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ABSTRACT

Predictive modeling over relational databases (RDBs) powers applications in var-
ious domains, yet remains challenging due to the need to capture both cross-table
dependencies and complex feature interactions. Recent Relational Deep Learning
(RDL) methods automate feature engineering via message passing, while classical
approaches like Deep Feature Synthesis (DFS) rely on predefined non-parametric
aggregators. Despite promising performance gains, the comparative advantages
of RDL over DFS and the design principles for selecting effective architectures
remain poorly understood. We present a comprehensive study that unifies RDL
and DFS in a shared design space and conducts large-scale architecture-centric
searches across diverse RDB tasks. Our analysis yields three key findings: (1)
RDL does not consistently outperform DFS, with performance being highly task-
dependent; (2) no single architecture dominates across tasks, underscoring the
need for task-aware model selection; and (3) validation accuracy is an unreliable
guide for architecture choice. This search yields a curated model performance
bank that links model architecture configurations to their performance; leverag-
ing this bank, we analyze the drivers of the RDL–DFS performance gap and in-
troduce two task signals—RDB task homophily and an affinity embedding that
captures size, path, feature, and temporal structure—whose correlation with the
gap enables principled routing. Guided by these signals, we propose Relatron, a
task embedding-based meta-selector that first chooses between RDL and DFS and
then prunes the within-family search to deliver strong performance. Lightweight
loss-landscape metrics further guard against brittle checkpoints by preferring flat-
ter optima. In experiments, Relatron resolves the “more tuning, worse perfor-
mance” effect and, in joint hyperparameter–architecture optimization, achieves
up to 18.5% improvement over strong baselines with 10× lower computational
cost than Fisher information–based alternatives.

1 INTRODUCTION

Relational databases (Codd, 2007; Harrington, 2016) have served as the foundation of data manage-
ment for decades, organizing interconnected information through tables, primary keys, and for-
eign keys (Harrington, 2016). Their support for data integrity, consistency, and complex SQL
queries has made them essential across healthcare (White, 2020; Johnson et al., 2016), academic
research (Melvin, 2025), and business applications (Stroe, 2011). However, as data volume and
complexity grow, traditional analytics fall short, creating demand for machine learning to identify
patterns, automate decisions, and generate scalable insights. The conventional approach requires
practitioners to manually export and flatten relational data into single tables through custom joins
and feature engineering (Lam et al., 2017) before applying tabular ML methods.

At the macro level, two lines of work aim to reduce manual flattening and feature engineering
in RDBs: (i) deep feature synthesis (DFS) (Kanter & Veeramachaneni, 2015) and (ii) relational
deep learning (RDL) (Robinson et al., 2024; Fey et al., 2024b). Both operate on heterogeneous
entity–relation graphs induced from the underlying database schema, where rows are represented
as nodes typed by their tables and foreign-key links are represented as typed edges. DFS program-
matically composes relational primitives (e.g., aggregations along join paths) to produce a single
feature table on which a standard tabular learner is trained. RDL trains graph neural networks
(GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017) end-to-end on this heterogeneous graph,
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learning task-specific aggregations via message passing. Empirically, both families exploit the re-
lational structure and can surpass relation-agnostic baselines on several RDB benchmarks (Wang
et al., 2024a; Robinson et al., 2024).

However, no comprehensive comparison exists between these paradigms to clarify when each per-
forms better or their relative advantages for different task types. 1 Practitioners currently lack prin-
cipled guidelines for choosing between DFS and RDL when tackling relational database prediction
tasks. Additionally, methods for selecting specific design components—such as message-passing
functions in RDL or tabular models in DFS—remain largely unexplored. These gaps make architec-
ture selection for RDB tasks a labor-intensive process that relies heavily on expert knowledge.

Design space and evaluation. To bridge this gap, we first propose a representative design space for
RDL and DFS: for the former, we decompose models into (1) feature encoding/augmentation, (2)
message passing, and (3) task-specific readouts; for DFS, we use non-parametric feature engineer-
ing paired with a tabular model. We conduct an architecture-centric search—a grid over architecture
choices with sampled hyperparameters—to build a performance bank. Key findings: (1) Brute-force
search outperforms from-scratch RDL baselines, validating the proposed design space. (2) At the
macro level (DFS vs RDL), RDL wins on more tasks (though both have distinct strengths); at the
micro level (fine-grained model architectures), neither family has a single best design. (3) Validation
performance can be unreliable for selection, leading to degraded test performance.
Automatic architecture selection. We identify factors that drive the performance gap and use them
to design the Relatron, an architecture selector with strong test generalization. We introduce an
RDB-task homophily metric that correlates strongly with the performance gap between DFS and
RDL, further enriched with training-free affinity embeddings that capture task table size, structural
affinity, and temporal dynamics. We further observe that the generalization behavior of configura-
tions (validation-selected vs. test-selected) is reflected in the loss landscape geometry. Accordingly,
we propose a landscape-derived metric for more reliable post-selection. Combined, our pipeline
performs strongly on real-world RDB tasks, matching or exceeding prior methods (Cao et al., 2023;
Achille et al., 2019) in task-embedding quality and in predicting whether RDL or DFS is preferable;
for joint hyperparameter and architecture search, it outperforms strong baselines, including search-
based and task-embedding-based ones (Cao et al., 2023; Bischl et al., 2023), while using up to 10x
less compute resources than task-embedding-based methods.

Our contributions can be summarized as follows.

1. We propose a representative model design space for RDB predictive tasks, featuring promising
performance, and generate a model performance bank that links model architecture configura-
tions to task performance for future research.

2. Based on a comprehensive search on the model design space, we point out the limitations of
RDL, and propose a routing method to select between RDL and DFS for RDB predictive tasks
automatically. Furthermore, we analyze the factors that drive the performance gap between
RDL and DFS, and these insights can inspire further research, such as the development of
relational foundation models.

3. Through extensive experiments, we validate the effectiveness of our pipelines in tasks such as
predicting proper architectures and joint hyperparameter-architecture search.

2 RELATED WORK AND BACKGROUND

In this section, we present related works necessary for understanding the following paper contents,
and put other related works in Appendix D.

Relational Deep Learning (RDL).2 (Robinson et al., 2024; Fey et al., 2024a) applies graph ma-
chine learning to relational databases. RDB prediction has three key traits (Figure 1): (1) time
is first-class—labels are split and conditioned on time (2) labels are defined by time-constrained
SQL over arbitrary column combinations; (3) heterogeneous column types make feature interactions
richer than in text-attributed or non-attributed graphs. These choices mirror real industrial settings.

1The graph machine learning models studied in Wang et al. (2025) differ from RDL Robinson et al. (2024)
in implementation details, discussed further in Appendix E.1.

2RDL denotes both the learning paradigm and the problem setting; we use RDL for the former and RDB
for the latter.
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Figure 1: (a) An example of generating the task table from an RDB. The label is based on whether
a student has achieved an A+ in a course before a specific timestamp. (b) Another example demon-
strating the working process of DFS and RDL. For DFS, a predefined set of aggregation functions,
such as MEAN and COUNT, is used to aggregate information across multiple tables based on key
relationships into a final data table. For comparison, RDL is claimed to replace the manual aggrega-
tion design with an automatic message-passing-based sparse attention.

Wang et al. (2024a; 2025) offer a view closer to traditional heterogeneous GNNs; although Wang
et al. (2025) reports results on Relbench (Robinson et al., 2024), the modeling and evaluation setups
differ. We therefore re-implement all methods in the unified framework for fair comparison. Some
recent RDL works center on specialized models for RDL, including higher-order message pass-
ing (Chen et al., 2025a) and recommendation (Yuan et al., 2024). Transformers and LLMs (Dwivedi
et al., 2025; Wu et al., 2025; Wydmuch et al., 2024) have been tested, but are resource-heavy with
modest gains. Foundation models include Griffin (Wang et al., 2025), which uses cross-table atten-
tion yet often fails to beat GNNs, and KumoRFM (Fey et al., 2025), a graph transformer with strong
performance and in-context learning, though details remain undisclosed. In this paper, we focus on
efficient models training from scratch, leaving foundation models for future work.
Deep Feature Synthesis (DFS). Compared to RDL, DFS (Kanter & Veeramachaneni, 2015) is an
overlooked approach, which aggregates cross-table information into a single target table via auto-
mated feature engineering (Zhao et al., 2020; Lam et al., 2017; 2018). It underpins commercial sys-
tems such as getml3. Given a target table and a schema graph, DFS traverses foreign-key–primary-
key links and composes type-aware primitives into feature definitions. Transform primitives oper-
ate on single columns, while aggregation primitives (e.g., statistics such as MAX, MIN, MODE)
summarize sets of related rows; compositions along schema paths yield higher-order features. For
time-indexed tasks, DFS evaluates every recipe under a per-row cutoff time, ensuring that only in-
formation available in the past contributes to the feature value, thereby avoiding leakage.

3 DESIGN SPACE OF MODEL ARCHITECTURES OVER RDB

Architecture selection begins by giving an architecture design space. This section introduces the
task and design space, then presents evaluation results and observations from the exploration.

3.1 PREDICTIVE TASKS ON RDBS

Problem definition. A relational database (RDB) is a tuple D = (T ,L), where T = {T1, . . . , Tn}
is a set of tables and L ⊆ T × T is a set of links between them. Each table Ti ∈ T consists of rows
(entities) {v1, . . . , vmi

}. Links are related to primary keys (PKs) and foreign keys (FKs). A PK pv
uniquely identifies a row, while a FK establishes a link to a row in another table by referencing its
PK. Each row also has a set of non-key attributes, xv , and an optional timestamp, tv . A temporal
predictive task Πtpred with respect to time tpred can be defined over two granularities. Entity-
level prediction learns a function f : Dtpred × Vtarget → Y that maps entities from a target set

3https://getml.com/latest/
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Vtarget ⊆ Ti to a label space Y . Link-level prediction determines the existence of a link between
two entities, vi ∈ Ti and vj ∈ Tj , at time tpred by learning a function f : Dtpred ×Ti×Tj → {0, 1}.
RDB tables can be categorized into fact tables and dimension tables. A fact table stores events or
transactions (e.g., purchases, clicks, race results) with many rows, and each typically carries foreign
keys to several entities. A dimension table stores descriptive attributes about these entities (e.g.,
customer, product, time, circuit/driver), typically with one row per entity/state, and a PK that is
referenced by facts.
Graph perspective of RDB (Robinson et al., 2024). Each RDB and a corresponding predictive
task can be viewed as a temporal graph G(−∞,T ] = (V(−∞,T ], E(−∞,T ], ϕ, ψ, fV , fE), paired with
task labels Y . V(−∞,T ] and E(−∞,T ] are entities and links at time t ≤ T . ϕ maps each entity to its
node type, ψ maps each link to its link type. fV and fE is tha mapping of features.

Datasets and tasks. We consider a diverse set of datasets and tasks from recent works (Robinson
et al., 2024; Wang et al., 2024a; Chen et al., 2025b). Adopting the taxonomy from Robinson et al.
(2024), we categorize these tasks into four types: entity classification, entity regression, recommen-
dation, and autocomplete. Entity-level tasks (classification and regression) involve predicting entity
properties at a given time tpred. Recommendation tasks focus on ranking the relevance between
pairs of entities at tpred. The autocomplete task involves predicting masked information in table
columns. A comprehensive description of each dataset and task is available in Appendix B. We
illustrate the generation of an entity-level task in Figure 1.

3.2 MODEL ARCHITECTURE DESIGN SPACE

Architecture choice. As shown in Table 1, to enable a fair comparison between DFS and RDL
on RDB benchmarks, we construct a compact, factorized design space for each family. RDL mod-
els are built from three modules: (i) a structural-feature encoder (partial labeling trick, learnable
embedding, or no augmentation) (Yuan et al., 2024; Zhu et al., 2021), (ii) a message-passing net-
work (PNA, HGT, SAGE, or RelGNN) (Corso et al., 2020; Hu et al., 2020b; Robinson et al., 2024;
Chen et al., 2025a), and (iii) a readout head (MLP, ContextGNN, or a shallow aggregator) (Yuan
et al., 2024). Standard training hyperparameters such as learning rate, dropout, normalization, and
neighbor fanout are also tuned. DFS methods are parameterized by three main knobs: the SQL-level
aggregation function (e.g., max/min/mode), the number of aggregation layers (1–3 when supported),
and the backbone model (TabPFN, LightGBM, or FT-Transformer), with batch size and hidden di-
mension included as additional hyperparameters. Architectural components are explored via grid
search, while other hyperparameters are sampled from a smaller space (see Appendix E.3).

Design motivation. While it is not feasible to exhaustively cover all designs in graph machine
learning (GML), our design space spans representative components. For message passing alone,
this includes vanilla message passing, self-attention mechanisms, multi-aggregator schemes, and
higher-order approaches. Importantly, classical GML architectures gain renewed significance in
RDB tasks. For example, PNA, originally devised for molecular graphs, is well-suited for RDB
tasks: its multi-aggregation mechanisms naturally capture diverse feature interaction patterns, echo-
ing the strengths of DFS-based approaches. In Appendix E.3, we provide a more detailed description
of each component and explain why some GML designs are not suitable for RDB tasks.

Table 1: Search space of RDL and DFS-based methods for RDB tasks. Underline means these
components will go over a grid search, while other components will be sampled.

Name Architecture design space Hyper-parameters

RDL Structural feature Message passing Readout Learning rate, dropout,
normalization, fanout...Labeling ID, Learnable embedding, None PNA, HGT, Sage, RelGNN MLP, ContextGNN, Shallow

DFS Aggregation function Aggregation layers Backbone Batch size, hidden dimension
...Max, Min, Mode, ... (fixed) 1, 2, 3 (if possible) TabPFN, LightGBM, FT-transformer

3.3 EMPIRICAL STUDY OF VARIOUS ARCHITECTURE DESIGNS

Evaluation setup. For entity-level tasks, we sample 15 configurations per architecture combination
(180 per task). For recommendation, we sample 10 configurations. For DFS, we use the Robinson
et al. (2024) HPO utility with 20 trials per design (TabPFN requires no tuning). Following Robinson
et al. (2024), we train up to 20 epochs, capping each epoch at 1,000 steps (recommendation) or
500 (entity-level), using Adam (Kingma & Ba, 2015) with an optional exponential LR scheduler.
Efficiency is not our main focus, and the only efficiency constraint is that the model can fit a single
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L40S GPU (48GB). See Appendix E.6 for more discussions on extending our pipelines to efficiency-
aware scenarios. In this section, we only report entity-level results. The recommendation results are
presented in Appendix E.5 since the architecture choice there is less important. Our evaluation
reveals the following key insights:

Observation 1. Efficacy and necessity of the design space. We first validate our proposed design
space by examining the best possible test performance. We compare our design space’s perfor-
mance with that of baseline models reported in the literature, including Graphsage (Robinson et al.,
2024), RelGNN (Chen et al., 2025a), RelGT (Dwivedi et al., 2025), KumoRFM (Fey et al., 2025),
and RelLLM (Wu et al., 2025) on 17 Relbench (Robinson et al., 2024) tasks. These strong base-
lines serve to highlight that our design space achieves competitive results. As shown in Figure 2,
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Figure 2: Performance comparison between the best configurations from our design space and base-
line models on entity-level tasks. “Best (ours)“ means the better value of RDL and DFS. Full nu-
merical results can be seen in Table 11 from Appendix E.5.

the best configurations from our design space consistently outperform all scratch-trained baselines
(1) Breaking equivariance: learnable embeddings (e.g., partial labeling Zhu et al. (2021)) improve
entity-level performance despite violating node-level permutation equivariance; (2) Implementa-
tion: compressing dense embeddings via incremental PCA and inserting them as numeric columns
enables efficient cross-table aggregation in DFS (Wang et al., 2025), markedly improving scalabil-
ity and accuracy. These findings justify architecture selection: no single architecture dominates
across tasks. RDL vs. DFS rankings vary by task, and the same holds for micro-level choices (e.g.,
message passing; see Appendix E.5).

Table 2: The performance gap between validation- and test-
selected configurations.
Task Model reported perf test-selected perf val-selected perf

driver-top3 (auroc) Graphsage 75.54 82.81 81.56
RelGNN 85.69 85.69 82.61

driver-position (mae) Graphsage 4.022 3.91 3.93
RelGNN 3.798 3.80 4.35

user-ignore (auroc) Graphsage 81.62 86.40 72.27
RelGNN 86.18 86.18 78.94

Observation 2. Validation met-
rics can be unreliable for architec-
ture selection. Oracle test selection
shows the upper bound of our design
space, but in practice, configurations
are picked by validation (or training)
scores, which often leads to a gap:
validation-selected models underper-
form test-selected ones (Table 2). In
our reproduction of RelGNN (Chen et al., 2025a), the reported gains over GraphSage are clear only
when choosing hyperparameters by test performance; with validation selection, the advantage be-
comes marginal. This reliability issue is largely overlooked in graph AutoML and only briefly noted
in tabular ML (Ye et al., 2024). It is pronounced in RDB settings, which are inductive and time-
aware: temporal splits induce distribution shift between validation and test periods. The problem
affects both RDL and DFS; further evidence is in Appendix E.5.

4 PRINCIPLES AND AUTOMATION OF ARCHITECTURE SELECTION

Building on Section 3, where neither paradigm uniformly dominates, we seek a principled way to
choose architectures for an RDB task. Two obstacles arise: (i) the design space is huge (180 trials per
task cover only a small fraction), and (ii) validation performance—the usual selection proxy—can
be unreliable, so more search can even degrade test performance. We address this by leveraging the
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model performance bank (Section 3.3): for a new task, transfer information from similar tasks to
reduce the search space. This requires a task embedding to capture the properties of tasks.

4.1 FROM OBSERVATIONS TO TASK EMBEDDINGS

We begin with two observations from the performance bank: (1) RDL–DFS performance gaps vary
across tasks; and (2) validation-selected vs. test-selected performance gaps differ across model
types. The first implies data factors driving a task’s affinity for certain model classes; the second
motivates analyzing model properties to explain generalization.

4.1.1 DATA-CENTRIC PERSPECTIVE

We begin with homophily as the first axis of task characterization, since it is the lowest-order rela-
tional signal and reflects a task’s favored inductive bias (Ma et al., 2022). Label-induced properties
empirically outperform label-agnostic ones (e.g., degree) for performance prediction (Li et al., 2023;
Zheng et al., 2024), and labels are directly available in RDB tasks via the materializing SQL query.
Extending homophily to RDB tasks is non-trivial because: (1) labels evolve over time; (2) labels
may be continuous; and (3) the PK–FK graph is schema-driven—labels usually come from a single
fact table, so naively computing edge homophily on raw PK–FK links is ill-posed (always equal 1).
We therefore propose RDB task homophily. Starting from the PK–FK graph used for training, we
temporally aggregate labels to per-entity means ŷv ∈ RC , then augment the graph as in Figure 3 to
form self-looped metapaths; for scalability, we restrict to one-hop metapaths.
Definition 1 (RDB task homophily). Given an augmented heterogeneous graph G = (V, E) induced
from an RDB task, labeled entity type F and VF its nodes, each with mean label ŷv . Let M be a finite
set of self-looped metapaths m starting and ending with F, and let Em be the set of edges induced
by m. Given a label metric K, the RDB task homophily for metapath m is

H(G;m) =
1

|Em|
∑

{u,v}∈Em

K
(
ŷu, ŷv

)
.

Drivers (label)

PK DriverID

Constructors

PK ConstructorID

Races

PK RaceID

Results

FK RaceID

FK DriverID

FK ConstructorID

Drivers DriversResults

Drivers

Pairs of FKs as edges: homophily < 1
Drivers

Drivers

DriverID-RaceID

DriverID-
ConstructorID Drivers

Degenerate: homophily =1

Figure 3: Augmenting REL-F1
databases. We should treat the set
of FKs as a hyperedge (each pair of
FKs is appended to the original PK-FK
graphs as a new edge type) rather than
relying solely on PK-FK edges.

Label metric design. For classification tasks, the label met-
ric can be the dot product K(ŷu, ŷv) = ŷ⊤u ŷv , which reduces
to traditional edge homophily 1{ŷu = ŷv} when there are
no duplicate entities in the task table. We denote this mea-
sure by Hedge(G;m). For regression tasks, we instead use a
correlation-based label metric: letting ỹu = (ŷu − µ)/σ de-
note standardized predictions over labeled nodes (with empiri-
cal mean µ and variance σ2), we define K(ŷu, ŷv); =; ỹu, ỹv; =

; (ŷu−µ)(ŷv−µ)
σ2 to measure Pearson-style correlation of labels

along edges of each metapath. We may further extend the ho-
mophily definition to account for class imbalance. A notable
extension is the adjusted homophily (Platonov et al., 2023).
For a classification task, it can be defined as Hadj(G;m) =

Hedge(G;m)−
∑C

k=1

(
D

(m)
k

2|Em|

)2

1−
∑C

k=1

(
D

(m)
k

2|Em|

)2 , where D(m)
k is the degree of class

k. To obtain a global measure across the whole graph, we ag-
gregate over metapaths using statistical functions such as MEAN and STD.

Anchor-based affinity properties. Homophily is most suited to node-level equivariant message-
passing and overlooks path-based models with labeling tricks and non-structural factors (feature
quality, temporal dynamics). We therefore add anchor-based affinities to estimate which model
families a task favors. If random path-based aggregation already separates labels well, path-based
models should excel. See Appendix C for the relationship between random hashing and randomly
initialized NBFNet. Compared to task embeddings requiring backpropagation (Cao et al., 2023),
these features only require a forward pass and closed-form fitting, which is much more efficient.

1. Path/neighborhood affinity. Use randomly initialized Graphsage and NBFNet (Zhu et al., 2021)
as random hashers; after one forward pass, fit a closed-form linear head (ridge or LDA). A random
NBFNet achieves > 82 AUROC on USER-BADGE, indicating strong path affinity.
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2. Feature affinity. Use TabPFN validation performance (no training) as a proxy for feature quality.
3. Temporal affinity. Since mean-label homophily ignores time, add simple timeline statistics (e.g.,

majority label over time), which effectively capture dynamics (Cornell et al., 2025).

Correlating heuristics with the RDL-DFS performance gap. We conduct a nonparametric cor-
relation analysis relating RDB task characteristics to the performance differential between the best
RDL and DFS models. We identify that log(Ntrain), representing the logarithm of training row
counts, and adjusted homophily are the most significant predictors. Notably, in classification tasks,
adjusted homophily displays a strong negative correlation with the RDL-DFS gap, with Spearman’s
ρ = −0.43 (p < 0.05). (See Appendix C for complete heuristic definitions). This implies that
RDL’s nonlinear aggregation is particularly advantageous for low homophily tasks. Moreover, RDL
requires substantial supervision signals to learn appropriate aggregation functions. We evaluate
other heuristics, including the influence of labeling tricks and path affinity, in Appendix E.5.

(Informal) Theoretical insights. The correlation between the relative performance of RDL and
DFS, homophily-induced features, and the train task table size (number of available labels) can be
elucidated from a graph-theoretical perspective. If we formulate the RDB as a heterogeneous graph
and expand it into a multi-relational graph via metapaths, both DFS and RDL can be viewed as
mechanisms that aggregate neighbor information into a score for each task-table row. However, DFS
relies on fixed linear averages of neighbor signals, whereas RDL learns relation-specific nonlinear
transformations (e.g., amplification, clipping, or sign flips) prior to combination. We briefly discuss
two regimes here and provide rigorous proofs in Appendix C.2.

1. Low-homophily classification. When labels are strongly homophilous along most metapaths,
simple averaging is close to optimal and DFS already captures most relational signal. When some
metapaths are weakly homophilous, heterophilous, or nearly random, linear averaging mixes pos-
itive and negative evidence and tends to cancel signal. RDL can instead learn to down-weight
uninformative relations and flip the contribution of systematically “opposite-label” metapaths,
effectively increasing the signal-to-noise ratio exactly when adjusted homophily is small or neg-
ative. This explains why the RDL–DFS gap grows on low-homophily classification tasks.

2. Dependence on the number of training rows. The same view clarifies why the number of
training rows, Ntrain, is a key moderator. DFS has a relatively small hypothesis class: aggregators
are fixed and only a tabular model is learned, so its estimation error shrinks quickly with sample
size. RDL introduces many additional parameters (per-relation weights, gates, nonlinearities),
which in principle allow it to recover the “right” aggregation but also make it easier to overfit
when supervision is scarce. In low-data regimes, these learned gates are noisy and can hurt
performance compared to the stable DFS averages; once log(Ntrain) is large enough, the gates
can be estimated reliably and RDL’s extra flexibility turns into a consistent advantage.

4.1.2 MODEL-CENTRIC PERSPECTIVE

To understand validation-test selection gaps, we analyze checkpoints that exhibit good and poor
generalization. After conducting intuitive visualization-based analysis (shown in Appendix E.5), we
probe generalization via the local loss landscape L : Rd → R around a checkpointw0 (Chiang et al.,
2023). Fix an orthonormal 2D subspace Π = span(e1, e2) and sample a grid Γ = {(si, tj)} ⊂
[−ρ, ρ]2. Each grid point defines wij = w0 + sie1 + tje2 with Lij = L(wij). We summarize
with three indicators spanning increasing smoothness scales (Garipov et al., 2018; Li et al., 2018a;
Ghorbani et al., 2019):

1. First-order P1: max|i−k|+|j−l|=1
|Lij−Lkl|√

(si−sk)2+(tj−tl)2
(worst finite-difference slope on Π).

2. Second-order P2: λmax(HΠ(w0)), where HΠ(w0) = E⊤∇2L(w0)E, E = [ e1 e2 ] (sharpness
along Π; estimated via second differences or slice fits).

3. Energy barrier Pbar: max(i,j) maxt∈[0,1] L(w0 + t(wij − w0))−max{L(w0), Lij} (barrier to
departing w0 along rays within Π).

We observe that the performance gap is related to the flatness of the loss landscape. On DRIVER-
TOP3 (Table 3), we find that checkpoints with smaller metric values tend to generalize better, since
these models tend to be more stable when there’s a small perturbation on their weights. When vali-
dation–test gaps are large, all indicators consistently favor the true test-optimal configuration; when
gaps are small, indicators may disagree, motivating the usage of multiple signals. These metrics are
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comparable within a model family (RDL or DFS) but not across families due to scale differences.
Moreover, these signals are effective only for well-fitted models (an under-fitted model may have
a flat landscape but poor performance). Since these signals are post-hoc, we utilize them in the
post-selection to refine the final checkpoint choice across models with top validation performance.

4.1.3 AUTOMATIC ARCHITECTURE SELECTION THROUGH RELATRON

Table 3: Example landscape properties and model performance.
Smaller values typically indicate a more benign landscape.

Selection Model type Val auroc Test auroc Pbar P1 P2

Val RDL 89.48 82.41 2.77 1.49 4.23
Test RDL 86.05 85.94 0.41 1.22 0.22
Val DFS 83.44 84.69 0.384 0.041 1.32
Test DFS 83.76 85.71 0.495 0.03 0.50

Based on these findings, we intro-
duce Relatron, an architecture se-
lector that maps task embeddings to
meta-predictions about which model
design to use. Given an RDB task,
Relatron considers two types of ar-
chitecture selection.

Macro-level selection (RDL vs.
DFS). We train a meta-classifier on the performance bank to map task embeddings to the empir-
ically winning family, using homophily-based task embeddings. At inference, we (1) compute the
novel task’s embedding and (2) apply the meta-classifier to choose between RDL and DFS.
Joint architecture selection and HPO with a query budget. For standard HPO with a query-
budget setting, the query budget is appended to the task embedding as an additional feature. (1) A
macro-level meta-predictor first chooses between RDL and DFS. (2) Within the chosen family, two
micro-level meta-predictors based on affinity embeddings—one deciding whether to use labeling
tricks (if RDL is chosen) and the other selecting the optimal number of DFS layers (if DFS is cho-
sen)—are applied to reduce the search space. (3) An HPO routine (e.g., TPE (Bergstra et al., 2011)
or Autotransfer (Cao et al., 2023)) generates candidate checkpoints within the selected family. (4)
Loss-landscape metrics are applied for post-selection among candidates with top validation perfor-
mance. An insight here is that the favored model type is related to the query budget. Although RDL
often attains higher best-case performance on tasks such as STUDY-OUTCOME, under tight search
budgets, its average performance can lag behind DFS because good RDL configurations are harder
to find. Moreover, as shown in Section 4.2, we surprisingly find that the macro-level meta-predictor
(DFS or RDL) addresses most issues: after selecting the appropriate model branch, search efficiency
improves and the validation–test gap narrows.
Design space of task features.In terms of task feature design, there are three categories, with com-
putation budgets ranging from small to large. A detailed introduction can be found in Appendix E.

1. Model-free embeddings: Model-free embedding requires no training and is extremely fast to
compute. This includes homophily-based features, the performance of simple heuristic baselines,
basic database statistics, and temporal-related correlations.

2. Training-free Model-based embeddings: These embeddings use training-free models’ perfor-
mance as embeddings. This includes the performance of DFS-TabPFN and that of randomly
initialized GraphSage or NBFNet.

3. Anchor-based embeddings (Cao et al., 2023): This refers to task2vec (Achille et al., 2019)-
based anchor model-based embeddings, such as Auto-transfer. Though the original paper claims
that these embeddings require little time to obtain, we find that computing the Fisher information
matrix is actually very time-consuming for RDB tasks, given the number of required anchors.

4.2 EXPERIMENTAL EVALUATIONS

We then evaluate the proposed Relatron on three experiments. (1) A sanity check of task embeddings:
First, we evaluate the effectiveness of different task embeddings by comparing the task similarity
calculated by task embedding and the ground truth Graphgym similarity (You et al., 2020). This ex-
periment is mainly used to verify the correctness of task embeddings. (2) Macro-level architecture
search: Second, we check whether task embeddings can help identify the proper architecture for an
RDB task. (3) Joint selection of architectures and hyperparameters: Third, we consider a more prac-
tical scenario, in which task embeddings and meta-predictor are used to enhance the effectiveness
of joint hyperparameter and architecture search.

Can task embeddings reflect ground-truth task similarity? Using all trials in the performance
bank, we: (1) derive ground truth GraphGym similarity (You et al., 2020) by intersecting model
configurations across tasks, ranking them by per-task performance, and defining pairwise similar-
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Figure 4: Ground
truth GraphGym
similarity

Table 4: Experimental results for task-embedding similarity, leave-one-out (LOO) ac-
curacy, and task-embedding computation efficiency. “AT” stands for Autotransfer. For
“winner by val,” we still report test performance, but the representative checkpoints are
selected by validation performance.
Task embedding design Mean Kendall’s corr (no g) Mean Kendall’s corr (g) Winner by val Winner by test Average time (min)

Model-free (homophily + stats + temporal) 0.066 0.163 87.5% 79.2% 0.48
Model-free (simple heuristic performance) 0.027 0.031 70.8% 75.0% 0
Model-based (training-free) -0.038 -0.030 66.7% 66.7% 5
Anchor-based (Autotransfer) -0.049 -0.011 66.7% 66.7% 50

Table 6: Joint architecture and hyperparameter optimization result. Best results are highlighted
with an underline and the second are bold. “Only predictor” means only using the meta-predictor.
Relbench’s default refers to the default architecture and hyperparameters in their pipelines. Best
fixed refers to the configurations with the best mean rank of performance across tasks.

Strategy Budget driver-top3 (ROC-AUC) ↗ driver-position (MAE) ↘ user-churn (ROC-AUC) ↗

Random
3 82.67 ± 2.19 3.6810 ± 0.4255 68.56 ± 1.23
10 77.80 ± 4.79 3.8576 ± 0.5035 68.60 ± 1.20
30 77.28 ± 2.42 4.2793 ± 0.1483 69.54 ± 0.43

TPE
3 82.67 ± 2.19 3.6810 ± 0.4255 68.56 ± 1.23
10 81.45 ± 0.44 3.7897 ± 0.4271 68.60 ± 1.20
30 77.92 ± 5.12 4.1724 ± 0.0519 69.54 ± 0.43

Hyperband
3 82.67 ± 2.19 3.6810 ± 0.4255 68.43 ± 1.33
10 80.68 ± 0.74 3.7897 ± 0.4271 68.60 ± 1.20
30 74.37 ± 9.59 4.0948 ± 0.1420 69.32 ± 0.34

Autotransfer 3 77.11 ± 4.43 4.2916 ± 0.0952 69.09 ± 0.86
10 78.71 ± 2.88 4.3645 ± 0.2105 70.28 ± 0.27

Only predictor Full Only predictor Full Only predictor Full

Ours
3 83.80 ± 0.34 83.80 ± 0.34 3.3986 ± 0.0877 3.3986 ± 0.0877 68.78 ± 1.31 68.78 ± 1.31
10 83.28 ± 1.45 83.30 ± 1.17 3.3934 ± 0.1389 3.3553 ± 0.0862 69.66 ± 0.89 69.61 ± 0.86
30 84.00 ± 0.34 84.33 ± 0.06 3.3339 ± 0.1563 3.3339 ± 0.1563 70.05 ± 0.34 70.05 ± 0.34

DFS + TabPFN 82.24 3.43 67.79
Relbench’s default 73.19 5.02 68.12
Best fixed 83.72 4.35 69.84
Griffin 77.95 4.20 68.4

ity as Kendall’s τ between the two rank signatures. As a sanity check, the top 3 similar tasks are
USER-BADGE, USER-ENGAGEMENT, and USER-CHURN, which aligns with the similarity of their
homophily metrics (2) for each embedding, form a task–task matrix via cosine similarity on normal-
ized features and report Kendall’s rank correlation with the GraphGym matrix; (3) optionally learn a
projection g (as in Cao et al. (2023)) using a margin-ranking meta-objective that pulls together tasks
with similar performance profiles and pushes apart dissimilar ones. Results (Table 4): Our proposed
homophily and affinity-based embedding achieves the best ranking correlation. On the other hand,
we also need to point out that none of these task embeddings present significantly high correlation,
which can partially explain why transfer-based HPO is not very effective in Table 6.

Table 5: Ablation on performance-bank size for macro-level
predictors (LOO accuracy).

Bank size Model-free (ours) Training-free model-based Anchor-based
8 68.9% 56.9% 62.9%
12 64.8% 50.4% 56.1%
16 76.2% 53.1% 62.5%
All 87.5% 66.7% 66.7%

Can task embeddings help predict RDL
vs. DFS winner? We then investi-
gate whether task embeddings can predict
which method—RDL or DFS—performs
better on a novel task. We consider win-
ners selected by validation performance
and directly extracted using test perfor-
mance. The former one is exactly the setting for architecture selection during the HPO. For each
target task, we fit the model using other tasks in the model performance bank and evaluate the tar-
get task with leave-one-out cross-validation. As shown in Table 6, our proposed model-free task
features are surprisingly most effective despite the low computation cost. If we further look at the
incorrect samples, we find that most of them have a small performance gap between RDL and DFS
(within 2.5%), indicating that these tasks are inherently hard to distinguish. Moreover, as shown in
Table 5, we also study the influence of model performance bank size. As expected, larger banks lead
to better predictors since they cover more diverse tasks. At the same time, our proposed model-free
task features consistently outperform other embeddings under different bank sizes.
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Joint hyperparameter and architecture search. We evaluate our full pipeline in a joint
HPO–architecture–search setting. As baselines for trial generation, we use random search,
TPE (Bergstra et al., 2011), Hyperband (Li et al., 2018b), and Autotransfer (Cao et al., 2023).
We report results on three representative datasets—DRIVER-TOP3, DRIVER-POSITION, and USER-
CHURN—and use the remaining tasks as the performance bank; the first two have small training
tables and are prone to overfitting. Our pipeline trains a TabPFN-based meta-predictor that selects
between RDL and DFS from the query budget and homophily-based task embeddings. Conditional
on this choice, we run one of the above trial generators within the selected family (we select TPE
since it delivers the best performance), then post-select among the top-3 validation models using
landscape measures.
As shown in Table 6, we observe: (1) our pipeline generally achieves better performance. Us-
ing only the meta-predictor to choose the model family already yields strong results, suggesting that
large validation–test gaps often arise from selecting an unsuitable architecture. Unlike other methods
that suffer from the undesirable “the more you train, the worse you get” phenomenon, our perfor-
mance continues to improve as the number of trials increases. Post-hoc selection offers only limited
gains, likely because hard voting over numeric landscape metrics still introduces noise. Addressing
checkpoint selection may require pre-trained priors similar to architecture search; we leave this to
future work. (2) For search acceleration, unlike Cao et al. (2023), embedding-based configuration
retrieval is typically ineffective, with the sole exception of USER-CHURN. Consequently, we rely on
TPE for trial generation. The limited effectiveness of Autotransfer suggests that RDB data distri-
butions are more complex than those of standard graph benchmarks, and that a larger, more diverse
task bank would be needed—impractical given the scarcity of public data. Synthetic tasks, in the
spirit of Hollmann et al. (2023), may therefore be a promising direction to improve search quality.
(3) After hyper-parameter tuning, we demonstrate that models trained from scratch can outperform
foundation models like DFS with TabPFN.

5 CONCLUSION, LIMITATIONS, AND FUTURE DISCUSSION

In this paper, we systematically study the design space of relational machine learning models for
RDB tasks and collect a model performance bank. Based on this study, we show that the advantage
of RDL over DFS is related to task properties, like the RDB task homophily. Then, we propose a
meta-predictor based on the model performance bank and our proposed selector, Relatron, which
demonstrates promising performance in both macro- and micro-level architecture search.

Limitations and future work. Our study does not explore LLM-based methods, either as en-
coders (Wang et al., 2025) or predictors (Wu et al., 2025). While these approaches excel on certain
databases, they often perform similarly or worse than baselines on other databases, leaving their
role an open question. Although we do not propose new architectures, our results highlight design
insights: GNNs with labeling tricks can boost entity-level prediction, and DFS-based methods of-
ten outperform RDL, suggesting that current RDL designs may be suboptimal. Yet DFS remains
a non-parametric, hand-crafted approach, contrasting with deep learning trends. Designing novel
architectures inspired by DFS thus represents a promising direction.

6 ETHICS STATEMENT

I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR
Code of Ethics. Our study relies solely on publicly available benchmark datasets such as Rel-
bench (Robinson et al., 2024). We believe this work raises no direct ethical risks beyond standard
concerns associated with machine learning research.

7 REPRODUCIBILITY STATEMENT

Due to the policy, we can not share the source code of this paper during the submission phase. We
will make them available online after approval. To help reproducibility of the results, we provide
training settings in Section 3.3, Section 4, and Appendix E. To validate the observations in this
paper, we include theoretical discussions in Appendix C.
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Shenyang Huang, Blaž Stojanovič, Alan Krumholz, Jan Eric Lenssen, Jure Leskovec, and
Matthias Fey. ContextGNN: Beyond two-tower recommendation systems. arXiv, 2024. doi:
10.48550/arxiv.2411.19513.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
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A USAGE OF LARGE LANGUAGE MODELS

We utilize large language models to refine our writing and also employ a large language model-
based coding agent to assist with code writing. We have reviewed the generated content provided
by large language models and will be responsible for the correctness of the polished content.

B SUPPLEMENTARY INFORMATION FOR DATASETS AND TASKS

Our adopted datasets and tasks are summarized in Table 7. It should be noted that we skip the rel-
amazon datasets because the source is crawled from Amazon, which contains sensitive information
and doesn’t present a valid license. We then briefly introduce each dataset and task as follows:

• rel-hm (Robinson et al. (2024)): This database contains comprehensive customer and product
data from online retail platforms, including detailed purchase histories and diverse metadata
such as customer demographics and product attributes.

– user-churn: For each customer, predict whether they will churn—i.e., have no trans-
actions—in the next 7 days.

– user-item-purchase: Predict the list of articles each customer will purchase in the
next 7 days.

– item-sales: Predict the total sales (sum of prices of associated transactions) for an
article in the next 7 days.

• rel-stack (Robinson et al. (2024)): This database is about a Q&A platform with a rep-
utation system. Data is dumped from the stats-exchange site, and data from the 2023-09-12
dump.

– post-votes: For each post, predict how many votes it will receive in the next 3 months.
– user-engagement: For each user, predict whether they will make any votes, posts, or

comments in the next 3 months.
– user-badge: For each user, predict whether they will receive a new badge in the next 3

months.
– user-post-comment: Predict a list of existing posts that a user will comment on in

the next two years.
– post-post-related: Predict a list of existing posts that users will link a given post

to in the next two years.
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– user-comment-count: Predicts how many comments each user will post over the
next 30 days.

• rel-event (Robinson et al. (2024)): An anonymized event recommendation dataset from
the Hangtime app, containing user actions, event metadata, demographics, and social relations.

– user-repeat: Predict whether a user will attend another event (respond “yes” or
“maybe”) in the next 7 days, given they attended an event in the last 14 days.

– user-ignore: Predict whether a user will ignore more than two event invitations in the
next 7 days.

– user-attendance: Predict how many events each user will respond “yes” or “maybe”
to in the next 7 days.

• rel-avito (Robinson et al. (2024)): A marketplace-style relational database.
– user-visits: Predict whether each customer will visit more than one ad in the next 4

days.
– user-clicks: Predict whether each customer will click on more than one ad in the

next 4 days.
– ad-ctr: Assuming an ad will be clicked in the next 4 days, predict its click-through rate

(CTR).
– user-ad-visit: Predict the list of ads a user will visit in the next 4 days.

• rel-trial (Robinson et al. (2024)): A clinical-trial oriented relational database.
– study-outcome: Predict whether trials in the next 1 year will achieve their primary

outcome.
– study-adverse: Predict the number of patients with severe adverse events/deaths for

the trial in the next 1 year.
– site-success: Predict the success rate of a trial site in the next 1 year.
– condition-sponsor-run: For each condition, predict which sponsors will run tri-

als.
– site-sponsor-run: For each (site, sponsor) pair, predict whether the sponsor will

run a trial at the site.
• avs (Wang et al. (2024a); DMDave et al. (2014)): A Kaggle e-commerce dataset of offers and

customer interactions.
– retention: For each (offer, customer) pair, predict whether the customer will repeat

the promoted purchase (become a ”repeater”) within a specified follow-up period.
• ieee-cis (Chen et al. (2025b); Howard et al. (2019)): Transactional fraud-style interactions.

– fraud: For each transaction, predict whether it is fraudulent at the time of authorization.
• rel-f1: F1 competition results database.

– driver-top3: Predict whether each driver will qualify in the top 3 for a race within the
next month.

– driver-dnf: Predict whether each driver will not finish (DNF) a race in the next month.
– driver-position: Predict the average finishing position of each driver in all races

over the next two months.
– driver-wins: Predict the number of races each driver will win over the next year.
– constructor-scores-points: Predict whether each constructor team will score

any championship points in the next three months.
– driver-position-change: Predict the average change between a driver’s starting

grid position and final position over the next four months.
• rel-arxiv: A database recording the publication relation across the arxiv

– paper-citation: Predict whether a paper will be cited by other papers in the next six
months.

– author-publication: Predict how many papers an author will publish in the next
six months.

In terms of RDB predictive tasks, Robinson et al. (2024) provides a unified interface to define tasks
and generate corresponding training, validation, and test tables through SQL. We then demonstrate
an example SQL query for each example task below:

Example entity-level task (user-churn in rel-hm):
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1 class UserChurnTask(EntityTask):
2 r"""Predict the churn for a customer (no transactions) in the next

week."""
3
4 task_type = TaskType.BINARY_CLASSIFICATION
5 entity_col = "customer_id"
6 entity_table = "customer"
7 time_col = "timestamp"
8 target_col = "churn"
9 timedelta = pd.Timedelta(days=7)

10 metrics = [average_precision, accuracy, f1, roc_auc]
11
12 def make_table(self, db: Database, timestamps: "pd.Series[pd.

Timestamp]") -> Table:
13 customer = db.table_dict["customer"].df
14 transactions = db.table_dict["transactions"].df
15 timestamp_df = pd.DataFrame({"timestamp": timestamps})
16
17 df = duckdb.sql(
18 f"""
19 SELECT
20 timestamp,
21 customer_id,
22 CAST(
23 NOT EXISTS (
24 SELECT 1
25 FROM transactions
26 WHERE
27 transactions.customer_id = customer.

customer_id AND
28 t_dat > timestamp AND
29 t_dat <= timestamp + INTERVAL ’{self.

timedelta}’
30 ) AS INTEGER
31 ) AS churn
32 FROM
33 timestamp_df,
34 customer,
35 WHERE
36 EXISTS (
37 SELECT 1
38 FROM transactions
39 WHERE
40 transactions.customer_id = customer.customer_id

AND
41 t_dat > timestamp - INTERVAL ’{self.timedelta}’

AND
42 t_dat <= timestamp
43 )
44 """
45 ).df()
46
47 return Table(
48 df=df,
49 fkey_col_to_pkey_table={self.entity_col: self.entity_table},
50 pkey_col=None,
51 time_col=self.time_col,
52 )

As we can see, the time information is split into several time windows and given in the function
parameter timestamps. Then, this timestamp will be used to create a time constraint, and the
target label will be generated based on the SQL logic.

Example recommendation task (user-item-purchase in rel-hm):
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1 class UserItemPurchaseTask(RecommendationTask):
2 r"""Predict the list of articles each customer will purchase in the

next seven
3 days."""
4
5 task_type = TaskType.LINK_PREDICTION
6 src_entity_col = "customer_id"
7 src_entity_table = "customer"
8 dst_entity_col = "article_id"
9 dst_entity_table = "article"

10 time_col = "timestamp"
11 timedelta = pd.Timedelta(days=7)
12 metrics = [link_prediction_precision, link_prediction_recall,

link_prediction_map]
13 eval_k = 12
14
15 def make_table(self, db: Database, timestamps: "pd.Series[pd.

Timestamp]") -> Table:
16 customer = db.table_dict["customer"].df
17 transactions = db.table_dict["transactions"].df
18 timestamp_df = pd.DataFrame({"timestamp": timestamps})
19
20 df = duckdb.sql(
21 f"""
22 SELECT
23 t.timestamp,
24 transactions.customer_id,
25 LIST(DISTINCT transactions.article_id) AS article_id
26 FROM
27 timestamp_df t
28 LEFT JOIN
29 transactions
30 ON
31 transactions.t_dat > t.timestamp AND
32 transactions.t_dat <= t.timestamp + INTERVAL ’{self.

timedelta} days’
33 GROUP BY
34 t.timestamp,
35 transactions.customer_id
36 """
37 ).df()
38
39 return Table(
40 df=df,
41 fkey_col_to_pkey_table={
42 self.src_entity_col: self.src_entity_table,
43 self.dst_entity_col: self.dst_entity_table,
44 },
45 pkey_col=None,
46 time_col=self.time_col,
47 )

Similarly, recommendation tasks are based on the joined table between the timestamp table and the
target entity tables. A groupby operation is then applied to generate the list of target entities.

Example autocomplete task:

1 def make_table(self, db: Database, timestamps: "pd.Series[pd.Timestamp]")
-> Table:

2 entity_table = db.table_dict[self.entity_table].df # noqa: F841
3 entity_table_removed_cols = db.table_dict[ # noqa: F841
4 self.entity_table
5 ].removed_cols
6
7 time_col = db.table_dict[self.entity_table].time_col
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8 entity_col = db.table_dict[self.entity_table].pkey_col
9

10 # Calculate minimum and maximum timestamps from timestamp_df
11 timestamp_df = pd.DataFrame({"timestamp": timestamps})
12 min_timestamp = timestamp_df["timestamp"].min()
13 max_timestamp = timestamp_df["timestamp"].max()
14
15 df = duckdb.sql(
16 f"""
17 SELECT
18 entity_table.{time_col},
19 entity_table.{entity_col},
20 entity_table_removed_cols.{self.target_col}
21 FROM
22 entity_table
23 LEFT JOIN
24 entity_table_removed_cols
25 ON
26 entity_table.{entity_col} = entity_table_removed_cols.{

entity_col}
27 WHERE
28 entity_table.{time_col} > ’{min_timestamp}’ AND
29 entity_table.{time_col} <= ’{max_timestamp}’
30 """
31 ).df()
32
33 # remove rows where self.target_col is nan
34 df = df.dropna(subset=[self.target_col])
35
36 return Table(
37 df=df,
38 fkey_col_to_pkey_table={
39 entity_col: self.entity_table,
40 },
41 pkey_col=None,
42 time_col=time_col,
43 )

Autocomplete tasks are based on the entity table itself, which is a setting closer to traditional RDB
predictive tasks used in Wang et al. (2024a).

C SUPPLEMENTARY THEORETICAL DISCUSSION

C.1 DEFINITION OF METRICS

In this section, we present the formal definition of missing homophily-related features adopted in
this paper, as discussed in Section 4.1.1.
Definition 2 (Class-insensitive homophily). For a classification task with class prior π :=
1
|L|
∑
u∈L ŷu ∈ ∆C−1, define the class-conditional edge similarity for metapath m by

hk(G;m) :=

∑
(u,v)∈Em

K(ŷu, ŷv) ŷv,k∑
(u,v)∈Em

ŷv,k
(k = 1, . . . , C).

The class-insensitive homophily for m is

Hins(G;m) :=
1

C − 1

C∑
k=1

[
hk(G;m)− πk

]
+
.

For regression tasks, where class imbalance is irrelevant, we set
Hins(G;m) := Hedge(G;m).
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Table 7: Summary of databases, tasks, task types, and evaluation metrics used in our experiments.

Database Name Task Name Task Type Metric

rel-f1

driver-dnf classification ROC-AUC
driver-top3 classification ROC-AUC
driver-position regression MAE
driver-wins regression MAE
constructor-scores-points classification ROC-AUC
driver-position-change regression MAE

rel-hm

user-churn classification ROC-AUC
user-item-purchase recommendation MAP
item-sales regression MAE

rel-stack

post-votes regression MAE
user-engagement classification ROC-AUC
user-badge classification ROC-AUC
user-post-comment recommendation MAP
post-post-related recommendation MAP
user-comment-count regression MAE

rel-event
user-repeat classification ROC-AUC
user-ignore classification ROC-AUC
user-attendance regression MAE

rel-avito

user-visits classification ROC-AUC
user-clicks classification ROC-AUC
ad-ctr regression MAE
user-ad-visit recommendation MAP

rel-trial

study-outcome classification ROC-AUC
study-adverse regression MAE
site-success regression MAE
condition-sponsor-run recommendation MAP
site-sponsor-run recommendation MAP

avs retention autocomplete ROC-AUC

ieee-cis fraud autocomplete ROC-AUC

rel-arxiv paper-citation classification ROC-AUC
author-publication regression MAE
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Definition 3 (Aggregation homophily). Let Γm(u) = { v ∈ L : (u, v) ∈ Em } be the labeled
m-neighbors of u and degm(u) = |Γm(u)|. Define the neighbor-aggregated label

ȳ(m)
u :=

1

degm(u)

∑
v∈Γm(u)

ŷv (classification), ȳ(m)
u :=

1

degm(u)

∑
v∈Γm(u)

ŷv (regression).

Let Um := {u ∈ L : degm(u) > 0}. The aggregation homophily for m is

Hagg(G;m) :=
1

|Um|
∑
u∈Um

K
(
ŷu, ȳ

(m)
u

)
, classification,

K
(
ŷu, ȳ

(m)
u

)
, regression,

with K dot product for classification; Gaussian kernel K(a, b) = exp
(
−∥a − b∥2/(2σ2

y)
)

for re-
gression).

C.2 WHY RDL IS BETTER AT THE LOW-HOMOPHILY REGION FOR THE CLASSIFICATION
TASK?

In this section, we analyze why RDL exhibits advantages in low-homophily regimes. Our argument
adapts the Bayes-optimal analysis of Wei et al. (2022), which characterizes how the optimal one-hop
classifier changes with label/feature homophily. We do not provide original proof here; instead, we
specialize their framework to metapath-projected RDB graphs and use it to explain the observed
behavior of RDL.

Following §4.1.1, let G = (V, E) be the heterogeneous graph induced by the RDB task with labeled
entity type F and node set VF. Let M be a finite family of self-looped metapathsm that start and end
at F; each m induces edges Em on VF and neighbor sets N (m)

v . For clarity, we work with a binary
label space Yv ∈ {−1,+1} drawn i.i.d. with prior Pr(Yv = +1) = π ∈ (0, 1). We next specify the
generative model that underpins our analysis. We make the RDB data fall under the framework of
Wei et al. (2022) by considering the metapath-induced graphs.
Definition 4 (Metapath-wise contextual SBM (tCSBM)). Let VF be the labeled entity set and M a
finite set of self-looped metapaths on F. The generative model for (Y,X, {Em}m∈M) is:

(Labels). Each node v ∈ VF has a class label Yv ∈ {+1,−1} drawn i.i.d. from a prior Pr(Yv =
1) = π ∈ (0, 1)

(Node features). Conditional on Yv , the attribute Xv is drawn i.i.d. from a class-conditional distri-
bution PYv

with density p(· | Yv) (e.g., a Gaussian mixture). Features are conditionally independent
across nodes given Y .

(Edges along each metapath). For every metapath m ∈ M, conditional on labels Y the edges in
Em are independent and

Pr({u, v} ∈ Em | Yu = Yv) = pm, Pr({u, v} ∈ Em | Yu ̸= Yv) = qm.

Moreover, edges are conditionally independent of features given labels: {Em}m ⊥⊥ X | Y .
Remark 1 (Metapath-induced graphs as the substrate for DFS and RDL). Def. 4 specifies, for each
self-looped metapathm, an induced edge set Em on VF. In practice, both DFS and RDL operate on
this metapath-induced F–F graph: one first projects the heterogeneous joins alongm back to F (e.g.,
via path counts or normalized weights) to obtain an adjacency A(m), and then aggregates informa-
tion over A(m). Concretely, DFS produces non-parametric, linear aggregates (e.g., SUM/ MEAN)
of base features on VF through A(m) (or its row-normalized form), which algebraically coincides
with multiplying by A(m). In contrast, RDL uses the same metapath-induced structure but applies
relation-aware (per-metapath) transformations or gates to the propagated signals before or during
aggregation. Thus, after the metapath projection, both methods are defined on the same F–F graph
if DFS only utilizes the mean aggregator; they differ only in whether the propagation is purely linear
and fixed (DFS) or relation-conditioned and learned (RDL).

Then, following Wei et al. (2022), we consider the MAP estimation of the classifier that can mini-
mize the misclassification rate. The estimation of a node label depends on its own attributes and the
attributes of its 1-hop metapath-induced neighbors.
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The one-hop maximum a posteriori (MAP) rule at node v selects the label y ∈ {−1,+1} that
maximizes the joint posterior of y and the (latent) neighbor labels {yu}u∈∪mN

(m)
v

given the local
observations (Xv, {Xu}, {1{(v, u) ∈ Em}}m):

Ŷv = arg max
y∈{±1}

max
{yu}

πy p(Xv | y)
∏
m∈M

∏
u∈N(m)

v

[
πyu p(Xu | yu) p1{yu=y}m q1{yu ̸=y}m

]
.

Taking logs (monotone) and subtracting the two class scores yields a decision function whose sign
gives Ŷv:

Ŷv = sign
(
log π

1−π + log p(Xv|+1)
p(Xv|−1)︸ ︷︷ ︸
ψ(Xv)

+
∑
m∈M

∑
u∈N(m)

v

log
max{pm p(Xu | +1), qm p(Xu | −1)}
max{qm p(Xu | +1), pm p(Xu | −1)}︸ ︷︷ ︸

ϕmax(ψ(Xu); γm)

)
,

where γm := log pmqm encodes metapath homophily and ψ(Xu) := log p(Xu|+1)
p(Xu|−1) is the feature log-

likelihood ratio. The per-neighbor MAP message admits the closed form

ϕmax(s; γ) = log
max{eγ+s, 1}
max{es, eγ}

= clip(s, −γ, +γ),

Basic properties of the MAP message on metapaths. For m ∈ M let γm := log pmqm and define
the per-neighbor joint-MAP message ϕmax(s; γ) = clip(s,−γ, γ) applied to s = ψ(Xu).
Lemma 1 (Gate-off, flip, and linear region). For all s ∈ R and m ∈ M,

(i) (gate-off) if γm = 0 then ϕmax(s; γm) ≡ 0;

(ii) (flip) if γm < 0 then ϕmax(s; γm) = −ϕmax(s; |γm|);

(iii) (linear region) if |s| ≤ γm then ϕmax(s; γm) = s.

Proof. All three statements follow immediately from the piecewise form of ϕmax(s; γ):
ϕmax(s; γ) = −γ for s ≤ −γ, equals s for |s| < γ, and equals +γ for s ≥ γ. In particular, γ = 0
gives the zero map; replacing γ by −γ flips signs; and on [−γ, γ] the function is the identity.

Remark 2 (Interpretation of Lemma 1). Lemma 1 summarizes the three key regimes of the MAP
message ϕmax(s; γ). These properties clarify how structure and features interact: (i) when γ = 0
the metapath carries no information and should be shut off (gate-off); (ii) when γ < 0, the neighbor
evidence must be flipped to align with the center label (heterophily flip); and (iii) when |s| ≤ γ the
nonlinearity reduces to the identity, So in highly homophilous settings, the MAP rule coincides with
linear DFS-style aggregation. These simple facts underpin the later SNR comparison: they explain
why linear propagation is adequate in strong homophily, but why relation-aware gating is necessary
and beneficial in low or negative homophily regimes.

We then come up with the vectorized form of the MAP score vector by aggregating each element

Proposition 1 (Vector form on the metapath-projected F–F graph.). Let A(m) be the (possibly nor-
malized) metapath-induced adjacency on VF obtained by projecting m back to F; put s ∈ R|VF| with
sv = ψ(Xv). Writing ϕmax elementwise, the one-hop joint-MAP score vector is

z = log π
1−π 1+ s +

∑
m∈M

A(m) ϕmax

(
s; γm

)
, Ŷv = sign(zv). (1)

Proof. For each v ∈ VF, the one–hop joint–MAP score derived earlier is score(v) = log π
1−π +

ψ(Xv) +
∑
m

∑
u∈N(m)

v
ϕmax(ψ(Xu); γm). Let s ∈ R|VF| with sv = ψ(Xv) and define ϕm(s)

elementwise by [ϕm(s)]u = ϕmax(su; γm). By the definition of the metapath-projected adjacency
A(m) (with entries A(m)

vu supported on u ∈ N
(m)
v ), we have [A(m)ϕm(s)]v =

∑
uA

(m)
vu [ϕm(s)]u =∑

u∈N(m)
v

ϕmax(su; γm), which reproduces the inner sum for metapath m; summing over m gives
the full neighbor contribution. Hence the v-th coordinate of z := log π

1−π1+ s+
∑
mA

(m)ϕm(s)

equals score(v), and the MAP decision is Ŷv = sign(zv), proving the vector form.
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We then introduce a key concept of signal-to-noise ratio (SNR) to compare the linear DFS-style
aggregation and the gated RDL-style aggregation. The SNR is a standard metric in statistical sig-
nal processing and communication theory that quantifies the strength of the signal relative to the
noise. In our context, it measures how well the aggregated neighbor information can distinguish be-
tween different classes, taking into account the variability introduced by the features and the graph
structure.
Definition 5 (SNR bookkeeping on metapaths). Let µ+ := E[ψ(X) | Y = +1], µ− := E[ψ(X) |
Y = −1], δ := µ+−µ−, and let σ2 := max{Var(ψ(X) | Y = +1),Var(ψ(X) | Y = −1)}+δ2/4
(to upper bound the class-mixture variance). Denote the expected degree dm := E[|N (m)

v |] and

αm := Pr(Yu=Yv | {u, v} ∈ Em)− Pr(Yu ̸=Yv | {u, v} ∈ Em) =
pm − qm
pm + qm

= tanh
(γm

2

)
, (2)

so that Pr(Yu=Yv | {u, v} ∈ Em) = (1 + αm)/2.

We then introduce an assumption that controls the gap between the variance of the sum of metapath-
wise neighbor contributions and the sum of their variances. It should be noted that the proof here
assumes the feature is in the informative regime.
Assumption 1 (Cross-metapath covariance control). There exists Λ ≥ 1 such that for any
choice of (centered) neighbor functions Zm(v) =

∑
u∈N(m)

v
gm(Xu), Var(

∑
m Zm(v) | Yv) ≤

Λ
∑
mVar(Zm(v) | Yv). This holds with Λ = 1 under conditional independence across metapaths.

Here gm : X → R denotes the per–metapath neighbor contribution for m—e.g., in the linear/DFS
case gm(x) = ψ(x) − E[ψ(X) | Yv], while in the gated/RDL case gm(x) = ϕmax(ψ(x); γm) −
E[ϕmax(ψ(X); γm) | Yv] (both centered given Yv).
Lemma 2 (Mean–variance ledgers for linear vs. gated aggregation). Consider the linear
(DFS-style) neighbor sum Slin(v) =

∑
m

∑
u∈N(m)

v
ψ(Xu) and the gated sum Sgate(v) =∑

m

∑
u∈N(m)

v
ϕmax(ψ(Xu); γm). dm denotes the degree of metapaths. Then

E[Slin | Yv = +1]− E[Slin | Yv = −1] =
∑
m

dm αm δ, Var(Slin | Yv) ≤ Λ
∑
m

dm σ
2.

Moreover, in the informative-feature regime of Wei et al. (2022, Lemma. C1),

E[Sgate | Yv = +1]−E[Sgate | Yv = −1] ≈
∑
m

2dm αm γm, Var(Sgate | Yv) ≤ Λ
∑
m

dm σ̃
2
m,

with σ̃2
m ≲ γ2m e

−c∆2

for some universal c > 0 (here ∆ denotes a class-separation measure, e.g.,
the Gaussian separation or a calibrated logit separation).

Proof. Linear mean. By exchangeability along metapath m and linearity of expectation,

E
[ ∑
u∈N(m)

v

ψ(Xu)
∣∣∣Yv = y

]
= dm E[ψ(Xu) | Yv=y, {u, v}∈Em].

Conditioning on Yu and using Pr(Yu = y | edge) = 1+αm

2 ,

E[ψ(Xu) | Yv=y, edge] = 1+αm

2 µy +
1−αm

2 µ−y.

Subtracting the two classes yields dmαm(µ+ −µ−) = dmαmδ. Summing m gives the first display.
Linear variance. For each m, Var(

∑
u∈N(m)

v
ψ(Xu) | Yv) ≤ dm σ

2 by a binomial-variance bound
and the definition of σ2. Assumption 1 gives the sum across m.

Gated mean. Using the same conditioning, and Wei et al. (2022, Lemma. C1) together with their
regime analysis, we have E[ϕmax(ψ(Xu); γm) | Yu = ±1] ≈ ±γm in the informative regime.
Therefore

E[ϕmax(ψ(Xu); γm) | Yv = y, edge] ≈ 1+αm

2 γm + 1−αm

2 (−γm) = αmγm,

So the class difference is ≈ 2dmαmγm. Gated variance. By Wei et al. (2022, Thm. 2), the class-
conditional variance of ϕmax(ψ; γm) is at most Cγ2me

−c∆2

for constants C, c > 0. Summing over
neighbors contributes a factor dm, and Assumption 1 handles the sum over m.
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Definition 6 (Metapath-level SNR proxies). Define

ρlin :=

(∑
m dm αm δ

)2
Λ
∑
m dm σ

2
, ρgate :=

(∑
m dm αm γm

)2
Λ
∑
m dm σ̃

2
m

.

By Wei et al. (2022, Thm. 2) (single-relation), larger SNR implies a strictly smaller misclassifica-
tion error up to universal constants; we use ρlin, ρgate as proxies for multi-metapath graphs under
Assumption 1.

We then discuss the high-homophily case.

Proposition 2 (Multi-metapath DFS equivalence under strong homophily). If for every active m
one has Pr(|ψ(X)| ≤ γm) ≥ 1− εm, then

z = log π
1−π 1+ s+

∑
m

A(m) ϕmax(s; γm) = log π
1−π 1+ s+

∑
m

A(m) s + r,

where ∥r∥1 ≤
∑
m εm · ∥A(m)1∥1. In particular, ρgate = ρlin(1 + o(1)) as maxm εm → 0.

Proof. By Lemma 1(iii), ϕmax(sv; γm) = sv whenever |sv| ≤ γm. Write the error vector e(m) :=
ϕmax(s; γm)− s, which has support contained in Em := {v : |sv| > γm}, and satisfies ∥e(m)∥∞ ≤
max{|sv| − γm, γm} ≤ 2|sv|. Then∑

m

A(m)ϕmax(s; γm) =
∑
m

A(m)s+
∑
m

A(m)e(m).

By Markov and the assumption, Pr(v ∈ Em) ≤ εm, so ∥A(m)e(m)∥1 ≤ ∥A(m)1∥1 · ∥e(m)∥∞ ·
Pr(Em) ≤ C εm∥A(m)1∥1 for a universal C (after rescaling s), giving the stated bound with r =∑
mA

(m)e(m). The SNR statement follows because replacing ϕmax by s changes the mean and
variance only on the rare set Em.

When nonlinearity is necessary in the multi-metapath setting. The next theorem upgrades Wei
et al. (2022, Thm. 2) from a single relation to multiple metapaths by summing contributions under
Assumption 1.

Theorem 1 (Multi-metapath gating advantage in low/negative homophily). Assume the feature sep-
aration is in the informative regime of Wei et al. (2022, Thm. 2), so that each active metapath m
admits σ̃2

m ≲ γ2me
−c∆2

. If either (i) there exists at least onem− ∈ M with γm− < 0 (heterophilous
metapath), or (ii) a non-negligible subset M0 satisfies |γm| ≤ ϵ (near-zero homophily), then there
exist constants C, c′ > 0 such that

ρgate ≥ C e c
′∆2

·
(∑

m dm |αmγm|
)2∑

m dm γ
2
m

while ρlin ≤ δ2

σ2
·
(∑

m dm αm
)2∑

m dm
.

Consequently, whenever the signed sum
∑
m dm αm is small due to sign-mixing or near-zero ho-

mophily, one has ρgate ≫ ρlin, and the gated aggregation strictly dominates linear aggregation.

Proof. By Lemma 2, ρgate =
(
∑

m dmαmγm)2

Λ
∑

m dmσ̃2
m

. Using σ̃2
m ≤ C1γ

2
me

−c∆2

from Wei et al. (2022,
Thm. 2),

ρgate ≥
(
∑
m dm|αmγm|)2

ΛC1e−c∆
2
∑
m dmγ

2
m

≥ C e c
′∆2

·
(
∑
m dm|αmγm|)2∑

m dmγ
2
m

,

absorbing constants into C, c′. For the linear SNR, Lemma 2 gives ρlin =
(
∑

m dmαmδ)
2

Λ
∑

m dmσ2 ≤ δ2

σ2 ·
(
∑

m dmαm)2∑
m dm

(after rescaling Λ into the constant). Under condition (i) or (ii),
∑
m dmαm can be

made small (sign-mixing and near-zero homophily, respectively), whereas
∑
m dm|αmγm| remains

of the order
∑
m dmγ

2
m because αm = tanh(γm/2) has the same sign as γm and |αm| ≳ |γm| for

small |γm|. Combined with the exponential factor ec
′∆2

, this yields ρgate ≫ ρlin.
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Corollary 1 (Sign-mixing amplifies the gain of gating). If there exist m+ and m− with γm+
> 0

and γm− < 0, then

ρgate
ρlin

≳ e c
′∆2

·
(∑

m dm|αmγm|
)2(∑

m dm|αm|
)2 · σ

2

σ̃2
, σ̃2 :=

∑
m dmσ̃

2
m∑

m dm
,

So the advantage grows with the degree-weighted sign diversity across metapaths.

Corollary 2 (Zero-information robustness). If |γm| = 0 for a subset M0 (no homophily), then
these metapaths contribute nothing to ρgate (by Lemma 1(i)) but still inflate the denominator of
ρlin, decreasing the linear SNR. Thus, gating is robust to uninformative relations, whereas linear
averaging is not.

Corollary 3 (Average-homophily can be misleading). Let Γavg :=
∑

m dmγm∑
m dm

and Γabs :=∑
m dm|γm|∑

m dm
. Even if Γavg > 0 (net assortative), when the disagreement Γabs − |Γavg| is large (sign-

mixing/heterogeneity across metapaths) and features are informative, one still has ρgate ≫ ρlin;
hence average homophily alone does not decide in favor of linear aggregation.

C.3 SAMPLE-SIZE DEPENDENCE OF RDL VS. DFS

We complement the homophily analysis by explaining why the number of training rows Ntrain sys-
tematically modulates the RDL–DFS gap. The key observation is that RDL realizes a strictly richer
hypothesis class than DFS (due to learnable, relation-specific nonlinear aggregation), so it enjoys
smaller approximation error but larger estimation error. Standard generalization bounds then imply
a sample-size threshold: DFS tends to dominate in low-data regimes, while RDL becomes superior
once Ntrain is large enough. This argument applies to both classification (cross-entropy loss) and
regression (squared loss), and we do not distinguish them below.

Setup and error decomposition. Let Z denote the space of task-table rows (after feature/aggre-
gation), and let ℓ(·, ·) be a bounded, L-Lipschitz loss (e.g. cross-entropy or squared error). For a
pipeline π ∈ {DFS,RDL}, denote by Fπ ⊂ {f : Z → R} the induced prediction class, and by

R(f) = E
[
ℓ(f(Z), Y )

]
its population risk under the task’s data-generating distribution. Let R̂N (f) be the empirical risk
on N training rows, and let f̂π ∈ argminf∈Fπ

R̂N (f) be the empirical risk minimizer (or an
approximate one).

Lemma 3 (Approximation–estimation decomposition). For each pipeline π, define the Bayes risk
R⋆ := inff R(f), the approximation error Aπ := inff∈Fπ

(
R(f)−R⋆

)
, and the estimation error

Eπ(N) := E
[
R(f̂π)

]
− inff∈Fπ

R(f). Then

E
[
R(f̂π)

]
−R⋆ = Aπ + Eπ(N).

Moreover, if RN (Fπ) denotes the empirical Rademacher complexity of Fπ onN samples, then there
exists a universal constant C > 0 such that

Eπ(N) ≤ CRN (Fπ).

The lemma is standard from statistical learning theory: Aπ is a purely bias (approximation) term,
while Eπ(N) is a variance (estimation) term controlled by the complexity of the function class.

Lemma 4 (Capacity ordering of DFS and RDL). Let dDFS be the dimension of ϕDFS(x), and let
dRDL = dDFS + dgate be an effective representation dimension at the input of the last linear layer
of rθ, where dgate > 0 accounts for the extra channels created by the encoder–GNN stack.

Then:

1. (Expressivity) FDFS ⊊ FRDL. In particular, the approximation errors satisfy ARDL ≤ ADFS,
and are strictly ordered on nontrivial tasks.
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2. (Complexity) There exist constants cDFS, cRDL > 0 such that for all sample sizes N ,

RN (FDFS) ≤ cDFS√
N
, RN (FRDL) ≤ cRDL√

N
,

with cπ ∝
√
dπ and thus cRDL > cDFS whenever dgate > 0.

Proof. Expressivity. By assumption, eθ andGθ can be set to implement the same deterministic DFS-
style aggregates as ϕDFS (or to just pass those features through), and rθ can simulate any g ∈ Gtab

up to approximation error. Hence every g ◦ ϕDFS is realized (or approximated arbitrarily well) by
some fθ, giving FDFS ⊆ FRDL. The extra relation-aware nonlinearity in Gθ yields hypotheses that
cannot be written as g ◦ ϕDFS, so the inclusion is strict on generic tasks.

Complexity. DFS has no learnable parameters in ϕDFS; only the tabular model contributes to es-
timation error. RDL, in contrast, learns the encoder, GNN and MLP. Under standard norm con-
straints on these modules, classical results give RN (Fπ) ≲

√
dπ/

√
N for π ∈ {DFS,RDL};

the encoder–GNN stack strictly increases the effective dimension and parameter count, so cRDL >
cDFS.

Theorem 2. Let f̂DFS and f̂RDL be empirical risk minimizers in FDFS and FRDL trained on N
i.i.d. labeled examples (classification or regression). Decompose the expected risk as E[R(f̂π)] =
Aπ + Eπ(N), where Aπ is the approximation error and Eπ(N) the estimation error of pipeline π.

Assume that RDL has strictly smaller approximation error:

ADFS −ARDL = ∆A > 0,

and let cDFS, cRDL be as in Lemma 4, with cRDL > cDFS. Then there exists a universal constant
C > 0 such that for all N ,

E
[
R(f̂DFS)

]
− E

[
R(f̂RDL)

]
≥ ∆A − C (cRDL − cDFS)√

N
.

Define the crossover scale

N0 :=

(
C (cRDL − cDFS)

∆A

)2

.

Then:

N < N0 =⇒ E
[
R(f̂DFS)

]
< E

[
R(f̂RDL)

]
,

N > N0 =⇒ E
[
R(f̂RDL)

]
< E

[
R(f̂DFS)

]
.

Proof. By definition,

E
[
R(f̂DFS)

]
− E

[
R(f̂RDL)

]
= (ADFS −ARDL) + (EDFS(N)− ERDL(N)).

Using ∆A > 0 and the Rademacher bounds Eπ(N) ≤ CRN (Fπ) ≲ C cπ/
√
N , we obtain

EDFS(N)− ERDL(N) ≥ − C (cRDL − cDFS)√
N

.

Combining with the approximation term yields the stated lower bound. The threshold N0 is exactly
the sample size at which this lower bound becomes nonnegative, giving the crossover conditions.

Interpretation for Ntrain. Identifying N with the number of training rows Ntrain, Theorem 2 for-
malizes the empirical trend that the DFS–RDL gap is controlled by a bias–variance trade-off: When
Ntrain is small, the variance penalty ∝ (cRDL − cDFS)/

√
Ntrain dominates and the simpler DFS

pipeline is safer. Once Ntrain ≫ N0, the complexity term vanishes and the approximation advantage
∆A of RDL dominates, yielding a systematic performance gain. The argument only uses generic
generalizations and bounds and therefore applies uniformly to both classification and regression
losses.
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C.4 RELATIONSHIP BETWEEN RANDOMLY INITIALIZED MODEL AND HASHING

Following the notation in Section 3.3, consider the (atemporal) attributed, typed graph

G = (V,E, ϕ, ψ, fV , fE),

where ϕ : V →NodeTypes maps entities to node types, ψ : E→LinkTypes maps links to relation
types, and fV : V →RdV , fE : E→RdE provide node and link attributes.

NBFNet message passing. NBFNet can be viewed as dynamic programming (DP) over the
schema graph, replacing Bellman–Ford’s sum and product by learnable operators. Fix a state width
d ∈ N and horizon T ∈ N. Each node v ∈ V maintains a d-dimensional state H(ℓ)(v) ∈ Rd at DP
layer ℓ = 0, . . . , T :

(Indicator) H(0)(v) = Iθ
(
v; s

)
∈ Rd, (3)

(Message) M
(ℓ)
θ

(
H(ℓ−1)(u), ξ(u→v)

)
= H(ℓ−1)(u) ⊗θ Γ

(ℓ)
θ

(
ξ(u→v)

)
∈ Rd, (4)

(Aggregate) H(ℓ)(v) =
⊕

(u→v)∈E

M
(ℓ)
θ

(
H(ℓ−1)(u), ξ(u→v)

)
, ℓ = 1, . . . , T. (5)

Here ξ(u→v) ∈ X bundles the schema edge context (e.g., τ(u→v) and endpoint types via ϕ). All
functions are chosen permutation-invariant over incoming edges. There are three key design choices
of NBFNet.

Indicator. A simple indicator is Iθ(v; s) = 1{v = s}ϕemb(v), where ϕemb(v) is a learned (or
fixed) embedding of the source node type s ∈ Vsrc to distinguish sources from non-sources.

Readout. Given a source node s ∈ Vsrc, we pool across layers and endpoints to obtain

Zθ(s) =

T∑
ℓ=1

aℓ
∑
v∈V

β(v)Π
(ℓ)
θ

(
H(ℓ)(v)

)
∈ Rdr , (6)

where Π
(ℓ)
θ : Rd→Rdr is an optional projection (identity if not needed), (aℓ) are length weights,

and β : V →R≥0 selects/emphasizes endpoint types.

Edge representation. For graphs induced from RDBs, edges come from PK–FK relations. We
abstract each edge e as a discrete edge token τ(e) ∈ Σ with

τ(e) = (ϕ(tail(e)), ψ(e), ϕ(head(e))) ∈ Σ,

so that any path p = (e1, . . . , eL) maps to the token sequence τ(p) = (τ(e1), . . . , τ(eL)) ∈ ΣL.

The Bellman-Ford–style recursion multiplies edge-local “messages” along a path and sums over all
paths and endpoints. Unrolling the recursion, therefore, yields a path-wise expansion in which each
coordinate collects contributions from every typed path reachable from the source.

Frozen NBFNet as random features. We first replace the learned message operators by random
scalar maps and show that the resulting DP computes random features that aggregate typed paths.

Fix width d and horizon T . For each coordinate k ∈ [d] and layer ℓ ∈ [T ], independently sample

g
(ℓ)
k : X → R, E[g(ℓ)k (x)] = 0, E

[
g
(ℓ)
k (x) g

(ℓ)
k (x′)

]
= κ(x, x′),

for a positive semidefinite (PSD) kernel κ : X × X → R. Intuitively, g(ℓ)k is the ℓ-th message
coordinate of an untrained NBFNet at random initialization.
Proposition 3 (Path-wise expansion of frozen NBFNet features). For s ∈ Vsrc and k ∈ [d], the k-th
feature computed by a frozen NBFNet admits the path-wise form

zk(s) =

T∑
L=1

aL
∑

p∈PL(s→∗)

( L∏
ℓ=1

g
(ℓ)
k

(
ξ(eℓ)

))
β(head(p)),

z(s) := (z1(s), . . . , zd(s)) ∈ Rd.

(7)
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Proof. Start from the layer recursion; each step distributes over incoming edges and multiplies
by the layer-ℓ message g(ℓ)k (·). Inductively expanding to depth L enumerates all length-L paths
p = (e1, . . . , eL) from s, producing the product of edge messages along p. Pooling with weights aL
and endpoint weights β yields equation 7.

Dynamic-programming realization. The expansion in equation 7 can be evaluated in O(T |E|)
per feature by the following Bellman–Ford–style recurrences:

h
(0)
k (v) = 1{v = s},

h
(ℓ)
k (v) =

∑
(u→v)∈E

g
(ℓ)
k

(
ξ(u→v)

)
h
(ℓ−1)
k (u), ℓ = 1, . . . , T,

zk(s) =

T∑
ℓ=1

aℓ
∑
v∈V

β(v)h
(ℓ)
k (v).

(8)

This view makes clear that a frozen NBFNet is a DP that sums over paths while multiplying edge-
wise random features.

Step 2: The induced kernel. We now identify the kernel implicitly computed by these random
features.

Define the finite-width kernel

Kd(s, s
′) :=

1

d
z(s)⊤z(s′) (s, s′ ∈ Vsrc).

Theorem 3 (Anchored typed-path kernel). With the construction above,

E
[
Kd(s, s

′)
]
=

T∑
L=1

a2L
∑

p∈PL(s→∗)
q∈PL(s′→∗)

(
L∏
ℓ=1

κ
(
ξ(eℓ), ξ(fℓ)

))
β(head(p))β(head(q)), (7)

where p = (e1, . . . , eL) and q = (f1, . . . , fL). The right-hand side defines a PSD kernel K on Vsrc.

Theorem 3 follows by expanding z(s)⊤z(s′), observing that mixed lengths cancel due to zero mean,
and using layer-wise independence to factor expectations across edges. Thus, a randomly initialized
NBFNet computes random features for the typed-path kernel K.

Proof. Expanding zk(s)zk(s′) and taking expectations over {g(ℓ)k }, mixed-length terms vanish by
zero mean; for equal lengths, independence across layers yields the product of second moments∏L
ℓ=1 κ(ξ(eℓ), ξ(fℓ)). Summing over paths and averaging over k gives equation 7. PSD follows

since K is an expectation of Gram matrices.

Step 3: Concentration at finite width. Having identified the limiting kernel, we quantify how fast
Kd concentrates around K.

Lemma 5 (Concentration). Assume each g(ℓ)k (x) is subgaussian uniformly in x with proxy σ2, and
set ν = supx κ(x, x) < ∞. Let NL(s→∗) = |PL(s→∗)|. If

∑T
L=1 a

2
L ν

LNL(s→∗) < ∞ for
every s, then there exist constants c, C > 0 such that for all ε > 0,

Pr
(∣∣Kd(s, s

′)− EKd(s, s
′)
∣∣ ≥ ε

)
≤ 2 exp

(
−c d ε2/C2

)
.

Hence Kd → K in probability at rate OP(1/
√
d).

Lemma 5 ensures that training only a linear classifier atop z(·) realizes a standard random-feature
approximation to the RKHS induced byK. We now specialize the kernel choice to make the hashing
connection explicit.
Remark 1. Training only a linear classifier on z(·) implements random-feature learning for the
kernel K; as d→ ∞, the solution converges to the kernel method in HK .
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Step 4: Discrete edge tokens and the Dirac kernel. Let τ(e) ∈ Σ be a discrete edge token (e.g.,
ψ(e) or (ϕ(tail(e)), ψ(e), ϕ(head(e)))) and consider the Dirac (identity) kernel

κδ(x, x
′) = 1{τ(x) = τ(x′)}.

Realize κδ with Rademacher codes by drawing, for each layer ℓ, random maps r(ℓ) : Σ → {±1}d

independently across ℓ and setting g(ℓ)k (x) = r
(ℓ)
k (τ(x)) 4. Then Theorem 3 yields

E
[
Kd(s, s

′)
]
=

T∑
L=1

a2L
∑

p∈PL(s→∗)
q∈PL(s′→∗)

1
{
τ(e1) = τ(f1), . . . , τ(eL) = τ(fL)

}
β(head(p))β(head(q)).

(8)

Bag-of-typed-paths view. Let Ψs ∈ RΣ≤T

be the bag of typed path sequences out of s, where the
coordinate for σ = (σ1, . . . , σL) is

Ψs[σ] = aL ×
(
count of length-L paths p with τ(p) = σ, weighted by β(head(p))

)
.

Then equation 8 is exactly the inner product E[Kd(s, s
′)] = ⟨Ψs,Ψs′⟩. Moreover, each random

coordinate implements a multiplicative sign code over sequences:

zk(s) =
∑

σ∈Σ≤T

Ψs[σ]

|σ|∏
i=1

r
(i)
k (σi)︸ ︷︷ ︸

=: rk(σ)

. (9)

Sparse CountSketch/TensorSketch realization. We then bridge the bag-of-typed view to the
countsketch algorithm. First, introduce pairwise independent hash functions

h(i) : Σ → [d], s(i) : Σ → {±1}, i = 1, . . . , T.

For a typed sequence σ = (σ1, . . . , σL) define combined bucket and sign

H(σ) =
(
h(1)(σ1) + · · ·+ h(L)(σL)

)
mod d, S(σ) =

L∏
i=1

s(i)(σi),

and the sketch y(s) ∈ Rd by

yj(s) =
∑

σ∈Σ≤T

Ψs[σ] S(σ) 1{H(σ) = j}, j ∈ [d]. (10)

This is the standard TensorSketch construction specialized to sequences (metapaths). Then:

Proposition 4 (Unbiased CountSketch of typed-path bags). With the construction in equation 10
using independent h(i) and s(i) with pairwise independence, we have

E
[
⟨y(s), y(s′)⟩

]
= ⟨Ψs,Ψs′⟩,

and

Var
(
⟨y(s), y(s′)⟩

)
≲

∥Ψs∥22 ∥Ψs′∥22
d

.

Proof. Expand ⟨y(s), y(s′)⟩ =
∑
j

∑
σ,σ′ Ψs[σ]Ψs′ [σ

′]S(σ)S(σ′)1{H(σ) = H(σ′) = j} and
take expectations. The sign hashes kill cross terms (σ ̸= σ′) by zero mean, while bucket colli-
sions contribute only when H(σ) = H(σ′); pairwise independence ensures these events occur with
probability 1/d and cancel with the outer sum over j. Variance follows from standard CountS-
ketch/TensorSketch analyses using limited independence.

4Normalization: we deliberately omit a 1/
√
d factor inside g

(ℓ)
k ; the outer 1/d in Kd provides the correct

scaling. Inserting 1/
√
d inside each layer would undesirably shrink longer paths by d−L/2.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

How frozen NBFNet implements the sketch. The dense realization (A) is exactly what equa-
tion 8 computes when g(ℓ)k (x) = r

(ℓ)
k (τ(x)): each DP layer multiplies by layer-ℓ signs, and aggre-

gation sums across paths—precisely the linear form in equation 9.

Takeaway. Steps 1–3 show that a randomly initialized NBFNet realizes random features for a typed-
path kernel; Step 4 reveals that, under a Dirac edge kernel, those features are precisely CountSketch-
style projections of the bag of typed metapaths reachable from s. In short: frozen NBFNet = DP-
powered CountSketch of typed-path counts. This perspective clarifies both the inductive bias (which
typed patterns are matched) and the approximation behavior (controlled by d, T , and the path growth
rates).

D MORE RELATED WORKS

D.1 RELATIONAL DEEP LEARNING MODELS

To effectively address the challenges in RDB benchmarks, Robinson et al. (2024); Wang et al.
(2024a) propose GNN-based pipelines with two main components: (1) transforming original tab-
ular features into a unified latent space using type-specific encoders, and (2) aggregating latent
features with a temporal-aware GNN conditioned on primary key-foreign key relationships. Chen
et al. (2025a) further extended the message passing function to capture higher-order information by
introducing atomic routes. Yuan et al. (2024) adapts the original GNN for recommendation tasks
by implementing a path-based routing mechanism combining an ID-based GNN (Zhu et al., 2021)
with shallow learnable embedding-based retrieval. Dwivedi et al. (2025) explores the potential of
transformer-based backbones for RDL tasks; however, these currently require significantly more
computational resources than GNN-based methods for limited performance gain, so we do not in-
clude them in our design space.
Wu et al. (2025); Wydmuch et al. (2024) investigate the potential of large language models for pre-
dictive tasks on RDBs. Currently, they exhibit a much lower performance-to-resource ratio than
GNN-based methods, and it is difficult to evaluate the influence of duplication between pre-training
knowledge and downstream tasks. We thus leave their study to future work.
Compared to these models trained from scratch, Fey et al. (2025); Wang et al. (2025) propose foun-
dation models for RDB tasks. Wang et al. (2025) relies on a cross-table attention module that
mimics DFS aggregation, but its performance can’t consistently outperform state-of-the-art GNN-
based methods. Fey et al. (2025) utilizes a graph transformer-based backbone and delivers superior
performance and in-context learning capabilities. However, it is not yet open-sourced, and training
details are not revealed. With the help of tabular foundation models like TabPFN (Hollmann et al.,
2023), it’s also possible to achieve in-context learning by utilizing online DFS to achieve promising
performance.

D.2 AUTOML FOR GRAPH MACHINE LEARNING

AutoML (Hutter et al., 2019) seeks to automate expert tasks—data engineering, model engineer-
ing, and evaluation—into an end-to-end machine learning pipeline. Model engineering typically
encompasses neural architecture search (NAS) (Zoph & Le, 2017) and hyper-parameter optimiza-
tion (HPO) (Bischl et al., 2023). Many works have adapted AutoML ideas to GML: for example,
Gao et al. (2019) and Zhou et al. (2022) use reinforcement learning to search architectures, while
Yoon et al. (2020) applies Bayesian optimization to improve search efficiency together with an algo-
rithm budget constraint. One-shot NAS approaches first train a supernet and then prune it to obtain
target architectures (Li & King, 2020; Guan et al., 2022; Qin et al., 2021), and Zhang et al. (2023)
extends this paradigm to dynamic heterogeneous graphs. However, supernet-based methods are not
well-suited to RDB settings due to the heterogeneity of model designs required there.

Beyond model-centric search, data-centric AutoML leverages dataset properties to guide selection.
MetaGL (Park et al., 2023a;b) uses structural embeddings and graph statistics as task embeddings for
meta-learned GNN selection. GraphGym and AutoTransfer (You et al., 2020; Cao et al., 2023) fol-
low a knowledge-transfer strategy; AutoTransfer in particular constructs loss-landscape–based task
embeddings and employs pre-trained embeddings to steer HPO. In contrast, our work is driven by
empirical observations and targets architecture selection at both macro and micro levels, especially
across heterogeneous model classes (RDL and DFS) in relational-database predictive tasks.
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Bai et al. (2021); Luo et al. (2021); Lam et al. (2021) propose dedicated systems for AutoML over
relational data. These efforts share DFS’s motivation for automatic feature engineering but generally
lack ready-to-use open-source implementations; accordingly, we adopt DFS as a representative,
practical framework for automatic feature engineering.

Ranjan et al. (2024) studies post-hoc model selection and argues that picking what to deploy purely
by the ”best base validation score” is brittle.

D.3 REAL-WORLD GRAPH MACHINE LEARNING BENCHMARKS

Benchmarking is essential for evaluating methods in graph machine learning. Representative
datasets include the Open Graph Benchmark (Hu et al., 2020a) and TUDataset (Morris et al., 2020).
However, recent work questions whether these benchmarks, like predicting the category of academic
papers, reflect real-world tasks (Bechler-Speicher et al., 2025). To address this gap, benchmarking
GNNs on relational-database (RDB) predictive tasks has become increasingly popular; notable ex-
amples are 4DBInfer (Wang et al., 2024a), H2GB (Lin et al., 2024), and RelBench (Robinson et al.,
2024). In particular, RelBench provides a SQL-based framework to standardize task generation,
which has helped it become a widely used benchmark for RDB predictive tasks.

In addition to model-centric benchmarks, recent works propose benchmarks focused on graph con-
struction (Chen et al., 2025b; Choi et al., 2025). Jointly studying automatic graph construction and
automatic model selection is a promising direction for future research.

E SUPPLEMENTARY INFORMATION FOR MODELS

In this section, we present more details on model designs, including model parameter design space
and more training details.

E.1 DISCUSSION ON THE IMPLEMENTATION DIFFERENCE BETWEEN 4DBINFER AND
RELBENCH

It’s noteworthy to discuss the difference between the implementation details of 4dbinfer (Wang et al.,
2024a) and relbench (Robinson et al., 2024), which are two main frameworks used to research RDB
prediction tasks. We find that these implementation discrepancies are essential for a fair comparison
between macro-level and micro-level architecture comparisons.

Feature encoding part. First, Relbench and 4DBinfer both adopt a type-specific encoder to project
categorical/numerical/text into a latent space with the same dimension. However, after this transfor-
mation, Relbench further adopts a tabular encoder to transform the latent embeddings, which is not
present in 4DBInfer. Furthermore, due to the implementation differences between Pyg and DGL,
4DBInfer doesn’t utilize relative positional encoding when encoding temporal features. Another
difference is that 4DBInfer will normalize all features. To align this with Relbench metrics, we save
the scaler and do the inverse transform at the test stage.

Neighborhood sampling part. Both frameworks adopt a temporal sampling strategy to avoid tem-
poral leakage. However, there’s a difference in implementation details. For relbench, it adopts the
temporal sampling of PyG, which generates disjoint subgraphs (when using the latest neighborhood
sampling). This aligns with the time dynamics of the relbench task, such as user behavior over the
past few months. For 4dbinfer, it’s similar to standard subgraph-based sampling with a time mask.

Evaluation setting. There’s also a difference in how the two frameworks do the evaluation, espe-
cially for the recommendation task. 4dbinfer adopts a pre-selected negative sample set, whereas
relbench uses the entire target set as candidates. Moreover, 4dbinfer focuses on bipartite graphs,
while for relbench, there are some tasks where the source and target lie between several-hop metap-
aths. This makes the method design not compatible across two types of problems. For example, any
methods requiring pairwise information are not scalable for relbench settings.

E.2 DETAILED TASK FEATURE DESIGNS

In this subsection, we introduce the detailed task feature designs.
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Simple heuristic performance It characterizes the target entity distribution across differ-
ent data splits. Specifically, we compute entity mean val, entity median val,
entity mean train, and entity median train, which capture the central tendency of tar-
get entities in both validation and training sets.

For example, for entity mean, we first generate the following prediction,

1 fkey = list(train_table.fkey_col_to_pkey_table.keys())[0]
2 df = train_table.df.groupby(fkey).agg({task.target_col: "mean"})
3 df.rename(columns={task.target_col: "__target__"}, inplace=True)
4 df = pred_table.df.merge(df, how="left", on=fkey)
5 pred = df["__target__"].fillna(0).astype(float).values

Then we take the performance on the validation set as a feature.

Homophily + stats + temporal It aggregates 13 model-free heuristics designed to capture intrinsic
properties of the relational structure and task characteristics without requiring any model training.
This group synthesizes four distinct categories of structural features:

(1) Homophily Features: We compute five adjacency-based correlation statistics—
h adjs corr mean, h adjs corr max, h adjs corr min, h adjs corr mode, and
h adjs corr weighted mean. The weighted mean variant accounts for edge importance
based on degrees.

(2) Temporal Autocorrelation Features: We include two lag-based autocorrelation measures—
lag1 autocorr corr and lag2 autocorr corr—that capture temporal dependencies in
time-aware relational tasks. These features measure whether target values at time t correlate with
values at t− 1 and t− 2, respectively.

(3) DFS homophily Features: This is the ”homophily” metric calculated in the DFS
manner. By doing a random walk from the task table, based on the retrieved con-
text, we calculate how many target columns share the same label as the seed ones.
mean same class ratio ignore computes the average proportion of same-class neighbors
while ignoring unlabeled nodes; adjusted mean same class ratio provides a normalized
version accounting for class imbalance; sparsity ratio quantifies the density of the relational
graph; and mean past task nodes captures the average number of historical entities available
for temporal tasks.

(4) Stats: We include log total rows, computed as log(1 + train rows + val rows), which
captures the logarithmic scale of the dataset. The log transformation ensures that the feature values
are comparable across tasks with vastly different sizes.

AutoTransfer Features We use 24 anchors in total. 12 for RDL and 12 for DFS.

Model-Based Features It comprises eight performance indicators derived from lightweight model
probes on the target task itself.

(1) TabPFN Features: We compute tabpfn 1hop and tabpfn 2hop by evaluating TabPFN on
1-hop and 2-hop neighborhood aggregations of the relational features.

(2) Random Initialization Features: We include six features derived from randomly initial-
ized graph neural networks: rfr randomsage 1, rfr randomsage 2, rfr randomsage 3,
rfr randomnbfnet 1, rfr randomnbfnet 2, and rfr randomnbfnet 3. These probes
test whether the task’s relational structure is inherently easy to exploit (even without learning), which
can indicate task difficulty and the potential benefit of sophisticated architectures.

E.3 DETAILED DESIGN SPACE

In this paper, we consider two classes of models: end-to-end learning (relational deep learning)
models and non-parametric graph-based feature synthesis (DFS) models. Specifically, when the
number of propagation hops for the latter is 1, the corresponding model will be a relation-agnostic
one. We then elaborate on the module design inside each class.
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RDL. Following wisdom in the design of the GNN architecture (You et al., 2020; Luo et al., 2024),
we modularize the RDL module into the following parts: feature encoding, (optional) structural
feature, message passing module, (optional) architecture design tricks, readout function, hyperpa-
rameters, and training objective. The design choices and rationales are detailed below.

Table 8: Design space of a unified architecture for end-to-end RDL models. “Grid” indicates that the
module is selected from a predefined grid, whereas “random” indicates that the module is randomly
sampled.

Module name Possible choices

Feature encoding ResNet (Robinson et al., 2024)
Structural features (grid) Learnable embeddings (for the destination table, or for both

the source and destination tables) (Yuan et al., 2024; Ma et al.,
2024); partial-labeling tricks from NBFNet (Zhu et al., 2021)

Message passing (grid) Sparse message passing: GraphSAGE (Robinson et al., 2024;
Hamilton et al., 2017), HGT (Wang et al., 2024a; Hu et al.,
2020b), PNA (Corso et al., 2020; Wang et al., 2024a);
sparse message passing with higher-order information: Rel-
GNN (Chen et al., 2025a)

Architecture design trick (random) Residual connections (He et al., 2016)
Readout (grid) MLP, ContextGNN, Shallow-Item (Yuan et al., 2024)
Hyperparameters (random) Learning rate, weight decay, batch size, dropout rate, num-

ber of layers, hidden dimension, temporal sampling strategy,
number of sampled neighbors

Training objective Classification tasks: cross-entropy; regression tasks: MSE or
MAE; link-level tasks: cross-entropy, BPR, or margin-based
losses

1. For feature encoding, we stick to the ResNet-based encoder used in Robinson et al. (2024).
2. The structure feature is particularly useful for link-level prediction, which aims to break

the original symmetry of the GNN designed for node-level tasks. We consider learnable
embedding and partial labeling tricks because of their effectiveness demonstrated in exist-
ing benchmarks (Robinson et al., 2024; Yuan et al., 2024). Other features, such as random
embeddings, are neglected because of their limited effectiveness.

3. For message passing, we consider all alternatives used in the existing literature to study the
correlation between the message passing function and task performance.

4. For architecture design tricks, we consider residual connection (He et al., 2016) because of
their effectiveness shown in Luo et al. (2024). However, under the RDB setting, we find
that these tricks do not always improve performance and result in much more computation
overhead.

5. Readout is another important module in architectural design. For entity-level tasks, we
only consider MLP as the readout function. For link-level tasks, we consider ContextGNN
and Shallow-Item (Yuan et al., 2024), which integrates graph-free learnable embeddings to
mitigate the pitfalls of GNNs on link-level tasks. It should be mentioned that all pairwise
methods like NCN (Wang et al., 2024b), SEAL (Zhang & Chen, 2018) are not applicable
because of the complexity.

6. Training objective is designed based on common loss functions for different task formats.

The detailed hyper-parameter search space is presented as follows:

1 RDL_SEARCH_SPACE = {
2 ## these will go through a grid search
3 "full_entities": {
4 ’pre_sf’: [’src_dst’, ’zero_learn’, ’none’],
5 ’mpnn_type’: [’relgnn’, ’sage’, ’hgt’, ’pna’],
6 ’post_sf’: {’link’: [’none’, ’shallow’, ’contextgnn’], ’node’: [’

none’]}
7 },
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8 "model_config": {
9 "encoder_num_layers": [4],

10 "torch_frame_model_cls": [’resnet’],
11 "batch_size": [128, 256],
12 "gnn_config": {
13 # src: learnable embedding for src, src_dst: learnable

embedding for src and dst,
14 "loss_fn": {
15 "binary_classification": ["bce"],
16 "regression": ["mse", "mae"],
17 "recommendation": [’bpr’],
18 "multiclass_classification": ["ce"]
19 },
20 "hidden_channels": [64, 128, 256],
21 "num_heads": [1, 4],
22 "dropout": [0.0, 0.5],
23 "norm": ["layernorm", "batchnorm", ’none’],
24 "aggregation": ["mean", "sum"],
25 # jk is turned off because it almost always leads no

performance gain with huge computation overhead
26 "jk": [False],
27 "skip_connection": [True, False]
28 },
29 "sampler_config": {
30 "temporal": ["uniform", "last"],
31 "num_neighbors": [32, 64, 128],
32 "num_layers": [1, 2, 3, 4],
33 "loader_type": ["node", "edge"]
34 },
35 "optimizer_config": {
36 "lr": [1e-3, 1e-4, 1e-2],
37 "weight_decay": [0.0, 1e-5],
38 "scheduler": ["expontential"],
39 "gamma": [.8, .9, 1.]
40 }
41 }
42 }

E.4 GRAPH-INDUCED NON-PARAMETRIC FEATURE SYNTHESIS MODEL

DFS. The graph-induced non-parametric feature synthesis approach follows a different paradigm
compared to end-to-end RDL models. Instead of learning parameters through gradient descent, DFS
models leverage graph topology and statistical aggregation to synthesize features. We modularize
the DFS framework into the following components: feature aggregation strategy, propagation depth,
model backbone, and hyperparameters. The design choices and rationales are detailed below.

Table 9: Design space of graph-induced non-parametric feature synthesis (DFS) models. Grid means
the module is selected from a predefined grid, while random means the module is randomly sampled.

Module name Possible choices

Feature aggregation strategy (fixed) Mean, sum, max, min, count, weighted mean, target encoding
Propagation depth (grid) Number of hops (1 = relation-agnostic): 1, 2, 3
Downstream predictor (grid) TabPFN (Hollmann et al., 2023), FT-Transformer, Light-

GBM
Hyper-parameters (random) Learning rate, weight decay, scheduler gamma, hidden di-

mension, number of attention heads, normalization
Training objective Classification tasks: cross-entropy loss; Regression tasks:

MSE or MAE

1. Feature aggregation strategies determine how information flows through the graph struc-
ture. We follow Wang et al. (2024a) to adopt a fixed set of aggregation strategies.
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2. Propagation depth controls the scope of information aggregation. When the number of
hops is 1, the model becomes relation-agnostic and only uses entity-level features.

3. We consider three typical types of downstream task predictors: tabular foundation model,
gradient boosting tree, and neural networks.

4. Training objectives are task-dependent and align with the evaluation metrics used in the
benchmark datasets.

The detailed hyper-parameter search space is presented as follows: LightGBM and TabPFN, in
general, don’t require many hyper-parameters, so model-related hyper-parameters are only applied
to FT-Transformer.

1 DFS_SEARCH_SPACE = {
2 ## dfs_layer will go through a grid search
3 "dfs_layer": [1,2,3],
4 "model_type": ["tabpfn", "ft_transformer", "lgbm"],
5 "batch_size": [128, 256],
6 "model_config": {
7 ## only for ft_transformer
8 "hidden_size": [128, 256, 512],
9 "dropout": [0.0, 0.5],

10 "num_layers": [1, 2, 3, 4],
11 "attn_dropout": [0.0, 0.5],
12 "num_heads": [1, 4],
13 "normalization": ["layernorm", "batchnorm", ’none’],
14 "loss_fn": {
15 "binary_classification": ["bce"],
16 "regression": ["mse", "mae"],
17 "ranking": [’bce’, ’bpr’],
18 "multiclass_classification": ["ce"]
19 }
20 },
21 "optimizer_config": {
22 "lr": [1e-3, 1e-4],
23 "weight_decay": [0.0, 1e-5],
24 "scheduler": ["expontential"],
25 "gamma": [.8, .9, 1.]
26 }
27 }

E.5 SUPPLEMENTARY EXPERIMENTAL DETAILS

E.5.1 EXPERIMENTAL RESULTS FOR RECOMMENDATION TASKS

Here, we discuss the recommendation tasks skipped in the main text. First, we wanna emphasize
that the design space of recommendation tasks is much smaller since DFS-based methods can’t work
well on recommendation tasks. The main reason is that the recommendation is more about capturing
the collaborative signal across pairs of entities, which goes beyond the feature synthesis patterns of
DFS. To make DFS work on recommendation tasks, we need to design common neighborhood-
based or path-based features, which makes it no longer “automatic” but requires substantial feature
engineering efforts.

In terms of RDL, we also need to emphasize that only a small portion of graph-related models
can work under the RDB settings. Revisiting the traditional link prediction tasks on OGB (Hu
et al., 2020a), the positive and negative sample pairs are usually pre-defined, with negative samples
coming only from a small portion of the whole set. This makes it possible to use pairwise models
like NCN (Wang et al., 2024b) and SEAL (Zhang & Chen, 2018). However, in RDB settings, the
candidate set is usually the entire target table, which makes it impossible to use these pairwise
models. That’s why NBFNet (Zhu et al., 2021), a source-only model, is first considered in Yuan
et al. (2024). Such a scalability problem also affects the implementation of vanilla GNN. Unlike
using a link-level sampler in Wang et al. (2024a), we have to use two node-level loaders, one for
the source type and one for the target type, for representation computation. These properties make
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it only possible to use vanilla GNN, shallow embedding, NBFNet, or a combination of them in the
current stage.

We then present the HPO experiments based on these methods. As shown in Figure 5, we observe
the following phenomena:

1. Overall, node-based loader dominates the link-based loader (or more accurately, the loader
based on source and target types). One potential reason is that the node-based loader is closer to
the idea of path-based retrieval, which is more effective in RDB recommendation tasks with rich
relational paths. A potential exception is the REL-AMAZON datasets, which we don’t use here.
For these kinds of datasets whose path patterns are super sparse,the path-based collaborative
signal may live in distant neighbors. As a result, on these tasks, we typically need a neighbor
loader with more than 6 hops with dense neighbors to get good performance.

2. For the number of layers, unlike entity-level tasks, it presents that the deeper the better within a
certain range. This is because, for path-based retrieval, deeper layers can capture more distant
signals.

3. For message passing designs, it’s also somewhat different from the phenomenon in entity-level
tasks. Here, Relgnn presents clearly better performance. The reason is that there are some
tables with multiple foreign keys. Semantically, these tables are closer to an edge, while in the
PK-FK graphs, they are treated as nodes. RelGNN can simulate transforming these tables into
hyperedges, and thus makesthe model capture more distant signals. HGT and PNA are better
at capturing feature interactions, which are more important for entity-level tasks.

4. For structural features, partial labeling tricks of NBFNet are more effective. One noteworthy
phenomenon is that on many tasks, a node-level loader without any structural features can
also deliver good performance. The reason is that the original features in the graph can act as
implicit type embeddings, which makes a multi-source path-based retrieval.

5. For readout functions, contextgnn doesn’t always bring a performance boost. However, it won’t
degrade performance as well. This is also based on the sparsity of path patterns.

Table 10: Validation-selected and test-
selected performance gap. For RDL, we show
the top 2 architectures with the largest gap.
Method name Mean test clf perf Mean val clf perf Mean gap
RDL Overall 78.21 76.73 1.49
Sage (top1) 76.90 72.77 4.13
HGT (top2) 77.19 74.95 2.24
DFS overall 76.90 75.22 1.68
TabPFN 75.91 75.70 0.21
FT-transformer 75.87 74.45 1.42

Method name Mean test reg perf Mean val reg perf Mean gap
RDL Overall 6.9292 7.0578 0.1287
HGT (top1) 6.9407 7.1036 0.1630
PNA (top2) 7.1376 7.1795 0.0419
DFS overall 3.6881 3.7135 0.0254
TabPFN 3.7544 3.7692 0.0148
FT-transformer 4.0630 4.0883 0.0254

Takeaways for recommendation. Across RelBench-
style recommendation tasks, ContextGNN is a ro-
bust default that delivers competitive performance with
modest tuning. This largely reflects task properties:
path-aware retrieval with shallow ID embeddings plus
GNN context works well when collaborative signals are
captured via multi-hop relational paths. On some other
recommendation tasks on bipartite graphs, two-tower
(dual-encoder) architectures may scale training and in-
ference more effectively and simplify candidate genera-
tion, though they typically require task-specific compo-
nents (e.g., hard-negative mining, retrieval infrastruc-
ture, and reranking) to reach top accuracy. Overall,
these observations suggest that for recommendation, fully automatic architecture design may be
less effective than crafting a task-tailored framework—consistent with prevailing industrial practice.

E.5.2 SUPPLEMENTARY EXPERIMENTAL RESULTS FOR THE MAIN TEXT

Full experimental results for Figure 2. The full result for Figure 2 is presented in Table 11.

Table 11: Full experimental results for Figure 2.
Task Type RelGNN RelGT Graphsage Rel-LLM KumoRFM (icl) KumoRFM (fine-tuned) RDL (val-selected) RDL (ours) DFS (val-selected) DFS (ours) Best (ours) Griffin

driver-top3 classification 85.69 83.52 75.54 82.22 91.07 99.62 82.41 85.94 84.70 85.71 85.94 77.95
driver-dnf classification 75.29 75.87 72.62 77.15 82.41 82.63 74.35 77.20 76.89 79.42 79.42 70.91
driver-position regression 3.798 3.920 4.022 3.967 2.747 2.731 4.0491 3.8029 3.3660 3.2730 3.2730 4.2000
user-churn classification 70.93 69.27 69.88 70.55 67.71 71.23 70.98 70.98 65.29 68.23 70.98 68.04
item-sales regression 0.0540 0.0536 0.0560 0.0520 0.0400 0.0340 0.0511 0.0509 0.0780 0.0750 0.0509 0.0810
post-votes regression 0.0650 0.0654 0.0650 0.0620 0.0650 0.0650 0.0665 0.0651 0.0680 0.0660 0.0651 0.0622
user-engagement classification 90.75 90.53 90.59 91.21 87.09 90.70 88.95 90.56 78.47 87.28 90.56 87.56
user-badge classification 88.98 86.32 88.86 89.64 80.00 89.86 88.41 88.51 85.17 86.47 88.51 85.99
user-repeat classification 79.61 76.09 76.89 79.26 76.08 80.64 81.25 82.89 77.20 79.26 82.89 77.93
user-ignore classification 86.18 81.57 81.62 83.74 89.20 89.43 83.66 86.77 77.20 84.43 86.77 82.35
user-attendance regression 0.2380 0.2500 0.2580 0.2510 0.2640 0.2380 0.2397 0.2397 0.2630 0.2380 0.2380 0.3336
user-visits classification 66.18 66.78 66.20 67.01 64.85 78.30 66.77 66.87 65.29 66.74 66.87 64.68
user-clicks classification 68.23 68.30 65.90 66.74 64.11 66.83 67.16 68.77 62.34 69.19 69.19 63.30
ad-ctr regression 0.0370 0.0345 0.0410 0.0370 0.0350 0.0340 0.0346 0.0340 0.0380 0.0370 0.0340 0.0639
study-outcome classification 71.24 68.61 68.60 71.04 70.79 71.76 71.41 74.13 70.59 71.82 74.13 69.08
study-adverse regression 44.681 43.990 44.473 43.682 58.231 44.225 44.5706 43.9880 49.9500 44.1100 43.9880 45.2100
site-success regression 0.3010 0.3260 0.4000 0.3970 0.4170 0.3010 0.3932 0.3236 0.3910 0.3490 0.3236 0.3765
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Figure 5: HPO results for recommendation tasks.

Influence of micro-level design choices. Looking further into the influence of micro-level archi-
tecture choices shown in Figure 6, we can observe that: (1) different design choices present in the
top performing configurations, underscoring the importance of architecture design; (2) compared to
older models like HGT and PNA, RelGNN doesn’t present advantages in terms of prediction per-
formance, which inspires us to revisits the wisdom of past research. (3) For RDL-based methods,
learnable embeddings are mainly required to achieve top performance. (4) For DFS-based methods,
the FT-transformer works better for large-scale tasks, while TabPFN can well fit small-scale ones.
Tree-based methods, such as LightGBM, are not optimal in most cases; therefore, we don’t consider
them in the following text.

Performance gap between validation-selected and test-selected configurations. As shown in
Table 10, we can see that both RDL and DFS suffer from this performance gap. Specifically, RDL
presents a much larger gap for regression tasks. TabPFN, the tabular foundation model utilizing
in-context learning for inference, shows an advantage in mitigating such performance drift.

Analysis of affinity-based features. Here, we show some empirical results on the analysis of
affinity-based features and empirical performance. For each task from the model performance bank,
we have three task-level anchor scores (TabPFN, RandomSAGE, RandomNBFNet) and mean test
performance for two model families (RDL, DFS). Anchors are constant within a task; performances
are task-wise means over validated runs. For RDL we also compare two preprocessing options,
pre sf∈{zero learn, none}; define the per-task difference ∆ = RDLzero learn−RDLnone.

(i) RDL vs DFS from TabPFN vs graphs. Using all tasks, a log–log fit shows

log
(
RDL/DFS

)
≈ 0.091 − 0.262 log

(
TabPFN/NBFNet

)
(R2≈0.58, n=19),

so when TabPFN exceeds the graph anchors, DFS tends to outperform RDL; simple thresholds
TabPFN/NBFNet ≥ 1.10 or TabPFN/SAGE ≥ 1.18 classified the winner at about 79% ac-
curacy. (ii) RDL pre sf from graph–graph ratio. With R = max(NBFNet)/max(SAGE), the
linear association with ∆ is small (Pearson ≈ −0.114, n = 19), but as a one-bit chooser it is useful:
AUC(zero learn better) ≈ 0.718, and the rule R ≥ 0.977 ⇒ choose zero learn (else
none) attains ∼ 0.789 accuracy (base rate ∼ 0.684 favoring zero learn).
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Figure 6: Relationship between test performance ranking and micro-level architecture choices. For
RDL-based methods, we filter the original search result with the top 10 performing configurations
on each task. For DFS-based methods, we filter the original search result with the top 1 performing
configurations on each task. The best configurations are selected based on test performance directly.
“zero learn “ is the labeling trick adopted by NBFNet. (a) A violin plot of MPNN types shows that
PNA achieves the best mean ranking across different tasks. (b) When comparing labeling tricks,
although equivariant models appear more frequently in top rankings, a labeling trick is still needed
to achieve the top spot. (c) For DFS, ft transformer and tabpfn present unique strengths, where the
former can leverage more training samples, and the latter usually works better in small-scale settings
and can conduct in-context learning.

Visualization of loss landscape. Our first-step analysis is to plot the loss landscape of a series of
models presenting different val-selected and test-selected performance gaps. An example is shown
in Figure 7. We can see that the DFS, which generalizes better, presents a much flatter loss landscape.
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Figure 7: Loss landscapes

E.6 EFFICIENCY

In the main text, we skip the discussion of efficiency-related concerns, such as running time and
memory consumption. One reason is that efficiency depends on the backbone implementation. For
example, we implement SQL using in-memory databases in this work. You can’t say DFS or RDL
is more efficient merely based on this implementation. In reality, DFS can potentially be accelerated
via tools like Spark. Nonetheless, we still present efficiency-related results here, with the following
main contents: (1) Average running time of RDL and DFS pipelines, which includes the time for
model training and dataset pre-processing. (2) The way to extend our current methods to incorporate
efficiency-related concerns.

As shown in Table 12, we consider the running time of two representative tasks: driver-dnf and
study-outcome. The former database is a small-scale one, while the latter contains lots of columns.
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We consider the simple RDL models SAGE and the complicated ones HGT. For DFS, we consider
three propagation depths: 1, 2, and 3. We can see that DFS is relatively more efficient when the
propagation depth is small. The main backbone is just the feature encoder part of the RDL, so it
will be much faster during the inference stage. Moreover, without our proposed PCA compression
strategy, DFS is usually unusable for large-scale tasks. Generally, both RDL and DFS don’t meet
significant efficiency concerns.

Table 12: Preprocessing and training times by method for driver-dnf and study-outcome.
driver-dnf study-outcome

RDL (SAGE) RDL (HGT) DFS-1 (no p/p) DFS-2 (no p/p) DFS-3 (no p/p) RDL (SAGE) RDL (HGT) DFS-1 (no p/p) DFS-2 (no p/p) DFS-3 (no p/p)

Preprocessing time 60 s 60 s 7 s/12 s 18 s/17 s 310 s/41 s 240 s 240 s 240 s/36 s 353 s/48 s 965 s/95 s
Training time (per epoch) 6 s 8 s < 1 s/< 1 s < 1 s/< 1 s < 1 s/< 1 s 10 s 11 s < 1 s/< 1 s < 1 s/< 1 s < 1 s/< 1 s

To extend our current methods to incorporate efficiency-related concerns, we consider the following
two strategies: (1) Rule-of-thumb. Since we know the number of training samples, when the scale
is limited, then directly utilizing TabPFN and DFS is usually the most efficient approach. Moreover,
for RDL, HGT is obviously the most expensive model considering its complicated attention mech-
anism. (2) Joint optimization of efficiency and effectiveness. We can consider a multi-objective
optimization framework, where we can consider the validation performance and training time as
two objectives. First, we can train a meta-model to predict the training time based on architecture
designs. For example, we can list the following efficiency-related hyperparameters: number of lay-
ers, hidden dimension, number of attention heads, and batch size. Then, we can train a model whose
input feature is the hyper-parameter configuration, and the output is the training time. To estimate
the pre-processing time of DFS, it’s approximately proportional to the number of SQL operations
multiplied by the size of training tables. We then demonstrate one formula to do joint optimization
of efficiency and effectiveness.

(π∗, θ∗) = argmax
π∈{RDL,DFS}

θ∈Sπ

P̂erf(θ, π)

− λ ·
1[π = DFS] csql ·ops(θ)·rows

Tref

− λ · µtime(θ, π) + β σtime(θ, π)

Tref

π chooses the pipeline (RDL vs. DFS) and restricts the search space to Sπ; P̂erf(θ, π) is pre-
dicted validation effectiveness; λ > 0 trades time for performance; Tref normalizes time; the DFS
pre–processing cost is activated by 1[π = DFS] and modeled as csql · ops(θ) · rows; µtime(θ, π)
and σtime(θ, π) are the meta–model’s mean and uncertainty for training time; β ≥ 0 adds risk aver-
sion to slow/uncertain runs. π can be trained based on a model performance bank similar to the
meta-predictor.
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