
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELATRON: AUTOMATING RELATIONAL MACHINE
LEARNING OVER RELATIONAL DATABASES

Anonymous authors
Paper under double-blind review

ABSTRACT

Predictive modeling over relational databases (RDBs) powers applications in var-
ious domains, yet remains challenging due to the need to capture both cross-table
dependencies and complex feature interactions. Recent Relational Deep Learning
(RDL) methods automate feature engineering via message passing, while classical
approaches like Deep Feature Synthesis (DFS) rely on predefined non-parametric
aggregators. Despite promising performance gains, the comparative advantages
of RDL over DFS and the design principles for selecting effective architectures
remain poorly understood. We present a comprehensive study that unifies RDL
and DFS in a shared design space and conducts large-scale architecture-centric
searches across diverse RDB tasks. Our analysis yields three key findings: (1)
RDL does not consistently outperform DFS, with performance being highly task-
dependent; (2) no single architecture dominates across tasks, underscoring the
need for task-aware model selection; and (3) validation accuracy is an unreliable
guide for architecture choice. This search yields a curated model performance
bank that links model architecture configurations to their performance; leverag-
ing this bank, we analyze the drivers of the RDL–DFS performance gap and in-
troduce two task signals—RDB task homophily and an affinity embedding that
captures path, feature, and temporal structure—whose correlation with the gap
enables principled routing. Guided by these signals, we propose Relatron, a task
embedding-based meta-selector that first chooses between RDL and DFS and then
prunes the within-family search to deliver strong performance. Lightweight loss-
landscape metrics further guard against brittle checkpoints by preferring flatter op-
tima. In experiments, Relatron resolves the “more tuning, worse performance” ef-
fect and, in joint hyperparameter–architecture optimization, achieves up to 18.5%
improvement over strong baselines with 10× lower computational cost than Fisher
information–based alternatives.

1 INTRODUCTION

Relational databases (Codd, 2007; Harrington, 2016) have served as the foundation of data manage-
ment for decades, organizing interconnected information through tables, primary keys, and foreign
keys (Codd, 2007; Harrington, 2016). Their support for data integrity, consistency, and complex
SQL queries has made them essential across healthcare (White, 2020; Johnson et al., 2016), aca-
demic research (Melvin, 2025), and business applications (Stroe, 2011). However, as data volume
and complexity grow, traditional analytics fall short, creating demand for machine learning to iden-
tify patterns, automate decisions, and generate scalable insights. The conventional approach requires
practitioners to manually export and flatten relational data into single tables through custom joins
and feature engineering (Lam et al., 2017) before applying tabular ML methods.

At the macro level, two lines of work aim to reduce manual flattening and feature engineering
in RDBs: (i) deep feature synthesis (DFS) (Kanter & Veeramachaneni, 2015) and (ii) relational
deep learning (RDL) (Robinson et al., 2024; Fey et al., 2024b). Both operate on heterogeneous
entity–relation graphs induced from the underlying database schema, where rows are represented
as nodes typed by their tables and foreign-key links are represented as typed edges. DFS program-
matically composes relational primitives (e.g., aggregations along join paths) to produce a single
feature table on which a standard tabular learner is trained. RDL trains graph neural networks
(GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017) end-to-end on this heterogeneous graph,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

learning task-specific aggregations via message passing. Empirically, both families exploit the re-
lational structure and can surpass relation-agnostic baselines on several RDB benchmarks (Wang
et al., 2024a; Robinson et al., 2024). In particular, RDL has gained popularity because it eliminates
manual feature engineering and achieves better GPU utilization.

However, no comprehensive comparison exists between these paradigms to clarify when each per-
forms better or their relative advantages for different task types. 1 Practitioners currently lack prin-
cipled guidelines for choosing between DFS and RDL when tackling relational database prediction
tasks. Additionally, methods for selecting specific design components—such as message-passing
functions in RDL or tabular models in DFS—remain largely unexplored. These gaps make architec-
ture selection for RDB tasks a labor-intensive process that relies heavily on expert knowledge.

Design space and evaluation. To bridge this gap, we first propose a representative design space for
RDL and DFS: for the former, we decompose models into (1) feature encoding/augmentation, (2)
message passing, and (3) task-specific readouts; for DFS, we use non-parametric feature engineer-
ing paired with a tabular model. We conduct an architecture-centric search—a grid over architecture
choices with sampled hyperparameters—to build a performance bank. Key findings: (1) Brute-force
search outperforms from-scratch RDL baselines, validating the proposed design space. (2) At the
macro level (DFS vs RDL), DFS wins on more tasks (though both have distinct strengths); at the
micro level (fine-grained model architectures), neither family has a single best design. (3) Validation
performance can be unreliable for selection, leading to degraded test performance.
Automatic architecture selection. We identify factors that drive the performance gap and use
them to design the Relatron, an architecture selector with strong test generalization. We introduce
an RDB-task homophily metric that correlates strongly with the performance gap between DFS
and RDL, further enriched with training-free affinity embeddings that capture both structural affin-
ity and temporal dynamics. We further observe that the generalization behavior of configurations
(validation-selected vs. test-selected) is reflected in the loss landscape geometry. Accordingly, we
propose a landscape-derived metric for more reliable post-selection. Combined, our pipeline per-
forms strongly on real-world RDB tasks, matching or exceeding prior methods (Cao et al., 2023;
Achille et al., 2019) in task-embedding quality and in predicting whether RDL or DFS is preferable;
for joint hyperparameter and architecture search, it outperforms strong baselines, including search-
based and task-embedding-based ones (Cao et al., 2023; Bischl et al., 2023), while using up to 10x
less compute resources than task-embedding-based methods.

Our contributions can be summarized as follows.

1. We propose a representative model design space for RDB predictive tasks, featuring promising
performance, and generate a model performance bank that links model architecture configura-
tions to task performance for future research.

2. Based on a comprehensive search on the model design space, we point out the limitations of
RDL, and propose a routing method to select between RDL and DFS for RDB predictive tasks
automatically. Furthermore, we analyze the factors that drive the performance gap between
RDL and DFS, and these insights can inspire further research, such as the development of
relational foundation models.

3. Through extensive experiments, we validate the effectiveness of our pipelines in tasks such as
predicting proper architectures and joint hyperparameter-architecture search.

2 RELATED WORK AND BACKGROUND

In this section, we present related works necessary for understanding the following paper contents,
and put other related works in Appendix D.

Relational Deep Learning (RDL).2 (Robinson et al., 2024; Fey et al., 2024a) applies graph ma-
chine learning to relational databases. RDB prediction has three key traits (Figure 1): (1) time
is first-class—labels are split and conditioned on time (2) labels are defined by time-constrained
SQL over arbitrary column combinations; (3) heterogeneous column types make feature interactions

1The graph machine learning models studied in Wang et al. (2025) differ from RDL Robinson et al. (2024)
in implementation details, discussed further in Appendix E.1.

2RDL denotes both the learning paradigm and the problem setting; we use RDL for the former and RDB
for the latter.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MajorNameID

MathUsagi1

CSMomo2

MESteve3

Prof.CourseID

SamAI1

JaneOS2

KenLLM3

Grad
e

C_IDS_IDDate

A+111/3

A+212/4

B221/3

Student Course

Grade

Primary Key Foreign Key

labelS_IDDate

111/1

021/1

112/1

(a)

City Population State
Detroit P1 Michigan

Columbus P2 Ohio

ID City XXX
A1 Detroit 34000

A2 Detroit 30000

A3 Columbus 5000

City
Depth 0 Depth 1

City.Population City.State COUNT(City.ID) MEAN(City.ID.XXX)
Detroit P1 Michigan 2 32000

Columbus P2 Ohio 1 5000

DFS

Multi-
modal
feature
encoder

Tabular
model

Structural
feature

(Sparse)
message
passing

Entity-
level

Readout

RDL

(b)

Figure 1: (a) An example of generating the task table from an RDB. The label is based on whether
a student has achieved an A+ in a course before a specific timestamp. (b) Another example demon-
strating the working process of DFS and RDL. For DFS, a predefined set of aggregation functions,
such as MEAN and COUNT, is used to aggregate information across multiple tables based on key
relationships into a final data table. For comparison, RDL is claimed to replace the manual aggrega-
tion design with an automatic message-passing-based sparse attention.

richer than in text-attributed or non-attributed graphs. These choices mirror real industrial settings.
Wang et al. (2024a; 2025) offer a view closer to traditional heterogeneous GNNs; although Wang
et al. (2025) reports results on Relbench (Robinson et al., 2024), the modeling and evaluation setups
differ. We therefore re-implement all methods in the unified framework for fair comparison. Some
recent RDL works center on specialized models for RDL, including higher-order message pass-
ing (Chen et al., 2025a) and recommendation (Yuan et al., 2024). Transformers and LLMs (Dwivedi
et al., 2025; Wu et al., 2025; Wydmuch et al., 2024) have been tested, but are resource-heavy with
modest gains. Foundation models include Griffin (Wang et al., 2025), which uses cross-table atten-
tion yet often fails to beat GNNs, and KumoRFM (Fey et al., 2025), a graph transformer with strong
performance and in-context learning, though details remain undisclosed. In this paper, we focus on
efficient models training from scratch, leaving foundation models for future work.
Deep Feature Synthesis (DFS). Compared to RDL, DFS (Kanter & Veeramachaneni, 2015) is an
overlooked approach, which aggregates cross-table information into a single target table via auto-
mated feature engineering (Zhao et al., 2020; Lam et al., 2017; 2018). It underpins commercial sys-
tems such as getml3. Given a target table and a schema graph, DFS traverses foreign-key–primary-
key links and composes type-aware primitives into feature definitions. Transform primitives oper-
ate on single columns, while aggregation primitives (e.g., statistics such as MAX, MIN, MODE)
summarize sets of related rows; compositions along schema paths yield higher-order features. For
time-indexed tasks, DFS evaluates every recipe under a per-row cutoff time, ensuring that only in-
formation available in the past contributes to the feature value, thereby avoiding leakage.

3 DESIGN SPACE OF MODEL ARCHITECTURES OVER RDB

Architecture selection begins by giving an architecture design space. This section introduces the
task and design space, then presents evaluation results and observations from the exploration.

3.1 PREDICTIVE TASKS ON RDBS

Problem definition. A relational database (RDB) is a tuple D = (T ,L), where T = {T1, . . . , Tn}
is a set of tables and L ⊆ T × T is a set of links between them. Each table Ti ∈ T consists of rows
(entities) {v1, . . . , vmi

}. Links are related to primary keys (PKs) and foreign keys (FKs). A PK pv
uniquely identifies a row, while a FK establishes a link to a row in another table by referencing its
PK. Each row also has a set of non-key attributes, xv , and an optional timestamp, tv . A temporal
predictive task Πtpred with respect to time tpred can be defined over two granularities. Entity-

3https://getml.com/latest/

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

level prediction learns a function f : Dtpred × Vtarget → Y that maps entities from a target set
Vtarget ⊆ Ti to a label space Y . Link-level prediction determines the existence of a link between
two entities, vi ∈ Ti and vj ∈ Tj , at time tpred by learning a function f : Dtpred ×Ti×Tj → {0, 1}.
RDB tables can be categorized into fact tables and dimension tables. A fact table stores events or
transactions (e.g., purchases, clicks, race results) with many rows, and each typically carries foreign
keys to several entities. A dimension table stores descriptive attributes about these entities (e.g.,
customer, product, time, circuit/driver), typically with one row per entity/state, and a PK that is
referenced by facts.
Graph perspective of RDB (Robinson et al., 2024). Each RDB and a corresponding predictive
task can be viewed as a temporal graph G(−∞,T] = (V(−∞,T], E(−∞,T], ϕ, ψ, fV , fE), paired with
task labels Y . V(−∞,T] and E(−∞,T] are entities and links at time t ≤ T . ϕ maps each entity to its
node type, ψ maps each link to its link type. fV and fE is tha mapping of features.

Datasets and tasks. We consider a diverse set of datasets and tasks from recent works (Robinson
et al., 2024; Wang et al., 2024a; Chen et al., 2025b). Adopting the taxonomy from Robinson et al.
(2024), we categorize these tasks into four types: entity classification, entity regression, recommen-
dation, and autocomplete. Entity-level tasks (classification and regression) involve predicting entity
properties at a given time tpred. Recommendation tasks focus on ranking the relevance between
pairs of entities at tpred. The autocomplete task involves predicting masked information in table
columns. A comprehensive description of each dataset and task is available in Appendix B. We
illustrate the generation of an entity-level task in Figure 1.

3.2 MODEL ARCHITECTURE DESIGN SPACE

Architecture choice. As shown in Table 1, to enable a fair comparison between DFS and RDL
on RDB benchmarks, we construct a compact, factorized design space for each family. RDL mod-
els are built from three modules: (i) a structural-feature encoder (partial labeling trick, learnable
embedding, or no augmentation) (Yuan et al., 2024; Zhu et al., 2021), (ii) a message-passing net-
work (PNA, HGT, SAGE, or RelGNN) (Corso et al., 2020; Hu et al., 2020b; Robinson et al., 2024;
Chen et al., 2025a), and (iii) a readout head (MLP, ContextGNN, or a shallow aggregator) (Yuan
et al., 2024). Standard training hyperparameters such as learning rate, dropout, normalization, and
neighbor fanout are also tuned. DFS methods are parameterized by three main knobs: the SQL-level
aggregation function (e.g., max/min/mode), the number of aggregation layers (1–3 when supported),
and the backbone model (TabPFN, LightGBM, or FT-Transformer), with batch size and hidden di-
mension included as additional hyperparameters. Architectural components are explored via grid
search, while other hyperparameters are sampled from a smaller space (see Appendix E.2).

Design motivation. While it is not feasible to exhaustively cover all designs in graph machine
learning (GML), our design space spans representative components. For message passing alone,
this includes vanilla message passing, self-attention mechanisms, multi-aggregator schemes, and
higher-order approaches. Importantly, classical GML architectures gain renewed significance in
RDB tasks. For example, PNA, originally devised for molecular graphs, is well-suited for RDB
tasks: its multi-aggregation mechanisms naturally capture diverse feature interaction patterns, echo-
ing the strengths of DFS-based approaches. In Appendix E.2, we provide a more detailed description
of each component and explain why some GML designs are not suitable for RDB tasks.

Table 1: Search space of RDL and DFS-based methods for RDB tasks. Underline means these
components will go over a grid search, while other components will be sampled.

Name Architecture design space Hyper-parameters

RDL Structural feature Message passing Readout Learning rate, dropout,
normalization, fanout...Labeling ID, Learnable embedding, None PNA, HGT, Sage, RelGNN MLP, ContextGNN, Shallow

DFS Aggregation function Aggregation layers Backbone Batch size, hidden dimension
...Max, Min, Mode, ... (fixed) 1, 2, 3 (if possible) TabPFN, LightGBM, FT-transformer

3.3 EMPIRICAL STUDY OF VARIOUS ARCHITECTURE DESIGNS

Evaluation setup. For entity-level tasks, we sample 15 configurations per architecture combination
(180 per task). For recommendation, we sample 10 configurations. For DFS, we use the Robinson
et al. (2024) HPO utility with 20 trials per design (TabPFN requires no tuning). Following Robinson
et al. (2024), we train up to 20 epochs, capping each epoch at 1,000 steps (recommendation) or
500 (entity-level), using Adam (Kingma & Ba, 2015) with an optional exponential LR scheduler.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Efficiency is not our main focus, and the only efficiency constraint is that the model can fit a single
L40S GPU (48GB). See Appendix E.5 for more discussions on extending our pipelines to efficiency-
aware scenarios. In this section, we only report entity-level results. The recommendation results are
presented in Appendix E.4 since the architecture choice there is less important. Our evaluation
reveals the following key insights:

Observation 1. Efficacy and necessity of the design space. We first validate our proposed design
space by examining the best possible test performance. We compare our design space’s perfor-
mance with that of baseline models reported in the literature, including Graphsage (Robinson et al.,
2024), RelGNN (Chen et al., 2025a), RelGT (Dwivedi et al., 2025), KumoRFM (Fey et al., 2025),
and RelLLM (Wu et al., 2025) on 17 Relbench (Robinson et al., 2024) tasks. These strong base-
lines serve to highlight that our design space achieves competitive results. As shown in Figure 2,

Ku
moR

FM
(ft)

Best
 (o

urs
)

RDL (
ou

rs)

Re
l-LL

M
Re

lGNN

DFS
(ou

rs)

Ku
moR

FM
(ic

l)
Re

lGT

Grap
hsa

ge

1

2

3

4

5

6

7

8

Av
er

ag
e

Ra
nk

 (L
ow

er
 is

 B
et

te
r)

Classification Rank

Best
 (o

urs
)

DFS
(ou

rs)

Ku
moR

FM
(ft)

RDL (
ou

rs)

Re
lGNN

Re
l-LL

M
Re

lGT

Ku
moR

FM
(ic

l)

Grap
hsa

ge

1

2

3

4

5

6

7

8

Regression Rank

Figure 2: Performance comparison between the best configurations from our design space and base-
line models on entity-level tasks. “ft” means performance after fine-tuning. “Best (ours)“ means the
better value of RDL and DFS. Full numerical results can be seen in Table 10 from Appendix E.4.
the best configurations from our design space consistently outperform all scratch-trained baselines;
for regression, our DFS pipelines can even surpass pre-trained KumoRFM. We attribute this to: (1)
Training tricks: clamping outliers, adopted by RDL training, also substantially benefits DFS; (2)
Breaking equivariance: learnable embeddings (e.g., partial labeling Zhu et al. (2021)) improve
entity-level performance despite violating node-level permutation equivariance; (3) Implementa-
tion: compressing dense embeddings via incremental PCA and inserting them as numeric columns
enables efficient cross-table aggregation in DFS (Wang et al., 2025), markedly improving scalability
and accuracy. Overall, DFS’s strong results highlight the importance of cross-table cell interactions
that RDL may miss due to table-level pooling. These findings also justify architecture selection: no
single architecture dominates across tasks. RDL vs. DFS rankings vary by task, and the same
holds for micro-level choices (e.g., message passing; see Appendix E.4).

Table 2: The performance gap between validation- and test-
selected configurations.
Task Model reported perf test-selected perf val-selected perf

driver-top3 (auroc) Graphsage 75.54 82.81 81.56
RelGNN 85.69 85.69 82.61

driver-position (mae) Graphsage 4.022 3.91 3.93
RelGNN 3.798 3.80 4.35

user-ignore (auroc) Graphsage 81.62 86.40 72.27
RelGNN 86.18 86.18 78.94

Observation 2. Validation met-
rics can be unreliable for architec-
ture selection. Oracle test selection
shows the upper bound of our design
space, but in practice, configurations
are picked by validation (or training)
scores, which often leads to a gap:
validation-selected models underper-
form test-selected ones (Table 2). In
our reproduction of RelGNN (Chen et al., 2025a), the reported gains over GraphSage are clear only
when choosing hyperparameters by test performance; with validation selection, the advantage be-
comes marginal. This reliability issue is largely overlooked in graph AutoML and only briefly noted
in tabular ML (Ye et al., 2024). It is pronounced in RDB settings, which are inductive and time-
aware: temporal splits induce distribution shift between validation and test periods. The problem
affects both RDL and DFS; further evidence is in Appendix E.4.

4 PRINCIPLES AND AUTOMATION OF ARCHITECTURE SELECTION

Building on Section 3, where neither paradigm uniformly dominates, we seek a principled way to
choose architectures for an RDB task. Two obstacles arise: (i) the design space is huge (180 trials per

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

task cover only a small fraction), and (ii) validation performance—the usual selection proxy—can
be unreliable, so more search can even degrade test performance. We address this by leveraging the
model performance bank (Section 3.3): for a new task, transfer information from similar tasks to
reduce the search space. This requires a task embedding to capture the properties of tasks.

4.1 FROM OBSERVATIONS TO TASK EMBEDDINGS

We begin with two observations from the performance bank: (1) RDL–DFS performance gaps vary
across tasks; and (2) validation-selected vs. test-selected performance gaps differ across model
types. The first implies data factors driving a task’s affinity for certain model classes; the second
motivates analyzing model properties to explain generalization.

4.1.1 DATA-CENTRIC PERSPECTIVE

We begin with homophily as the first axis of task characterization, since it is the lowest-order rela-
tional signal and reflects a task’s favored inductive bias (Ma et al., 2022). Label-induced properties
empirically outperform label-agnostic ones (e.g., degree) for performance prediction (Li et al., 2023;
Zheng et al., 2024), and labels are directly available in RDB tasks via the materializing SQL query.
Extending homophily to RDB tasks is non-trivial because: (1) labels evolve over time; (2) labels
may be continuous; and (3) the PK–FK graph is schema-driven—labels usually come from a single
fact table, so naively computing edge homophily on raw PK–FK links is ill-posed (always equal 1).
We therefore propose RDB task homophily. Starting from the PK–FK graph used for training, we
temporally aggregate labels to per-entity means ŷv ∈ RC , then augment the graph as in Figure 3 to
form self-looped metapaths; for scalability, we restrict to one-hop metapaths.

Definition 1 (RDB task homophily). Given an augmented heterogeneous graph G = (V, E) induced
from an RDB task, labeled entity type F and VF its nodes, each with mean label ŷv . Let M be a finite
set of self-looped metapaths m starting and ending with F, and let Em be the set of edges induced
by m. Given a label metric K, the RDB task homophily for metapath m is

H(G;m) =
1

|Em|
∑

{u,v}∈Em

K
(
ŷu, ŷv

)
.

Drivers (label)

PK DriverID

Constructors

PK ConstructorID

Races

PK RaceID

Results

FK RaceID

FK DriverID

FK ConstructorID

Drivers DriversResults

Drivers

Pairs of FKs as edges: homophily < 1
Drivers

Drivers

DriverID-RaceID

DriverID-
ConstructorID Drivers

Degenerate: homophily =1

Figure 3: Augmenting REL-F1
databases. We should treat the set
of FKs as a hyperedge (each pair of
FKs is appended to the original PK-FK
graphs as a new edge type) rather than
relying solely on PK-FK edges.

Label metric design. For classification tasks, the label met-
ric can be the dot product K(ŷu, ŷv) = ŷ⊤u ŷv , which reduces
to traditional edge homophily 1{ŷu = ŷv} when there are no
duplicate entities in the task table. We denote this measure by
Hedge(G;m). For regression tasks, the label metric can be de-

fined via a Gaussian kernel K(ŷu, ŷv) = exp
(
−∥ŷu−ŷv∥2

2σ2

)
.

We may further extend the homophily definition to account
for class imbalance. A notable extension is the adjusted ho-
mophily (Platonov et al., 2023). For a classification task, it can

be defined as Hadj(G;m) =
Hedge(G;m)−

∑C
k=1

(
D

(m)
k

2|Em|

)2

1−
∑C

k=1

(
D

(m)
k

2|Em|

)2 , where

D
(m)
k is the degree of class k. To obtain a global measure

across the whole graph, we aggregate over metapaths using
statistical functions such as MEAN, STD, MAX, and MIN.

Correlation between homophily and RDL-DFS performance gap. We perform a nonparametric
correlation study linking RDB task homophily to the performance gap between the best RDL and
DFS models. We adapt four effective homophily measures to RDB—edge (Hedge), insensitive
(Hins), class-adjusted (Hadj), and neighborhood-aggregation (Hagg) (Zheng et al., 2024; Lin et al.,
2024); full definitions are in Appendix C. We find strong negative correlations: e.g., Spearman’s
ρ = −0.77 (p = 0.0001) for MAX(Hedge) and ρ = −0.715 (p = 0.0005) for MAX(Hadj). This
suggests RDL’s nonlinear aggregation helps more on low-homophily graphs, while DFS’s higher
rank on regression may stem from smoother, higher-homophily signals (theory in Appendix C.2).
This suggests that homophily can be a helpful signal to determine whether to adopt RDL or DFS.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Anchor-based affinity properties. Homophily is most suited to node-level equivariant message-
passing and overlooks path-based models with labeling tricks and non-structural factors (feature
quality, temporal dynamics). We therefore add anchor-based affinities to estimate which model
families a task favors. If random path-based aggregation already separates labels well, path-based
models should excel. See Appendix C for the relationship between random hashing and randomly
initialized NBFNet. Compared to task embeddings requiring backpropagation (Cao et al., 2023),
these features only require a forward pass and closed-form fitting, which is much more efficient.

1. Path/neighborhood affinity. Use randomly initialized Graphsage and NBFNet (Zhu et al., 2021)
as random hashers; after one forward pass, fit a closed-form linear head (ridge or LDA). A random
NBFNet achieves > 82 AUROC on USER-BADGE, indicating strong path affinity.

2. Feature affinity. Use TabPFN validation performance (no training) as a proxy for feature quality.
3. Temporal affinity. Since mean-label homophily ignores time, add simple timeline statistics (e.g.,

majority label over time), which effectively capture dynamics (Cornell et al., 2025).

Because these signals have different units (e.g., MAE), we normalize by the ratio to a trivial baseline:
random labeling for classification and an all-zero predictor for regression. Empirical relationships
with task performance are in Appendix E.4.

4.1.2 MODEL-CENTRIC PERSPECTIVE

To understand validation–test selection gaps, we analyze checkpoints exhibiting good and poor
generalization. After conducting intuitive visualization-based analysis (shown in Appendix E.4),
we probe generalization via the local loss landscape L : Rd → R around a checkpoint w0

(Chiang et al., 2023). Fix an orthonormal 2D subspace Π = span(e1, e2) and sample a grid
Γ = {(si, tj)} ⊂ [−ρ, ρ]2. Each grid point defines wij = w0 + sie1 + tje2 with Lij = L(wij).
We summarize with three indicators spanning increasing smoothness scales (Garipov et al., 2018;
Li et al., 2018a; Ghorbani et al., 2019):

1. First-order P1: max|i−k|+|j−l|=1
|Lij−Lkl|√

(si−sk)2+(tj−tl)2
(worst finite-difference slope on Π).

2. Second-order P2: λmax(HΠ(w0)), where HΠ(w0) = E⊤∇2L(w0)E, E = [e1 e2] (sharpness
along Π; estimated via second differences or slice fits).

3. Energy barrier Pbar: max(i,j) maxt∈[0,1] L(w0 + t(wij − w0))−max{L(w0), Lij} (barrier to
departing w0 along rays within Π).

We observe that the performance gap is related to the flatness of the loss landscape. On DRIVER-
TOP3 (Table 3), we find that checkpoints with smaller metric values tend to generalize better, since
these models tend to be more stable when there’s a small perturbation on their weights. When vali-
dation–test gaps are large, all indicators consistently favor the true test-optimal configuration; when
gaps are small, indicators may disagree, motivating the usage of multiple signals. These metrics are
comparable within a model family (RDL or DFS) but not across families due to scale differences.
Moreover, these signals are effective only for well-fitted models (an under-fitted model may have
a flat landscape but poor performance). Since these signals are post-hoc, we utilize them in the
post-selection to refine the final checkpoint choice across models with top validation performance.

4.1.3 AUTOMATIC ARCHITECTURE SELECTION THROUGH RELATRON

Table 3: Example landscape properties and model performance.
Smaller values typically indicate a more benign landscape.

Selection Model type Val auroc Test auroc Pbar P1 P2

Val RDL 89.48 82.41 2.77 1.49 4.23
Test RDL 86.05 85.94 0.41 1.22 0.22
Val DFS 83.44 84.69 0.384 0.041 1.32
Test DFS 83.76 85.71 0.495 0.03 0.50

Based on these findings, we intro-
duce Relatron, an architecture se-
lector that maps task embeddings to
meta-predictions about which model
design to use. Given an RDB task,
Relatron computes a task embed-
ding—chosen from three potential
families: (i) homophily-based, (ii)
affinity-based, and (iii) Task2vec-based descriptors (Cao et al., 2023; Achille et al., 2019). We
then train a meta-predictor based on tabular models (Hollmann et al., 2023) using training data from
the model performance bank. Relatron considers two types of architecture selection.
Macro-level selection (RDL vs. DFS). We train a meta-classifier on the performance bank to map
task embeddings to the empirically winning family, using homophily-based task embeddings. At

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Ground
truth GraphGym
similarity

Table 4: Experimental results for task embedding similarity, LOO accuracy, and
task embedding computation efficiency. “AT” stands for Autotransfer.
Task embedding design Mean Kendall’s corr (no g) Mean Kendall’s corr (g) LOO accuracy Average time (min)

Homophily 0.175 0.195 89.50% 0.44

Simple heuristics 0.15 0.173 73.70% 1.5

AT 0.1 0.288 68.40% 50

Homophily + heuristics 0.184 0.194 78.90%

Homophily + AT 0.1 0.329 78.90%

Homophily+ AT + heuristics 0.156 0.429 73.70%

inference, we (1) compute the novel task’s embedding and (2) apply the meta-classifier to choose
between RDL and DFS.
Joint architecture selection and HPO with a query budget. For standard HPO with a query-
budget setting, the query budget is appended to the task embedding as an additional feature. (1) A
macro-level meta-predictor first chooses between RDL and DFS. (2) Within the chosen family, two
micro-level meta-predictors based on affinity embeddings—one deciding whether to use labeling
tricks (if RDL is chosen) and the other selecting the optimal number of DFS layers (if DFS is cho-
sen)—are applied to reduce the search space. (3) An HPO routine (e.g., TPE (Bergstra et al., 2011)
or Autotransfer (Cao et al., 2023)) generates candidate checkpoints within the selected family. (4)
Loss-landscape metrics are applied for post-selection among candidates with top validation perfor-
mance. An insight here is that the favored model type is related to the query budget. Although RDL
often attains higher best-case performance on tasks such as STUDY-OUTCOME, under tight search
budgets its average attained performance can trail DFS because good RDL configurations are harder
to find. Moreover, as shown in Section 4.2, we surprisingly find that the macro-level meta-predictor
(DFS or RDL) addresses most issues: after choosing the proper model branch, search efficiency
improves and the validation–test gap is reduced.

4.2 EXPERIMENTAL EVALUATIONS

We then evaluate the proposed Relatron on three experiments. (1) A sanity check of task embeddings:
First, we evaluate the effectiveness of different task embeddings by comparing the task similarity
calculated by task embedding and the ground truth Graphgym similarity (You et al., 2020). This ex-
periment is mainly used to verify the correctness of task embeddings. (2) Macro-level architecture
search: Second, we check whether task embeddings can help identify the proper architecture for an
RDB task. (3) Joint selection of architectures and hyperparameters: Third, we consider a more prac-
tical scenario, in which task embeddings and meta-predictor are used to enhance the effectiveness
of joint hyperparameter and architecture search.

Can task embeddings reflect ground-truth task similarity? Using all trials in the performance
bank, we: (1) derive ground truth GraphGym similarity (You et al., 2020) by intersecting model
configurations across tasks, ranking them by per-task performance, and defining pairwise similarity
as Kendall’s τ between the two rank signatures; (2) for each embedding, form a task–task matrix via
cosine similarity on normalized features and report Kendall’s rank correlation with the GraphGym
matrix; (3) optionally learn a projection g (as in Cao et al. (2023)) using a margin-ranking meta-
objective that pulls together tasks with similar performance profiles and pushes apart dissimilar ones.
Results (Table 4): g is pivotal—mean correlation rises from 0.15–0.18 (no g) to 0.429; Autotransfer
(AT) improves with g (0.288) but is slow (50 min/task); combining homophily, heuristics, and AT
yields the best correlation (0.43), indicating complementary signals in our embedding.

Can task embeddings help predict RDL vs. DFS winner? We then investigate whether task em-
beddings can predict which method—RDL or DFS—performs better on a novel task. To this end, we
adopt TabPFN (Hollmann et al., 2023) as the predictor. For each target task, we fit the model using
other tasks in the model performance bank and evaluate the target task with leave-one-out cross-
validation. As shown in Table 5, the homophily-based feature emerges as the most reliable predic-
tor, reinforcing the findings discussed in Section 4.1.1 and supporting the design in Section 4.1.3.
In contrast, Autotransfer is less effective for this type of macro-level selection. To further analyze
the classifier, we examine its errors. The only misclassification occurs on the DRIVER-DNF dataset,
likely due to its limited training data, where non-parametric aggregation offers an advantage. On an-
other dataset, SITE-SUCCESS, RDL and DFS achieve nearly identical performance. In practice, these
results suggest that RDB task homophily is a practical and interpretable tool for guiding macro-level
architectural design decisions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Joint architecture and hyperparameter optimization result. Best results are highlighted with
an underline and the second are bold. “Only predictor” means only using the meta-predictor.

Strategy Budget driver-top3 (ROC-AUC) ↗ driver-position (MAE) ↘ user-churn (ROC-AUC) ↗

Random
3 82.67 ± 2.19 3.6810 ± 0.4255 68.56 ± 1.23
10 77.80 ± 4.79 3.8576 ± 0.5035 68.60 ± 1.20
30 77.28 ± 2.42 4.2793 ± 0.1483 69.54 ± 0.43

TPE
3 82.67 ± 2.19 3.6810 ± 0.4255 68.56 ± 1.23
10 81.45 ± 0.44 3.7897 ± 0.4271 68.60 ± 1.20
30 77.92 ± 5.12 4.1724 ± 0.0519 69.54 ± 0.43

Hyperband
3 82.67 ± 2.19 3.6810 ± 0.4255 68.43 ± 1.33
10 80.68 ± 0.74 3.7897 ± 0.4271 68.60 ± 1.20
30 74.37 ± 9.59 4.0948 ± 0.1420 69.32 ± 0.34

Autotransfer 3 77.11 ± 4.43 4.2916 ± 0.0952 69.09 ± 0.86
10 78.71 ± 2.88 4.3645 ± 0.2105 70.28 ± 0.27

Only predictor Full Only predictor Full Only predictor Full

Ours
3 83.80 ± 0.34 83.80 ± 0.34 3.3986 ± 0.0877 3.3986 ± 0.0877 68.78 ± 1.31 68.78 ± 1.31
10 83.28 ± 1.45 83.30 ± 1.17 3.3934 ± 0.1389 3.3553 ± 0.0862 69.66 ± 0.89 69.61 ± 0.86
30 84.00 ± 0.34 84.33 ± 0.06 3.3339 ± 0.1563 3.3339 ± 0.1563 70.05 ± 0.34 70.05 ± 0.34

DFS + TabPFN 82.24 3.43 67.79

Joint hyperparameter and architecture search. We evaluate our full pipeline in a joint
HPO–architecture–search setting. As baselines for trial generation, we use random search,
TPE (Bergstra et al., 2011), Hyperband (Li et al., 2018b), and Autotransfer (Cao et al., 2023).
We report results on three representative datasets—DRIVER-TOP3, DRIVER-POSITION, and USER-
CHURN—and use the remaining tasks as the performance bank; the first two have small training
tables and are prone to overfitting. Our pipeline trains a TabPFN-based meta-predictor that selects
between RDL and DFS from the query budget and homophily-based task embeddings. Conditional
on this choice, we run one of the above trial generators within the selected family (we select TPE
since it delivers the best performance), then post-select among the top-3 validation models using
landscape measures.
As shown in Table 5, we observe: (1) our pipeline generally achieves better performance. Us-
ing only the meta-predictor to choose the model family already yields strong results, suggesting that
large validation–test gaps often arise from selecting an unsuitable architecture. Unlike other methods
that suffer from the undesirable “the more you train, the worse you get” phenomenon, our perfor-
mance continues to improve as the number of trials increases. Post-hoc selection offers only limited
gains, likely because hard voting over numeric landscape metrics still introduces noise. Addressing
checkpoint selection may require pre-trained priors similar to architecture search; we leave this to
future work. (2) For search acceleration, unlike Cao et al. (2023), embedding-based configuration
retrieval is typically ineffective, with the sole exception of USER-CHURN. Consequently, we rely on
TPE for trial generation. The limited effectiveness of Autotransfer suggests that RDB data distri-
butions are more complex than those of standard graph benchmarks, and that a larger, more diverse
task bank would be needed—impractical given the scarcity of public data. Synthetic tasks, in the
spirit of Hollmann et al. (2023), may therefore be a promising direction to improve search quality.
(3) After hyper-parameter tuning, we demonstrate that models trained from scratch can outperform
foundation models like DFS with TabPFN.

5 CONCLUSION, LIMITATIONS, AND FUTURE DISCUSSION

In this paper, we systematically study the design space of relational machine learning models for
RDB tasks and collect a model performance bank. Based on this study, we show that the advantage
of RDL over DFS is related to task properties, like the RDB task homophily. Then, we propose a
meta-predictor based on the model performance bank and our proposed selector, Relatron, which
demonstrates promising performance in both macro- and micro-level architecture search.

Limitations and future work. Our study does not explore LLM-based methods, either as en-
coders (Wang et al., 2025) or predictors (Wu et al., 2025). While these approaches excel on certain
databases, they often perform similarly or worse than baselines on other databases, leaving their
role an open question. Although we do not propose new architectures, our results highlight design
insights: GNNs with labeling tricks can boost entity-level prediction, and DFS-based methods of-
ten outperform RDL, suggesting that current RDL designs may be suboptimal. Yet DFS remains
a non-parametric, hand-crafted approach, contrasting with deep learning trends. Designing novel
architectures inspired by DFS thus represents a promising direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR
Code of Ethics. Our study relies solely on publicly available benchmark datasets such as Rel-
bench (Robinson et al., 2024). We believe this work raises no direct ethical risks beyond standard
concerns associated with machine learning research.

7 REPRODUCIBILITY STATEMENT

Due to the policy, we can not share the source code of this paper during the submission phase. We
will make them available online after approval. To help reproducibility of the results, we provide
training settings in Section 3.3, Section 4, and Appendix E. To validate the observations in this
paper, we include theoretical discussions in Appendix C.

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less C. Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-
learning. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pp. 6429–6438. IEEE, 2019. doi:
10.1109/ICCV.2019.00653. URL https://doi.org/10.1109/ICCV.2019.00653.

Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, and Jun Gao. Atj-net: Auto-table-join
network for automatic learning on relational databases. In Jure Leskovec, Marko Grobelnik,
Marc Najork, Jie Tang, and Leila Zia (eds.), WWW ’21: The Web Conference 2021, Virtual Event
/ Ljubljana, Slovenia, April 19-23, 2021, pp. 1540–1551. ACM / IW3C2, 2021. doi: 10.1145/
3442381.3449980. URL https://doi.org/10.1145/3442381.3449980.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
audin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
and Christopher Morris. Position: Graph learning will lose relevance due to poor benchmarks. In
Forty-second International Conference on Machine Learning Position Paper Track, 2025. URL
https://openreview.net/forum?id=nDFpl2lhoH.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-
nando C. N. Pereira, and Kilian Q. Weinberger (eds.), Advances in Neural Information
Processing Systems 24: 25th Annual Conference on Neural Information Processing Sys-
tems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pp.
2546–2554, 2011. URL https://proceedings.neurips.cc/paper/2011/hash/
86e8f7ab32cfd12577bc2619bc635690-Abstract.html.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
mization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 13(2):e1484, 2023.

Kaidi Cao, Jiaxuan You, Jiaju Liu, and Jure Leskovec. Autotransfer: Automl with knowledge
transfer - an application to graph neural networks. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=y81ppNf_vg.

Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. RelGNN: Composite message passing
for relational deep learning. In Forty-second International Conference on Machine Learning,
2025a. URL https://openreview.net/forum?id=XXh3zmw2Uy.

Zhikai Chen, Han Xie, Jian Zhang, Xiang song, Jiliang Tang, Huzefa Rangwala, and George
Karypis. Autog: Towards automatic graph construction from tabular data. In The Thirteenth In-
ternational Conference on Learning Representations, 2025b. URL https://openreview.
net/forum?id=hovDbX4Gh6.

10

https://doi.org/10.1109/ICCV.2019.00653
https://doi.org/10.1145/3442381.3449980
https://openreview.net/forum?id=nDFpl2lhoH
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://openreview.net/pdf?id=y81ppNf_vg
https://openreview.net/forum?id=XXh3zmw2Uy
https://openreview.net/forum?id=hovDbX4Gh6
https://openreview.net/forum?id=hovDbX4Gh6

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, and
Tom Goldstein. Loss landscapes are all you need: Neural network generalization can be explained
without the implicit bias of gradient descent. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=QC10RmRbZy9.

Dongwon Choi, Sunwoo Kim, Juyeon Kim, Kyungho Kim, Geon Lee, Shinhwan Kang, Myungh-
wan Kim, and Kijung Shin. RDB2g-bench: A comprehensive benchmark for automatic graph
modeling of relational databases. arXiv, 2025. doi: 10.48550/arxiv.2506.01360.

Edgar F Codd. Relational database: A practical foundation for productivity. In ACM Turing award
lectures, pp. 1981. Association for Computing Machinery, 2007.

Filip Cornell, Oleg Smirnov, Gabriela Zarzar Gandler, and Lele Cao. On the power of heuristics in
temporal graphs. ArXiv preprint, abs/2502.04910, 2025. URL https://arxiv.org/abs/
2502.04910.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal
neighbourhood aggregation for graph nets. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html.

DMDave, Todd B, and Will Cukierski. Acquire valued shoppers challenge, 2014. URL https:
//kaggle.com/competitions/acquire-valued-shoppers-challenge.

Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I Kanatsoulis, Rishi
Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer. arXiv, 2025.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph rep-
resentation learning on relational databases. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=BIMSHniyCP.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph rep-
resentation learning on relational databases. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL
https://openreview.net/forum?id=BIMSHniyCP.

Matthias Fey, Vid Kocijan, Federico Lopez, Jan Eric Lenssen, and Jure Leskovec. Kumorfm: A
foundation model for in-context learning on relational data. kumorfm.ai, 2025.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning. ArXiv preprint, abs/1904.09981, 2019. URL https://
arxiv.org/abs/1904.09981.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and Andrew Gordon Wil-
son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
8803–8812, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
be3087e74e9100d4bc4c6268cdbe8456-Abstract.html.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 2232–2241. PMLR, 2019. URL http://proceedings.mlr.press/v97/
ghorbani19b.html.

11

https://openreview.net/pdf?id=QC10RmRbZy9
https://arxiv.org/abs/2502.04910
https://arxiv.org/abs/2502.04910
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html
https://kaggle.com/competitions/acquire-valued-shoppers-challenge
https://kaggle.com/competitions/acquire-valued-shoppers-challenge
https://openreview.net/forum?id=BIMSHniyCP
https://openreview.net/forum?id=BIMSHniyCP
https://arxiv.org/abs/1904.09981
https://arxiv.org/abs/1904.09981
https://proceedings.neurips.cc/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html
http://proceedings.mlr.press/v97/ghorbani19b.html
http://proceedings.mlr.press/v97/ghorbani19b.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph neural
architecture search. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang
Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pp. 7968–7981. PMLR, 2022. URL https://proceedings.mlr.press/v162/
guan22d.html.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
1024–1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Jan L Harrington. Relational database design and implementation. Morgan Kaufmann, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A trans-
former that solves small tabular classification problems in a second. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/pdf?id=cp5PvcI6w8_.

Addison Howard, Bernadette Bouchon-Meunier, IEEE CIS, inversion, John Lei, Lynn@Vesta,
Marcus2010, and Prof. Hussein Abbass. Ieee-cis fraud detection. https://kaggle.com/
competitions/ieee-fraud-detection, 2019. Kaggle.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (eds.), WWW ’20: The Web
Conference 2020, Taipei, Taiwan, April 20-24, 2020, pp. 2704–2710. ACM / IW3C2, 2020b. doi:
10.1145/3366423.3380027. URL https://doi.org/10.1145/3366423.3380027.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, sys-
tems, challenges. Springer Nature, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1–10. IEEE, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

12

https://proceedings.mlr.press/v162/guan22d.html
https://proceedings.mlr.press/v162/guan22d.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/pdf?id=cp5PvcI6w8_
https://kaggle.com/competitions/ieee-fraud-detection
https://kaggle.com/competitions/ieee-fraud-detection
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://doi.org/10.1145/3366423.3380027
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur Alkan.
One button machine for automating feature engineering in relational databases. ArXiv preprint,
abs/1706.00327, 2017. URL https://arxiv.org/abs/1706.00327.

Hoang Thanh Lam, Tran Ngoc Minh, Mathieu Sinn, Beat Buesser, and Martin Wistuba. Neural
feature learning from relational database. ArXiv preprint, abs/1801.05372, 2018. URL https:
//arxiv.org/abs/1801.05372.

Hoang Thanh Lam, Beat Buesser, Hong Min, Tran Ngoc Minh, Martin Wistuba, Udayan Khurana,
Gregory Bramble, Theodoros Salonidis, Dakuo Wang, and Horst Samulowitz. Automated data
science for relational data. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pp. 2689–2692, 2021. doi: 10.1109/ICDE51399.2021.00305.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
6391–6401, 2018a. URL https://proceedings.neurips.cc/paper/2018/hash/
a41b3bb3e6b050b6c9067c67f663b915-Abstract.html.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018b.

Ting Wei Li, Qiaozhu Mei, and Jiaqi Ma. A metadata-driven approach to un-
derstand graph neural networks. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
31994923f58ae5b2d661b300bd439107-Abstract-Conference.html.

Yaoman Li and Irwin King. Autograph: Automated graph neural network. In Neural Information
Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27,
2020, Proceedings, Part II 27, pp. 189–201. Springer, 2020.

Junhong Lin, Xiaojie Guo, Shuaicheng Zhang, Dawei Zhou, Yada Zhu, and Julian Shun. When
heterophily meets heterogeneity: New graph benchmarks and effective methods. ArXiv preprint,
abs/2407.10916, 2024. URL https://arxiv.org/abs/2407.10916.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassess-
ing gnns for node classification. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/b10ed15ff1aa864f1be3a75f1ffc021b-Abstract-Datasets_and_
Benchmarks_Track.html.

Zhipeng Luo, Zhixing He, Jin Wang, Manqing Dong, Jianqiang Huang, Mingjian Chen, and Bo-
hang Zheng. Autosmart: An efficient and automatic machine learning framework for temporal
relational data. In Feida Zhu, Beng Chin Ooi, and Chunyan Miao (eds.), KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singa-
pore, August 14-18, 2021, pp. 3976–3984. ACM, 2021. doi: 10.1145/3447548.3467088. URL
https://doi.org/10.1145/3447548.3467088.

Weishuo Ma, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Reconsidering the performance of
gae in link prediction. ArXiv preprint, abs/2411.03845, 2024. URL https://arxiv.org/
abs/2411.03845.

13

https://arxiv.org/abs/1706.00327
https://arxiv.org/abs/1801.05372
https://arxiv.org/abs/1801.05372
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/31994923f58ae5b2d661b300bd439107-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/31994923f58ae5b2d661b300bd439107-Abstract-Conference.html
https://arxiv.org/abs/2407.10916
http://papers.nips.cc/paper_files/paper/2024/hash/b10ed15ff1aa864f1be3a75f1ffc021b-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/b10ed15ff1aa864f1be3a75f1ffc021b-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/b10ed15ff1aa864f1be3a75f1ffc021b-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.1145/3447548.3467088
https://arxiv.org/abs/2411.03845
https://arxiv.org/abs/2411.03845

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=ucASPPD9GKN.

Darnelle Melvin. Relational database schema to support research profiling studies, natural language
processing, and bibliometric analysis. UNLV, 2025.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.
graphlearning.io.

Namyong Park, Ryan A. Rossi, Nesreen K. Ahmed, and Christos Faloutsos. Metagl: Evaluation-
free selection of graph learning models via meta-learning. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a. URL https://openreview.net/pdf?id=C1ns08q9jZ.

Namyong Park, Ryan A. Rossi, Xing Wang, Antoine Simoulin, Nesreen K. Ahmed, and Chris-
tos Faloutsos. GLEMOS: benchmark for instantaneous graph learning model selection. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/
hash/dcd18e50ebca0af89187c6e35dabb584-Abstract-Datasets_and_
Benchmarks.html.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characteriz-
ing graph datasets for node classification: Homophily-heterophily dichotomy and beyond. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
01b681025fdbda8e935a66cc5bb6e9de-Abstract-Conference.html.

Yijian Qin, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Graph differentiable archi-
tecture search with structure learning. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 16860–
16872, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
8c9f32e03aeb2e3000825c8c875c4edd-Abstract.html.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec.
Relbench: A benchmark for deep learning on relational databases. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
cember 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_
and_Benchmarks_Track.html.

Ion-Sorin Stroe. Mysql databases as part of the online business, using a platform based on linux.
Database Syst. J, 2(3):3–12, 2011.

Minjie Wang, Quan Gan, David Wipf, Zheng Zhang, Christos Faloutsos, Weinan Zhang, Muhan
Zhang, Zhenkun Cai, Jiahang Li, Zunyao Mao, Yakun Song, Jianheng Tang, Yanlin Zhang, Guang
Yang, Chuan Lei, Xiao Qin, Ning Li, Han Zhang, Yanbo Wang, and Zizhao Zhang. 4dbinfer: A
4d benchmarking toolbox for graph-centric predictive modeling on rdbs. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on

14

https://openreview.net/forum?id=ucASPPD9GKN
https://openreview.net/forum?id=ucASPPD9GKN
www.graphlearning.io
www.graphlearning.io
https://openreview.net/pdf?id=C1ns08q9jZ
http://papers.nips.cc/paper_files/paper/2023/hash/dcd18e50ebca0af89187c6e35dabb584-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/dcd18e50ebca0af89187c6e35dabb584-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/dcd18e50ebca0af89187c6e35dabb584-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/01b681025fdbda8e935a66cc5bb6e9de-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/01b681025fdbda8e935a66cc5bb6e9de-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/8c9f32e03aeb2e3000825c8c875c4edd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8c9f32e03aeb2e3000825c8c875c4edd-Abstract.html
http://papers.nips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024a. URL http://papers.nips.cc/paper_files/paper/
2024/hash/2fd67447702c8eff5683dda507a1b0a2-Abstract-Datasets_
and_Benchmarks_Track.html.

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL https://openreview.
net/forum?id=sNFLN3itAd.

Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, and Muhan Zhang.
Griffin: Towards a graph-centric relational database foundation model. In Forty-second Interna-
tional Conference on Machine Learning, 2025. URL https://openreview.net/forum?
id=TxeCxVb3cL.

Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R. Benson, and Pan Li. Understanding non-
linearity in graph neural networks from the bayesian-inference perspective. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
dbe0e575e4604367a989e850c9b28401-Abstract-Conference.html.

Jacob White. Pubmed 2.0. Medical reference services quarterly, 39(4):382–387, 2020.

Fang Wu, Vijay Prakash Dwivedi, and Jure Leskovec. Large language models are good relational
learners. arXiv, 2025. doi: 10.48550/arxiv.2506.05725.

Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling prediction tasks in relational
databases with LLMs. arXiv, 2024. doi: 10.48550/arxiv.2411.11829.

Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at deep
learning methods on tabular datasets. ArXiv preprint, abs/2407.00956, 2024. URL https:
//arxiv.org/abs/2407.00956.

Minji Yoon, Théophile Gervet, Bryan Hooi, and Christos Faloutsos. Autonomous graph mining
algorithm search with best speed/accuracy trade-off. In 2020 IEEE International Conference on
Data Mining (ICDM), pp. 751–760. IEEE, 2020.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c5c3d4fe6b2cc463c7d7ecba17cc9de7-Abstract.html.

Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan Shah,
Shenyang Huang, Blaž Stojanovič, Alan Krumholz, Jan Eric Lenssen, Jure Leskovec, and
Matthias Fey. ContextGNN: Beyond two-tower recommendation systems. arXiv, 2024. doi:
10.48550/arxiv.2411.19513.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
5171–5181, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
53f0d7c537d99b3824f0f99d62ea2428-Abstract.html.

Zeyang Zhang, Ziwei Zhang, Xin Wang, Yijian Qin, Zhou Qin, and Wenwu Zhu. Dynamic hetero-
geneous graph attention neural architecture search. In Brian Williams, Yiling Chen, and Jennifer
Neville (eds.), Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,

15

http://papers.nips.cc/paper_files/paper/2024/hash/2fd67447702c8eff5683dda507a1b0a2-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/2fd67447702c8eff5683dda507a1b0a2-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/2fd67447702c8eff5683dda507a1b0a2-Abstract-Datasets_and_Benchmarks_Track.html
https://openreview.net/forum?id=sNFLN3itAd
https://openreview.net/forum?id=sNFLN3itAd
https://openreview.net/forum?id=TxeCxVb3cL
https://openreview.net/forum?id=TxeCxVb3cL
http://papers.nips.cc/paper_files/paper/2022/hash/dbe0e575e4604367a989e850c9b28401-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/dbe0e575e4604367a989e850c9b28401-Abstract-Conference.html
https://arxiv.org/abs/2407.00956
https://arxiv.org/abs/2407.00956
https://proceedings.neurips.cc/paper/2020/hash/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

February 7-14, 2023, pp. 11307–11315. AAAI Press, 2023. doi: 10.1609/AAAI.V37I9.26338.
URL https://doi.org/10.1609/aaai.v37i9.26338.

Wenqian Zhao, Xiangxiang Li, Guoping Rong, Mufeng Lin, Chen Lin, and Yifan Yang. Dafee: A
scalable distributed automatic feature engineering algorithm for relational datasets. In Algorithms
and Architectures for Parallel Processing: 20th International Conference, ICA3PP 2020, New
York City, NY, USA, October 2–4, 2020, Proceedings, Part II, pp. 32–46, Berlin, Heidelberg,
2020. Springer-Verlag. ISBN 978-3-030-60238-3. doi: 10.1007/978-3-030-60239-0 3. URL
https://doi.org/10.1007/978-3-030-60239-0_3.

Yilun Zheng, Sitao Luan, and Lihui Chen. What is missing for graph homophily? disen-
tangling graph homophily for graph neural networks. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
7e810b2c75d69be186cadd2fe3febeab-Abstract-Conference.html.

Kaixiong Zhou, Xiao Huang, Qingquan Song, Rui Chen, and Xia Hu. Auto-gnn: Neural architecture
search of graph neural networks. Frontiers in big Data, 5:1029307, 2022.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural bellman-
ford networks: A general graph neural network framework for link prediction. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 29476–29490, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=r1Ue8Hcxg.

A USAGE OF LARGE LANGUAGE MODELS

We utilize large language models to refine our writing and also employ a large language model-
based coding agent to assist with code writing. We have reviewed the generated content provided
by large language models and will be responsible for the correctness of the polished content.

B SUPPLEMENTARY INFORMATION FOR DATASETS AND TASKS

Our adopted datasets and tasks are summarized in Table 6. It should be noted that we skip the rel-
amazon datasets because the source is crawled from Amazon, which contains sensitive information
and doesn’t present a valid license. We then briefly introduce each dataset and task as follows:

• rel-hm (Robinson et al. (2024)): This database contains comprehensive customer and product
data from online retail platforms, including detailed purchase histories and diverse metadata
such as customer demographics and product attributes.

– user-churn: For each customer, predict whether they will churn—i.e., have no trans-
actions—in the next 7 days.

– user-item-purchase: Predict the list of articles each customer will purchase in the
next 7 days.

– item-sales: Predict the total sales (sum of prices of associated transactions) for an
article in the next 7 days.

• rel-stack (Robinson et al. (2024)): This database is about a Q&A platform with a reputation
system. Data is dumped from the stats-exchange site, and data from the 2023-09-12 dump.

– post-votes: For each post, predict how many votes it will receive in the next 3 months.

16

https://doi.org/10.1609/aaai.v37i9.26338
https://doi.org/10.1007/978-3-030-60239-0_3
http://papers.nips.cc/paper_files/paper/2024/hash/7e810b2c75d69be186cadd2fe3febeab-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7e810b2c75d69be186cadd2fe3febeab-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

– user-engagement: For each user, predict whether they will make any votes, posts, or
comments in the next 3 months.

– user-badge: For each user, predict whether they will receive a new badge in the next 3
months.

– user-post-comment: Predict a list of existing posts that a user will comment on in
the next two years.

– post-post-related: Predict a list of existing posts that users will link a given post
to in the next two years.

• rel-event (Robinson et al. (2024)): An anonymized event recommendation dataset from the
Hangtime app, containing user actions, event metadata, demographics, and social relations.

– user-repeat: Predict whether a user will attend another event (respond “yes” or
“maybe”) in the next 7 days, given they attended an event in the last 14 days.

– user-ignore: Predict whether a user will ignore more than two event invitations in the
next 7 days.

– user-attendance: Predict how many events each user will respond “yes” or “maybe”
to in the next 7 days.

• rel-avito (Robinson et al. (2024)): A marketplace-style relational database.
– user-visits: Predict whether each customer will visit more than one ad in the next 4

days.
– user-clicks: Predict whether each customer will click on more than one ad in the

next 4 days.
– ad-ctr: Assuming an ad will be clicked in the next 4 days, predict its click-through rate

(CTR).
– user-ad-visit: Predict the list of ads a user will visit in the next 4 days.

• rel-trial (Robinson et al. (2024)): A clinical-trial oriented relational database.
– study-outcome: Predict whether trials in the next 1 year will achieve their primary

outcome.
– study-adverse: Predict the number of patients with severe adverse events/deaths for

the trial in the next 1 year.
– site-success: Predict the success rate of a trial site in the next 1 year.
– condition-sponsor-run: For each condition, predict which sponsors will run tri-

als.
– site-sponsor-run: For each (site, sponsor) pair, predict whether the sponsor will

run a trial at the site.
• avs (Wang et al. (2024a); DMDave et al. (2014)): A Kaggle e-commerce dataset of offers and

customer interactions.
– retention: For each (offer, customer) pair, predict whether the customer will repeat

the promoted purchase (become a ”repeater”) within a specified follow-up period.
• ieee-cis (Chen et al. (2025b); Howard et al. (2019)): Transactional fraud-style interactions.

– fraud: For each transaction, predict whether it is fraudulent at the time of authorization.

In terms of RDB predictive tasks, Robinson et al. (2024) provides a unified interface to define tasks
and generate corresponding training, validation, and test tables through SQL. We then demonstrate
an example SQL query for each example task below:

Example entity-level task (user-churn in rel-hm):

1 class UserChurnTask(EntityTask):
2 r"""Predict the churn for a customer (no transactions) in the next

week."""
3
4 task_type = TaskType.BINARY_CLASSIFICATION
5 entity_col = "customer_id"
6 entity_table = "customer"
7 time_col = "timestamp"
8 target_col = "churn"
9 timedelta = pd.Timedelta(days=7)

10 metrics = [average_precision, accuracy, f1, roc_auc]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

11
12 def make_table(self, db: Database, timestamps: "pd.Series[pd.

Timestamp]") -> Table:
13 customer = db.table_dict["customer"].df
14 transactions = db.table_dict["transactions"].df
15 timestamp_df = pd.DataFrame({"timestamp": timestamps})
16
17 df = duckdb.sql(
18 f"""
19 SELECT
20 timestamp,
21 customer_id,
22 CAST(
23 NOT EXISTS (
24 SELECT 1
25 FROM transactions
26 WHERE
27 transactions.customer_id = customer.

customer_id AND
28 t_dat > timestamp AND
29 t_dat <= timestamp + INTERVAL ’{self.

timedelta}’
30) AS INTEGER
31) AS churn
32 FROM
33 timestamp_df,
34 customer,
35 WHERE
36 EXISTS (
37 SELECT 1
38 FROM transactions
39 WHERE
40 transactions.customer_id = customer.customer_id

AND
41 t_dat > timestamp - INTERVAL ’{self.timedelta}’

AND
42 t_dat <= timestamp
43)
44 """
45).df()
46
47 return Table(
48 df=df,
49 fkey_col_to_pkey_table={self.entity_col: self.entity_table},
50 pkey_col=None,
51 time_col=self.time_col,
52)

As we can see, the time information is split into several time windows and given in the function
parameter timestamps. Then, this timestamp will be used to create a time constraint, and the
target label will be generated based on the SQL logic.

Example recommendation task (user-item-purchase in rel-hm):

1 class UserItemPurchaseTask(RecommendationTask):
2 r"""Predict the list of articles each customer will purchase in the

next seven
3 days."""
4
5 task_type = TaskType.LINK_PREDICTION
6 src_entity_col = "customer_id"
7 src_entity_table = "customer"
8 dst_entity_col = "article_id"
9 dst_entity_table = "article"

10 time_col = "timestamp"

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

11 timedelta = pd.Timedelta(days=7)
12 metrics = [link_prediction_precision, link_prediction_recall,

link_prediction_map]
13 eval_k = 12
14
15 def make_table(self, db: Database, timestamps: "pd.Series[pd.

Timestamp]") -> Table:
16 customer = db.table_dict["customer"].df
17 transactions = db.table_dict["transactions"].df
18 timestamp_df = pd.DataFrame({"timestamp": timestamps})
19
20 df = duckdb.sql(
21 f"""
22 SELECT
23 t.timestamp,
24 transactions.customer_id,
25 LIST(DISTINCT transactions.article_id) AS article_id
26 FROM
27 timestamp_df t
28 LEFT JOIN
29 transactions
30 ON
31 transactions.t_dat > t.timestamp AND
32 transactions.t_dat <= t.timestamp + INTERVAL ’{self.

timedelta} days’
33 GROUP BY
34 t.timestamp,
35 transactions.customer_id
36 """
37).df()
38
39 return Table(
40 df=df,
41 fkey_col_to_pkey_table={
42 self.src_entity_col: self.src_entity_table,
43 self.dst_entity_col: self.dst_entity_table,
44 },
45 pkey_col=None,
46 time_col=self.time_col,
47)

Similarly, recommendation tasks are based on the joined table between the timestamp table and the
target entity tables. A groupby operation is then applied to generate the list of target entities.

Example autocomplete task:

1 def make_table(self, db: Database, timestamps: "pd.Series[pd.Timestamp]")
-> Table:

2 entity_table = db.table_dict[self.entity_table].df # noqa: F841
3 entity_table_removed_cols = db.table_dict[# noqa: F841
4 self.entity_table
5].removed_cols
6
7 time_col = db.table_dict[self.entity_table].time_col
8 entity_col = db.table_dict[self.entity_table].pkey_col
9

10 # Calculate minimum and maximum timestamps from timestamp_df
11 timestamp_df = pd.DataFrame({"timestamp": timestamps})
12 min_timestamp = timestamp_df["timestamp"].min()
13 max_timestamp = timestamp_df["timestamp"].max()
14
15 df = duckdb.sql(
16 f"""
17 SELECT
18 entity_table.{time_col},

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

19 entity_table.{entity_col},
20 entity_table_removed_cols.{self.target_col}
21 FROM
22 entity_table
23 LEFT JOIN
24 entity_table_removed_cols
25 ON
26 entity_table.{entity_col} = entity_table_removed_cols.{

entity_col}
27 WHERE
28 entity_table.{time_col} > ’{min_timestamp}’ AND
29 entity_table.{time_col} <= ’{max_timestamp}’
30 """
31).df()
32
33 # remove rows where self.target_col is nan
34 df = df.dropna(subset=[self.target_col])
35
36 return Table(
37 df=df,
38 fkey_col_to_pkey_table={
39 entity_col: self.entity_table,
40 },
41 pkey_col=None,
42 time_col=time_col,
43)

Autocomplete tasks are based on the entity table itself, which is a setting closer to traditional RDB
predictive tasks used in Wang et al. (2024a).

C SUPPLEMENTARY THEORETICAL DISCUSSION

C.1 DEFINITION OF METRICS

In this section, we present the formal definition of missing homophily-related features adopted in
this paper, as discussed in Section 4.1.1.
Definition 2 (Class-insensitive homophily). For a classification task with class prior π :=
1
|L|
∑
u∈L ŷu ∈ ∆C−1, define the class-conditional edge similarity for metapath m by

hk(G;m) :=

∑
(u,v)∈Em

K(ŷu, ŷv) ŷv,k∑
(u,v)∈Em

ŷv,k
(k = 1, . . . , C).

The class-insensitive homophily for m is

Hins(G;m) :=
1

C − 1

C∑
k=1

[
hk(G;m)− πk

]
+
.

For regression tasks, where class imbalance is irrelevant, we set
Hins(G;m) := Hedge(G;m).

Definition 3 (Aggregation homophily). Let Γm(u) = { v ∈ L : (u, v) ∈ Em } be the labeled
m-neighbors of u and degm(u) = |Γm(u)|. Define the neighbor-aggregated label

ȳ(m)
u :=

1

degm(u)

∑
v∈Γm(u)

ŷv (classification), ȳ(m)
u :=

1

degm(u)

∑
v∈Γm(u)

ŷv (regression).

Let Um := {u ∈ L : degm(u) > 0}. The aggregation homophily for m is

Hagg(G;m) :=
1

|Um|
∑
u∈Um

K
(
ŷu, ȳ

(m)
u

)
, classification,

K
(
ŷu, ȳ

(m)
u

)
, regression,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Summary of databases, tasks, task types, and evaluation metrics used in our experiments.

Database Name Task Name Task Type Metric

rel-f1
driver-dnf classification ROC-AUC
driver-top3 classification ROC-AUC
driver-position regression MAE

rel-hm
user-churn classification ROC-AUC
user-item-purchase recommendation MAP
item-sales regression MAE

rel-stack

post-votes regression MAE
user-engagement classification ROC-AUC
user-badge classification ROC-AUC
user-post-comment recommendation MAP
post-post-related recommendation MAP

rel-event
user-repeat classification ROC-AUC
user-ignore classification ROC-AUC
user-attendance regression MAE

rel-avito

user-visits classification ROC-AUC
user-clicks classification ROC-AUC
ad-ctr regression MAE
user-ad-visit recommendation MAP

rel-trial

study-outcome classification ROC-AUC
study-adverse regression MAE
site-success regression MAE
condition-sponsor-run recommendation MAP
site-sponsor-run recommendation MAP

avs retention autocomplete ROC-AUC

ieee-cis fraud autocomplete ROC-AUC

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

with K dot product for classification; Gaussian kernel K(a, b) = exp
(
−∥a − b∥2/(2σ2

y)
)

for re-
gression).

C.2 WHY RDL IS BETTER AT LOW-HOMOPHILY REGION?

In this section, we analyze why RDL exhibits advantages in low-homophily regimes. Our argument
adapts the Bayes-optimal analysis of Wei et al. (2022), which characterizes how the optimal one-hop
classifier changes with label/feature homophily. We do not provide original proof here; instead, we
specialize their framework to metapath-projected RDB graphs and use it to explain the observed
behavior of RDL.

Following §4.1.1, let G = (V, E) be the heterogeneous graph induced by the RDB task with labeled
entity type F and node set VF. Let M be a finite family of self-looped metapathsm that start and end
at F; each m induces edges Em on VF and neighbor sets N (m)

v . For clarity, we work with a binary
label space Yv ∈ {−1,+1} drawn i.i.d. with prior Pr(Yv = +1) = π ∈ (0, 1). We next specify the
generative model that underpins our analysis. We make the RDB data fall under the framework of
Wei et al. (2022) by considering the metapath-induced graphs.
Definition 4 (Metapath-wise contextual SBM (tCSBM)). Let VF be the labeled entity set and M a
finite set of self-looped metapaths on F. The generative model for (Y,X, {Em}m∈M) is:

(Labels). Each node v ∈ VF has a class label Yv ∈ {+1,−1} drawn i.i.d. from a prior Pr(Yv =
1) = π ∈ (0, 1)

(Node features). Conditional on Yv , the attribute Xv is drawn i.i.d. from a class-conditional distri-
bution PYv

with density p(· | Yv) (e.g., a Gaussian mixture). Features are conditionally independent
across nodes given Y .

(Edges along each metapath). For every metapath m ∈ M, conditional on labels Y the edges in
Em are independent and

Pr({u, v} ∈ Em | Yu = Yv) = pm, Pr({u, v} ∈ Em | Yu = Yv) = qm.

Moreover, edges are conditionally independent of features given labels: {Em}m ⊥⊥ X | Y .
Remark 1 (Metapath-induced graphs as the substrate for DFS and RDL). Def. 4 specifies, for each
self-looped metapathm, an induced edge set Em on VF. In practice, both DFS and RDL operate on
this metapath-induced F–F graph: one first projects the heterogeneous joins alongm back to F (e.g.,
via path counts or normalized weights) to obtain an adjacency A(m), and then aggregates informa-
tion over A(m). Concretely, DFS produces non-parametric, linear aggregates (e.g., SUM/ MEAN)
of base features on VF through A(m) (or its row-normalized form), which algebraically coincides
with multiplying by A(m). In contrast, RDL uses the same metapath-induced structure but applies
relation-aware (per-metapath) transformations or gates to the propagated signals before or during
aggregation. Thus, after the metapath projection, both methods are defined on the same F–F graph
if DFS only utilizes the mean aggregator; they differ only in whether the propagation is purely linear
and fixed (DFS) or relation-conditioned and learned (RDL).

Then, following Wei et al. (2022), we consider the MAP estimation of the classifier that can mini-
mize the misclassification rate. The estimation of a node label depends on its own attributes and the
attributes of its 1-hop metapath-induced neighbors.

The one-hop maximum a posteriori (MAP) rule at node v selects the label y ∈ {−1,+1} that
maximizes the joint posterior of y and the (latent) neighbor labels {yu}u∈∪mN

(m)
v

given the local
observations (Xv, {Xu}, {1{(v, u) ∈ Em}}m):

Ŷv = arg max
y∈{±1}

max
{yu}

πy p(Xv | y)
∏
m∈M

∏
u∈N(m)

v

[
πyu p(Xu | yu) p1{yu=y}m q1{yu ̸=y}m

]
.

Taking logs (monotone) and subtracting the two class scores yields a decision function whose sign
gives Ŷv:

Ŷv = sign
(
log π

1−π + log p(Xv|+1)
p(Xv|−1)︸ ︷︷ ︸
ψ(Xv)

+
∑
m∈M

∑
u∈N(m)

v

log
max{pm p(Xu | +1), qm p(Xu | −1)}
max{qm p(Xu | +1), pm p(Xu | −1)}︸ ︷︷ ︸

ϕmax(ψ(Xu); γm)

)
,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where γm := log pmqm encodes metapath homophily and ψ(Xu) := log p(Xu|+1)
p(Xu|−1) is the feature log-

likelihood ratio. The per-neighbor MAP message admits the closed form

ϕmax(s; γ) = log
max{eγ+s, 1}
max{es, eγ}

= clip(s, −γ, +γ),

Basic properties of the MAP message on metapaths. For m ∈ M let γm := log pmqm and define
the per-neighbor joint-MAP message ϕmax(s; γ) = clip(s,−γ, γ) applied to s = ψ(Xu).
Lemma 1 (Gate-off, flip, and linear region). For all s ∈ R and m ∈ M,

(i) (gate-off) if γm = 0 then ϕmax(s; γm) ≡ 0;

(ii) (flip) if γm < 0 then ϕmax(s; γm) = −ϕmax(s; |γm|);

(iii) (linear region) if |s| ≤ γm then ϕmax(s; γm) = s.

Proof. All three statements follow immediately from the piecewise form of ϕmax(s; γ):
ϕmax(s; γ) = −γ for s ≤ −γ, equals s for |s| < γ, and equals +γ for s ≥ γ. In particular, γ = 0
gives the zero map; replacing γ by −γ flips signs; and on [−γ, γ] the function is the identity.

Remark 2 (Interpretation of Lemma 1). Lemma 1 summarizes the three key regimes of the MAP
message ϕmax(s; γ). These properties clarify how structure and features interact: (i) when γ = 0
the metapath carries no information and should be shut off (gate-off); (ii) when γ < 0, the neighbor
evidence must be flipped to align with the center label (heterophily flip); and (iii) when |s| ≤ γ the
nonlinearity reduces to the identity, So in highly homophilous settings, the MAP rule coincides with
linear DFS-style aggregation. These simple facts underpin the later SNR comparison: they explain
why linear propagation is adequate in strong homophily, but why relation-aware gating is necessary
and beneficial in low or negative homophily regimes.

We then come up with the vectorized form of the MAP score vector by aggregating each element
Proposition 1 (Vector form on the metapath-projected F–F graph.). Let A(m) be the (possibly nor-
malized) metapath-induced adjacency on VF obtained by projecting m back to F; put s ∈ R|VF| with
sv = ψ(Xv). Writing ϕmax elementwise, the one-hop joint-MAP score vector is

z = log π
1−π 1+ s +

∑
m∈M

A(m) ϕmax

(
s; γm

)
, Ŷv = sign(zv). (1)

Proof. For each v ∈ VF, the one–hop joint–MAP score derived earlier is score(v) = log π
1−π +

ψ(Xv) +
∑
m

∑
u∈N(m)

v
ϕmax(ψ(Xu); γm). Let s ∈ R|VF| with sv = ψ(Xv) and define ϕm(s)

elementwise by [ϕm(s)]u = ϕmax(su; γm). By the definition of the metapath-projected adjacency
A(m) (with entries A(m)

vu supported on u ∈ N
(m)
v), we have [A(m)ϕm(s)]v =

∑
uA

(m)
vu [ϕm(s)]u =∑

u∈N(m)
v

ϕmax(su; γm), which reproduces the inner sum for metapath m; summing over m gives
the full neighbor contribution. Hence the v-th coordinate of z := log π

1−π1+ s+
∑
mA

(m)ϕm(s)

equals score(v), and the MAP decision is Ŷv = sign(zv), proving the vector form.

We then introduce a key concept of signal-to-noise ratio (SNR) to compare the linear DFS-style
aggregation and the gated RDL-style aggregation. The SNR is a standard metric in statistical sig-
nal processing and communication theory that quantifies the strength of the signal relative to the
noise. In our context, it measures how well the aggregated neighbor information can distinguish be-
tween different classes, taking into account the variability introduced by the features and the graph
structure.
Definition 5 (SNR bookkeeping on metapaths). Let µ+ := E[ψ(X) | Y = +1], µ− := E[ψ(X) |
Y = −1], δ := µ+−µ−, and let σ2 := max{Var(ψ(X) | Y = +1),Var(ψ(X) | Y = −1)}+δ2/4
(to upper bound the class-mixture variance). Denote the expected degree dm := E[|N (m)

v |] and

αm := Pr(Yu=Yv | {u, v} ∈ Em)− Pr(Yu ̸=Yv | {u, v} ∈ Em) =
pm − qm
pm + qm

= tanh
(γm

2

)
, (2)

so that Pr(Yu=Yv | {u, v} ∈ Em) = (1 + αm)/2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We then introduce an assumption that controls the gap between the variance of the sum of metapath-
wise neighbor contributions and the sum of their variances. It should be noted that the proof here
assumes the feature is in the informative regime.
Assumption 1 (Cross-metapath covariance control). There exists Λ ≥ 1 such that for any
choice of (centered) neighbor functions Zm(v) =

∑
u∈N(m)

v
gm(Xu), Var(

∑
m Zm(v) | Yv) ≤

Λ
∑
mVar(Zm(v) | Yv). This holds with Λ = 1 under conditional independence across metapaths.

Here gm : X → R denotes the per–metapath neighbor contribution for m—e.g., in the linear/DFS
case gm(x) = ψ(x) − E[ψ(X) | Yv], while in the gated/RDL case gm(x) = ϕmax(ψ(x); γm) −
E[ϕmax(ψ(X); γm) | Yv] (both centered given Yv).
Lemma 2 (Mean–variance ledgers for linear vs. gated aggregation). Consider the linear
(DFS-style) neighbor sum Slin(v) =

∑
m

∑
u∈N(m)

v
ψ(Xu) and the gated sum Sgate(v) =∑

m

∑
u∈N(m)

v
ϕmax(ψ(Xu); γm). dm denotes the degree of metapaths. Then

E[Slin | Yv = +1]− E[Slin | Yv = −1] =
∑
m

dm αm δ, Var(Slin | Yv) ≤ Λ
∑
m

dm σ
2.

Moreover, in the informative-feature regime of Wei et al. (2022, Lemma. C1),

E[Sgate | Yv = +1]−E[Sgate | Yv = −1] ≈
∑
m

2dm αm γm, Var(Sgate | Yv) ≤ Λ
∑
m

dm σ̃
2
m,

with σ̃2
m ≲ γ2m e

−c∆2

for some universal c > 0 (here ∆ denotes a class-separation measure, e.g.,
the Gaussian separation or a calibrated logit separation).

Proof. Linear mean. By exchangeability along metapath m and linearity of expectation,

E
[∑
u∈N(m)

v

ψ(Xu)
∣∣∣Yv = y

]
= dm E[ψ(Xu) | Yv=y, {u, v}∈Em].

Conditioning on Yu and using Pr(Yu = y | edge) = 1+αm

2 ,

E[ψ(Xu) | Yv=y, edge] = 1+αm

2 µy +
1−αm

2 µ−y.

Subtracting the two classes yields dmαm(µ+ −µ−) = dmαmδ. Summing m gives the first display.
Linear variance. For each m, Var(

∑
u∈N(m)

v
ψ(Xu) | Yv) ≤ dm σ

2 by a binomial-variance bound
and the definition of σ2. Assumption 1 gives the sum across m.

Gated mean. Using the same conditioning, and Wei et al. (2022, Lemma. C1) together with their
regime analysis, we have E[ϕmax(ψ(Xu); γm) | Yu = ±1] ≈ ±γm in the informative regime.
Therefore

E[ϕmax(ψ(Xu); γm) | Yv = y, edge] ≈ 1+αm

2 γm + 1−αm

2 (−γm) = αmγm,

So the class difference is ≈ 2dmαmγm. Gated variance. By Wei et al. (2022, Thm. 2), the class-
conditional variance of ϕmax(ψ; γm) is at most Cγ2me

−c∆2

for constants C, c > 0. Summing over
neighbors contributes a factor dm, and Assumption 1 handles the sum over m.

Definition 6 (Metapath-level SNR proxies). Define

ρlin :=

(∑
m dm αm δ

)2
Λ
∑
m dm σ

2
, ρgate :=

(∑
m dm αm γm

)2
Λ
∑
m dm σ̃

2
m

.

By Wei et al. (2022, Thm. 2) (single-relation), larger SNR implies a strictly smaller misclassifica-
tion error up to universal constants; we use ρlin, ρgate as proxies for multi-metapath graphs under
Assumption 1.

We then discuss the high-homophily case.
Proposition 2 (Multi-metapath DFS equivalence under strong homophily). If for every active m
one has Pr(|ψ(X)| ≤ γm) ≥ 1− εm, then

z = log π
1−π 1+ s+

∑
m

A(m) ϕmax(s; γm) = log π
1−π 1+ s+

∑
m

A(m) s + r,

where ∥r∥1 ≤
∑
m εm · ∥A(m)1∥1. In particular, ρgate = ρlin(1 + o(1)) as maxm εm → 0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. By Lemma 1(iii), ϕmax(sv; γm) = sv whenever |sv| ≤ γm. Write the error vector e(m) :=
ϕmax(s; γm)− s, which has support contained in Em := {v : |sv| > γm}, and satisfies ∥e(m)∥∞ ≤
max{|sv| − γm, γm} ≤ 2|sv|. Then∑

m

A(m)ϕmax(s; γm) =
∑
m

A(m)s+
∑
m

A(m)e(m).

By Markov and the assumption, Pr(v ∈ Em) ≤ εm, so ∥A(m)e(m)∥1 ≤ ∥A(m)1∥1 · ∥e(m)∥∞ ·
Pr(Em) ≤ C εm∥A(m)1∥1 for a universal C (after rescaling s), giving the stated bound with r =∑
mA

(m)e(m). The SNR statement follows because replacing ϕmax by s changes the mean and
variance only on the rare set Em.

When nonlinearity is necessary in the multi-metapath setting. The next theorem upgrades Wei
et al. (2022, Thm. 2) from a single relation to multiple metapaths by summing contributions under
Assumption 1.
Theorem 1 (Multi-metapath gating advantage in low/negative homophily). Assume the feature sep-
aration is in the informative regime of Wei et al. (2022, Thm. 2), so that each active metapath m
admits σ̃2

m ≲ γ2me
−c∆2

. If either (i) there exists at least onem− ∈ M with γm− < 0 (heterophilous
metapath), or (ii) a non-negligible subset M0 satisfies |γm| ≤ ϵ (near-zero homophily), then there
exist constants C, c′ > 0 such that

ρgate ≥ C e c
′∆2

·
(∑

m dm |αmγm|
)2∑

m dm γ
2
m

while ρlin ≤ δ2

σ2
·
(∑

m dm αm
)2∑

m dm
.

Consequently, whenever the signed sum
∑
m dm αm is small due to sign-mixing or near-zero ho-

mophily, one has ρgate ≫ ρlin, and the gated aggregation strictly dominates linear aggregation.

Proof. By Lemma 2, ρgate =
(
∑

m dmαmγm)2

Λ
∑

m dmσ̃2
m

. Using σ̃2
m ≤ C1γ

2
me

−c∆2

from Wei et al. (2022,
Thm. 2),

ρgate ≥
(
∑
m dm|αmγm|)2

ΛC1e−c∆
2
∑
m dmγ

2
m

≥ C e c
′∆2

·
(
∑
m dm|αmγm|)2∑

m dmγ
2
m

,

absorbing constants into C, c′. For the linear SNR, Lemma 2 gives ρlin =
(
∑

m dmαmδ)
2

Λ
∑

m dmσ2 ≤ δ2

σ2 ·
(
∑

m dmαm)2∑
m dm

(after rescaling Λ into the constant). Under condition (i) or (ii),
∑
m dmαm can be

made small (sign-mixing and near-zero homophily, respectively), whereas
∑
m dm|αmγm| remains

of the order
∑
m dmγ

2
m because αm = tanh(γm/2) has the same sign as γm and |αm| ≳ |γm| for

small |γm|. Combined with the exponential factor ec
′∆2

, this yields ρgate ≫ ρlin.

Corollary 1 (Sign-mixing amplifies the gain of gating). If there exist m+ and m− with γm+
> 0

and γm− < 0, then

ρgate
ρlin

≳ e c
′∆2

·
(∑

m dm|αmγm|
)2(∑

m dm|αm|
)2 · σ

2

σ̃2
, σ̃2 :=

∑
m dmσ̃

2
m∑

m dm
,

So the advantage grows with the degree-weighted sign diversity across metapaths.
Corollary 2 (Zero-information robustness). If |γm| = 0 for a subset M0 (no homophily), then
these metapaths contribute nothing to ρgate (by Lemma 1(i)) but still inflate the denominator of
ρlin, decreasing the linear SNR. Thus, gating is robust to uninformative relations, whereas linear
averaging is not.

Corollary 3 (Average-homophily can be misleading). Let Γavg :=
∑

m dmγm∑
m dm

and Γabs :=∑
m dm|γm|∑

m dm
. Even if Γavg > 0 (net assortative), when the disagreement Γabs − |Γavg| is large (sign-

mixing/heterogeneity across metapaths) and features are informative, one still has ρgate ≫ ρlin;
hence average homophily alone does not decide in favor of linear aggregation.
Remark 3 (Final remarks.). The theory we prove here essentially explains why RDL is superior
to DFS (with a vanilla mean aggregator) in the low-homophily region. We leave explaining why
practical DFS (with multiple aggregators) is better than RDL as future work.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.3 RELATIONSHIP BETWEEN RANDOMLY INITIALIZED MODEL AND HASHING

Following the notation in Section 3.3, consider the (atemporal) attributed, typed graph

G = (V,E, ϕ, ψ, fV , fE),

where ϕ : V →NodeTypes maps entities to node types, ψ : E→LinkTypes maps links to relation
types, and fV : V →RdV , fE : E→RdE provide node and link attributes.

NBFNet message passing. NBFNet can be viewed as dynamic programming (DP) over the
schema graph, replacing Bellman–Ford’s sum and product by learnable operators. Fix a state width
d ∈ N and horizon T ∈ N. Each node v ∈ V maintains a d-dimensional state H(ℓ)(v) ∈ Rd at DP
layer ℓ = 0, . . . , T :

(Indicator) H(0)(v) = Iθ
(
v; s

)
∈ Rd, (3)

(Message) M
(ℓ)
θ

(
H(ℓ−1)(u), ξ(u→v)

)
= H(ℓ−1)(u) ⊗θ Γ

(ℓ)
θ

(
ξ(u→v)

)
∈ Rd, (4)

(Aggregate) H(ℓ)(v) =
⊕

(u→v)∈E

M
(ℓ)
θ

(
H(ℓ−1)(u), ξ(u→v)

)
, ℓ = 1, . . . , T. (5)

Here ξ(u→v) ∈ X bundles the schema edge context (e.g., τ(u→v) and endpoint types via ϕ). All
functions are chosen permutation-invariant over incoming edges. There are three key design choices
of NBFNet.

Indicator. A simple indicator is Iθ(v; s) = 1{v = s}ϕemb(v), where ϕemb(v) is a learned (or
fixed) embedding of the source node type s ∈ Vsrc to distinguish sources from non-sources.

Readout. Given a source node s ∈ Vsrc, we pool across layers and endpoints to obtain

Zθ(s) =

T∑
ℓ=1

aℓ
∑
v∈V

β(v)Π
(ℓ)
θ

(
H(ℓ)(v)

)
∈ Rdr , (6)

where Π
(ℓ)
θ : Rd→Rdr is an optional projection (identity if not needed), (aℓ) are length weights,

and β : V →R≥0 selects/emphasizes endpoint types.

Edge representation. For graphs induced from RDBs, edges come from PK–FK relations. We
abstract each edge e as a discrete edge token τ(e) ∈ Σ with

τ(e) = (ϕ(tail(e)), ψ(e), ϕ(head(e))) ∈ Σ,

so that any path p = (e1, . . . , eL) maps to the token sequence τ(p) = (τ(e1), . . . , τ(eL)) ∈ ΣL.

The Bellman-Ford–style recursion multiplies edge-local “messages” along a path and sums over all
paths and endpoints. Unrolling the recursion, therefore, yields a path-wise expansion in which each
coordinate collects contributions from every typed path reachable from the source.

Frozen NBFNet as random features. We first replace the learned message operators by random
scalar maps and show that the resulting DP computes random features that aggregate typed paths.

Fix width d and horizon T . For each coordinate k ∈ [d] and layer ℓ ∈ [T], independently sample

g
(ℓ)
k : X → R, E[g(ℓ)k (x)] = 0, E

[
g
(ℓ)
k (x) g

(ℓ)
k (x′)

]
= κ(x, x′),

for a positive semidefinite (PSD) kernel κ : X × X → R. Intuitively, g(ℓ)k is the ℓ-th message
coordinate of an untrained NBFNet at random initialization.
Proposition 3 (Path-wise expansion of frozen NBFNet features). For s ∈ Vsrc and k ∈ [d], the k-th
feature computed by a frozen NBFNet admits the path-wise form

zk(s) =

T∑
L=1

aL
∑

p∈PL(s→∗)

(L∏
ℓ=1

g
(ℓ)
k

(
ξ(eℓ)

))
β(head(p)),

z(s) := (z1(s), . . . , zd(s)) ∈ Rd.

(7)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proof. Start from the layer recursion; each step distributes over incoming edges and multiplies
by the layer-ℓ message g(ℓ)k (·). Inductively expanding to depth L enumerates all length-L paths
p = (e1, . . . , eL) from s, producing the product of edge messages along p. Pooling with weights aL
and endpoint weights β yields equation 7.

Dynamic-programming realization. The expansion in equation 7 can be evaluated in O(T |E|)
per feature by the following Bellman–Ford–style recurrences:

h
(0)
k (v) = 1{v = s},

h
(ℓ)
k (v) =

∑
(u→v)∈E

g
(ℓ)
k

(
ξ(u→v)

)
h
(ℓ−1)
k (u), ℓ = 1, . . . , T,

zk(s) =

T∑
ℓ=1

aℓ
∑
v∈V

β(v)h
(ℓ)
k (v).

(8)

This view makes clear that a frozen NBFNet is a DP that sums over paths while multiplying edge-
wise random features.

Step 2: The induced kernel. We now identify the kernel implicitly computed by these random
features.

Define the finite-width kernel

Kd(s, s
′) :=

1

d
z(s)⊤z(s′) (s, s′ ∈ Vsrc).

Theorem 2 (Anchored typed-path kernel). With the construction above,

E
[
Kd(s, s

′)
]
=

T∑
L=1

a2L
∑

p∈PL(s→∗)
q∈PL(s′→∗)

(
L∏
ℓ=1

κ
(
ξ(eℓ), ξ(fℓ)

))
β(head(p))β(head(q)), (7)

where p = (e1, . . . , eL) and q = (f1, . . . , fL). The right-hand side defines a PSD kernel K on Vsrc.

Theorem 2 follows by expanding z(s)⊤z(s′), observing that mixed lengths cancel due to zero mean,
and using layer-wise independence to factor expectations across edges. Thus, a randomly initialized
NBFNet computes random features for the typed-path kernel K.

Proof. Expanding zk(s)zk(s′) and taking expectations over {g(ℓ)k }, mixed-length terms vanish by
zero mean; for equal lengths, independence across layers yields the product of second moments∏L
ℓ=1 κ(ξ(eℓ), ξ(fℓ)). Summing over paths and averaging over k gives equation 7. PSD follows

since K is an expectation of Gram matrices.

Step 3: Concentration at finite width. Having identified the limiting kernel, we quantify how fast
Kd concentrates around K.

Lemma 3 (Concentration). Assume each g(ℓ)k (x) is subgaussian uniformly in x with proxy σ2, and
set ν = supx κ(x, x) < ∞. Let NL(s→∗) = |PL(s→∗)|. If

∑T
L=1 a

2
L ν

LNL(s→∗) < ∞ for
every s, then there exist constants c, C > 0 such that for all ε > 0,

Pr
(∣∣Kd(s, s

′)− EKd(s, s
′)
∣∣ ≥ ε

)
≤ 2 exp

(
−c d ε2/C2

)
.

Hence Kd → K in probability at rate OP(1/
√
d).

Lemma 3 ensures that training only a linear classifier atop z(·) realizes a standard random-feature
approximation to the RKHS induced byK. We now specialize the kernel choice to make the hashing
connection explicit.
Remark 1. Training only a linear classifier on z(·) implements random-feature learning for the
kernel K; as d→ ∞, the solution converges to the kernel method in HK .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Step 4: Discrete edge tokens and the Dirac kernel. Let τ(e) ∈ Σ be a discrete edge token (e.g.,
ψ(e) or (ϕ(tail(e)), ψ(e), ϕ(head(e)))) and consider the Dirac (identity) kernel

κδ(x, x
′) = 1{τ(x) = τ(x′)}.

Realize κδ with Rademacher codes by drawing, for each layer ℓ, random maps r(ℓ) : Σ → {±1}d

independently across ℓ and setting g(ℓ)k (x) = r
(ℓ)
k (τ(x)) 4. Then Theorem 2 yields

E
[
Kd(s, s

′)
]
=

T∑
L=1

a2L
∑

p∈PL(s→∗)
q∈PL(s′→∗)

1
{
τ(e1) = τ(f1), . . . , τ(eL) = τ(fL)

}
β(head(p))β(head(q)).

(8)

Bag-of-typed-paths view. Let Ψs ∈ RΣ≤T

be the bag of typed path sequences out of s, where the
coordinate for σ = (σ1, . . . , σL) is

Ψs[σ] = aL ×
(
count of length-L paths p with τ(p) = σ, weighted by β(head(p))

)
.

Then equation 8 is exactly the inner product E[Kd(s, s
′)] = ⟨Ψs,Ψs′⟩. Moreover, each random

coordinate implements a multiplicative sign code over sequences:

zk(s) =
∑

σ∈Σ≤T

Ψs[σ]

|σ|∏
i=1

r
(i)
k (σi)︸ ︷︷ ︸

=: rk(σ)

. (9)

Sparse CountSketch/TensorSketch realization. We then bridge the bag-of-typed view to the
countsketch algorithm. First, introduce pairwise independent hash functions

h(i) : Σ → [d], s(i) : Σ → {±1}, i = 1, . . . , T.

For a typed sequence σ = (σ1, . . . , σL) define combined bucket and sign

H(σ) =
(
h(1)(σ1) + · · ·+ h(L)(σL)

)
mod d, S(σ) =

L∏
i=1

s(i)(σi),

and the sketch y(s) ∈ Rd by

yj(s) =
∑

σ∈Σ≤T

Ψs[σ] S(σ) 1{H(σ) = j}, j ∈ [d]. (10)

This is the standard TensorSketch construction specialized to sequences (metapaths). Then:

Proposition 4 (Unbiased CountSketch of typed-path bags). With the construction in equation 10
using independent h(i) and s(i) with pairwise independence, we have

E
[
⟨y(s), y(s′)⟩

]
= ⟨Ψs,Ψs′⟩,

and

Var
(
⟨y(s), y(s′)⟩

)
≲

∥Ψs∥22 ∥Ψs′∥22
d

.

Proof. Expand ⟨y(s), y(s′)⟩ =
∑
j

∑
σ,σ′ Ψs[σ]Ψs′ [σ

′]S(σ)S(σ′)1{H(σ) = H(σ′) = j} and
take expectations. The sign hashes kill cross terms (σ ̸= σ′) by zero mean, while bucket colli-
sions contribute only when H(σ) = H(σ′); pairwise independence ensures these events occur with
probability 1/d and cancel with the outer sum over j. Variance follows from standard CountS-
ketch/TensorSketch analyses using limited independence.

4Normalization: we deliberately omit a 1/
√
d factor inside g

(ℓ)
k ; the outer 1/d in Kd provides the correct

scaling. Inserting 1/
√
d inside each layer would undesirably shrink longer paths by d−L/2.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

How frozen NBFNet implements the sketch. The dense realization (A) is exactly what equa-
tion 8 computes when g(ℓ)k (x) = r

(ℓ)
k (τ(x)): each DP layer multiplies by layer-ℓ signs, and aggre-

gation sums across paths—precisely the linear form in equation 9.

Takeaway. Steps 1–3 show that a randomly initialized NBFNet realizes random features for a typed-
path kernel; Step 4 reveals that, under a Dirac edge kernel, those features are precisely CountSketch-
style projections of the bag of typed metapaths reachable from s. In short: frozen NBFNet = DP-
powered CountSketch of typed-path counts. This perspective clarifies both the inductive bias (which
typed patterns are matched) and the approximation behavior (controlled by d, T , and the path growth
rates).

D MORE RELATED WORKS

D.1 RELATIONAL DEEP LEARNING MODELS

To effectively address the challenges in RDB benchmarks, Robinson et al. (2024); Wang et al.
(2024a) propose GNN-based pipelines with two main components: (1) transforming original tab-
ular features into a unified latent space using type-specific encoders, and (2) aggregating latent
features with a temporal-aware GNN conditioned on primary key-foreign key relationships. Chen
et al. (2025a) further extended the message passing function to capture higher-order information by
introducing atomic routes. Yuan et al. (2024) adapts the original GNN for recommendation tasks
by implementing a path-based routing mechanism combining an ID-based GNN (Zhu et al., 2021)
with shallow learnable embedding-based retrieval. Dwivedi et al. (2025) explores the potential of
transformer-based backbones for RDL tasks; however, these currently require significantly more
computational resources than GNN-based methods for limited performance gain, so we do not in-
clude them in our design space.
Wu et al. (2025); Wydmuch et al. (2024) investigate the potential of large language models for pre-
dictive tasks on RDBs. Currently, they exhibit a much lower performance-to-resource ratio than
GNN-based methods, and it is difficult to evaluate the influence of duplication between pre-training
knowledge and downstream tasks. We thus leave their study to future work.
Compared to these models trained from scratch, Fey et al. (2025); Wang et al. (2025) propose foun-
dation models for RDB tasks. Wang et al. (2025) relies on a cross-table attention module that
mimics DFS aggregation, but its performance can’t consistently outperform state-of-the-art GNN-
based methods. Fey et al. (2025) utilizes a graph transformer-based backbone and delivers superior
performance and in-context learning capabilities. However, it is not yet open-sourced, and training
details are not revealed. With the help of tabular foundation models like TabPFN (Hollmann et al.,
2023), it’s also possible to achieve in-context learning by utilizing online DFS to achieve promising
performance.

D.2 AUTOML FOR GRAPH MACHINE LEARNING

AutoML (Hutter et al., 2019) seeks to automate expert tasks—data engineering, model engineer-
ing, and evaluation—into an end-to-end machine learning pipeline. Model engineering typically
encompasses neural architecture search (NAS) (Zoph & Le, 2017) and hyper-parameter optimiza-
tion (HPO) (Bischl et al., 2023). Many works have adapted AutoML ideas to GML: for example,
Gao et al. (2019) and Zhou et al. (2022) use reinforcement learning to search architectures, while
Yoon et al. (2020) applies Bayesian optimization to improve search efficiency together with an algo-
rithm budget constraint. One-shot NAS approaches first train a supernet and then prune it to obtain
target architectures (Li & King, 2020; Guan et al., 2022; Qin et al., 2021), and Zhang et al. (2023)
extends this paradigm to dynamic heterogeneous graphs. However, supernet-based methods are not
well-suited to RDB settings due to the heterogeneity of model designs required there.

Beyond model-centric search, data-centric AutoML leverages dataset properties to guide selection.
MetaGL (Park et al., 2023a;b) uses structural embeddings and graph statistics as task embeddings for
meta-learned GNN selection. GraphGym and AutoTransfer (You et al., 2020; Cao et al., 2023) fol-
low a knowledge-transfer strategy; AutoTransfer in particular constructs loss-landscape–based task
embeddings and employs pre-trained embeddings to steer HPO. In contrast, our work is driven by
empirical observations and targets architecture selection at both macro and micro levels, especially
across heterogeneous model classes (RDL and DFS) in relational-database predictive tasks.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Bai et al. (2021); Luo et al. (2021); Lam et al. (2021) propose dedicated systems for AutoML over
relational data. These efforts share DFS’s motivation for automatic feature engineering but generally
lack ready-to-use open-source implementations; accordingly, we adopt DFS as a representative,
practical framework for automatic feature engineering.

D.3 REAL-WORLD GRAPH MACHINE LEARNING BENCHMARKS

Benchmarking is essential for evaluating methods in graph machine learning. Representative
datasets include the Open Graph Benchmark (Hu et al., 2020a) and TUDataset (Morris et al., 2020).
However, recent work questions whether these benchmarks, like predicting the category of academic
papers, reflect real-world tasks (Bechler-Speicher et al., 2025). To address this gap, benchmarking
GNNs on relational-database (RDB) predictive tasks has become increasingly popular; notable ex-
amples are 4DBInfer (Wang et al., 2024a), H2GB (Lin et al., 2024), and RelBench (Robinson et al.,
2024). In particular, RelBench provides a SQL-based framework to standardize task generation,
which has helped it become a widely used benchmark for RDB predictive tasks.

In addition to model-centric benchmarks, recent works propose benchmarks focused on graph con-
struction (Chen et al., 2025b; Choi et al., 2025). Jointly studying automatic graph construction and
automatic model selection is a promising direction for future research.

E SUPPLEMENTARY INFORMATION FOR MODELS

In this section, we present more details on model designs, including model parameter design space
and more training details.

E.1 DISCUSSION ON THE IMPLEMENTATION DIFFERENCE BETWEEN 4DBINFER AND
RELBENCH

It’s noteworthy to discuss the difference between the implementation details of 4dbinfer (Wang et al.,
2024a) and relbench (Robinson et al., 2024), which are two main frameworks used to research RDB
prediction tasks. We find that these implementation discrepancies are essential for a fair comparison
between macro-level and micro-level architecture comparisons.

Feature encoding part. First, Relbench and 4DBinfer both adopt a type-specific encoder to project
categorical/numerical/text into a latent space with the same dimension. However, after this transfor-
mation, Relbench further adopts a tabular encoder to transform the latent embeddings, which is not
present in 4DBInfer. Furthermore, due to the implementation differences between Pyg and DGL,
4DBInfer doesn’t utilize relative positional encoding when encoding temporal features. Another
difference is that 4DBInfer will normalize all features. To align this with Relbench metrics, we save
the scaler and do the inverse transform at the test stage.

Neighborhood sampling part. Both frameworks adopt a temporal sampling strategy to avoid tem-
poral leakage. However, there’s a difference in implementation details. For relbench, it adopts the
temporal sampling of PyG, which generates disjoint subgraphs (when using the latest neighborhood
sampling). This aligns with the time dynamics of the relbench task, such as user behavior over the
past few months. For 4dbinfer, it’s similar to standard subgraph-based sampling with a time mask.

Evaluation setting. There’s also a difference in how the two frameworks do the evaluation, espe-
cially for the recommendation task. 4dbinfer adopts a pre-selected negative sample set, whereas
relbench uses the entire target set as candidates. Moreover, 4dbinfer focuses on bipartite graphs,
while for relbench, there are some tasks where the source and target lie between several-hop metap-
aths. This makes the method design not compatible across two types of problems. For example, any
methods requiring pairwise information are not scalable for relbench settings.

E.2 DETAILED DESIGN SPACE

In this paper, we consider two classes of models: end-to-end learning (relational deep learning)
models and non-parametric graph-based feature synthesis (DFS) models. Specifically, when the
number of propagation hops for the latter is 1, the corresponding model will be a relation-agnostic
one. We then elaborate on the module design inside each class.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

RDL. Following wisdom in the design of the GNN architecture (You et al., 2020; Luo et al., 2024),
we modularize the RDL module into the following parts: feature encoding, (optional) structural
feature, message passing module, (optional) architecture design tricks, readout function, hyperpa-
rameters, and training objective. The design choices and rationales are detailed below.

Table 7: Design space of a unified architecture for end-to-end RDL models. “Grid” indicates that the
module is selected from a predefined grid, whereas “random” indicates that the module is randomly
sampled.

Module name Possible choices

Feature encoding ResNet (Robinson et al., 2024)
Structural features (grid) Learnable embeddings (for the destination table, or for both

the source and destination tables) (Yuan et al., 2024; Ma et al.,
2024); partial-labeling tricks from NBFNet (Zhu et al., 2021)

Message passing (grid) Sparse message passing: GraphSAGE (Robinson et al., 2024;
Hamilton et al., 2017), HGT (Wang et al., 2024a; Hu et al.,
2020b), PNA (Corso et al., 2020; Wang et al., 2024a);
sparse message passing with higher-order information: Rel-
GNN (Chen et al., 2025a)

Architecture design trick (random) Residual connections (He et al., 2016)
Readout (grid) MLP, ContextGNN, Shallow-Item (Yuan et al., 2024)
Hyperparameters (random) Learning rate, weight decay, batch size, dropout rate, num-

ber of layers, hidden dimension, temporal sampling strategy,
number of sampled neighbors

Training objective Classification tasks: cross-entropy; regression tasks: MSE or
MAE; link-level tasks: cross-entropy, BPR, or margin-based
losses

1. For feature encoding, we stick to the ResNet-based encoder used in Robinson et al. (2024).
2. The structure feature is particularly useful for link-level prediction, which aims to break

the original symmetry of the GNN designed for node-level tasks. We consider learnable
embedding and partial labeling tricks because of their effectiveness demonstrated in exist-
ing benchmarks (Robinson et al., 2024; Yuan et al., 2024). Other features, such as random
embeddings, are neglected because of their limited effectiveness.

3. For message passing, we consider all alternatives used in the existing literature to study the
correlation between the message passing function and task performance.

4. For architecture design tricks, we consider residual connection (He et al., 2016) because of
their effectiveness shown in Luo et al. (2024). However, under the RDB setting, we find
that these tricks do not always improve performance and result in much more computation
overhead.

5. Readout is another important module in architectural design. For entity-level tasks, we
only consider MLP as the readout function. For link-level tasks, we consider ContextGNN
and Shallow-Item (Yuan et al., 2024), which integrates graph-free learnable embeddings to
mitigate the pitfalls of GNNs on link-level tasks. It should be mentioned that all pairwise
methods like NCN (Wang et al., 2024b), SEAL (Zhang & Chen, 2018) are not applicable
because of the complexity.

6. Training objective is designed based on common loss functions for different task formats.

The detailed hyper-parameter search space is presented as follows:

1 RDL_SEARCH_SPACE = {
2 ## these will go through a grid search
3 "full_entities": {
4 ’pre_sf’: [’src_dst’, ’zero_learn’, ’none’],
5 ’mpnn_type’: [’relgnn’, ’sage’, ’hgt’, ’pna’],
6 ’post_sf’: {’link’: [’none’, ’shallow’, ’contextgnn’], ’node’: [’

none’]}
7 },

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

8 "model_config": {
9 "encoder_num_layers": [4],

10 "torch_frame_model_cls": [’resnet’],
11 "batch_size": [128, 256],
12 "gnn_config": {
13 # src: learnable embedding for src, src_dst: learnable

embedding for src and dst,
14 "loss_fn": {
15 "binary_classification": ["bce"],
16 "regression": ["mse", "mae"],
17 "recommendation": [’bpr’],
18 "multiclass_classification": ["ce"]
19 },
20 "hidden_channels": [64, 128, 256],
21 "num_heads": [1, 4],
22 "dropout": [0.0, 0.5],
23 "norm": ["layernorm", "batchnorm", ’none’],
24 "aggregation": ["mean", "sum"],
25 # jk is turned off because it almost always leads no

performance gain with huge computation overhead
26 "jk": [False],
27 "skip_connection": [True, False]
28 },
29 "sampler_config": {
30 "temporal": ["uniform", "last"],
31 "num_neighbors": [32, 64, 128],
32 "num_layers": [1, 2, 3, 4],
33 "loader_type": ["node", "edge"]
34 },
35 "optimizer_config": {
36 "lr": [1e-3, 1e-4, 1e-2],
37 "weight_decay": [0.0, 1e-5],
38 "scheduler": ["expontential"],
39 "gamma": [.8, .9, 1.]
40 }
41 }
42 }

E.3 GRAPH-INDUCED NON-PARAMETRIC FEATURE SYNTHESIS MODEL

DFS. The graph-induced non-parametric feature synthesis approach follows a different paradigm
compared to end-to-end RDL models. Instead of learning parameters through gradient descent, DFS
models leverage graph topology and statistical aggregation to synthesize features. We modularize
the DFS framework into the following components: feature aggregation strategy, propagation depth,
model backbone, and hyperparameters. The design choices and rationales are detailed below.

Table 8: Design space of graph-induced non-parametric feature synthesis (DFS) models. Grid means
the module is selected from a predefined grid, while random means the module is randomly sampled.

Module name Possible choices

Feature aggregation strategy (fixed) Mean, sum, max, min, count, weighted mean, target encoding
Propagation depth (grid) Number of hops (1 = relation-agnostic): 1, 2, 3
Downstream predictor (grid) TabPFN (Hollmann et al., 2023), FT-Transformer, Light-

GBM
Hyper-parameters (random) Learning rate, weight decay, scheduler gamma, hidden di-

mension, number of attention heads, normalization
Training objective Classification tasks: cross-entropy loss; Regression tasks:

MSE or MAE

1. Feature aggregation strategies determine how information flows through the graph struc-
ture. We follow Wang et al. (2024a) to adopt a fixed set of aggregation strategies.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

2. Propagation depth controls the scope of information aggregation. When the number of
hops is 1, the model becomes relation-agnostic and only uses entity-level features.

3. We consider three typical types of downstream task predictors: tabular foundation model,
gradient boosting tree, and neural networks.

4. Training objectives are task-dependent and align with the evaluation metrics used in the
benchmark datasets.

The detailed hyper-parameter search space is presented as follows: LightGBM and TabPFN, in
general, don’t require many hyper-parameters, so model-related hyper-parameters are only applied
to FT-Transformer.

1 DFS_SEARCH_SPACE = {
2 ## dfs_layer will go through a grid search
3 "dfs_layer": [1,2,3],
4 "model_type": ["tabpfn", "ft_transformer", "lgbm"],
5 "batch_size": [128, 256],
6 "model_config": {
7 ## only for ft_transformer
8 "hidden_size": [128, 256, 512],
9 "dropout": [0.0, 0.5],

10 "num_layers": [1, 2, 3, 4],
11 "attn_dropout": [0.0, 0.5],
12 "num_heads": [1, 4],
13 "normalization": ["layernorm", "batchnorm", ’none’],
14 "loss_fn": {
15 "binary_classification": ["bce"],
16 "regression": ["mse", "mae"],
17 "ranking": [’bce’, ’bpr’],
18 "multiclass_classification": ["ce"]
19 }
20 },
21 "optimizer_config": {
22 "lr": [1e-3, 1e-4],
23 "weight_decay": [0.0, 1e-5],
24 "scheduler": ["expontential"],
25 "gamma": [.8, .9, 1.]
26 }
27 }

E.4 SUPPLEMENTARY EXPERIMENTAL DETAILS

E.4.1 EXPERIMENTAL RESULTS FOR RECOMMENDATION TASKS

Here, we discuss the recommendation tasks skipped in the main text. First, we wanna emphasize
that the design space of recommendation tasks is much smaller since DFS-based methods can’t work
well on recommendation tasks. The main reason is that the recommendation is more about capturing
the collaborative signal across pairs of entities, which goes beyond the feature synthesis patterns of
DFS. To make DFS work on recommendation tasks, we need to design common neighborhood-
based or path-based features, which makes it no longer “automatic” but requires substantial feature
engineering efforts.

In terms of RDL, we also need to emphasize that only a small portion of graph-related models
can work under the RDB settings. Revisiting the traditional link prediction tasks on OGB (Hu
et al., 2020a), the positive and negative sample pairs are usually pre-defined, with negative samples
coming only from a small portion of the whole set. This makes it possible to use pairwise models
like NCN (Wang et al., 2024b) and SEAL (Zhang & Chen, 2018). However, in RDB settings, the
candidate set is usually the entire target table, which makes it impossible to use these pairwise
models. That’s why NBFNet (Zhu et al., 2021), a source-only model, is first considered in Yuan
et al. (2024). Such a scalability problem also affects the implementation of vanilla GNN. Unlike
using a link-level sampler in Wang et al. (2024a), we have to use two node-level loaders, one for
the source type and one for the target type, for representation computation. These properties make

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

it only possible to use vanilla GNN, shallow embedding, NBFNet, or a combination of them in the
current stage.

We then present the HPO experiments based on these methods. As shown in Figure 5, we observe
the following phenomena:

1. Overall, node-based loader dominates the link-based loader (or more accurately, the loader
based on source and target types). One potential reason is that the node-based loader is closer to
the idea of path-based retrieval, which is more effective in RDB recommendation tasks with rich
relational paths. A potential exception is the REL-AMAZON datasets, which we don’t use here.
For these kinds of datasets whose path patterns are super sparse,the path-based collaborative
signal may live in distant neighbors. As a result, on these tasks, we typically need a neighbor
loader with more than 6 hops with dense neighbors to get good performance.

2. For the number of layers, unlike entity-level tasks, it presents that the deeper the better within a
certain range. This is because, for path-based retrieval, deeper layers can capture more distance
signals.

3. For message passing designs, it’s also somewhat different from the phenomenon in entity-level
tasks. Here, Relgnn presents clearly better performance. The reason is that there are some
tables with multiple foreign keys. Semantically, these tables are closer to an edge, while in the
PK-FK graphs, they are treated as nodes. RelGNN can simulate transforming these tables into
hyperedges, and thus makesthe model capture more distant signals. HGT and PNA are better
at capturing feature interactions, which are more important for entity-level tasks.

4. For structural features, partial labeling tricks of NBFNet are more effective. One noteworthy
phenomenon is that on many tasks, a node-level loader without any structural features can
also deliver good performance. The reason is that the original features in the graph can act as
implicit type embeddings, which makes a multi-source path-based retrieval.

5. For readout functions, contextgnn doesn’t always bring a performance boost. However, it won’t
degrade performance as well. This is also based on the sparsity of path patterns.

Table 9: Validation-selected and test-selected
performance gap. For RDL, we show the top 2
architectures with the largest gap.
Method name Mean test clf perf Mean val clf perf Mean gap
RDL Overall 78.21 76.73 1.49
Sage (top1) 76.90 72.77 4.13
HGT (top2) 77.19 74.95 2.24
DFS overall 76.90 75.22 1.68
TabPFN 75.91 75.70 0.21
FT-transformer 75.87 74.45 1.42

Method name Mean test reg perf Mean val reg perf Mean gap
RDL Overall 6.9292 7.0578 0.1287
HGT (top1) 6.9407 7.1036 0.1630
PNA (top2) 7.1376 7.1795 0.0419
DFS overall 3.6881 3.7135 0.0254
TabPFN 3.7544 3.7692 0.0148
FT-transformer 4.0630 4.0883 0.0254

Takeaways for recommendation. Across RelBench-
style recommendation tasks, ContextGNN is a ro-
bust default that delivers competitive performance with
modest tuning. This largely reflects task properties:
path-aware retrieval with shallow ID embeddings plus
GNN context works well when collaborative signals are
captured via multi-hop relational paths. On some other
recommendation tasks on bipartite graphs, two-tower
(dual-encoder) architectures may scale training and in-
ference more effectively and simplify candidate genera-
tion, though they typically require task-specific compo-
nents (e.g., hard-negative mining, retrieval infrastruc-
ture, and reranking) to reach top accuracy. Overall,
these observations suggest that for recommendation, fully automatic architecture design may be
less effective than crafting a task-tailored framework—consistent with prevailing industrial practice.

E.4.2 SUPPLEMENTARY EXPERIMENTAL RESULTS FOR THE MAIN TEXT

Full experimental results for Figure 2. The full result for Figure 2 is presented in Table 10.

Table 10: Full experimental results for Figure 2.
Task Type RelGNN RelGT Graphsage Rel-LLM KumoRFM (icl) KumoRFM (fine-tuned) RDL (val-selected) RDL (ours) DFS (val-selected) DFS (ours) Best (ours)

driver-top3 classification 85.69 83.52 75.54 82.22 91.07 99.62 82.41 85.94 84.70 85.71 85.94
driver-dnf classification 75.29 75.87 72.62 77.15 82.41 82.63 74.35 77.20 76.89 79.42 79.42
driver-position regression 3.798 3.920 4.022 3.967 2.747 2.731 4.0491 3.8029 3.3662 3.2180 3.2180
user-churn classification 70.93 69.27 69.88 70.55 67.71 71.23 70.98 70.98 65.29 68.23 70.98
item-sales regression 0.054 0.0536 0.0560 0.0520 0.0400 0.0340 0.0511 0.0509 0.0387 0.0378 0.0378
post-votes regression 0.065 0.0654 0.0650 0.0620 0.0650 0.0650 0.0665 0.0651 0.0530 0.0528 0.0528
user-engagement classification 90.75 90.53 90.59 91.21 87.09 90.70 88.95 90.56 78.47 87.28 90.56
user-badge classification 88.98 86.32 88.86 89.64 80.00 89.86 88.41 88.51 85.17 86.47 88.51
user-repeat classification 79.61 76.09 76.89 79.26 76.08 80.64 81.25 82.89 77.20 79.26 82.89
user-ignore classification 86.18 81.57 81.62 83.74 89.20 89.43 83.66 86.77 77.20 84.43 86.77
user-attendance regression 0.238 0.250 0.258 0.251 0.264 0.238 0.2397 0.2397 0.2217 0.2217 0.2217
user-visits classification 66.18 66.78 66.20 67.01 64.85 78.30 66.77 66.87 65.29 66.74 66.87
user-clicks classification 68.23 68.30 65.90 66.74 64.11 66.83 67.16 68.77 51.10 69.19 69.19
ad-ctr regression 0.037 0.0345 0.0410 0.0370 0.0350 0.0340 0.0346 0.0340 0.0314 0.0304 0.0304
study-outcome classification 71.24 68.61 68.60 71.04 70.79 71.76 71.41 74.13 70.59 71.82 74.13
study-adverse regression 44.681 43.990 44.473 43.682 58.231 44.225 44.5706 43.988 21.8912 21.8912 21.8912
site-success regression 0.301 0.326 0.400 0.397 0.417 0.301 0.3932 0.3236 0.3926 0.3645 0.3236

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

node 100%

Loader Type Distribution
(Top 3 from each task)

2.0 3.0 4.0
Number of Layers

0

5

10

15

20

25

30

35

Co
un

t

3

19

38

Number of Layers Distribution
(Top 10 from each task)

rel
gn

n
pn

a hg
t

sag
e

MPNN Type

0

5

10

15

20

25

Co
un

t

28

14

10
8

MPNN Type Distribution
(Top 10 from each task)

zer
o_l

ea
rn

no
ne

src
_ds

t

Pre-SF Type

0

5

10

15

20

25

30

Co
un

t

33

19

8

Pre-SF Distribution
(Top 10 from each task)

con
tex

tgn
n

no
ne

Post-SF Type

0

5

10

15

20

25

30

Co
un

t

31
29

Post-SF Distribution
(Top 10 from each task)

Figure 5: HPO results for recommendation tasks.

Influence of micro-level design choices. Looking further into the influence of micro-level archi-
tecture choices shown in Figure 6, we can observe that: (1) different design choices present in the
top performing configurations, underscoring the importance of architecture design; (2) compared to
older models like HGT and PNA, RelGNN doesn’t present advantages in terms of prediction per-
formance, which inspires us to revisits the wisdom of past research. (3) For RDL-based methods,
learnable embeddings are mainly required to achieve top performance. (4) For DFS-based methods,
the FT-transformer works better for large-scale tasks, while TabPFN can well fit small-scale ones.
Tree-based methods, such as LightGBM, are not optimal in most cases; therefore, we don’t consider
them in the following text.

Performance gap between validation-selected and test-selected configurations. As shown in
Table 9, we can see that both RDL and DFS suffer from this performance gap. Specifically, RDL
presents a much larger gap for regression tasks. TabPFN, the tabular foundation model utilizing
in-context learning for inference, shows an advantage in mitigating such performance drift.

Analysis of affinity-based features. Here, we show some empirical results on the analysis of
affinity-based features and empirical performance. For each task from the model performance bank,
we have three task-level anchor scores (TabPFN, RandomSAGE, RandomNBFNet) and mean test
performance for two model families (RDL, DFS). Anchors are constant within a task; performances
are task-wise means over validated runs. For RDL we also compare two preprocessing options,
pre sf∈{zero learn, none}; define the per-task difference ∆ = RDLzero learn−RDLnone.

(i) RDL vs DFS from TabPFN vs graphs. Using all tasks, a log–log fit shows

log
(
RDL/DFS

)
≈ 0.091 − 0.262 log

(
TabPFN/NBFNet

)
(R2≈0.58, n=19),

so when TabPFN exceeds the graph anchors, DFS tends to outperform RDL; simple thresholds
TabPFN/NBFNet ≥ 1.10 or TabPFN/SAGE ≥ 1.18 classified the winner at about 79% ac-
curacy. (ii) RDL pre sf from graph–graph ratio. With R = max(NBFNet)/max(SAGE), the
linear association with ∆ is small (Pearson ≈ −0.114, n = 19), but as a one-bit chooser it is useful:
AUC(zero learn better) ≈ 0.718, and the rule R ≥ 0.977 ⇒ choose zero learn (else
none) attains ∼ 0.789 accuracy (base rate ∼ 0.684 favoring zero learn).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

hgt sage pna relgnn

2

4

6

8

10

Ra
nk

 (
lo

w
er

 is
 b

et
te

r)

(1)
mpnn_design_choice: mean rank

zero_learn none

2

4

6

8

10

Ra
nk

 (
lo

w
er

 is
 b

et
te

r)

(2)
pre_sf: rank distribution

ft_transformer tabpfn lightgbm0

2

4

6

8

10

N
um

be
r

of
 T

im
es

 R
an

k
1

(3)
Model rank distributions

Figure 6: Relationship between test performance ranking and micro-level architecture choices. For
RDL-based methods, we filter the original search result with the top 10 performing configurations
on each task. For DFS-based methods, we filter the original search result with the top 1 performing
configurations on each task. The best configurations are selected based on test performance directly.
“zero learn “ is the labeling trick adopted by NBFNet. (a) A violin plot of MPNN types shows that
PNA achieves the best mean ranking across different tasks. (b) When comparing labeling tricks,
although equivariant models appear more frequently in top rankings, a labeling trick is still needed
to achieve the top spot. (c) For DFS, ft transformer and tabpfn present unique strengths, where the
former can leverage more training samples, and the latter usually works better in small-scale settings
and can conduct in-context learning.

Visualization of loss landscape. Our first-step analysis is to plot the loss landscape of a series of
models presenting different val-selected and test-selected performance gaps. An example is shown
in Figure 7. We can see that the DFS, which generalizes better, presents a much flatter loss landscape.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Direction 1 ()

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Di
re

ct
io

n
2

(
)

FT-Transformer Loss Landscape

0.496

0.
55

1

0.551

0.551

0.611

0.611

0.
67

8

0.678

0.
75

2

0.
83

5

0.
92

6

1.
02

8

1.
14

01.2
65

1.404

1.4
04

1.557

1.5
57

1.7
28

1.
91

7

2.
12

72.
36

0
2.

61
9

2.
90

5

(a) Loss landscape of DFS + FT-transformer on
DRIVER-TOP3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Direction 1 ()

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Di
re

ct
io

n
2

(
)

GNN Loss Landscape

0.517

0.6840.9051.196
1.581 2.091

2.764

3.6
54

3.6
54

4.8
31

4.8
31

6.3
88

6.388

8.4
45

8.445

11.166

11
.16

6

11
.16

614.763

14.763

14
.76

3

14.763

19.518

19
.51

8

19
.51

8

19.518

25.806

25.806

25.806

34.118

34.118
45.109

59.639

(b) Loss landscape of RDL on DRIVER-TOP3

Figure 7: Loss landscapes

E.5 EFFICIENCY

In the main text, we skip the discussion of efficiency-related concerns, such as running time and
memory consumption. One reason is that efficiency depends on the backbone implementation. For
example, we implement SQL using in-memory databases in this work. You can’t say DFS or RDL
is more efficient merely based on this implementation. In reality, DFS can potentially be accelerated
via tools like Spark. Nonetheless, we still present efficiency-related results here, with the following
main contents: (1) Average running time of RDL and DFS pipelines, which includes the time for
model training and dataset pre-processing. (2) The way to extend our current methods to incorporate
efficiency-related concerns.

As shown in Table 11, we consider the running time of two representative tasks: driver-dnf and
study-outcome. The former database is a small-scale one, while the latter contains lots of columns.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

We consider the simple RDL models SAGE and the complicated ones HGT. For DFS, we consider
three propagation depths: 1, 2, and 3. We can see that DFS is relatively more efficient when the
propagation depth is small. The main backbone is just the feature encoder part of the RDL, so it
will be much faster during the inference stage. Moreover, without our proposed PCA compression
strategy, DFS is usually unusable for large-scale tasks. Generally, both RDL and DFS don’t meet
significant efficiency concerns.

Table 11: Preprocessing and training times by method for driver-dnf and study-outcome.
driver-dnf study-outcome

RDL (SAGE) RDL (HGT) DFS-1 (no p/p) DFS-2 (no p/p) DFS-3 (no p/p) RDL (SAGE) RDL (HGT) DFS-1 (no p/p) DFS-2 (no p/p) DFS-3 (no p/p)

Preprocessing time 60 s 60 s 7 s/12 s 18 s/17 s 310 s/41 s 240 s 240 s 240 s/36 s 353 s/48 s 965 s/95 s
Training time (per epoch) 6 s 8 s < 1 s/< 1 s < 1 s/< 1 s < 1 s/< 1 s 10 s 11 s < 1 s/< 1 s < 1 s/< 1 s < 1 s/< 1 s

To extend our current methods to incorporate efficiency-related concerns, we consider the following
two strategies: (1) Rule-of-thumb. Since we know the number of training samples, when the scale
is limited, then directly utilizing TabPFN and DFS is usually the most efficient approach. Moreover,
for RDL, HGT is obviously the most expensive model considering its complicated attention mech-
anism. (2) Joint optimization of efficiency and effectiveness. We can consider a multi-objective
optimization framework, where we can consider the validation performance and training time as
two objectives. First, we can train a meta-model to predict the training time based on architecture
designs. For example, we can list the following efficiency-related hyperparameters: number of lay-
ers, hidden dimension, number of attention heads, and batch size. Then, we can train a model whose
input feature is the hyper-parameter configuration, and the output is the training time. To estimate
the pre-processing time of DFS, it’s approximately proportional to the number of SQL operations
multiplied by the size of training tables. We then demonstrate one formula to do joint optimization
of efficiency and effectiveness.

(π∗, θ∗) = argmax
π∈{RDL,DFS}

θ∈Sπ

P̂erf(θ, π)

− λ ·
1[π = DFS] csql ·ops(θ)·rows

Tref

− λ · µtime(θ, π) + β σtime(θ, π)

Tref

π chooses the pipeline (RDL vs. DFS) and restricts the search space to Sπ; P̂erf(θ, π) is pre-
dicted validation effectiveness; λ > 0 trades time for performance; Tref normalizes time; the DFS
pre–processing cost is activated by 1[π = DFS] and modeled as csql · ops(θ) · rows; µtime(θ, π)
and σtime(θ, π) are the meta–model’s mean and uncertainty for training time; β ≥ 0 adds risk aver-
sion to slow/uncertain runs. π can be trained based on a model performance bank similar to the
meta-predictor.

37

	Introduction
	Related Work and Background
	design space of model architectures over RDB
	Predictive Tasks on RDBs
	Model architecture design space
	Empirical study of various architecture designs

	Principles and automation of architecture selection
	From observations to task embeddings
	Data-centric perspective
	Model-centric perspective
	Automatic architecture selection through Relatron

	Experimental evaluations

	Conclusion, Limitations, and Future Discussion
	Ethics Statement
	Reproducibility Statement
	Usage of Large language models
	Supplementary information for datasets and tasks
	Supplementary theoretical discussion
	Definition of metrics
	Why RDL is better at low-homophily region?
	Relationship between randomly initialized model and hashing

	More Related Works
	Relational deep learning models
	AutoML for Graph Machine Learning
	Real-world graph machine learning benchmarks

	Supplementary information for models
	Discussion on the implementation difference between 4dbinfer and relbench
	Detailed design space
	Graph-induced non-parametric feature synthesis model
	Supplementary experimental details
	Experimental results for recommendation tasks
	Supplementary experimental results for the main text

	Efficiency

