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ABSTRACT
Hierarchical reinforcement learning requires identifying relevant
sub-goals to guide low-level decision-making, but this process can
be time-consuming and challenging. Moreover, manually specifying
sub-goals may introduce bias or mislead agents. To address these
issues, we propose a collaborative human-AI algorithm that auto-
matically optimizes candidate sub-goals and refines prior knowl-
edge. Our algorithm can be integrated into various hierarchical
frameworks and effectively prevent negative inferences that may
arise from conflicting sub-goals. Our approach is robust in the
face of different levels of human knowledge and able to accelerate
convergence to optimal sub-goals and hierarchical policies.
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1 INTRODUCTION
Hierarchical reinforcement learning (HRL) is a promising approach
for solving complex problems involving long-duration tasks with
delayed and sparse rewards. By modeling problems at different
levels of abstraction, HRL can improve learning efficiency and
reduce computational burden. It can also facilitate transfer learning
by enabling the reuse of high-level policies. One common approach
to designing hierarchical structures is to divide the overall target
into multiple sub-tasks by setting corresponding sub-goals. Many
popular efforts focus on the two-level hierarchical structure [1,
3, 8, 9]: the high level optimizes the policy to select a sub-goal
representing a short-term task; the low level learns the policies to
achieve the targeted sub-goals. However, defining appropriate sub-
goals often requires extensive domain knowledge. Moreover, the
sub-goal space introduces bias and in severe cases, some confusing
sub-goals may lead to sub-optimal policies.

To automatically detect and correct misleading human knowl-
edge or confusing sub-goals in different solution contexts, we pro-
pose a Human-AI collaborative sub-Goal Optimization (HAI-GO)
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algorithm. Unlike the approaches that rely entirely on automatic dis-
covery [4–7, 10, 12], our algorithm leverages human-AI cooperation,
where humans encode general and domain-specific knowledge in
defining the sub-goals, while machines optimize sub-goal selection
in deriving optimal policies. Given a candidate sub-goal space, HAI-
GO maintains a critic function to evaluate the utility of selecting
each sub-goal. The algorithm can be flexibly embedded into a wide
range of HRL frameworks without modifying their original struc-
tures, enabling the agent to determine an optimal sub-goal space
and converge to the corresponding optimal hierarchical policies.

We evaluate our HAI-GO algorithm in complex maze environ-
ments and finds that it effectively identifies optimal sub-goals based
on relevant performance measures. Our results also show that HAI-
GO is robust in detecting and filtering out potentially confusing
sub-goals across different degrees of human knowledge integration.
Our algorithm outperforms state-of-the-art HRL baselines even
when pre-defined knowledge includes misleading sub-goals.

2 METHODOLOGY
We consider an environment E that our intelligent agent interacts
with. Suppose 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑁 } is a candidate sub-goal space
defined based on prior knowledge. We assume that these sub-goals
are responsibly defined and cover a subset of positive decomposition
of the overall task. We define a critic function represented as a set of
independent Bernoulli distributions for each candidate sub-goal as
q = {𝑞1 (𝑤1; 𝜆1), 𝑞2 (𝑤2; 𝜆2), ..., 𝑞𝑁 (𝑤𝑁 ; 𝜆𝑁 )}. For each 𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖 ),
the random variable𝑤𝑖 ∈ {0, 1} indicates to select sub-goal 𝑔𝑖 by
𝑤𝑖 = 1 or not to select it by 𝑤𝑖 = 0. We initialize an HRL agent
with the high-level module and low-level module. Our HAI-GO
algorithm simultaneously learns both the critic function and the
hierarchical policies. The optimal sub-goal space 𝐺∗ can be finally
obtained based on the learned critic function after training.

2.1 Hierarchical Structure with Sub-Goal Policy
HAI-GO is designed as an additional component in HRL agents
that learns a high-level policy to select one sub-goal as a short-term
target. One simple prototype consists of two levels: at each time step,
the high level selects a sub-goal based on its policy 𝜋ℎ representing
a short-term task that the agent is expected to complete in next
stage; the low level selects an elementary action based on its policy
𝜋𝑙 in the following 𝑁 steps, where 𝑁 > 1 is a hyper-parameter
representing the expected steps for the low level to complete a
particular sub-goal. The high level revises a new sub-goal after 𝑁
steps or after the low level completes the current one.

The high level interaction model is defined by a Markov Deci-
sion Process (MDP) ⟨𝑆,𝐺,𝑇ℎ, 𝑅ℎ, 𝛾ℎ⟩. The main target is to learn



the policy 𝜋ℎ
∗
: 𝑆 → 𝐺 to maximize the discounted high-level

return 𝑅ℎ𝑡 =
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ℎ𝜏−𝑡 𝑟ℎ𝑡 . We implement Q-learning-based algo-
rithms to approximate the 𝑄ℎ (𝑠, 𝑔;𝜃 ) by minimizing the temporal
difference error (TD-error), i.e., the distance between temporal dif-
ference target (TD-target) 𝑦𝑡 = 𝑟ℎ𝑡 + 𝛾ℎ max𝑔′ 𝑄ℎ (𝑠𝑡+𝑁 , 𝑔′;𝜃 ) and
the predicted Q-value 𝑄ℎ (𝑠𝑡 , 𝑔𝑡 ;𝜃 ). The low level learns a policy to
select the elementary action given a state 𝑠𝑡 as well as the sub-goal
𝑔𝑖 instructed by the high level, 𝑎𝑡 = 𝜋𝑙 (𝑠𝑡 |𝑔𝑖 ), which can be trained
by any applicable flat RL algorithms. We will show how HAI-GO
can be embedded into this general framework.

2.2 HRL with Sub-Goal Optimization
Our proposed HAI-GO algorithm integrates human expertise with
automatic calculation, enabling the agent to start from a human-
specified sub-goal space and gradually refine the candidate knowl-
edge. The agent learns the critic function q = {𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖 )} to gener-
ate filtered sub-goal spaces 𝐺 during training. 𝐺 only contains the
sub-goals whose entry𝑤𝑖 = 1 dominates the entry𝑤𝑖 = 0, where
the high level will select one sub-goal from. We define 𝑄
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as the Q-function conditional on the filtered sub-goal space𝐺 . Sim-
ilarly, we denote the conditional TD-target and the loss function as
𝑦
�̂�
and 𝐿

�̂�
respectively. Based on the conditional assumption, we

have:
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The main objective of HAI-GO to optimize the critic function is
to update 𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖 ) to be one best approximation to the real pos-
terior 𝑝𝑖 (𝑤𝑖 |𝑦�̂� ). The posterior gives the distribution of indicator
𝑤𝑖 conditional on the corresponding TD-target. We adopt a vari-
ational inference approach [2, 13] to optimize the parameters 𝜆𝑖 .
We minimize the KL-divergence of 𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖 ) and 𝑝𝑖 (𝑤𝑖 |𝑦�̂� ) for
𝑖 = 1, 2, ..., 𝑁 , which is

𝐷𝐾𝐿
(
𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖 ) | |𝑝𝑖 (𝑤𝑖 )

)
− E𝑤𝑖∼𝑞𝑖 (𝑤𝑖 ;𝜆𝑖 ) [log𝑝 (𝑦�̂� |𝑤𝑖 )],

where 𝑝𝑖 (𝑤𝑖 ) ∼ Bernoulli(𝛿𝑖 ) is a prior, and 𝛿𝑖 is a hyper-parameter.
Eq. (1) indicates that 𝑦

�̂�
= 𝑄
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(𝑠, 𝑔;𝜃 ) + 𝜖

�̂�
, where 𝜖
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∼ N(0, 𝜎2).

Hence, we have log𝑝 (𝑦
�̂�
|𝑤𝑖 ) = −𝐿

�̂�
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . Thus, the loss

function for each candidate is:

𝐿(𝜆𝑖 ) = E𝑤𝑖∼𝑞𝑖 (𝑤𝑖 ;𝜆𝑖 ) [𝐿�̂� ] + 𝐷𝐾𝐿
(
𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖 ) | |𝑝𝑖 (𝑤𝑖 )

)
.

As we assume that all Bernoulli distributions are independent, we
minimize the total loss: 𝐿(𝜆) = ∑𝑁

𝑖=1 𝐿(𝜆𝑖 ). To timely influence the
agent training, we adopt an 𝜖-greedy strategy to control our HAI-
GO component to gradually affect the high-level policy learning
by providing the filtered𝐺 . With an increasing probability of 𝜖 , the
high level selects one sub-goal only from𝐺𝑡 , with the probability of
1− 𝜖 , from the initial candidate space. The HAI-GO embedded HRL
will converge to both the optimal critic function and the optimal
policies. After learning, we derive the optimal sub-goal space 𝐺∗
based on the learned distributions.

3 EXPERIMENTS
3.1 Sub-Goal Discovery
In this section, we show the sub-goal discovery of our HAI-GO
compared with two baselines: the L-Cut [11], a graph-theory-based
approach and the HADS [4], a pre-trained process before HRL

Figure 1: Comparison of the discovered sub-goals.
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(a) general configuration.
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(b) confusing configuration.

Figure 2: Comparison of human knowledge refinement.

learning. We compute the normalized difference between the two
entries 𝜙𝑔𝑖 = 𝑞(𝑤𝑖 = 1; 𝜆𝑖 ) − 𝑞(𝑤𝑖 = 0; 𝜆𝑖 ) to indicate the intensity
of selecting each candidate. The optimized distribution is shown
in Figure 1. In addition to indicating the two paths as the most
important sub-goals, our results present an interesting feature, that
is, the closer to the final state the more important the candidate is,
which is more reasonable from the human perspective.

3.2 Human Knowledge Refinement
In this section, we compare our HAI-GO with two HRL baselines:
h-DQN [3] and HADS [4], to evaluate the learning performance and
the ability to refine the encoded human knowledge. We designed
two configurations representing different degrees of prior knowl-
edge: one with general candidates which include grids located
in the rooms; the other one with confusing sub-goals that may
mislead the agent to useless exploration. The two configurations
with their corresponding convergence are shown in Figure 2. As
compared to the baselines, our approach learns the importance of
each sub-goal and applies it to the agent training. The unimportant
and confusing sub-goals can be filtered out and only the optimal
ones are retained, thus resulting in the fastest convergence.

4 CONCLUSION
We proposed HAI-GO, a human-AI collaborative sub-goals opti-
mization algorithm that integrates human expertise into intelligent
agent learning. HAI-GO maintains a critic function to eliminate
biases and refine encoded human knowledge, resulting in faster
convergence and stable learning performance. The optimal sub-
goal space derived provides a better understanding of complex
environments, and the algorithm is highly expandable. Future work
should focus on real-time human-AI collaboration, defining better
performance measures, and accurately defining sub-goal spaces.
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