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Abstract

The proliferation of Vision-Language Models (VLMs) in the past several years calls for
rigorous and comprehensive evaluation methods and benchmarks. This work analyzes
existing VLM evaluation techniques, including automated metrics, AI-based assessments,
and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs
that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at
multiple scales, and use Robin to identify shortcomings of current evaluation approaches
across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new
long form response benchmark we developed for more robust and complete VLM evaluation.
We provide open access to the Robin training code, model suite, and CHIRP benchmark to
promote reproducibility and advance VLM research.

1 Introduction

Recently, a lot of significant advances have been made in Vision-Language Models (VLMs), driven by
breakthroughs in computer vision and natural language processing Chen et al. (2022); Li et al. (2023b);
Liu et al. (2023b); Sun et al. (2023). However, existing VLM benchmarks, often designed for specific tasks
(e.g., VQAv2 Goyal et al. (2017)), struggle to accurately reflect real-world VLM performance and capture
nuanced differences between models Hsieh et al. (2024). This is particularly evident when evaluating models
with significant architectural variations, where standard benchmark scores remain similar despite noticeable
differences in human-perceived model quality.

To address this issue, we introduce CHIRP, a hybrid VLM benchmark that combines automated metrics’
scalability with human evaluators’ nuanced judgment. We argue that this approach is crucial for capturing
the complexities of VLM behavior, which traditional benchmarks often fail to represent.

To demonstrate the limitations of existing benchmarks and the efficacy of our proposed method, we introduce
Robin, a suite of VLMs trained at various scales, inspired by the Pythia language model suite Biderman et al.
(2023). By systematically varying the Vision Encoder (VE) and the Large Language Model (LLM) sizes,
we will show that while benchmark scores remain largely unaffected, human evaluations reveal significant
differences in the models’ outputs quality.

Our findings underscore the need for more robust and human-centric VLM evaluation methodologies. CHIRP
paves the way for developing more reliable and informative VLM benchmarks, ultimately leading to the
creation of more effective and impactful VLMs.

Our Contributions:

• We investigate the drawbacks of relying on automatic metrics and show the benefits of AI-based and
human-based evaluations of VLMs.

• We present CHIRP, an open-ended question-and-answer benchmark.

• We train and release an open-source collection of VLMs named Robin. Robin is a scaling suite based
on LLMs and VEs of different sizes. This allows to study the effects of scaling both language and
vision components on downstream performance of VLMs.
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• We compare the performance of the trained VLMs using a wide range of evaluation approaches:
automated metrics, AI-based evaluations, and human evaluations.

2 Related Work

Scaling Suites. Scaling laws have recently emerged as one of the central research areas in large foundation
models Aghajanyan et al. (2023); Isik et al. (2024). These laws enable performance prediction based on
variations in compute time, dataset size, and model parameters, facilitating efficient resource allocation by
extrapolating results from small-scale experiments.

Kaplan et al. Kaplan et al. (2020) pioneered the application of scaling laws to language models, demonstrating
a power-law relationships between loss and model size, dataset size, and compute time. This has led to
practical applications, such as the Pythia suite Biderman et al. (2023), which comprises of identically trained
language models with varying parameter sizes, empirically verifying these scaling laws.

Cherti et al. Cherti et al. (2023) investigated the scaling laws of the CLIP vision encoders, training and
comparing different sizes of the CLIP vision encoders on the same data. These models indeed verified the
aforementioned scaling laws and have become a very popular suite of models.

AI-based Evaluation. The advent of powerful foundation models like GPT-4V offers a new way to
evaluate weaker models, moving beyond traditional, rigid metrics such as exact string matching, as done in
Hudson & Manning (2019); Mishra et al. (2019); Singh et al. (2019). Early evidence from benchmarks like
MM-Vet Yu et al. (2023) and VQA tasks Agrawal et al. (2016) suggests that evaluating with stronger models
offers a promising path towards more comprehensive and insightful evaluation, surpassing the limitations of
static, string-based methods Ji et al. (2023); Lee et al. (2024). This shift towards leveraging the semantic
understanding of LLMs for evaluation promises to unlock a better understanding of model capabilities.

Table 1: Parameter counts of the different CLIP
VEs used. The largest CLIP model chosen is
indeed "g" and not "big G".

Model Parameter Count
CLIP ViT B 86 million
CLIP ViT L 307 million
CLIP ViT H 632 million
CLIP ViT g 1 billion

Zheng et al. Zheng et al. (2023) introduce two benchmarks,
MT-Bench and Chatbot Arena, to explore the feasibility
of employing LLMs as judges. Their findings indicate that
advanced LLMs, such as GPT-4, closely align with human
preferences, achieving over 80% of agreement Rafailov et al.
(2024). Similarly, AlpacaEval Li et al. (2023a) utilizes
LLMs to assess instruction-following models.

Wu et al. Wu & Aji (2023) focused on the bias in eval-
uations conducted by both human and LLM annotators,
particularly noting a preference for flawed content if it
avoids brevity or grammatical errors, and introduced the
Multi-Elo Rating System (MERS) for more nuanced assess-
ments. A study by Koo et al. Koo et al. (2023) pointed out significant biases of LLMs evaluators, with an
average Rank-Biased Overlap (RBO) score of 49.6%, suggesting a misalignment between machine and human
preferences.

3 Robin VLM Suite: Training Methodology

We review the methodology used to train our scaling suite, and the different experiments conducted with the
trained models.

3.1 Model Architectures

Our models are based on the LLaVA architecture Liu et al. (2023a;b) and consist of three components:
a pretrained vision encoder, a MultiLayer Perceptron (MLP) projection that converts image features to
text space, and a language model that uses self-attention to process both visual and textual tokens. Each
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Figure 1: Log-log plots showing the scaling laws with VE size and LLM size respectively. The loss is calculated
as an average over the last 10 iterations of training.

component can be individually tuned during training. The exact training process, including steps, data
composition, and hyperparameters, is detailed in Appendix A.

3.2 Experimental Design

To design a scaling suite for VLMs, we vary the language encoder and vision encoder. Our setup is based on
the Pythia suite Biderman et al. (2023), which maintains consistent training data and order, leaving model
size as the only variable. Similarly, the CLIP Radford et al. (2021) vision encoders released by LAION follow
this pattern. We train VLMs using 5 Pythia sizes (410M, 1.4B, 2.8B, 6.9B, and 12B parameters) paired with
4 CLIP models (Base, Large, Huge, and gigantic). The sizes of these CLIP models are detailed in Table 1,
resulting in 20 Robin models. The scaling laws for the Robin suite over VE size and LLM size is shown in
Figure 1.

We run experiments across all Robin models or across two main ablations:

1. LLM Size ablation - ablate the Pythia model size across the Robin models with the gigantic CLIP
vision encoder (ViT-g)

2. VE Size ablation - ablate the CLIP model size across the Robin models with a 12B parameter Pythia
LLM

4 Benchmark Results

Figure 2: Heatmap showing the scaled av-
erage score of the different models of the
scaling suite (higher is better).

We ran our suite of models on the following benchmarks: Sci-
enceQA Lu et al. (2022), GQA Hudson & Manning (2019),
VQAv2 Goyal et al. (2017), TextVQA Singh et al. (2019), MM-
Vet Yu et al. (2023), and LLaVA-Bench Liu et al. (2023b). The
complete results of the models on these benchmarks are detailed
in Appendix A.4, which includes a complete score table (Table
5) and heatmaps for all benchmarks (Figure 10). Figure 2
shows the scaled average scores. Due to varying score distribu-
tions across benchmarks, we use a scaled average. For example,
VQAv2 scores range from 40 to 60, while MM-Vet scores range
from 6 to 18. The scaled score is calculated as follows: let S be
the matrix of scores, with each row Si,: representing the scores
model i obtained on all N benchmarks, and S:,j representing
the scores of all models on benchmark j. Let S∗ be the scaled
scores vector.

S∗
i = 1

N

∑
j

Si,j − min(S:,j)
max(S:,j) − min(S:,j)
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The scaled average is plotted in Figure 2. As it is shown, there is no clear relationship between VE size and
model performance. However, a slight trend between LLM size and performance is observed. Despite this,
empirical testing revealed significant differences between the models that these benchmarks did not capture.

5 Investigating Existing Benchmarks

Empirical testing suggested that existing benchmarks might not capture all observed model capabilities.
We aimed to determine whether the standard evaluation methods were inaccurate or if the benchmarks
themselves were flawed.

To rigorously assess the reliability of existing benchmarks, we sampled 100 random questions from GQA as
well as 100 from TextVQA. These questions require the model to observe the image and answer objective
facts. We examined the questions, the provided ground truth answers, and model responses across all model
size combinations.

In 100 questions sampled from GQA, we found that 9 questions had incorrect ground truth answers. If we
want to estimate the error of this value, the actual percentage of incorrect prompts p̂ is p̂ ∈ p ± z ∗

√
p∗(1−p)

n .
For a 95% confidence interval: z = 1.96, and with our sample size n of 100, we measured p = 0.09, we are 95%
certain: 3.4% ≤ p̂ ≤ 14.6%. This equates to 770,769 to 3,309,773 questions of the 22,669,678 GQA questions
being incorrect. Although this is a large spread, this result rmeains quite significant, as most improvements
on State of The Art (SoTA) models are very small, regularly under 3% Li et al. (2023b). These findings lead
to the conclusion that if 2 models score within 3% of each other on GQA, they could very well be equal in
actual performance on it. Representative examples of the aforementioned questions are shown in Appendix
B.4.1.

Conducting the same study for TextVQA, we identified only 5 problematic questions in the sample that
either did not require reading the text in the image, or were too vague and did not correspond to a clear
correct answer. Redoing our previous calculations, we conclude with 95% certainty that 0.73% ≤ p̂ ≤ 9.27%.
Although SoTA models are indeed close in performance, we are not as confident as in the case of GQA.
However, two SoTA models scoring within 0.7% of each other on TextVQA can be considered equally good
on the benchmark. Representative examples of the aforementioned questions are shown in Appendix B.4.2.

Ultimately, after examining benchmarks and responses, we propose the following hypotheses for why our
models did not exhibit expected scaling trends:

• short responses don’t convey enough information to thoroughly evaluate model performance
• benchmarks were graded inaccurately
• vague questions with multiple possible answers and incorrect ground truth answers
• questions themselves don’t demand a detailed examination of images

In the following subsections, we test each of the above hypothesis to see if addressing these issues reveal
trends in model scale we hadn’t observed previously.

5.1 Long vs Short Responses (LvSR)

Most benchmarks were evaluated on short responses; with explicit instructions to "respond with one word or
phrase". However, we hypothesize that short responses do not convey sufficient information to evaluate model
performance in detail. To test this theory, we allowed models to generate longer responses without prompting
for brevity. We then collected, manually evaluated, and compared these LvSR to see if they offered a more
nuanced assessment of the models.

The GQA benchmark provides an evaluation script that grades responses using string matching on single
phrase responses. On the sample of 100 GQA questions, we prompted and manually graded our models for
LvSR to see if new trends across the LLM size ablation appear with longer responses, the results of which are
shown in Figure 3. For sufficiently large models, we did not notice a significant improvement in overall model
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Figure 3: Accuracy of long vs short responses on GQA sample for LLM Size ablation.

accuracy. However, models often got different questions correct when responding with LvSR. To show this,
we calculated a superscore, in which responses were marked correct if either the long or short response was
correct (See Figure 3). The improved results of the superscore indicate that while long and short responses
achieve a similar overall accuracy, they tend to be accurate for a different set of questions. This suggests that
evaluating long and short responses demonstrate different model skills. In Appendix B.4.3, we’ve included
examples of differing responses when prompting for long and short answers.

5.2 Inaccurate Grading and LLM evaluations

Most existing automatic metrics are incapable of evaluating longer responses, and often fail in scenarios where
the models being tested do not output the answer in the expected format Hudson & Manning (2019); Singh
et al. (2019). For example, models may respond with a synonym for the ground truth, which can cause issues
with exact string matching based evaluation. These issues can be especially prevalent with non instruction
tuned models, or small scale models.

To address responses that automated evaluations cannot recognize, we utilize a the GPT-4 LLM OpenAI
(2023) to evaluate whether a given response matches the correct answer or not. We ran this LLM evaluations
on both the long and short responses, using the prompting detailed in Appendix B.3.

On short responses, LLMs tend to mark more answers as correct when compared to existing automated
evaluations. An example of this behaviour can be found in Appendix B.4.3. By comparing LLM evaluations
to manual evaluations of LvSR in Figure 4, we calculated the accuracy of LLM evaluations on LLM size.
This analysis shows that LLM evaluations can be slightly more accurate than automated evaluations, though
not enough to reveal new model capabilities.

5.3 Multiple Possibilities and VLM evaluation

Our empirical analysis revealed that ground truth answers are not always representative of all possible correct
answers. In GQA and TextVQA, this issue arises from ambiguous questions that can have multiple valid
answers, as shown in Appendix B.4.1 and B.4.2. In questions where ground truth answers don’t encompass
all valid answers, LLMs don’t have sufficient information to accurately responsed.

We explore using stronger VLMs, namely LLaVA-34B Liu et al. (2023b) and GPT-4V OpenAI (2023), to
evaluate our models responses in order to account for such cases. We ask the VLM to individually evaluate
each model’s long response, question by question. The exact prompts used for LLaVA-34B and GPT-4V are
in Appendix B.3.

A comparison of the accuracy of LLaVA-34B and GPT-4V over LLM scale can be seen in Figure 4. GPT-4V
evaluations of GQA differed from human evaluations more than LLaVA-34B due to GPT-4V applying stricter
grading criteria. Appendix B.4.3 presents a few such examples. Although LLaVA-34B had higher accuracy,
we hypothesize that further work could align GPT-4V’s grading schema closer to the LLaVA-34B grading by
prompting for a looser grading, likely leading to improved results for GQA evaluation.

5



Under review as submission to TMLR

Figure 4: Evaluating GQA and textVQA using automated string matching programs, LLMs, VLMs, and
humans evaluators. Solid lines are evaluations of responses where models were prompted for short responses.
Dashed lines have no such prompting for brevity. Left. Robin GQA and textVQA scores across LLM size and
VE size ablations, calculated using the appropriate evaluation method for each evaluator. Right. Accuracy
of those evaluation methods on the GQA and textVQA sample over the LLM size ablation. The accuracy
was determined by comparing evaluations to the human grading.

5.4 Comparison of automated, LLM, and VLM evaluations

We graph scaling across LLM size, and VE size using all AI evaluation methods in Figure 4. AI evaluations
seem to yield different and more accurate results across the largest LLM and VE sizes. However, despite the
improved accuracy in evaluation techniques, our models still did not exhibit expected scaling relationships,
the complete results being shown in Appendix B.1. We hypothesize that long form questions may be more
conducive to extracting fine grain estimation of model knowledge than questions from existing benchmarks.

6 CHIRP benchmark

To address the drawbacks of existing benchmarks outlined in Section 5, we introduce CHIRP, a new evaluation
benchmark, which grades long form responses. CHIRP comprises of 104 open ended questions, evaluated by
either humans or VLMs. These free form questions do not correspond to a single "correct" answer. Instead,
they require models to generate flexible, creative and complex responses. Consequently, we evaluate models
using a preference based rating in which two model’s responses are compared side by side. Instructions on
downloading the CHIRP benchmark can be found in Appendix C.
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6.1 Generating the dataset

We wrote questions along with image descriptions, which we then refined with the help of GPT-4 OpenAI
(2023). The image descriptions were given to Dalle-E 3 to generate the associated images. We would then
iterate and finetune the description by hand in order to get the desired image.

The questions created are classified in 8 distinct categories: descriptive analysis, inferential reasoning,
contextual understanding, emotional and psychological understanding, ethical evaluations,
abstract understanding, creative and subjective analysis, and visual aesthetics evaluation.
Detailed descriptions and examples of these categories can be found in Appendix C.1.

Unlike many datasets that rely on pre-existing images, our approach allows us to generate images specifically
tailored for thought-provoking questions and detailed analysis. This also removes the risk of the model having
seen the image in training. Moreover, we eliminate the risk of evaluating models on contaminated images as
all of them were validated by hand.

6.2 Human based evaluations

We utilized CloudResearch for large scale human evaluation of our model’s responses. To this end, we
presented users with the responses of two models and asked them to indicate their preferred response on a
set of criteria. There are 5 criteria: overall preference, relevance and completeness, understanding
and reasoning, hallucinations, and details. These criteria were chosen as empirical evidence showed
that these were under-evaluated in other benchmarks and the most important to a user’s perception of the
model quality. An example of the user interface as well as a detailed description of each criterion can be
found in Appendix C.2.1.

We validated this evaluation method by evaluating our suite of models on all five criteria across the LLM size
and VE size ablations. Due to limitations in time and budget, for each question of the dataset, we randomly
sample five model matchups out of all the model pairwise combinations. We also ran evaluations across our
entire suite of VLMs to judge the overall preference criteria. To this end, we randomly selected 25 matchups
from the 190 possible pairs of Robin models. Full details on the human evaluation setup can be found in
Appendix section C.2.2.

6.3 VLM based evaluations

To evaluate our models on CHIRP at scale, we experiment with the use of VLMs: GPT-4V and LLaVA-34B.
Rather than asking a human for model preferences, we asked the VLMs to indicate their preferred response
for each criterion. For GPT-4V, we utilized two distinct prompts: GPT-4V (S) (simple), which directly
solicited model preferences, and GPT-4V (R) (reasoning), which prompted the VLM to reason before
making a decision. We extracted the VLMs final choice using GPT-3.5. Detailed explanations of these
prompts are provided in Appendix C.2.3.

We evaluated all combinations of matchups from the LLM size and VE size ablations across all criteria. We
also ran GPT-4V (R) evaluations on a random sample of 50 matchups from all combinations of Robin
models on the overall preference criteria.

6.4 Elo ratings

To benchmark our models using CHIRP, we calculated Elo scores based on the evaluators’ indicated preferences.
Because Elo calculations are not order-agnostic, we performed 500 bootstrap iterations for each Elo score.

The results from the human and VLM evaluations using this average Elo rating is shown in Figure 5.

With regards to the LLM size ablation, we note a clear scaling trend, with all the evaluators ranking the
bigger models the best performers across all categories. However, we do note that the biggest marginal
improvement occurs from the 410M Pythia-based Robin to the 1.4B Pythia-based Robin.
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Figure 5: Mean Elo calculated over LLM Size (top row) and VE Size (bottom row) using different evaluators
(columns) and criteria (series). Graphs are calculated using bootstrapping on 1000 samples. Each sample is
drawn with low transparency and the solid lines indicate the mean over samples for the respective category.

Figure 6: Robin model performance on CHIRP’s “overall” criteria measured using different evaluators.
Median Elo scores shown calculated over 1000 bootstraps on the criteria. Left. Elo calculated via different
evaluators on the LLM Size and VE Size ablation matchups. Right. Elo calculated from GPT-4V (R) and
human survey across the entire suite.

With regards to the VE size ablation, only the human survey results exhibit a strictly monotonically increasing
trend with scale. Indeed, AI evaluations of CHIRP do not correlate VE size with model performance. GPT-4V
(R) evaluations of CHIRP demonstrate some scaling with model size, with ViT-L performing surprisingly
well. To the contrary, LLaVA-34B gives a very consistent score to all models across all categories, with
the exception of the “hallucination” evaluation where the trend is similar to the one from GPT-4V (R). It
is worth noting however that human surveys exhibit high variance in Elo trends, mostly due to different
evaluators having very different preferences.

The heatmap of median Elo scores in Figure 6 allows us to directly compare GPT-4V (R) and human surveys
results. In the following sections, we will explore why GPT-4V (R) evaluations seem to capture some trends
more distinctly while not others.
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6.5 Agreement

To evaluate the efficacy of AI evaluations, we first examine the agreement between AI and human preferences.
To this end, we use Cohen’s Kappa.

6.5.1 Cohen’s Kappa

Cohen’s Kappa Cohen (1960) is a method used for calculating inter-rater reliability, that takes into account
random chance agreement. A Cohen’s Kappa score of 1 indicates a complete agreement between reviewers,
while a Kappa of 0 indicates no agreements other than a random chance of agreement. Further details on the
calculation of Cohen’s Kappa can be found in Appendix C.2.5. Looking at Table 2, the results indicate that
both GPT-4V (S) and GPT-4V (R) have higher agreement with human surveys compared to LLaVA-34B. We
also note that GPT-4V (R) exhibits the most agreement to the human surveys of the both of them. However,
according to Landis & Koch’s interpretation of Cohen’s Kappa Landis & Koch (1977), GPT-4V (R) only
achieves “slight” to “fair” agreement. Despite the low overall agreement, GPT-4V evaluations still exhibit
very similar trends to human evaluations.

Table 2: Agreement and Cohen’s Kappa between human surveys and AI evaluations across 2 studies

LLM size ablation VE size ablation
Models Agreement Cohen’s Kappa Agreement Cohen’s Kappa

GPT-4V (S) vs human 67.5% .10 63.7% .204
GPT-4V (R) vs human 69.3% .114 64.5% .216
LLaVA-34B vs human 60.8% .014 50% 0.0

6.5.2 Model Size Agreement
Table 3: Model size agreement by method

Method LLM size VE size
Human Survey 68.5% 61.3%

LLaVA-34B 66.5% 53.0%
GPT-4V (S) 76.5% 65.2%
GPT-4V (R) 79.4% 66.4%

For each of our evaluation methods, we calculated
the frequency with which the evaluator preferred the
larger model in any given matchup. The results in
Table 3 show that GPT-4V evaluations favor models
with more parameters more frequently than human
evaluators. We also see that although users tend to
prefer larger models, this is not as systematic as we
had initially believed.

6.5.3 Contradictions

One hypothesis for why trends are better captured using AI evaluations is that a single AI evaluator is more
consistent than the combined evaluations of many different humans, as different humans may have different
preferences or leniency. We tried negating this by aggregating multiple human surveys together however it
is possible this still influenced the results. To evaluate the consistency of AI versus human evaluators, we
introduce a concept to measure contradictions in their rankings. A contradiction occurs when an evaluator’s
preferences form a cycle, such as preferring A over B, B over C, but then C over A. A more exhaustive
explanation along which sample graphs is given in Appendix C.2.8. This inconsistency suggests a lack of
transitivity in their judgments. By counting these contradictions, we can determine how reliably an evaluator
ranks models.

The results presented in Figure 7, indicate that human and LLaVA-34B based evaluations tend to have
the most contradictions, requiring more runs to average out human or model inconsistencies. GPT-4V (R)
however is the model with the least contradictions, leading us to the conclusion that a single run is sufficient
as the model is highly consistent in its responses.
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Figure 7: Percentage of CHIRP questions graded with a contradiction of preferences within a specific criteria.
Left: contradictions found in the LLM ablation study. Right: contradictions found in the VE ablation
study.

6.6 Observations and Insights

Although AI-based evaluations don’t consistently agree with human evaluations on a case-by-case basis,
GPT-4V (R) displays both higher agreement with humans preferences and less contradictions than GPT-4V
(S).

In general, GPT-based evaluations tend to produce lower variance results which correlate better with training
loss, as shown Appendix C.2.6. We hypothesize that these smoother results are attributed to the fact that
GPT employs a more consistent approach to grading across evaluations, whereas multiple different human
evaluators lead to more variability, as indicated by the higher rates of contradictions. This variability could
be affecting our ability to accurately measure how well human evaluations correlate with training loss and we
hope to address this in future work.

Another possibility is that AI evaluations favor models with larger LLMs because the LLMs generate preferable
strings of words irrespective of the content of the image. However, we rule out this possibility by showing
that GPT-4V (R) preferences do not align with the more likely logit probabilities of question-answer strings
in Appendix C.2.7.

Furthermore, there seems to be an ideal ratio of VE size to LLM size that provides an optimal model, which
will be the preferred model for that LLM size. Although this relationship was hinted at in both the loss and
previous benchmarks, it was made more apparent in the human preferences result in CHIRP. As illustrated in
the complete graph of human preferences shown in Appendix C.2.9, models with larger VEs perform poorly
when paired with the smallest LLM, and similarly, larger LLMs struggle when paired with the smallest VE.
This trend, which was not evident in other benchmarks, is now made clear through CHIRP’s evaluations.

Ultimately, both human and AI evaluations show that performance on CHIRP correlates with loss more than
other evaluation tasks. We take this as evidence that the CHIRP benchmark assesses a valuable and unique
skill that other benchmarks do not test for. This makes CHIRP a useful addition to the suite of benchmarks
that is currently used to evaluate VLMs.
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6.7 Limitations

Although the CHIRP benchmark revealed scaling trends in our models that other benchmarks did not, it has
several notable limitations. First, it heavily relies on the strong language proficiency of the evaluator, to
evaluate a models’ perceptual capabilities.

Second, the benchmark is not very extensive as it only contains 104 questions on 104 images. However, the
small size is a deliberate choice based on the cost of evaluations. As grading the responses requires VLM or
human evaluations, cost is a major consideration when deciding the size and 104 was seen as a good balance
between evaluating the models performance and the cost or evaluating. This is in line with other small,
high quality, and well respected datasets like MM-Vet Yu et al. (2023), 218 questions on 200 images, and
LLaVA-Bench Liu et al. (2023b), 60 questions on 24 images, which both require LLM evaluations, which
itself is cheaper than VLM or human evaluations.

Finally, models are benchmarked via pairwise matchups. Therefore models can only be compared via a direct
matchup or mutual matchups. This requires more work when validating a new model, requiring matchups
which each of the most performant models, however we believe this is a valuable trade-off for a considerably
more accurate evaluation and ranking.

7 Conclusions

In this paper, we explore the limitations of existing vision-language model (VLM) benchmarks, and introduce
CHIRP, a novel benchmark designed to address these shortcomings. Our analysis reveals that a longer-form
benchmark with open-ended questions quantifies multimodal understanding in ways that existing benchmarks
do not. While current benchmarks evaluate contextually relevant responses, they often fail to capture the
subtleties that humans value in long-form content.

Expensive evaluations. We acknowledge that generating and evaluating long-form responses, especially
with human evaluators, can be resource-intensive. To mitigate this challenge, we have designed CHIRP to
remain effective even at a smaller scale. Additionally, our findings suggest that AI evaluations can serve as a
reliable proxy for human assessments, demonstrating similar overall trends in the same unique skill we aim to
test for.

As VLMs continue to advance towards and beyond human-level performance on quantitative tasks, we
emphasize the need to assess models on qualitative tasks that reflect the nuances of human preferences. Our
work demonstrates that CHIRP is a viable benchmark for evaluating skills that have not been previously
reported.
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A Model training setup

A.1 Process and data

In order to maximize comparability between models, we train all of them with the same hyper-parameters
and data. The training of our VLMs is broken down into two phases: pretraining and finetuning. During
pretraining, only the MLP projection is unfrozen, with both vision and language models frozen. The dataset
used for this step is the LLaVA Visual Instruct Pretrain LCS-558K Liu et al. (2023a), which is a subset of
the LAION/CC/SBU dataset, filtered with a more balanced concept coverage distribution. Following this,
we do a finetuning step where we tuned all three components: the MLP projection, language model and
vision encoder. The data that was used for this part of training is the LLaVA Visual Instruct 665K Liu et al.
(2023a). This dataset contains 150K GPT-generated multimodal instruction-following data, in addition to
using images from the Coco 2017 dataset Lin et al. (2015), the GQA dataseet Hudson & Manning (2019), the
OCR-VQA dataset Mishra et al. (2019), the TextVQA dataset Singh et al. (2019), and the VisualGenome
dataset Krishna et al. (2016).

In the LLaVA 1.5 model release Liu et al. (2023a), the authors showed that when doing the finetuning of
the language model, there was little difference between doing a full finetuning as opposed to a Low-Rank
Adaptation (LoRA) Hu et al. (2021) finetuning. Therefore we trained all our models using a LoRA finetuning
for the language model.

A.2 Hyperparameters

Table 4a gives the hyper-parameters used for pretraining and Table 4b shows the hyperparameters used for
finetuning all of the models. Due to different hardware being used to train different models, the gradient
accumulation steps were changed for both the pretraining and finetuning steps in order to keep the batch size
consistent between the different runs.

On a node consisting of 4 AMD Instinct MI250 Accelerators, pretraining would take about 4 hours and
finetuning about 10 hours.

Parameter Value
Vision encoder Frozen

Language model Frozen
Projection learning rate 10−3

Use of fp16 True
Projection type mlp2x_gelu
Weight decay 0
Warmup ratio 0.03

Epochs 1
Batch size 256

(a) For the pretraining

Parameter Value
Vision encoder learning rate 5 · 10−5

Language model learning rate 2 · 10−5

Projection learning rate 2 · 10−5

Use of fp16 True
Projection type mlp2x_gelu
Weight decay 0
Warmup ratio 0.03

Epochs 1
Batch size 128
LoRA r 128
LoRA α 256

(b) For the finetuning

Table 4: Hyperparameters used during training
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A.3 Final loss plots

Plots showing the average loss of the last 10 iterations of training for each model of the Robin scaling suite.

Figure 8: Heatmap showing the loss of the different Robin models (lower is better).

Figure 9: Log-log plot showing how the loss scales with total parameter count.
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A.4 Detailed benchmark scores of all the Robin scaling suite models

Figure 10: Heatmaps showing the performance of the different models of the scaling suite on the different
benchmarks. For all graphs, higher is better.
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Table 5: List of the results obtained by every model of the Robin scaling suite on the different benchmarks.
Each model was run with LoRA finetuning for the LLM and unfrozen VE.
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B Further evaluations of the GQA and TextVQA prompts

B.1 Graphs comparing the entire model suite on the different evaluation methods

Figure 11: Accuracy of the Robin suite of models on the 100 GQA question sample calculated using different
evaluation methods. Only weak scaling trends are apparent, irrespective of the evaluation method used.

Figure 12: Accuracy of the Robin suite of models on the 100 TextVQA question sample calculated using
different evaluation methods. Only weak scaling trends are apparent, irrespective of the evaluation method
used.
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B.2 Verifying the results on an independent SoTA model

While other experiments in this paper are done using our Robin scaling suite with based on the Pythia LLMs,
this section was done using LLaVA1.5-7B Liu et al. (2023a), in order to make sure that our results translated
across models. We manually graded LLaVA1.5-7B responses on our sample of GQA questions. Using the
known evaluations, we graded the accuracy of automated, LLM, and VLM evaluation methods. Results of
grading accuracy on LLaVA1.5-7B are presented in the confusion matrix 13.

Some small, but important, usage details we noticed: The LLMs have a very low false positive rate, especially
in contrast to their false negative rate. This suggests that for actual deployment, we could employ a two
phase strategy, in which we assume the LLM is correct when it marks a long response as correct. When the
LLM responds false, we fallback to a VLM. This strategy eliminates some VLM false negatives. The accuracy
of this strategy is 88%, beating the other methods shown in Table 6.

We tried this strategy on our Robin models across the LLM size ablation. The results on GQA and textVQA
are presented in Figure 14. Our results indicate that the joint LLM and VLM strategy provides a risk averse
method of evaluation. Regardless of if the LLM or VLM evaluations are more accurate, the combined method
provides a middle ground evaluation which performs slightly better on benchmarks where the LLM evaluates
well, as GQA, but poorly when the VLM evaluation consistently outperforms the LLM evaluation, as in
TextVQA.

Figure 13: Confusion matrices of the different evaluation methods on the LLaVA1.5-7B responses.
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Table 6: Accuracy of the different evaluation methods on the LLaVA1.5-7B responses.

Method Accuracy
string matching 75%

LLM on short responses 80%
LLM on long responses 82%
VLM on long responses 82%

Join LLM+VLM evaluation 88%

Figure 14: Accuracy of different evaluation methods on a sample of 100 questions from both GQA and
textVQA.
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B.3 Prompts used for the AI evaluations

messages = [
{"role": "system", "content": "You will be provided with a question about some

image, the correct answer to the question, and a students response. Grade
whether or not the student answered the question correctly based on the correct
answer that is provided. Respond correct, or incorrect, depending on the given
response."},

↪→

↪→

↪→

↪→

{"role": "user", "content": f"Question: {question}\n\nCorrect Answer:
{ground_truth}\n\nStudents Answer: {vlm_response}"}↪→

]

Figure 15: Prompt passed to GPT-4 for the LLM evaluation of both long and short responses on GQA and
textVQA

messages = [
{"role": "user", "content": <IMAGE> + f"{question}"}
{"role": "llava", "content": LLaVAs response}
{"role": "user", "content": f"Based on your answer, grade the following response to

the same question as correct or incorrect.\n\nResponse: {response}"}↪→

]

Figure 16: Prompt used for LLaVA-34B evaluation of both long and short responses on GQA and textVQA.
We first asked LLaVA-34B to answer the question, then asked it to evaluate the models response taking into
account its own response.
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instruction = """
You are a helpful assisstant. You will be shown an image and a related question, along with a response from an

assistant. The assistants' responses are meant to answer the given question.↪→

Your task is to evaluate the response to the given question about the image.

Image:
"""

response_eval = f"""
Question: {question}

Assistants Response: {response}

Please evaluate whether this response is correct or not. You can mark questions that include false details about the
image as incorrect. First reason about your thought process before giving the final answer.↪→

"""
gpt_response = openai_client(

model = "gpt-4-vision-preview",
messages=[

{
"role": "user",
"content": [

{"type": "text", "text": instruction},
{

"type": "image_url",
"image_url": {

"url": image_url,
},

},
{"type": "text", "text": response_eval},

],
}

])

final_evaluation = openai_client(
model="gpt-3.5-turbo",
messages=[

{
"role": "user",
"content": f"You will receive an evaluation of an assistant's response to a question. Your task is to analyze

the text, and determine whether the assistants response was correct or incorrect. Please only respond
with the word \"Correct\" or \"Incorrect\". If the response is partially correct, you may respond with the
phrase \"Partially Correct\". \n\nEvaluation:\n{response}"

↪→
↪→
↪→

}
]

)

Figure 17: Prompt used for GPT-4V evaluation of long responses on GQA and textVQA. We first asked
GPT-4V to evaluate the question answer pair and reason about its answer. We then asked GPT-3.5 to parse
the final answer. "Partially Correct" results were treated as incorrect.
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B.4 Qualitative examples

B.4.1 Examples of issues in the GQA dataset

Question: What device is be-
hind the man?

Is the stove to the
left of a drawer?

Is there a cup near
the plate?

Ground
truth:

The device is a tele-
vision.

No, the stove is to
the left of a toaster.

No, there is a mat
near the plate.

Table 7: Examples of GQA questions from our sample that have incorrect ground truth answers.

Question: What sits next to
the street that is
made of asphalt?

What is on the mo-
torbike that the per-
son is riding?

Does the window
look square?

Ground
truth:

The signal light sits
next to the street.

The mirror is on the
motorbike.

Yes, the window is
square.

Table 8: Examples of ambiguous GQA questions from our sample which have multiple potential correct
answers.
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B.4.2 Examples of issues in the TextVQA dataset

Question: This railway track? Does the parking
has more space?

15:20 15:21 15:20
15:20 15:21?

Ground
truth:

yes; no; unanswer-
able; not a question;
...

yes; unanswerable;
answering does not
require reading the
text in the image; ...

yes; not a question;
unanswerable; ...

Table 9: Examples of ambiguous TextVQA questions from our sample. The TextVQA dataset provides 10
ground truth answers per question, seperated here by “;”.

B.4.3 Examples of the grading disagreement between methods

Question: Who is wearing the
helmet?

Ground truth: the batter is wear-
ing the helmet

LLaVA-1.5-7B: the player

GQA evaluation: Incorrect

LLM evaluation: Correct

Table 10: A sample where the LLM marked the response correctly but the model response does not contain a
direct string match to the ground truth answer, and thus the automated evaluation fails.
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Question: What is the blue ob-
ject above the flower
pot hang from?

Do the pants look
clean or dirty?

Ground truth: hook clean

Robin used: Pythia 6.9B + ViT-
g

Pythia 1.4B + ViT-
g

long response: The blue object
above the flower
pot hang from a
hook on the wall.

The pants on the
baseball player ap-
pear to be dirty.

short re-
sponse:

Ceiling Clean

Table 11: Examples of response differences when prompting for short vs. long responses.
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Question: What is that air-
craft called?

Which color do you
think are the pants?

Is the snow near the
sign both wet and
white?

Ground truth: That is a helicopter. The pants are light
blue.

Yes, the snow is wet
and white.

LLaVA-1.5-7B: The aircraft in the
image is a heli-
copter.

The pants are blue. Yes, the snow near
the sign is both wet
and white.

GPT-4V evalua-
tion:

Incorrect Incorrect Incorrect

GPT-4V reason-
ing:

"...the question
asks for the specific
name of the air-
craft... it is likely a
Boeing CH-47..."

"...it does not ac-
count for the pants
of the person on the
right..."

"...determining if
the snow is wet
just by looking at
the image is not
possible..."

Table 12: A few examples of how GPT-4V evaluations are stricter than ground truth or most human
evaluators.
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Question: Which kind of furni-
ture is to the left of
the calculator?

The donut is in
what?

Ground truth: there is no calcula-
tor in the image

plastic tray.

LLaVA-1.5-7B: chair The donut is in a
basket.

LLM evaluation: Incorrect Incorrect

VLM evaluation: Correct Correct

Table 13: Examples of VLM and LLM evaluations of GQA questions. On the left, the VLM is more likely to
hallucinate and agree with a trick question’s given answer than an LLM or automated evaluator. On the
right, the VLM shows greater flexibility in accepting alternative correct answers.
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C CHIRP

Benchmark questions and images available at https://huggingface.co/datasets/Anonymous1234565/
CHIRP

C.1 Benchmark Details

Question Categories. We identified 8 distinct categories of questions that demand comprehensive image
analysis. For each category, we prompted GPT-4 to come up with questions and corresponding image
descriptions. After refining these by hand, we pass the image descriptions to Dall-E 3 to generate the
described image. We will aslo iterate the description untill obtaining an image of high quality. We present the
distribution of questions across different categories in Figure 18. The exact categories and their explanations
are as follow:

• Descriptive Analysis: This category involves questions that test the model’s ability to identify and
describe the physical elements in an image, including color, position, and interaction and also to recognize
specific details.

• Inferential Reasoning: It examines the model’s ability to infer things from the image, including
predicting possible subsequent events, making assumptions about previous contexts, and hypothesizing
alternative scenarios that contradict the present one in the image.

• Contextual Understanding: This category tests the model’s awareness of the importance of context in
image comprehension. This might involve understanding geographical or temporal aspects that bear upon
the image.

• Emotional and Psychological Understanding: It measures the model’s ability to gauge emotions
and psychological states from an image. This incorporates interpreting the visible emotional expressions
of characters in the image and hypothesizing about their mental state.

• Ethical Evaluations: Questions in this category check how the model deals with the ethical implications
of images. Can it recognize potential ethical concerns and judge the public display acceptability of an
image with respect to generally accepted ethical guidelines?

• Abstract Understanding: These questions gauge the model’s capacity for abstract thought — can it
identify underlying themes or messages in the image that aren’t immediately visible? Can it engage in
philosophical interpretation?

• Creative and Subjective Analysis: This category gauges the model’s creativity and its ability to
express subjective views on the image. It includes crafting extended narratives based on the image scenery
and presenting a personal point of view for the image.

• Visual Aesthetics Evaluation: This category examines the model’s ability to evaluate the visual
aesthetics of an image including aspects like balance, symmetry, colour composition, lighting, etc.
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Figure 18: CHIRP single question category distribution.
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C.2 Evaluation procedure

C.2.1 Evaluation Criteria

We evaluated pairwise comparison of responses on each of the following criteria:

• Overall Preference: Which assistant’s response do you prefer overall, considering all factors?
• Relevance and Completeness Evaluation: Which assistant’s response is more relevant to the question

and provides a more complete answer?
• Understanding and Reasoning: Which assistant’s answer displays a better understanding of concepts

and better reasoning in its response?
• Hallucination Evaluation: Which assistant accurately describes the image without adding or describing

objects or elements that don’t exist in the image?
• Detail Evaluation: Which assistant’s description of the image is more detailed, taking into consideration

both the amount and quality of the details provided?

C.2.2 Human Survey

We use Cloud Research to conduct human evaluations of our models on the CHIRP benchmark. We conducted
3 different studies on Cloud Research:

1. LLM Size Study. A study comparing our ViT-g VE models accross the 5 LLM sizes.

2. VE Size Study. A study comparing our 12b parameter LLM models accross the 4 VE sizes.

3. All Robin Models Study. A study comprising of matchups comparing all 20 of our models.

For each of the 104 questions, we randomly sampled a portion of all possible pairwise combinations of models
involved in the study.

For the LLM size study, 5 of the 10 combinations of matchups between models were randomly sampled for
each question. For each of those sampled matchups, we asked participants to indicate their preference for the
5 evaluation criteria. We only allowed each participant to respond with their preferences for a single matchup.
This led to a total of 520 individual responses (104 questions ∗ 5 matchups). A breakdown of the questions
asked in each survey is presented in Table 14. An example of the participant interface is shown in Figure 19.

Table 14: Breakdown of CHIRP human survey evaluation matchups.
* For All Models, evaluators were only asked to provide preferences for the overall category.

Survey CHIRP
questions

Total
Matchups

Matchups
Sampled

Participants Criteria
Evalu-
ated

LLM Size 104 10 5 520 5
VE Size 104 6 3 312 5
All Models 104 190 25 2600 1*

For all surveys, we targeted English-speaking participants aged 18-50 who had graduated high school.
Participants were compensated at an estimated rate of $0.10 per minute, following Cloud Research guidelines.
The first two studies, which required evaluating five criteria, were estimated to take 2 minutes each, with
a compensation of $0.20. The last study, requiring evaluation of one criterion, was estimated to take 1
minute, with a compensation of $0.10. This rate ensured that participants were paid at least minimum wage.
Post-study analysis showed that average response times agreed with our estimates, confirming compliance
with minimum wage requirements.
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Figure 19: Example of survey questions displayed to a human evaluator on Cloud Research. The same
instructions and format were used for all studies conducted on Cloud Research.
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C.2.3 AI evaluations

AI evaluations were run on all 10 matchups for both the LLM size study and VE size study. For the all
Robin models study, we only ran GPT-4V (R) on a sample of 50 of the 190 possible matchups for each
question. The prompts used for the evaluation are shown in Figures 20 and 21.

category_prompts = [
"Which response do you prefer overall, considering all factors?",
"Which response is more relevant to the question and provides a more complete

answer?",↪→

"Which response displays a better understanding of concepts and better
reasoning?",↪→

"Which response more accurately describes the image without adding or
describing objects or elements that don't exist in the image?",↪→

"Which response's description of the image is more detailed, taking into
consideration both the amount and quality of the details provided?"↪→

]

response_eval = f"""
Here are two responses to the same question:

Response 1: {response_1}
Response 2: {response_2}

{category_prompts[category]}
Respond with the number 1 or 2 corresponding to the better answer.
"""

messages = [
{"role": "user", "content": <IMAGE> + f"{question}"}
{"role": "llava", "content": LLaVAs_response}
{"role": "user", "content": response_eval}
]

Figure 20: Prompt used for LLaVA-34B evaluation of model responses on the CHIRP benchmark.
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instruction = """
You are a helpful assisstant. You will be shown an image and a related question, along with responses from two

assistants. The assistants' responses are meant to answer the given question.↪→

Your task is to compare and evaluate the two responses to the given question about the image.

Image:
"""
categories = [

"Which assistant's response do you prefer overall, considering all factors?",
"Which assistant's response is more relevant to the question and provides a more complete answer?",
"Which assistant's response displays a better understanding of concepts and better reasoning?",
"Which assistant accurately describes the image without adding or describing objects or elements that don't

exist in the image?",↪→
"Which assistant's description of the image is more detailed, taking into consideration both the amount and

quality of the details provided?"↪→
]

response_eval = f"""
Question: {question}

Assistant 1 Response: {response_1}

Assistant 2 Response: {response_2}

{categories[category]}
Please do not provide Tie as an evaluation. You have to select between Assistant 1 or Assistant 2. {"Reason about

your thought process before giving the final answer." if reasoning else "Please respond with only the number
corresponding to the assistant with the preferred response."}

↪→
↪→
"""
gpt_response = openai_client(

model = "gpt-4-vision-preview",
messages=[

{
"role": "user",
"content": [

{"type": "text", "text": instruction},
{

"type": "image_url",
"image_url": {

"url": image_url,
},

},
{"type": "text", "text": response_eval},

],
}

])

if not reasoning:
return gpt_response

final_evaluation = openai_client(
model="gpt-3.5-turbo",
messages=[

{
"role": "user",
"content": f"You will receive an evaluation of two responses including the preferred assistants response.

Your task is to analyze the text, determine which assistant's response is preferred, and output the number
corresponding to the preferred assistant (either 1 or 2). Please only respond with the number
correspondig to the preferred assistant and no additional information. For exmaple: 2.
\n\nEvaluation:\n{gpt_response}"

↪→
↪→
↪→
↪→

}
]

)

return final_evaluation

Figure 21: Prompts used for GPT-4V evaluation of model responses on the CHIRP benchmark. The reasoning
variable in the psuedocode indicates whether the GPT-4v (R) (reasoning) or GPT-4v (S) (simple) prompt
is used. In the case of GPT-4v (R) prompts, the final choice is extracted using GPT-3.5.
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C.2.4 Elo Score Graphs

Survey

GPT-4V (R)

LLaVA-34B

Figure 22: Elo scores calculated over LLM size and VE size on the 5 different evaluation criteria of CHIRP
using the 3 different evaluators. Graphs are calculated using bootstrapping on 500 samples. Each sample is
drawn with low transparency and the solid lines indicate the mean over samples for the respective category.
For each evaluator, the first row of graphs concerns the VE size ablation and the second row concerns the
LLM size ablation, with all X-axis being the size in log scale.
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C.2.5 Cohen’s Kappa Calculation

We calculate Cohen’s Kappa to compare AI evaluations with human evaluations, whilst accounting for the
random chance of agreement. We compare only the matchups that were sampled in the human surveys
against the AI evaluations of those same matchups. Cohen’s Kappa (κ) is calculated according to the formula:

κ = po − pe

1 − pe

po is the relative agreement: the proportion of matchups where the different evaluators agree on their
preference.

pe is the hypothetical probability of chance agreement: we calculate this term for all combinations of matchups
separately. Let pe(a,b) be the probability pe for an individual matchup (a, b). Namely, for each matchup of
models a and b, and an evaluator E , the proportion of matchups where model a is preferred will be represented
as pE(a|a, b). The probability of two evaluators E and F agreeing randomly for a matchup (a, b) is then:

pe(a,b) = pE(a|a, b) ∗ pF (a|a, b) + pE(b|a, b) ∗ pF (b|a, b)

pe is then calculated by taking the weighted average over the frequency of matchups f(a,b) present in the
survey:

pe =
∑
(a,b)

f(a,b) ∗ pe(a,b)

C.2.6 CHIRP and training loss correlation

In the study with all the Robin models, comprising of matchups comparing all 20 of our models, we examine
the extent to which evaluation methods tend to favor the model with the lower average training loss. In Table
15 we show the percentages of matchups where the evaluator choses the model with the lowest loss. The
lowest loss used is the average of the loss in the final 10 steps of training in order to smooth out the spikes.

Furthermore, we compute the distance correlation Székely et al. (2007) (dCor) between the Elo scores and
the model loss. This distance correlation is shown in Table 16 and captures both linear and non-linear
associations between two vectors.

Our analysis reveals that both human surveys and GPT-4V (R) are highly correlated to the model training
loss. This indicates that the training loss remains a good first estimator of the performance of a model on
this benchmark, as in LLMs Kaplan et al. (2020); Ru et al. (2020). Furthermore, GPT-4V (R) correlates
particularly well with the model training loss. This could be due to different factors such as the higher
variance in the responses which is intrinsic to human evaluations and deserves to be explored further in future
research. The lower alignment portrayed by Table 15 of the decorrelation of the model loss and parameter
count in the larger models, based on Pythia 6.9B and 12B, as well as the loss for different VEs on a give
LLM being rather grouped, as shown in Appendix A.3.

Method Agreement
Human Survey 60.8%
GPT-4V (R) 71.2%

Table 15: Percentage of time the evaluators
preferred the model with lower training loss.

Method dCor
Human Survey 0.91
GPT-4V (R) 0.96

Table 16: Distance correlation between the
models’ Elo scores and training loss.

C.2.7 Logits Agreement

To ensure that GPT-4V (R) evaluations of CHIRP considers the information from the images, we also calculate
the response’s text token probabilities. Using OpenAI’s Davinci-002 model OpenAI (2024), we determine the
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average log probability of tokens in each model’s response to CHIRP questions. In the study comprising
of matchups from all 20 of our Robin models, the highest log probability responses and the GPT-4V (R)
evaluated responses agreed 48.7% of the time. This is practically equivalent to random chance agreement,
which would be at 50%. This near-random agreement suggests that VLM evaluations are considering factors
beyond the probability of response words occurring together and are indeed investigating the image.

C.2.8 Further Explanations on Contradictions

Because human surveys were limited to 5 pairwise comparisons per question per category, we only calculate
contradictions using those same 5 comparisons in AI evaluations. In order to evaluate logical contradictions,
we start by building a directed graph where each model is a node and the link between 2 nodes is the user
preference. For instance, if the model based on Pythia 6.9B is preferred over the model based on Pythia 2.8B,
there will be a directional link from the Pythia 2.8B based model to the Pythia 6.9B based model. A logical
contradiction is when a cycle is created in the graph.

Figure 23 illustrated this, with a contradiction in sub-figure a as users indicated they preferred the model
based on Pythia 6.9B, over the one based on Pythia 1.4B, over the one based on Pythia 410M, which implies
that the model based on Pythia 6.9B should be preferred over the model based on Pythia 410M. However,
human evaluations showed that the model based on Pythia 410M is preferred over the one on Pythia 6.9B,
hence the contradiction.

Note that contradictions themselves have nothing to do with the sizes of the models, but rather if there was
an inconsistency in the transitivity of preferences for a given question.

(a) Contradiction (b) No Contradiction

Figure 23: Visualization of model preferences over multiple human evaluators for a single question. Arrows
point toward the evaluators preferred model. Contradictions take the form of cycles in the graph. Left.
Example of a contradiction in preferences. Right. Example where preferences remain consistent.
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C.2.9 Graphing the results of CHIRP on the Robin suite

The graph in figure 24 shows the model preference of the human evaluators. Arrows from model A to B
indicate that users preferred the outputs of model B over model A. Not all users had the same preference,
therefore the stronger the arrow, the more a consensus was reached amongst the users on their preferred
model. A weaker, more transparent, arrow indicates that the users were more divided on their preferred
model, and that therefore this preference is less denoted. This can be seen as thicker arrows are more
trustworthy. "Ties", where as many users answered in favor of one or the other model are not shown. We also
note two main colors: the green arrows are for the user preferences which support our hypothesis that users
prefer larger models, while the red arrows indicate user preferences that do not support this hypothesis. We
see an overwhelming amount of preference for larger models, with a notable exception for models using the
CLIP ViT-B vision encoder and Pythia 410M LLM, where this trend is reversed.

(a) Graph showing the complete user preferences in the “Overall” category of the Robin suite.

Figure 24: Visualization of model preferences over multiple human evaluators for the CHIRP benchmark.
Arrows point toward the evaluators preferred model. The expected preference indicates when users preferred
the larger model, while an unexpected preference denotes users preferring the smaller model.
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