divergence. This is
desirable as S f-AC avoids the burdensome environment-specific parameter tuning to save resources
and gain interpretability.

Table 4: Summary of D4RL results. Jeffrey and Jensen-Shannon are with N = 3.

Environment Dataset Jeffrey Jensen Shannon AWAC IQL SQL XQL
medexp  0.5791 £0.0265  0.6048 & 0.0269 0.0939 + 0.0542  0.4856 + 0.0317  0.5085 + 0.0460  0.4665 + 0.0249
HalfCheetah ~ medium  0.4453 + 0.0030  0.4433 £ 0.0040  0.4545 + 0.0062  0.4517 4 0.0086 ~ 0.4560 £ 0.0019 0.4178 £ 0.0044
medrep  0.3791 4 0.0094  0.3814 4 0.0079  0.3408 £+ 0.0179  0.3862 + 0.0127  0.3873 £ 0.0098  0.3560 + 0.0130
medexp  0.7358 £ 0.0455  0.7853 + 0.0780 0.2816 £ 0.0355 0.5935 + 0.0744  0.5018 £ 0.0932  0.5383 + 0.0510
Hopper medium  0.5590 £ 0.0199  0.5891 £ 0.0284  0.5821 £ 0.0292 0.4732 + 0.0304  0.5758 & 0.0348  0.4306 + 0.0290
medrep  0.5196 & 0.0695  0.5847 4 0.0691  0.6144 4 0.0642  0.5700 £ 0.0671 ~ 0.6285 £ 0.0597 0.4815 + 0.1144
medexp 1.0518 +0.0239  1.0660 £+ 0.0193  0.1972 +0.1129  1.0008 & 0.0374 ~ 1.0858 £ 0.0066 0.6063 £ 0.1257
Walker2d medium  0.7741 4+ 0.0193  0.7832 + 0.0156  0.6054 & 0.0780 0.5702 £ 0.0337  0.7601 £ 0.0284  0.6749 + 0.0240
medrep  0.6588 &+ 0.0422  0.6394 & 0.0499  0.5980 £ 0.0559  0.3498 £ 0.0392  0.6299 + 0.0438  0.3700 + 0.0705
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Figure 5: Ablation studies on HalfCheetah. (A) Scores of Sf-AC across N, When € = 100.
Scattered dots are evaluations from the last 20% of learning. JS remains stable for large Njoss as its
series coefficients decay quickly to zero, see Table 2. By contrast, Jeffreys performance decreases as
Nioss increases. (B) Scores under various clipping thresholds e of JS when NV}, = 3. Dashed vertical
line shows the median performance of ¢ = 0.2. Overall, S f-AC is insensitive towards e.

Figure 4 compares policy evolution of S f-AC Jensen-Shannon (JS) and AWAC. At step 0 the policies
are randomly initialized. Note that AWAC explicitly minimizes forward KL between 7* and 7. The
allowed action range is [—1, 1] but shown larger here for better visualization. It is visible that both
JS and Jeffreys keep policies in the range, while the optimizing forward KL of AWAC increasingly
prompts the policy beyond the allowed minimum action —1 (shaded area). Since actions outside the
range are clipped (in this case —1), the policy will have an unintended shape and cause significant
bias (Lee et al., 2025). Figure 9 in Appendix B.2 runs S f-AC on the more challenging AntMaze,
Franka Kitchen and Adroit Pen and confirms the same conclusion.

6.3 ABLATION STUDIES

From Alg. 1 it is visible that Sf-AC depends on two other hyperparameters: the num-
ber of terms for the conditional symmetry expansion Nj, and the clipping threshold e.
The former controls approximation to the symmetric

Policy Evolution of 7

divergence, and the latter controls the convergence of o HoppertiedumEoen

Taylor series. In this section we examine their effect — --- sj-ac sefieys
AWAC

in detail. Due to the page limit, we include additional
results on generalized policy in Appendix B.2.

Number of Terms NVjoss. We sweep S f-AC Jensen-
Shannon (JS) and Jeffreys over N, = 2 to 7 on
HalfCheetah. Figure 5 (A) shows the last 20% of learn-
ing. Note that N},s = 2 corresponds to x? divergence. 00
It can be seen that the JS remains stable across Njgs,
while the Jeffreys performance decreases along with 4
the increase of Njos. This can be due to the JS series Cop Ty 5 5@9"\
coefficients decay much faster to zero for higher order
X" terms, alleviating the potential numerical issues of =~ Figure 4: Policy evolution of S f-AC versus
powers of policy ratio, see Table 2. By contrast, the AWAC for the first 20% of learning. Mini-
Jeffreys series coefficient decays at the slow rate n='  mizing forward KL of AWAC increasingly
and could be less preferable. prompts the policy beyond the minimum
allowed action —1 (shaded area).

0.5
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Clipping Threshold . We also compare different € to see the practical effect of clipping. Figure
5 (B) shows the result on HalfCheetah with e = {0.2,1,10,100}. The lower limit 1 — € is set to
0 when negative. The dashed vertical line shows the median performance for € = 0.2 which is a
standard value in PPO. In general S f-AC is consistent across e.

Asymmetry vs. Symmetry. Prior works have shown benefits of symmetric divergence when used
in Doy it is therefore interesting to ablate the contribution of symmetric Dge, to clarify when and
why this leads to tangible gains. To this end, we compare the following four cases: (1) Asymmetric
Dreg, asymmetric Dop. Specifically we opt for the standard KL divergence for asymmetry. As such,
the resulting algorithm can be instantiated by AWAC. (2) Symmetric Dgeg, symmetric Doy This
is the proposed method S f-AC, we opt for the Jensen-Shannon. (3) Symmetric Dg,, asymmetric
Doy This corresponds to using a standard KL loss to approximate the policy induced by Eq. 5. (4)
Asymmetric Dge,, symmetric Doy In this case, a symmetric loss divergence is adopted to match the
KL-regularized policy. This idea underlies the existing works in LLM alignment (Go et al., 2023).
As aresult, Figure 6 shows the comparison on HalfCheetah medium-expert dataset. It can be seen
that symmetric Dge, perform similarly and outperforms asymmetric Dge, by a large margin. This
suggests that symmetric Dges may be preferred over asymmetric ones, regardless of Dopy.

7 RELATED WORK

Taylor expansion in RL. There are some papers
studying the Taylor expansion in RL. Specifically,
Tang et al. (2020) proposed to expand the action
value difference as an infinite series in the transi-
tion dynamics and liken that to the Taylor series. ,
Motoki et al. (2024) proposed to modify the ex- .
treme Q-learning objective (Garg et al., 2023) by o
expanding the exponential function into a MacLau- ..
rin series to stabilize learning. In this paper, we
utilize the Taylor expansion of f-divergence to ob-
tain a x"-series and based on it derive analytic 0 02 04 0 0s [
policy 7* and a tractable minimization objective.

Asym Dp,, Asym Doy —— Sym Dpey, Sym Doy
Asym Dpg, Sym Do

Sym Diey, Asym Do

Figure 6: Ablation of symmetric Dge, on
f-divergence in RL. BRPO requires an analytic HalfCheetah medexp. Symmetric Dgey per-
7* to be used as the target policy in a loss diver- forms similarly and outperforms asymmetric
gence. The existing literature has mostly focused Dgeg by a large margin.
on asymmetric divergences such as the KL, x2, a
divergences that permit an analytic policy. In other areas such as the goal-conditioned RL (Ma et al.,
2022; Agarwal et al., 2023) or RLHF (Go et al., 2023; Wang et al., 2024), symmetric f-divergences
have been discussed since they require only minimizing the divergence as a loss objective and no 7*
is required. Their objective can be derived by computing only f’ and gradient of log-likelihood.

Policy ratio clipping. Clipping policy ratio into a range [1 — €, 1 + €] has been widely studied since
the proximal policy optimization (Schulman et al., 2017; Vaswani et al., 2022). In the offline context
the clipping has been shown to also play a key role (Zhuang et al., 2023). Our method shows that
€ can be connected to the convergence requirements of Taylor series. In fact, the clipped x" series
shares similarity to the higher order objectives in (Tang et al., 2020) which assumed bounded total
deviation, providing an alternate interpretation for their method.

8 CONCLUSION

In this paper, we study symmetric divergence regularization for BRPO and show two major issues
limiting the use of symmetric divergences: (1) they do not permit an analytic regularized policy, and
(2) they can incur numerical issues when naively computed. We tackled the two issues by leveraging
the finite Taylor series of symmetric divergences, arriving at S f-AC, the first BRPO algorithm with
symmetric divergences. Through empirical evaluation, we verified that S f-AC achieved consistently
strong results. Additionally, while the other baselines suffer from weak performances in some
environments, S f-AC Jensen-Shannon is the only algorithm which was able to consistently rank
within top-3 across all the tasks.

10
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REPRODUCIBILITY STATEMENT

The code is available as a zip file in the supplementary material. We provide detailed experimental
settings in Appendix B including the network architectures, hyperparameters and the number of
seeds.
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Appendix

A MATHEMATICAL DETAILS AND PROOF

A.1 PROOF OF THEOREM 1

Let us write out the Lagrangian of the objective (Li et al., 2019; Xu et al., 2023):

L(r, a,B) :Zd’”’(s) Z {W(a|5)Q(s,a) -TE, {f <ﬂ(a|8)>”

- - p(als)

— Z d™® (s) [a(s) <Z m(als) — 1> — Z,B(a\s) 7r(a|s)] . 9

a

where d™? is the stationary state distribution of the behavior policy. « and S are Lagrangian
multipliers for the equality and inequality constraints, respectively. The KKT conditions are:

Primal feasibility: Zﬂ'(a\s) =1, w(al]s) >0,

Dual feasibility:  3(als) > 0,

oL
or(als)

Complementarity: 3(als) 7(a|s) =0

Stationarity:

=Q<s,a>—w<a|s>f'<ff“"°’)) L () + Blals) = 0,

Following (Li et al., 2019; Xu et al., 2023), we eliminate d"? since we assume all policies induce an
irreducible Markov chain. For any action with 7(a|s) > 0, we have §(a|s) = 0. Therefore, we can
derive the solution as:

(o) _Quoal) w*(as):[(f’)*(Q(s’“)_O‘(S))L,

\
|s) T T

where «(s) is the normalization constant that ensures 7* sums to 1.

For 7* to be analytic, we need to know how to compute «(s). Since f(¢) begins with a ¢ In¢ term, so
f'(®) =Int+ 1+ ¢'(¢¥). If ¢’ (¢) is not a function such that f'(¢) = alnt + b for some constants a, b,
then a(s) cannot be calculated from the constraint ), 7*(als) = 1.

A.2 PROOF OF THEOREM 3

To prove Theorem 3, we need to show that (i) the policy expression when N = 2 and (ii) when
N > 5 the solution does not have an analytic expression. To show (i), we study regularization with
the sole, general x™. Again let us write out the Lagrangian similar to Eq.(9):

N
Lim . f) =) d™(s) ) [ﬂas)cz(s, a) — 7 (Tlals) = nlals)) ]

N-1
- - p(als)

= d™(s) [a(S) (Z m(als) — 1) — Y Blals) 7r(GIS)] -

a
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where d™P, a and 5 are carry the same meaning as Eq.(9). The KKT conditions are now:

Primal feasibility: Zﬂ'(a\s) =1, w(al]s) >0,

a

Dual feasibility:  3(a|s) > 0,

— p(a)s))N !
87?(55) =Q(s,a)— T N (W(allj()(lb)/j\fl 2 —a(s) + Blals) =0,

Complementarity: 3(als) 7(als) =0

Stationarity:

Following a similar procedure, we can obtain
N-1
N (r(als) — p(als))

p(als) N1
= (n(als) — plal) ¥ ! = pfafs)¥ LD,

1+<Q(‘97‘1)_0‘(5)>N11] |

Nt
+

Q(s,a) —a(s) =1

= " (als) = p(als)

where «(s) is the normalization constant ensuring ), 7*(a|s) = 1. When N = 2, this becomes

Q(s,a) — 04(8)]
+

7 (als) = u(als) [1 4 Qlona)-

by redefining 7/ = 27 we conclude the proof of (i).

Now let us consider the case where we have x? and x> appearing together, all other KKT conditions
remain the same except for the stationarity:

_oL o) o9, TP W) w(als) — p(als)
or(als) = Q)= 2Ty p(als)
(3) m(als) — p(als))\”
_ 37_f 3!(1) (( ( |M)(a5)( | ))) — a(s) — Blals) = 0,
Now let us define
_mlals) —plals) A )
W (als) =T s Ty =27 o 0 T8 =3r 3!
—72 + /73 + 473 (Q(s,a) — a(s))
= Wlals) = 2
—7y T2 + 4, s,a) — «
o als)  pals) |14 =Y i (QGs.a) >L.

Though the reciprocal term becomes more complex, the role it plays still lies in determining the
threshold for truncating actions. We can similarly derive the solution for Zg::; fO(1)x" /n! with
more complex (and tedious) algebra, but their solutions still take the form p(als) [1+ Z(s,a)] .,
where Z contains the radicals over (s, a). As have shown by (Zhu et al., 2023), the truncation effect
can be fully controlled by specifying 7. Therefore, we opt for the simplest case where n = 2.

The series Zﬁfzz f@(1)x™/n! is an N-th order polynomial in the policy ratio. Therefore, for
N > 5, by the famous Abel-Ruffini theorem (Ramond, 2022) we conclude that it is impossible to
have any analytic solution.
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A.3 PROOF OF THEOREM 4

We follow (Barnett et al., 2002, Theorem 1) in proving this result. We start with the following Taylor
representation with the integral remainder:

1

+Z D pie)+ 57 [ 6=V V@) da

Specifically by (2.4) of (Barnett et al., 2002) we have

N n t
t— 1
Ft) - 1) -3 T2 oyl < Lo 5000 () da
n! N!
n=0 iz
1
< — sup FONH (g t —alNda
N! a€[l—e,14¢]
1
- (N+1)H b N+
(N+1) Hf [t =2
(N+1)
gl ] N

where in the last equation we let ¢ = 7* /7y clipped to 1 + € and z = 1. Now we can repeat the same
procedure for t = 1 — €. Since states are sampled from the dataset randomly, we have

2¢ 1 2N+
Ben | 1L sl = e el
D[(N—l—l ! Z|D\ e N+1 /

We conclude the proof of Theorem 4 by changing f to g.

A.4 EXISTING CHARACTERIZATIONS OF 7*.

We review related work on characterizing the solution of f-divergence regularization. They are
mainly two ways for characterization, which we discuss in detail below.

Regularization Characterization DICE Characterization
(R1) 7*(als) > 0 = mp(als) > 0; (D1) d™ (s,a) > 0= d™(s,a) > 0;
(R2) hy(t) := tf(t) is strictly convex; (D2) f(t) is strictly convex;
(R3) f(t) is continuously differentiable. (D3) f(t) is continuously differentiable.
Result: Result:
* =il s,a " s,a =1l s,a
m*(als) x [(h}) (Q(T )> L_' d’“D((s,a)) x [(f/) (Q(T )) ]+.

A.4.1 REGULARIZATION CHARACTERIZATION.

We call the first class Regularization Characterization as they exactly studied Eq. (1) (Li et al,,
2019; Xu et al., 2023). Here, o indicates proportional to up to a constant not depending on actions.
Assumptions (R2) does not hold for symmetric divergences in general.

Jeffrey’s divergence.  Diefirey (7*||mg) = Do (7" || 79) + Dki(7g || 7*) is induced by f(t) =
(t — 1)Int. We see that hy(t) = (t* — t)Int, and therefore A/ (t) = (2t — 1)Int +t — 1;
Pi(t) = 2Int + 3 — +, which can be negative and in turn indicates that A is not strictly convex.
Therefore, Jeffrey’s divergence does not satisfy their Assumption (R2).

Jensen-Shannon Divergence. Recall the Jensen-Shannon divergence is defined by

f() :=tlnt— (t—i—l)lnE
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We examine Assumption (R2) of regularization characterization (Li et al., 2019; Xu et al., 2023):

t+1 t+1
hi(t) :=tf(t) =t*Int — t*In 1 m “; :
t+1 t? t+1 t
=h(t)=2nt+t—2tln(—) - —— —In( — ) - ——
s(t) =2t + n( 2 ) t+1 n( 2 ) t+1

= hf(t) =2In (titl) + H%
suggesting that h¢(¢) is not a convex function and does not meet their Assumption (R2).
GAN Divergence. From Table 1 the GAN divergence is defined by
ft)=tlnt— (t+1)In(t + 1).
Again we focus on its second assumption:

he(t) =t*Int — t*In(t + 1) — tIn(t + 1)

t 1
= h{(t)=2In| — P
r) n<t+1>+t+1

R’ (t) can be negative, therefore Assumption (R2) is not satisfied.

A.4.2 DICE CHARACTERIZATION

DlIstribution Correction Estimation (DICE) methods estimate stationary distribution ratios that correct
the discrepancy between the data distribution and the optimal policy’s stationary distribution (Nachum
et al., 2019; Nachum & Dai, 2020).

In the offline context, the optimal solution is the ratio between the stationary distributions
d™ (s,a)/d™ (s,a) (Lee et al., 2021; Mao et al., 2024). The optimal policy can then be uniquely
identified by 7*(a|s) = d™ (s,a)/> , d™ (s,b) (Puterman, 1994). Assumptions (D1)-(D3) can be
satisfied by the symmetric divergences in Table 1. However, the issue lies in that (f')~! in general
does not have a closed-form expression.

Jeffrey’s divergence. f(t) = (¢t — 1)Int, the inverse function of f’() = Int 4 1 — 1 involves the

Lambert W function which does not have an analytic expression (Nowozin et al., 2016).
Jensen-Shannon Divergence. The generator function of Jensen-Shannon divergence is:

t+1 t+1
— =

f@#):=tlnt —(t+1)In f’(t)zlntflnT,

Q(aa))

exp [ =2
*(als max < 0, /1(Q(saa))}mx 0, #
= 7" (als) & ma { (f) . a B (Q(i,a)>

To make sure the policy is a valid distribution, we need to find the normalization constant. However,
the integral of (f’)~! diverges to infinity, suggesting that no such normalization constant exists.

B IMPLEMENTATION AND ADDITIONAL RESULTS

B.1 IMPLEMENTATION DETAILS

We use the MuJoCo suite from D4RL (Apache-2/CC-BY licence) (Fu et al., 2020) for offline
experiments. The D4RL offline datasets all contain 1 million samples generated by a partially
trained SAC agent. The name reflects the level of the trained agent used to collect the transitions.
The Medium dataset contains samples generated by a medium-level (trained halfway) SAC policy.
Medium-expert mixes the trajectories from the Medium level and that produced by an expert agent.
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Dataset Sf-ACJS Sf-AC Jeffreys AWAC QL XQL SQL

HalfCheetah-Medium-Expert 0.001 0.001 0.0003  0.0003 0.0002 0.0002
HalfCheetah-Medium-Replay 0.001 0.001 0.0003  0.0003 0.0002 0.0002
HalfCheetah-Medium 0.001 0.001 0.0003  0.0003 0.0002 0.0002
Hopper-Medium-Expert 0.001 0.001 0.001 0.001  0.0002 0.0002
Hopper-Medium-Replay 0.001 0.001 0.0003  0.0003 0.0002 0.0002
Hopper-Medium 0.001 0.001 0.0003  0.001  0.0002 0.0002
Walker2d-Medium-Expert 0.001 0.001 0.001  0.0003 0.0002 0.0002
Walker2d-Medium-Replay 0.001 0.001 0.0003 0.0003 0.0002 0.0002
Walker2d-Medium 0.001 0.001 0.001 0.001  0.0002 0.0002

Table 5: The best learning rate across environments. Published settings were used for baselines.

Dataset Sf-ACJS Sf-AC Jeffreys AWAC IQL XQL SQL
HalfCheetah-Medium-Expert 0.01 0.01 1.00 0.33 2.00 5.00
HalfCheetah-Medium-Replay 0.01 0.01 1.00 0.33 2.00 5.00
HalfCheetah-Medium 0.01 0.01 0.50 0.33 2.00 5.00
Hopper-Medium-Expert 0.01 0.01 1.00 0.33 2.00 2.00
Hopper-Medium-Replay 0.01 0.01 0.50 0.33 2.00 2.00
Hopper-Medium 0.01 0.01 0.50 0.33 2.00 5.00
Walker2d-Medium-Expert 0.01 0.01 0.10 0.33 2.00 5.00
Walker2d-Medium-Replay 0.01 0.01 0.10 0.33 2.00 5.00
Walker2d-Medium 0.01 0.01 0.10 0.33 2.00 5.00

Table 6: The best 7 across environments. Published settings were used for baselines.

Medium-replay consists of samples in the replay buffer during training until the policy reaches the
medium level of performance. In summary, the ranking of levels is Medium-expert > Medium >
Medium-replay. The codebase' used in this paper is from public repositories (Xiao et al., 2023; Zhu
et al., 2025a).

Dataset

medexp M, . )

medium - . t

[ Generalized

HalfCheetah

[ Squashed Gaussian

Walker2d

medrep [ R ‘

0.0

\
0.5
Normalized Return

1.0

Figure 7: Generalized parametric policy my versus the standard Squashed Gaussian policy. Dots are
from the last 50% of learning evaluation. Generalized 7y can better capture the characteristics of
finite-support 7* and improves S f-AC performance.

Experiment settings: We conducted the offline experiment using 9 datasets provided in D4RL:
halfcheetah-medium-expert, halfcheetah-medium, halfcheetah-medium-replay, hopper-medium-
expert, hopper-medium, hopper-medium-replay, walker2d-medium-expert, walker2d-medium, and
walker2d-medium-replay. We run 6 agents: S f-AC Jensen-Shannon (JS), S f-AC Jeffreys, AWAC,
IQL, XQL, and SQL, all with the Squashed Gaussian policy parametrization. Each agent was trained
for 1 x 106 steps. The policy was evaluated every 1000 steps. The score was averaged over 5 rollouts
in the real environment; each had 1000 steps.

"https://github.com/hwang-ua/inac_pytorch
https://github.com/lingweizhu/qexp
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Hyperparameter Value

Sweptin {3 x 10731 x 1073,3 x 107%,1 x 1074}
See the best setting in Table 5
Same as the number reported in
the publication of each algorithm.

Learning rate

Temperature Swept in {1.0,0.5,0.01}.
See the setting in Table 6

IQL Expectile 0.7

Discount rate 0.99

Hidden size of Value network 256

Hidden layers of Value network 2

Hidden size of Policy network 256

Hidden layers of Policy network 2

Minibatch size 256

Adam.f; 0.9

Adam. 3 0.99

Number of seeds for sweeping 5

Number of seeds for the best setting 10

Table 7: Default hyperparameters and sweeping choices.
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Figure 8: S f-AC is insensitive to the number of terms used to compute the symmetry divergence.

Parameter sweeping: S f-AC results in the paper were generated by the best parameter setting after
sweeping. For the baselines, their published settings were used. The best learning rates are reported
in Table 5, and the temperatures are listed in Table 6. We list other parameter settings in Table 7.

Computation Overhead: All experiments were run on a NVIDIA DGX Station A100 with 128
CPU cores but no GPUs were used. In terms of computation time, S f-AC Jensen-Shannon took on
average ~ 10 hours for 1 million steps, while the Jeffreys took ~ 6 hours.

B.2 ADDITIONAL RESULTS

By fixing the policy ratio to be 7* (a|s) /7 (als), S f-AC avoids the numerical issue when 7*(als) = 0
due to the g-exponential. Some papers have reported that utilizing a generalized parametric policy
Ty can significantly improve the performance to capture the characteristics of such finite-support 7*
(Zhu et al., 2025b). To this end, we run S f-AC with the same setting ¢ = 100, Nj,ss = 3 but with
generalized parametric policy.

Figure 7 compares the performance of the generalized parametric policy against the standard Squashed
Gaussian. Dots are from the evaluation of the last 50% of learning. It can be seen that a general-
ized parametric policy indeed significantly improves the performance in terms of median across
environment-dataset combinations and greatly reduce variance: low-score red dots do not appear for
the generalized policy.

It is visible from Figure 8 that S f-AC is insensitive to the number of terms used to compute the
symmetry divergence. This is desirable as S f-AC avoids the burdensome environment-specific
parameter tuning to save resources and gain interpretability.

Figure 9 shows the result on more difficult environments Adroit Pen, Franka Kitchen and Antmaze
umaze-diverse. Again the published settings are used for XQL and IQL. It is visible that S f-AC
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Table 8: Averaged wallclock time (minutes) for S f-AC across /N and baselines.

Jeffrey N =2 JSN =2 JSN =3 JSN =6
36491 £295 365.89 +£342 32957 £1.44 333.67x£2.77
JSN =7 XQL IQL SQL

33503 £1.61 326.80+2.01 238.53 £2.18 227.67+1.72

performs competitively against XQL and IQL and is never the worst across tasks. Figure 10 compares
the same algorithms on Adroit Relocate, Hammer, Door ”v0” environments, with dataset levels
“human” and “cloned”. It can be seen that S f-AC is on par with or better than the baselines.

—— SfACJ)S —— IQL —— XQL

Kitchen - Complete Antmaze - Umaze
0.8
6
0.20]
5 0.6
0.15
* 0.4

0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 10 0.0 02 0.4 0.6 0.8 10
1e6 1le6 1e6

Pen - Human

Figure 9: S f-AC compares against IQL and XQL on extra environments Adroit Pen, Franka Kitchen
and Antmaze umaze-diverse. It is visible that S f-AC is never the worst performer across the tasks.

Table 8 lists the wallclock time of S f-AC across the number of terms and against the baselines. It is
visible that increasing the number of terms does not increase the computation time and S f-AC is on
the same magnitude as XQL, which takes slightly more time than IQL and SQL. The computation
of S f-AC does not require storing intermediate results or variables and hence no extra memory is
required. The following code snippet computes the series for S f-AC Jeffrey, and it is clear that only
the resulting sum is needed. All the wallclock time is recorded for 1 million steps using CPU Intel
8457C and GPU Nvidia A6000.

jeffrey_series = torch.sum(torch.hstack ([(-1)**n / n *
self.clamp_ratio((ratio — 1)+*+*n) for n in range(2, self.num _terms)]),
dim=1, keepdim=True)

Listing 1: The conditional symmetry term of Jeffrey divergence.

B.3 WHY Dggg AND Dgpr SHOULD MATCH

The question why Dge, and Doy should match can be answered by noticing Dge, defines the
regularized problem:

m*(als) = argmaxy Eop [Q7(5,0) — Dreg(n(:|3)|mn(-|5))]

mg = argming Esp [Dop (7" (+[s)[ 7o (-[5))] , (10)
Q*(s,a) =7(s,a) +7E ¢ op [Q(5", @) — Dreg(mo(-[s")[[mp([s))],

The core argument for setting Dge; = Doy is fixed-point consistency. The overall algorithm seeks
a fixed point where 7* is consistent with the current (Q-function, and this consistency is defined by
the metric Dgeg. If Dopi # Dreg, the resulting 7y is the optimal policy for a different optimization
problem than the one defined by Dge,. This introduces an optimization mismatch error, causing the
iterative process to converge to a point inconsistent with the true regularized optimal policy 7*.

Motivating Example: Dgeg as KL. Let us assume that Dge, is the KL divergence. The overall goal
is to find a policy 7* that is a fixed point of the iterative optimization process. This fixed point is
defined by the MaxEnt Bellman Equation (Vieillard et al., 2020), which is intrinsically derived using
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Figure 10: Comparison between S f-AC Jensen-Shannon against IQL and XQL on the Adroit relocate,
hammer and door ”v0” environments. S f-AC performs favorably against the baselines.

Dreg. In this case 7™ is well-defined and given by the Boltzmann-type policy:

(ol x mo(als)exp (1Q(s.0))

If Dope = Dreg = Dki(7*||7g), the projection step then ensures that the arg ming Dy (7*||mp) is a
consistent and optimal way to fit the exponential family target 7* to the parameterized policy 7g. This
ensures the iterative updates are consistent, allowing the algorithm to converge to the true optimal
solution 7*.

Symmetric Dgeg and Dop vs. only symmetric Doy We apply the same analysis to the symmetric
regime and compare against the existing works that employ a KL D, but symmetric Doy (Go et al.,
2023; Wang et al., 2024), this setting is inherited from DPO (Rafailov et al., 2023). If Dop 7# Dreg,
the resulting policy 7y is the optimal fit for the target 7* according to the metric Dop, but not Dgeg
that defined the original regularization problem. This means 7y and the Q-function Q(s, a) (last
step of Eq. (10)) will be inconsistent with the true regularization objective, and the fixed point
achieved by the mismatched iteration will be biased away from the true solution 7*, degrading
performance and theoretical guarantees. Consider an extreme case where Doy = Lo, that prioritizes
matching the mean but can completely ignore the shape that is defined by Dge,. Mathematically, we
can decompose the policy error into two terms:

€Total = €Rep + EMismatch, (11)

where egep is the unavoidable representation error resulting from representing 7* that is not in the
class {mg}. eMismatch 1S an avoidable error incurred from the optimality mismatch Dreg # Dopt.

In this case, we notice that this optimization mismatch error can be described by the solution

7P = arg ming Doy (7*||7p):

Opt .
€Mismatch:DKL(7T*H7r9p> —Hlo}HDKL(TF*\|7Ta)7 (12)
Therefore, the first term describes how much the solution w?pt deviates from the true optimum given
by the KL Dgeg, and the second term is the true optimization objective in this setting.
We can generalize the analysis to arbitrary Dge, 7 Dop and characterize eyismatch by:
€Mismatch — DReg (7T* || arg min DOpt(ﬂ'* ‘ |7T9)) - mein DReg (ﬂ'* | |ﬂ-9) 5 (13)

where the first term depicts the far the best fit deviates from the solution to a different divergence
Dopi # Dreg. Again this error is avoidable in Eq. (11). It is context-dependent that whether egep
would outweigh enismaich, but we can conclude that et is strictly smaller if we set Dreg = Dop.
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