

RELATRON: AUTOMATING RELATIONAL MACHINE LEARNING OVER RELATIONAL DATABASES

Anonymous authors

Paper under double-blind review

ABSTRACT

Predictive modeling over relational databases (RDBs) powers applications in various domains, yet remains challenging due to the need to capture both cross-table dependencies and complex feature interactions. Recent Relational Deep Learning (RDL) methods automate feature engineering via message passing, while classical approaches like Deep Feature Synthesis (DFS) rely on predefined non-parametric aggregators. Despite promising performance gains, the comparative advantages of RDL over DFS and the design principles for selecting effective architectures remain poorly understood. We present a comprehensive study that unifies RDL and DFS in a shared design space and conducts large-scale architecture-centric searches across diverse RDB tasks. Our analysis yields three key findings: (1) RDL does not consistently outperform DFS, with performance being highly task-dependent; (2) no single architecture dominates across tasks, underscoring the need for task-aware model selection; and (3) validation accuracy is an unreliable guide for architecture choice. This search yields a curated model performance bank that links model architecture configurations to their performance; leveraging this bank, we analyze the drivers of the RDL–DFS performance gap and introduce two task signals—RDB task homophily and an affinity embedding that captures [size](#), path, feature, and temporal structure—whose correlation with the gap enables principled routing. Guided by these signals, we propose Relatron, a task embedding-based meta-selector that first chooses between RDL and DFS and then prunes the within-family search to deliver strong performance. Lightweight loss-landscape metrics further guard against brittle checkpoints by preferring flatter optima. In experiments, Relatron resolves the “*more tuning, worse performance*” effect and, in joint hyperparameter–architecture optimization, achieves up to 18.5% improvement over strong baselines with 10× lower computational cost than Fisher information–based alternatives.

1 INTRODUCTION

Relational databases (Codd, 2007; Harrington, 2016) have served as the foundation of data management for decades, organizing interconnected information through tables, primary keys, and [foreign keys](#) (Harrington, 2016). Their support for data integrity, consistency, and complex SQL queries has made them essential across healthcare (White, 2020; Johnson et al., 2016), academic research (Melvin, 2025), and business applications (Stroe, 2011). However, as data volume and complexity grow, traditional analytics fall short, creating demand for machine learning to identify patterns, automate decisions, and generate scalable insights. The conventional approach requires practitioners to manually export and flatten relational data into single tables through custom joins and feature engineering (Lam et al., 2017) before applying tabular ML methods.

At the macro level, two lines of work aim to reduce manual flattening and feature engineering in RDBs: (i) deep feature synthesis (DFS) (Kanter & Veeramachaneni, 2015) and (ii) relational deep learning (RDL) (Robinson et al., 2024; Fey et al., 2024b). Both operate on heterogeneous entity–relation graphs induced from the underlying database schema, where *rows* are represented as nodes typed by their tables and foreign-key links are represented as typed edges. DFS programmatically composes relational primitives (e.g., aggregations along join paths) to produce a single feature table on which a standard tabular learner is trained. RDL trains graph neural networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017) end-to-end on this heterogeneous graph,

learning task-specific aggregations via message passing. Empirically, both families exploit the relational structure and can surpass relation-agnostic baselines on several RDB benchmarks (Wang et al., 2024a; Robinson et al., 2024).

However, no comprehensive comparison exists between these paradigms to clarify when each performs better or their relative advantages for different task types.¹ Practitioners currently lack principled guidelines for choosing between DFS and RDL when tackling relational database prediction tasks. Additionally, methods for selecting specific design components—such as message-passing functions in RDL or tabular models in DFS—remain largely unexplored. These gaps make architecture selection for RDB tasks a labor-intensive process that relies heavily on expert knowledge.

Design space and evaluation. To bridge this gap, we first propose a representative design space for RDL and DFS: for the former, we decompose models into (1) feature encoding/augmentation, (2) message passing, and (3) task-specific readouts; for DFS, we use non-parametric feature engineering paired with a tabular model. We conduct an architecture-centric search—a grid over architecture choices with sampled hyperparameters—to build a performance bank. Key findings: (1) Brute-force search outperforms from-scratch RDL baselines, validating the proposed design space. (2) At the macro level (DFS vs RDL), **RDL** wins on more tasks (though both have distinct strengths); at the micro level (fine-grained model architectures), neither family has a single best design. (3) Validation performance can be unreliable for selection, leading to degraded test performance.

Automatic architecture selection. We identify factors that drive the performance gap and use them to design the **Relatron**, an architecture selector with strong test generalization. We introduce an RDB-task homophily metric that correlates strongly with the performance gap between DFS and RDL, further enriched with training-free affinity embeddings that capture **task table size**, structural affinity, and temporal dynamics. We further observe that the generalization behavior of configurations (validation-selected vs. test-selected) is reflected in the loss landscape geometry. Accordingly, we propose a landscape-derived metric for more reliable post-selection. Combined, our pipeline performs strongly on real-world RDB tasks, matching or exceeding prior methods (Cao et al., 2023; Achille et al., 2019) in task-embedding quality and in predicting whether RDL or DFS is preferable; for joint hyperparameter and architecture search, it outperforms strong baselines, including search-based and task-embedding-based ones (Cao et al., 2023; Bischl et al., 2023), while using up to 10x less compute resources than task-embedding-based methods.

Our contributions can be summarized as follows.

1. We propose a representative model design space for RDB predictive tasks, featuring promising performance, and generate a model performance bank that links model architecture configurations to task performance for future research.
2. Based on a comprehensive search on the model design space, we point out the limitations of RDL, and propose a routing method to select between RDL and DFS for RDB predictive tasks automatically. Furthermore, we analyze the factors that drive the performance gap between RDL and DFS, and these insights can inspire further research, such as the development of relational foundation models.
3. Through extensive experiments, we validate the effectiveness of our pipelines in tasks such as predicting proper architectures and joint hyperparameter-architecture search.

2 RELATED WORK AND BACKGROUND

In this section, we present related works necessary for understanding the following paper contents, and put other related works in Appendix D.

Relational Deep Learning (RDL).² (Robinson et al., 2024; Fey et al., 2024a) applies graph machine learning to relational databases. RDB prediction has three key traits (Figure 1): (1) time is first-class—labels are split and conditioned on time (2) labels are defined by time-constrained SQL over arbitrary column combinations; (3) heterogeneous column types make feature interactions richer than in text-attributed or non-attributed graphs. These choices mirror real industrial settings.

¹The graph machine learning models studied in Wang et al. (2025) differ from RDL Robinson et al. (2024) in implementation details, discussed further in Appendix E.1.

²RDL denotes both the learning paradigm and the problem setting; we use RDL for the former and RDB for the latter.

Figure 1: (a) An example of generating the task table from an RDB. The label is based on whether a student has achieved an A+ in a course before a specific timestamp. (b) Another example demonstrating the working process of DFS and RDL. For DFS, a predefined set of aggregation functions, such as MEAN and COUNT, is used to aggregate information across multiple tables based on key relationships into a final data table. For comparison, RDL is claimed to replace the manual aggregation design with an automatic message-passing-based sparse attention.

Wang et al. (2024a; 2025) offer a view closer to traditional heterogeneous GNNs; although Wang et al. (2025) reports results on Relbench (Robinson et al., 2024), the modeling and evaluation setups differ. We therefore re-implement all methods in the unified framework for fair comparison. Some recent RDL works center on specialized models for RDL, including higher-order message passing (Chen et al., 2025a) and recommendation (Yuan et al., 2024). Transformers and LLMs (Dwivedi et al., 2025; Wu et al., 2025; Wydmuch et al., 2024) have been tested, but are resource-heavy with modest gains. Foundation models include Griffin (Wang et al., 2025), which uses cross-table attention yet often fails to beat GNNs, and KumoRFM (Fey et al., 2025), a graph transformer with strong performance and in-context learning, though details remain undisclosed. In this paper, we focus on efficient models training from scratch, leaving foundation models for future work.

Deep Feature Synthesis (DFS). Compared to RDL, DFS (Kanter & Veeramachaneni, 2015) is an overlooked approach, which aggregates cross-table information into a single target table via automated feature engineering (Zhao et al., 2020; Lam et al., 2017; 2018). It underpins commercial systems such as getml³. Given a target table and a schema graph, DFS traverses foreign-key-primary-key links and composes type-aware primitives into feature definitions. Transform primitives operate on single columns, while aggregation primitives (e.g., statistics such as MAX, MIN, MODE) summarize sets of related rows; compositions along schema paths yield higher-order features. For time-indexed tasks, DFS evaluates every recipe under a per-row cutoff time, ensuring that only information available in the past contributes to the feature value, thereby avoiding leakage.

3 DESIGN SPACE OF MODEL ARCHITECTURES OVER RDB

Architecture selection begins by giving an architecture design space. This section introduces the task and design space, then presents evaluation results and observations from the exploration.

3.1 PREDICTIVE TASKS ON RDBS

Problem definition. A relational database (RDB) is a tuple $\mathcal{D} = (\mathcal{T}, \mathcal{L})$, where $\mathcal{T} = \{T_1, \dots, T_n\}$ is a set of tables and $\mathcal{L} \subseteq \mathcal{T} \times \mathcal{T}$ is a set of links between them. Each table $T_i \in \mathcal{T}$ consists of rows (entities) $\{v_1, \dots, v_{m_i}\}$. Links are related to primary keys (PKs) and foreign keys (FKs). A PK p_v uniquely identifies a row, while a FK establishes a link to a row in another table by referencing its PK. Each row also has a set of non-key attributes, x_v , and an optional timestamp, t_v . A temporal predictive task $\Pi_{t_{pred}}$ with respect to time t_{pred} can be defined over two granularities. *Entity-level prediction* learns a function $f : \mathcal{D}_{t_{pred}} \times V_{target} \rightarrow \mathcal{Y}$ that maps entities from a target set

³<https://getml.com/latest/>

$V_{target} \subseteq T_i$ to a label space \mathcal{Y} . *Link-level prediction* determines the existence of a link between two entities, $v_i \in T_i$ and $v_j \in T_j$, at time t_{pred} by learning a function $f : \mathcal{D}_{t_{pred}} \times T_i \times T_j \rightarrow \{0, 1\}$. RDB tables can be categorized into fact tables and dimension tables. A fact table stores events or transactions (e.g., purchases, clicks, race results) with many rows, and each typically carries foreign keys to several entities. A dimension table stores descriptive attributes about these entities (e.g., customer, product, time, circuit/driver), typically with one row per entity/state, and a PK that is referenced by facts.

Graph perspective of RDB (Robinson et al., 2024). Each RDB and a corresponding predictive task can be viewed as a temporal graph $\mathcal{G}_{(-\infty, T]} = (V_{(-\infty, T]}, \mathcal{E}_{(-\infty, T]}, \phi, \psi, f_V, f_E)$, paired with task labels Y . $V_{(-\infty, T]}$ and $\mathcal{E}_{(-\infty, T]}$ are entities and links at time $t \leq T$. ϕ maps each entity to its node type, ψ maps each link to its link type. f_V and f_E is the mapping of features.

Datasets and tasks. We consider a diverse set of datasets and tasks from recent works (Robinson et al., 2024; Wang et al., 2024a; Chen et al., 2025b). Adopting the taxonomy from Robinson et al. (2024), we categorize these tasks into four types: entity classification, entity regression, recommendation, and autocomplete. Entity-level tasks (classification and regression) involve predicting entity properties at a given time t_{pred} . Recommendation tasks focus on ranking the relevance between pairs of entities at t_{pred} . The autocomplete task involves predicting masked information in table columns. A comprehensive description of each dataset and task is available in Appendix B. We illustrate the generation of an entity-level task in Figure 1.

3.2 MODEL ARCHITECTURE DESIGN SPACE

Architecture choice. As shown in Table 1, to enable a fair comparison between DFS and RDL on RDB benchmarks, we construct a compact, factorized design space for each family. **RDL** models are built from three modules: (i) a structural-feature encoder (partial labeling trick, learnable embedding, or no augmentation) (Yuan et al., 2024; Zhu et al., 2021), (ii) a message-passing network (PNA, HGT, SAGE, or RelGNN) (Corso et al., 2020; Hu et al., 2020b; Robinson et al., 2024; Chen et al., 2025a), and (iii) a readout head (MLP, ContextGNN, or a shallow aggregator) (Yuan et al., 2024). Standard training hyperparameters such as learning rate, dropout, normalization, and neighbor fanout are also tuned. **DFS** methods are parameterized by three main knobs: the SQL-level aggregation function (e.g., max/min/mode), the number of aggregation layers (1–3 when supported), and the backbone model (TabPFN, LightGBM, or FT-Transformer), with batch size and hidden dimension included as additional hyperparameters. Architectural components are explored via grid search, while other hyperparameters are sampled from a smaller space (see Appendix E.3).

Design motivation. While it is not feasible to exhaustively cover all designs in graph machine learning (GML), our design space spans representative components. For message passing alone, this includes vanilla message passing, self-attention mechanisms, multi-aggregator schemes, and higher-order approaches. Importantly, classical GML architectures gain renewed significance in RDB tasks. For example, PNA, originally devised for molecular graphs, is well-suited for RDB tasks: its multi-aggregation mechanisms naturally capture diverse feature interaction patterns, echoing the strengths of DFS-based approaches. In Appendix E.3, we provide a more detailed description of each component and explain why some GML designs are not suitable for RDB tasks.

Table 1: Search space of RDL and DFS-based methods for RDB tasks. Underline means these components will go over a grid search, while other components will be sampled.

Name	Architecture design space			Hyper-parameters
RDL	Structural feature	Message passing	Readout	Learning rate, dropout, normalization, fanout...
	Labeling ID, Learnable embedding, None	PNA, HGT, Sage, RelGNN	MLP, ContextGNN, Shallow	
DFS	Aggregation function	Aggregation layers	Backbone	Batch size, hidden dimension
	Max, Min, Mode, ... (fixed)	1, 2, 3 (if possible)	TabPFN, LightGBM, FT-transformer	

3.3 EMPIRICAL STUDY OF VARIOUS ARCHITECTURE DESIGNS

Evaluation setup. For entity-level tasks, we sample 15 configurations per architecture combination (180 per task). For recommendation, we sample 10 configurations. For DFS, we use the Robinson et al. (2024) HPO utility with 20 trials per design (TabPFN requires no tuning). Following Robinson et al. (2024), we train up to 20 epochs, capping each epoch at 1,000 steps (recommendation) or 500 (entity-level), using Adam (Kingma & Ba, 2015) with an optional exponential LR scheduler. Efficiency is not our main focus, and the only efficiency constraint is that the model can fit a single

L40S GPU (48GB). See Appendix E.6 for more discussions on extending our pipelines to efficiency-aware scenarios. In this section, we only report entity-level results. The recommendation results are presented in Appendix E.5 since the architecture choice there is less important. Our evaluation reveals the following key insights:

Observation 1. Efficacy and necessity of the design space. We first validate our proposed design space by examining the **best possible test performance**. We compare our design space’s performance with that of baseline models reported in the literature, including Graphsage (Robinson et al., 2024), RelGNN (Chen et al., 2025a), RelGT (Dwivedi et al., 2025), KumoRFM (Fey et al., 2025), and RelLLM (Wu et al., 2025) on 17 Relbench (Robinson et al., 2024) tasks. These strong baselines serve to highlight that our design space achieves competitive results. As shown in Figure 2,

Figure 2: Performance comparison between the best configurations from our design space and baseline models on entity-level tasks. “Best (ours)“ means the better value of RDL and DFS. Full numerical results can be seen in Table 11 from Appendix E.5.

the best configurations from our design space consistently outperform all scratch-trained baselines **(1) Breaking equivariance:** learnable embeddings (e.g., partial labeling Zhu et al. (2021)) improve entity-level performance despite violating node-level permutation equivariance; **(2) Implementation:** compressing dense embeddings via incremental PCA and inserting them as numeric columns enables efficient cross-table aggregation in DFS (Wang et al., 2025), markedly improving scalability and accuracy. These findings justify architecture selection: **no single architecture dominates across tasks.** RDL vs. DFS rankings vary by task, and the same holds for micro-level choices (e.g., message passing; see Appendix E.5).

Observation 2. Validation metrics can be unreliable for architecture selection.

Oracle test selection shows the upper bound of our design space, but in practice, configurations are picked by validation (or training) scores, which often leads to a gap: validation-selected models underperform test-selected ones (Table 2). In our reproduction of RelGNN (Chen et al., 2025a), the reported gains over GraphSage are clear only when choosing hyperparameters by test performance; with validation selection, the advantage becomes marginal. This reliability issue is largely overlooked in graph AutoML and only briefly noted in tabular ML (Ye et al., 2024). It is pronounced in RDB settings, which are inductive and time-aware: temporal splits induce distribution shift between validation and test periods. The problem affects both RDL and DFS; further evidence is in Appendix E.5.

Table 2: The performance gap between validation- and test-selected configurations.

Task	Model	reported perf	test-selected perf	val-selected perf
driver-top3 (auroc)	Graphsage	75.54	82.81	81.56
	RelGNN	85.69	85.69	82.61
driver-position (mae)	Graphsage	4.022	3.91	3.93
	RelGNN	3.798	3.80	4.35
user-ignore (auroc)	Graphsage	81.62	86.40	72.27
	RelGNN	86.18	86.18	78.94

4 PRINCIPLES AND AUTOMATION OF ARCHITECTURE SELECTION

Building on Section 3, where neither paradigm uniformly dominates, we seek a principled way to choose architectures for an RDB task. Two obstacles arise: (i) the design space is huge (180 trials per task cover only a small fraction), and (ii) validation performance—the usual selection proxy—can be unreliable, so more search can even degrade test performance. We address this by leveraging the

270 *model performance bank* (Section 3.3): for a new task, transfer information from similar tasks to
 271 reduce the search space. This requires a task embedding to capture the properties of tasks.
 272

273 4.1 FROM OBSERVATIONS TO TASK EMBEDDINGS

275 We begin with two observations from the performance bank: (1) RDL–DFS performance gaps vary
 276 across tasks; and (2) validation-selected vs. test-selected performance gaps differ across model
 277 types. The first implies data factors driving a task’s affinity for certain model classes; the second
 278 motivates analyzing model properties to explain generalization.

279 4.1.1 DATA-CENTRIC PERSPECTIVE

280 We begin with *homophily* as the first axis of task characterization, since it is the lowest-order relational
 281 signal and reflects a task’s favored inductive bias (Ma et al., 2022). Label-induced properties
 282 empirically outperform label-agnostic ones (e.g., degree) for performance prediction (Li et al., 2023;
 283 Zheng et al., 2024), and labels are directly available in RDB tasks via the materializing SQL query.
 284 Extending homophily to RDB tasks is non-trivial because: (1) labels evolve over time; (2) labels
 285 may be continuous; and (3) the PK–FK graph is schema-driven—labels usually come from a single
 286 fact table, so naively computing edge homophily on raw PK–FK links is ill-posed (always equal 1).
 287 We therefore propose **RDB task homophily**. Starting from the PK–FK graph used for training, we
 288 temporally aggregate labels to per-entity means $\hat{y}_v \in \mathbb{R}^C$, then augment the graph as in Figure 3 to
 289 form self-looped metapaths; for scalability, we restrict to one-hop metapaths.

290 **Definition 1** (RDB task homophily). *Given an augmented heterogeneous graph $\mathcal{G} = (V, \mathcal{E})$ induced
 291 from an RDB task, labeled entity type F and V_F its nodes, each with mean label \hat{y}_v . Let \mathcal{M} be a finite
 292 set of self-looped metapaths m starting and ending with F , and let \mathcal{E}_m be the set of edges induced
 293 by m . Given a label metric \mathcal{K} , the RDB task homophily for metapath m is*

$$294 H(\mathcal{G}; m) = \frac{1}{|\mathcal{E}_m|} \sum_{\{u, v\} \in \mathcal{E}_m} \mathcal{K}(\hat{y}_u, \hat{y}_v).$$

296 **Label metric design.** For classification tasks, the label metric
 297 can be the dot product $\mathcal{K}(\hat{y}_u, \hat{y}_v) = \hat{y}_u^\top \hat{y}_v$, which reduces
 298 to traditional edge homophily $\mathbb{1}\{\hat{y}_u = \hat{y}_v\}$ when there are
 299 no duplicate entities in the task table. We denote this measure
 300 by $H_{\text{edge}}(\mathcal{G}; m)$. For regression tasks, we instead use a
 301 **correlation-based label metric**: letting $\hat{y}_u = (\hat{y}_u - \mu)/\sigma$ denote
 302 standardized predictions over labeled nodes (with empirical
 303 mean μ and variance σ^2), we define $\mathcal{K}(\hat{y}_u, \hat{y}_v) = \hat{y}_u^\top \hat{y}_v = \frac{(\hat{y}_u - \mu)(\hat{y}_v - \mu)}{\sigma^2}$ to measure Pearson-style correlation of labels
 304 along edges of each metapath. We may further extend the homophily definition to account for class imbalance. A notable
 305 extension is the adjusted homophily (Platonov et al., 2023).
 306 For a classification task, it can be defined as $H_{\text{adj}}(\mathcal{G}; m) =$

$$307 H_{\text{edge}}(\mathcal{G}; m) - \sum_{k=1}^C \left(\frac{D_k^{(m)}}{2|\mathcal{E}_m|} \right)^2$$

$$308 \frac{H_{\text{edge}}(\mathcal{G}; m) - \sum_{k=1}^C \left(\frac{D_k^{(m)}}{2|\mathcal{E}_m|} \right)^2}{1 - \sum_{k=1}^C \left(\frac{D_k^{(m)}}{2|\mathcal{E}_m|} \right)^2}$$

$$309$$

$$310$$

$$311$$

$$312$$

$$313$$

$$314$$

$$315$$

$$316$$

$$317$$

$$318$$

$$319$$

$$320$$

$$321$$

$$322$$

$$323$$

$$324$$

$$325$$

$$326$$

$$327$$

$$328$$

$$329$$

$$330$$

$$331$$

$$332$$

$$333$$

$$334$$

$$335$$

$$336$$

$$337$$

$$338$$

$$339$$

$$340$$

$$341$$

$$342$$

$$343$$

$$344$$

$$345$$

$$346$$

$$347$$

$$348$$

$$349$$

$$350$$

$$351$$

$$352$$

$$353$$

$$354$$

$$355$$

$$356$$

$$357$$

$$358$$

$$359$$

$$360$$

$$361$$

$$362$$

$$363$$

$$364$$

$$365$$

$$366$$

$$367$$

$$368$$

$$369$$

$$370$$

$$371$$

$$372$$

$$373$$

$$374$$

$$375$$

$$376$$

$$377$$

$$378$$

$$379$$

$$380$$

$$381$$

$$382$$

$$383$$

$$384$$

$$385$$

$$386$$

$$387$$

$$388$$

$$389$$

$$390$$

$$391$$

$$392$$

$$393$$

$$394$$

$$395$$

$$396$$

$$397$$

$$398$$

$$399$$

$$400$$

$$401$$

$$402$$

$$403$$

$$404$$

$$405$$

$$406$$

$$407$$

$$408$$

$$409$$

$$410$$

$$411$$

$$412$$

$$413$$

$$414$$

$$415$$

$$416$$

$$417$$

$$418$$

$$419$$

$$420$$

$$421$$

$$422$$

$$423$$

$$424$$

$$425$$

$$426$$

$$427$$

$$428$$

$$429$$

$$430$$

$$431$$

$$432$$

$$433$$

$$434$$

$$435$$

$$436$$

$$437$$

$$438$$

$$439$$

$$440$$

$$441$$

$$442$$

$$443$$

$$444$$

$$445$$

$$446$$

$$447$$

$$448$$

$$449$$

$$450$$

$$451$$

$$452$$

$$453$$

$$454$$

$$455$$

$$456$$

$$457$$

$$458$$

$$459$$

$$460$$

$$461$$

$$462$$

$$463$$

$$464$$

$$465$$

$$466$$

$$467$$

$$468$$

$$469$$

$$470$$

$$471$$

$$472$$

$$473$$

$$474$$

$$475$$

$$476$$

$$477$$

$$478$$

$$479$$

$$480$$

$$481$$

$$482$$

$$483$$

$$484$$

$$485$$

$$486$$

$$487$$

$$488$$

$$489$$

$$490$$

$$491$$

$$492$$

$$493$$

$$494$$

$$495$$

$$496$$

$$497$$

$$498$$

$$499$$

$$500$$

$$501$$

$$502$$

$$503$$

$$504$$

$$505$$

$$506$$

$$507$$

$$508$$

$$509$$

$$510$$

$$511$$

$$512$$

$$513$$

$$514$$

$$515$$

$$516$$

$$517$$

$$518$$

$$519$$

$$520$$

$$521$$

$$522$$

$$523$$

$$524$$

$$525$$

$$526$$

$$527$$

$$528$$

$$529$$

$$530$$

$$531$$

$$532$$

$$533$$

$$534$$

$$535$$

$$536$$

$$537$$

$$538$$

$$539$$

$$540$$

$$541$$

$$542$$

$$543$$

$$544$$

$$545$$

$$546$$

$$547$$

$$548$$

$$549$$

$$550$$

$$551$$

$$552$$

$$553$$

$$554$$

$$555$$

$$556$$

$$557$$

$$558$$

$$559$$

$$560$$

$$561$$

$$562$$

$$563$$

$$564$$

$$565$$

$$566$$

$$567$$

$$568$$

$$569$$

$$570$$

$$571$$

$$572$$

$$573$$

$$574$$

$$575$$

$$576$$

$$577$$

$$578$$

$$579$$

$$580$$

$$581$$

$$582$$

$$583$$

$$584$$

$$585$$

$$586$$

$$587$$

$$588$$

$$589$$

$$590$$

$$591$$

$$592$$

$$593$$

$$594$$

$$595$$

$$596$$

$$597$$

$$598$$

$$599$$

$$600$$

$$601$$

$$602$$

$$603$$

$$604$$

$$605$$

$$606$$

$$607$$

$$608$$

$$609$$

$$610$$

$$611$$

$$612$$

$$613$$

$$614$$

$$615$$

$$616$$

$$617$$

$$618$$

$$619$$

$$620$$

$$621$$

$$622$$

$$623$$

$$624$$

$$625$$

$$626$$

$$627$$

$$628$$

$$629$$

$$630$$

$$631$$

$$632$$

$$633$$

$$634$$

$$635$$

$$636$$

$$637$$

$$638$$

$$639$$

$$640$$

$$641$$

$$642$$

$$643$$

$$644$$

$$645$$

$$646$$

$$647$$

$$648$$

$$649$$

$$650$$

$$651$$

$$652$$

$$653$$

$$654$$

$$655$$

$$656$$

$$657$$

$$658$$

$$659$$

$$660$$

$$661$$

$$662$$

$$663$$

$$664$$

$$665$$

$$666$$

$$667$$

$$668$$

$$669$$

$$670$$

$$671$$

$$672$$

$$673$$

$$674$$

$$675$$

$$676$$

$$677$$

$$678$$

$$679$$

$$680$$

$$681$$

$$682$$

$$683$$

$$684$$

$$685$$

$$686$$

$$687$$

$$688$$

$$689$$

$$690$$

$$691$$

$$692$$

$$693$$

$$694$$

$$695$$

$$696$$

$$697$$

$$698$$

$$699$$

$$700$$

$$701$$

$$702$$

$$703$$

$$704$$

$$705$$

$$706$$

$$707$$

$$708$$

$$709$$

$$710$$

$$711$$

$$712$$

$$713$$

$$714$$

$$715$$

$$716$$

$$717$$

$$718$$

$$719$$

$$720$$

$$721$$

$$722$$

$$723$$

$$724$$

$$725$$

$$726$$

$$727$$

$$728$$

$$729$$

$$730$$

$$731$$

$$732$$

$$733$$

$$734$$

$$735$$

$$736$$

$$737$$

$$738$$

$$739$$

$$740$$

$$741$$

$$742$$

$$743$$

$$744$$

$$745$$

$$746$$

$$747$$

$$748$$

$$749$$

$$750$$

$$751$$

$$752$$

$$753$$

$$754$$

$$755$$

$$756$$

$$757$$

$$758$$

$$759$$

$$760$$

$$761$$

$$762$$

$$763$$

$$764$$

$$765$$

$$766$$

$$767$$

$$768$$

$$769$$

$$770$$

$$771$$

$$772$$

$$773$$

$$774$$

$$775$$

$$776$$

$$777$$

$$778$$

$$779$$

$$780$$

$$781$$

$$782$$

$$783$$

$$784$$

$$785$$

$$786$$

$$787$$

$$788$$

$$789$$

$$790$$

$$791$$

$$792$$

$$793$$

$$794$$

$$795$$

$$796$$

$$797$$

$$798$$

$$799$$

$$800$$

$$801$$

$$802$$

$$803$$

$$804$$

$$805$$

$$806$$

$$807$$

$$808$$

$$809$$

$$810$$

$$811$$

$$812$$

$$813$$

$$814$$

$$815$$

$$816$$

$$817$$

$$818$$

$$819$$

$$820$$

$$821$$

$$822$$

$$823$$

$$824$$

$$825$$

$$826$$

$$827$$

$$828$$

$$829$$

$$830$$

$$831$$

$$832$$

$$833$$

$$834$$

$$835$$

$$836$$

$$837$$

$$838$$

$$839$$

$$840$$

$$841$$

$$842$$

$$843$$

$$844$$

$$845$$

$$846$$

$$847$$

$$848$$

$$849$$

$$850$$

$$851$$

$$852$$

$$853$$

$$854$$

$$855$$

$$856$$

$$857$$

$$858$$

$$859$$

$$860$$

$$861$$

$$862$$

$$863$$

$$864$$

$$865$$

$$866$$

$$867$$

$$868$$

$$869$$

$$870$$

$$871$$

$$872$$

$$873$$

$$874$$

$$875$$

$$876$$

$$877$$

$$878$$

$$879$$

$$880$$

$$881$$

$$882$$

$$883$$

$$884$$

$$885$$

$$886$$

$$887$$

$$888$$

$$889$$

$$890$$

$$891$$

$$892$$

$$893$$

$$894$$

$$895$$

$$896$$

$$897$$

$$898$$

$$899$$

$$900$$

$$901$$

$$902$$

$$903$$

$$904$$

$$905$$

$$906$$

$$907$$

$$908$$

$$909$$

$$910$$

$$911$$

$$912$$

$$913$$

$$914$$

$$915$$

$$916$$

$$917$$

$$918$$

$$919$$

$$920$$

$$921$$

$$922$$

$$923$$

$$924$$

$$925$$

$$926$$

$$927$$

$$928$$

$$929$$

$$930$$

$$931$$

$$932$$

$$933$$

$$934$$

$$935$$

$$936$$

$$937$$

$$938$$

$$939$$

$$940$$

$$941$$

$$942$$

$$943$$

$$944$$

$$945$$

$$946$$

$$947$$

$$948$$

$$949$$

$$950$$

$$951$$

$$952$$

$$953$$

$$954$$

$$955$$

$$956$$

$$957$$

$$958$$

$$959$$

$$960$$

$$961$$

$$962$$

$$963$$

$$964$$

$$965$$

$$966$$

$$967$$

$$968$$

$$969$$

$$970$$

$$971$$

$$972$$

$$973$$

$$974$$

$$975$$

$$976$$

$$977$$

$$978$$

$$979$$

$$980$$

$$981$$

$$982$$

$$983$$

$$984$$

$$985$$

$$986$$

$$987$$

$$988$$

$$989$$

$$990$$

$$991$$

$$992$$

$$993$$

$$994$$

$$995$$

$$996$$

$$997$$

$$998$$

$$999$$

$$1000$$

$$1001$$

$$1002$$

$$1003$$

$$1004$$

$$1005$$

$$1006$$

$$1007$$

$$1008$$

$$1009$$

$$1010$$

$$1011$$

$$1012$$

$$1013$$

$$1014$$

$$1015$$

$$1016$$

$$1017$$

$$1018$$

$$1019$$

$$1020$$

$$1021$$

$$1022$$

$$1023$$

$$1024$$

$$1025$$

$$1026$$

$$1027$$

$$1028$$

$$1029$$

$$1030$$

$$1031$$

$$1032$$

$$1033$$

$$1034$$

$$1035$$

$$1036$$

$$1037$$

$$1038$$

$$1039$$

$$1040$$

$$1041$$

$$1042$$

$$1043$$

$$1044$$

$$1045$$

$$1046$$

$$1047$$

$$1048$$

$$1049$$

$$1050$$

$$1051$$

$$1052$$

$$1053$$

$$1054$$

$$1055$$

$$1056$$

$$1057$$

$$1058$$

$$1059$$

$$1060$$

$$1061$$

$$1062$$

$$1063$$

$$1064$$

$$1065$$

$$1066$$

$$1067$$

$$1068$$

$$1069$$

$$1070$$

$$1071$$

$$1072$$

$$1073$$

$$1074$$

$$1075$$

$$1076$$

$$1077$$

$$1078$$

$$1079$$

$$1080$$

$$1081$$

$$1082$$

$$1083$$

$$1084$$

$$1085$$

$$1086$$

$$1087$$

$$1088$$

$$1089$$

$$1090$$

$$1091$$

$$1092$$

$$1093$$

$$1094$$

$$1095$$

$$1096$$

$$1097$$

$$1098$$

$$1099$$

$$1100$$

$$1101$$

$$1102$$

$$1103$$

$$1104$$

$$1105$$
<math

324 2. **Feature affinity.** Use TabPFN validation performance (no training) as a proxy for feature quality.
 325 3. **Temporal affinity.** Since mean-label homophily ignores time, add simple timeline statistics (e.g.,
 326 majority label over time), which effectively capture dynamics (Cornell et al., 2025).

327 **Correlating heuristics with the RDL-DFS performance gap.** We conduct a nonparametric correlation
 328 analysis relating RDB task characteristics to the performance differential between the best
 329 RDL and DFS models. We identify that $\log(N_{train})$, representing the logarithm of training row
 330 counts, and adjusted homophily are the most significant predictors. Notably, in classification tasks,
 331 adjusted homophily displays a strong negative correlation with the RDL-DFS gap, with Spearman’s
 332 $\rho = -0.43$ ($p < 0.05$). (See Appendix C for complete heuristic definitions). This implies that
 333 RDL’s nonlinear aggregation is particularly advantageous for low homophily tasks. Moreover, RDL
 334 requires substantial supervision signals to learn appropriate aggregation functions. We evaluate
 335 other heuristics, including the influence of labeling tricks and path affinity, in Appendix E.5.

336 **(Informal) Theoretical insights.** The correlation between the relative performance of RDL and
 337 DFS, homophily-induced features, and the train task table size (number of available labels) can be
 338 elucidated from a graph-theoretical perspective. If we formulate the RDB as a heterogeneous graph
 339 and expand it into a multi-relational graph via metapaths, both DFS and RDL can be viewed as
 340 mechanisms that aggregate neighbor information into a score for each task-table row. However, DFS
 341 relies on fixed linear averages of neighbor signals, whereas RDL learns relation-specific nonlinear
 342 transformations (e.g., amplification, clipping, or sign flips) prior to combination. We briefly discuss
 343 two regimes here and provide rigorous proofs in Appendix C.2.

344 1. **Low-homophily classification.** When labels are strongly homophilous along most metapaths,
 345 simple averaging is close to optimal and DFS already captures most relational signal. When some
 346 metapaths are weakly homophilous, heterophilous, or nearly random, linear averaging mixes pos-
 347 itive and negative evidence and tends to cancel signal. RDL can instead learn to down-weight
 348 uninformative relations and flip the contribution of systematically “opposite-label” metapaths,
 349 effectively increasing the signal-to-noise ratio exactly when adjusted homophily is small or neg-
 350 ative. This explains why the RDL-DFS gap grows on low-homophily classification tasks.
 351 2. **Dependence on the number of training rows.** The same view clarifies why the number of
 352 training rows, N_{train} , is a key moderator. DFS has a relatively small hypothesis class: aggregators
 353 are fixed and only a tabular model is learned, so its estimation error shrinks quickly with sample
 354 size. RDL introduces many additional parameters (per-relation weights, gates, nonlinearities),
 355 which in principle allow it to recover the “right” aggregation but also make it easier to overfit
 356 when supervision is scarce. In low-data regimes, these learned gates are noisy and can hurt
 357 performance compared to the stable DFS averages; once $\log(N_{train})$ is large enough, the gates
 358 can be estimated reliably and RDL’s extra flexibility turns into a consistent advantage.

359 4.1.2 MODEL-CENTRIC PERSPECTIVE

360 To understand validation-test selection gaps, we analyze checkpoints that exhibit good and poor
 361 generalization. After conducting intuitive visualization-based analysis (shown in Appendix E.5), we
 362 probe generalization via the local loss landscape $L : \mathbb{R}^d \rightarrow \mathbb{R}$ around a checkpoint w_0 (Chiang et al.,
 363 2023). Fix an orthonormal 2D subspace $\Pi = \text{span}(e_1, e_2)$ and sample a grid $\Gamma = \{(s_i, t_j)\} \subset$
 364 $[-\rho, \rho]^2$. Each grid point defines $w_{ij} = w_0 + s_i e_1 + t_j e_2$ with $L_{ij} = L(w_{ij})$. We summarize
 365 with three indicators spanning increasing smoothness scales (Garipov et al., 2018; Li et al., 2018a;
 366 Ghorbani et al., 2019):
 367

368 1. **First-order** P_1 : $\max_{|i-k|+|j-l|=1} \frac{|L_{ij} - L_{kl}|}{\sqrt{(s_i - s_k)^2 + (t_j - t_l)^2}}$ (worst finite-difference slope on Π).
 369 2. **Second-order** P_2 : $\lambda_{\max}(H_\Pi(w_0))$, where $H_\Pi(w_0) = E^\top \nabla^2 L(w_0) E$, $E = [e_1 \ e_2]$ (sharpness
 370 along Π ; estimated via second differences or slice fits).
 371 3. **Energy barrier** P_{bar} : $\max_{(i,j)} \max_{t \in [0,1]} L(w_0 + t(w_{ij} - w_0)) - \max\{L(w_0), L_{ij}\}$ (barrier to
 372 departing w_0 along rays within Π).

373 We observe that the performance gap is related to the flatness of the loss landscape. On DRIVER-
 374 TOP3 (Table 3), we find that checkpoints with smaller metric values tend to generalize better, since
 375 these models tend to be more stable when there’s a small perturbation on their weights. When vali-
 376 dation-test gaps are large, all indicators consistently favor the true test-optimal configuration; when
 377 gaps are small, indicators may disagree, motivating the usage of multiple signals. These metrics are

378 comparable within a model family (RDL or DFS) but not across families due to scale differences.
 379 Moreover, these signals are effective only for well-fitted models (an under-fitted model may have
 380 a flat landscape but poor performance). Since these signals are post-hoc, we utilize them in the
 381 post-selection to refine the final checkpoint choice across models with top validation performance.
 382

383 4.1.3 AUTOMATIC ARCHITECTURE SELECTION THROUGH RELATRON

385 Based on these findings, we introduce **Relatron**, an architecture selector that maps *task embeddings* to
 386 *meta-predictions* about which model
 387 design to use. Given an RDB task,
 388 Relatron considers two types of ar-
 389 chitecture selection.
 390

391 **Macro-level selection (RDL vs.**
 392 **DFS).** We train a meta-classifier on the performance bank to map task embeddings to the empirically
 393 winning family, using homophily-based task embeddings. At inference, we (1) compute the
 394 novel task’s embedding and (2) apply the meta-classifier to choose between RDL and DFS.

395 **Joint architecture selection and HPO with a query budget.** For standard HPO with a query-
 396 budget setting, the query budget is appended to the task embedding as an additional feature. (1) A
 397 macro-level meta-predictor first chooses between RDL and DFS. (2) Within the chosen family, two
 398 micro-level meta-predictors based on affinity embeddings—one deciding whether to use labeling
 399 tricks (if RDL is chosen) and the other selecting the optimal number of DFS layers (if DFS is cho-
 400 sen)—are applied to reduce the search space. (3) An HPO routine (e.g., TPE (Bergstra et al., 2011)
 401 or Autotransfer (Cao et al., 2023)) generates candidate checkpoints within the selected family. (4)
 402 Loss-landscape metrics are applied for post-selection among candidates with top validation perfor-
 403 mance. An insight here is that the favored model type is related to the query budget. Although RDL
 404 often attains higher best-case performance on tasks such as STUDY-OUTCOME, under tight search
 405 budgets, its average performance can lag behind DFS because good RDL configurations are harder
 406 to find. Moreover, as shown in Section 4.2, we surprisingly find that the macro-level meta-predictor
 407 (DFS or RDL) addresses most issues: after selecting the appropriate model branch, search efficiency
 408 improves and the validation–test gap narrows.

409 **Design space of task features.** In terms of task feature design, there are three categories, with com-
 410 putation budgets ranging from small to large. A detailed introduction can be found in Appendix E.

- 411 **Model-free embeddings:** Model-free embedding requires no training and is extremely fast to
 412 compute. This includes homophily-based features, the performance of simple heuristic baselines,
 413 basic database statistics, and temporal-related correlations.
- 414 **Training-free Model-based embeddings:** These embeddings use training-free models’ perfor-
 415 mance as embeddings. This includes the performance of DFS-TabPFN and that of randomly
 416 initialized GraphSage or NBFNet.
- 417 **Anchor-based embeddings (Cao et al., 2023):** This refers to task2vec (Achille et al., 2019)-
 418 based anchor model-based embeddings, such as Auto-transfer. Though the original paper claims
 419 that these embeddings require little time to obtain, we find that computing the Fisher information
 420 matrix is actually very time-consuming for RDB tasks, given the number of required anchors.

421 4.2 EXPERIMENTAL EVALUATIONS

422 We then evaluate the proposed Relatron on three experiments. (1) *A sanity check of task embeddings*:
 423 First, we evaluate the effectiveness of different task embeddings by comparing the task similarity
 424 calculated by task embedding and the ground truth Graphgym similarity (You et al., 2020). This ex-
 425 periment is mainly used to verify the correctness of task embeddings. (2) *Macro-level architecture*
 426 *search*: Second, we check whether task embeddings can help identify the proper architecture for an
 427 RDB task. (3) *Joint selection of architectures and hyperparameters*: Third, we consider a more prac-
 428 tical scenario, in which task embeddings and meta-predictor are used to enhance the effectiveness
 429 of joint hyperparameter and architecture search.

430 **Can task embeddings reflect ground-truth task similarity?** Using all trials in the performance
 431 bank, we: (1) derive ground truth GraphGym similarity (You et al., 2020) by intersecting model
 432 configurations across tasks, ranking them by per-task performance, and defining pairwise similar-

Table 3: Example landscape properties and model performance. Smaller values typically indicate a more benign landscape.

Selection	Model type	Val_auroc	Test_auroc	P_{bar}	P_1	P_2
Val	RDL	89.48	82.41	2.77	1.49	4.23
Test	RDL	86.05	85.94	0.41	1.22	0.22
Val	DFS	83.44	84.69	0.384	0.041	1.32
Test	DFS	83.76	85.71	0.495	0.03	0.50

432
433
434
435
436
437
438
439
440
Figure 4: Ground
truth GraphGym
similarity

441
442
443
444
Table 4: Experimental results for task-embedding similarity, leave-one-out (LOO) ac-
curacy, and task-embedding computation efficiency. “AT” stands for Autotransfer. For
“winner by val,” we still report test performance, but the representative checkpoints are
selected by validation performance.

Task embedding design	Mean Kendall’s corr (no g)	Mean Kendall’s corr (g)	Winner by val	Winner by test	Average time (min)
Model-free (homophily + stats + temporal)	0.066	0.163	87.5%	79.2%	0.48
Model-free (simple heuristic performance)	0.027	0.031	70.8%	75.0%	0
Model-based (training-free)	-0.038	-0.030	66.7%	66.7%	5
Anchor-based (Autotransfer)	-0.049	-0.011	66.7%	66.7%	50

441
442
443
444
Table 6: Joint architecture and hyperparameter optimization result. Best results are highlighted
with an underline and the second are **bold**. “Only predictor” means only using the meta-predictor.
Relbench’s default refers to the default architecture and hyperparameters in their pipelines. Best
fixed refers to the configurations with the best mean rank of performance across tasks.

Strategy	Budget	driver-top3 (ROC-AUC) \nearrow	driver-position (MAE) \searrow	user-churn (ROC-AUC) \nearrow
Random	3	82.67 ± 2.19	3.6810 ± 0.4255	68.56 ± 1.23
	10	77.80 ± 4.79	3.8576 ± 0.5035	68.60 ± 1.20
	30	77.28 ± 2.42	4.2793 ± 0.1483	69.54 ± 0.43
TPE	3	82.67 ± 2.19	3.6810 ± 0.4255	68.56 ± 1.23
	10	81.45 ± 0.44	3.7897 ± 0.4271	68.60 ± 1.20
	30	77.92 ± 5.12	4.1724 ± 0.0519	69.54 ± 0.43
Hyperband	3	82.67 ± 2.19	3.6810 ± 0.4255	68.43 ± 1.33
	10	80.68 ± 0.74	3.7897 ± 0.4271	68.60 ± 1.20
	30	74.37 ± 9.59	4.0948 ± 0.1420	69.32 ± 0.34
Autotransfer	3	77.11 ± 4.43	4.2916 ± 0.0952	69.09 ± 0.86
	10	78.71 ± 2.88	4.3645 ± 0.2105	70.28 ± 0.27
		<i>Only predictor</i>	<i>Full</i>	<i>Only predictor</i>
Ours	3	83.80 ± 0.34	83.80 ± 0.34	3.3986 ± 0.0877
	10	83.28 ± 1.45	83.30 ± 1.17	3.3934 ± 0.1389
	30	84.00 ± 0.34	84.33 ± 0.06	3.3339 ± 0.1563
		<i>Only predictor</i>	<i>Full</i>	<i>Only predictor</i>
DFS + TabPFN Relbench’s default Best fixed Griffin				
		82.24	3.43	67.79
		73.19	5.02	68.12
		83.72	4.35	69.84
		77.95	4.20	68.4

463
464
465
466
467
468
469
470
471
ity as Kendall’s τ between the two rank signatures. As a sanity check, the top 3 similar tasks are
USER-BADGE, USER-ENGAGEMENT, and USER-CHURN, which aligns with the similarity of their
homophily metrics (2) for each embedding, form a task–task matrix via cosine similarity on normal-
ized features and report Kendall’s rank correlation with the GraphGym matrix; (3) optionally learn a
projection g (as in Cao et al. (2023)) using a margin-ranking meta-objective that pulls together tasks
with similar performance profiles and pushes apart dissimilar ones. Results (Table 4): Our proposed
homophily and affinity-based embedding achieves the best ranking correlation. On the other hand,
we also need to point out that none of these task embeddings present significantly high correlation,
which can partially explain why transfer-based HPO is not very effective in Table 6.

472
473
474
475
476
477
478
479
480
481
482
483
484
485
Can task embeddings help predict RDL
vs. DFS winner? We then investi-
gate whether task embeddings can predict
which method—RDL or DFS—performs
better on a novel task. We consider win-
ners selected by validation performance
and directly extracted using test perfor-
mance. The former one is exactly the setting for architecture selection during the HPO. For each
target task, we fit the model using other tasks in the model performance bank and evaluate the tar-
get task with leave-one-out cross-validation. As shown in Table 6, our proposed model-free task
features are surprisingly most effective despite the low computation cost. If we further look at the
incorrect samples, we find that most of them have a small performance gap between RDL and DFS
(within 2.5%), indicating that these tasks are inherently hard to distinguish. Moreover, as shown in
Table 5, we also study the influence of model performance bank size. As expected, larger banks lead
to better predictors since they cover more diverse tasks. At the same time, our proposed model-free
task features consistently outperform other embeddings under different bank sizes.

472
473
474
475
476
477
478
479
480
481
482
483
484
485
Table 5: Ablation on performance-bank size for macro-level
predictors (LOO accuracy).

Bank size	Model-free (ours)	Training-free model-based	Anchor-based
8	68.9%	56.9%	62.9%
12	64.8%	50.4%	56.1%
16	76.2%	53.1%	62.5%
All	87.5%	66.7%	66.7%

486 **Joint hyperparameter and architecture search.** We evaluate our full pipeline in a joint
 487 HPO–architecture–search setting. As *baselines* for trial generation, we use random search,
 488 TPE (Bergstra et al., 2011), Hyperband (Li et al., 2018b), and Autotransfer (Cao et al., 2023).
 489 We report results on three representative datasets—DRIVER-TOP3, DRIVER-POSITION, and USER-
 490 CHURN—and use the remaining tasks as the performance bank; the first two have small training
 491 tables and are prone to overfitting. Our pipeline trains a TabPFN-based meta-predictor that selects
 492 between RDL and DFS from the query budget and homophily-based task embeddings. Conditional
 493 on this choice, we run one of the above trial generators within the selected family (we select TPE
 494 since it delivers the best performance), then post-select among the top-3 validation models using
 495 landscape measures.
 496

497 As shown in Table 6, we observe: (1) our pipeline generally achieves better performance. Us-
 498 ing only the meta-predictor to choose the model family already yields strong results, suggesting that
 499 large validation–test gaps often arise from selecting an unsuitable architecture. Unlike other methods
 500 that suffer from the undesirable “the more you train, the worse you get” phenomenon, our per-
 501 formance continues to improve as the number of trials increases. Post-hoc selection offers only limited
 502 gains, likely because hard voting over numeric landscape metrics still introduces noise. Addressing
 503 checkpoint selection may require pre-trained priors similar to architecture search; we leave this to
 504 future work. (2) For search acceleration, unlike Cao et al. (2023), embedding-based configuration
 505 retrieval is typically ineffective, with the sole exception of USER-CHURN. Consequently, we rely on
 506 TPE for trial generation. The limited effectiveness of Autotransfer suggests that RDB data distri-
 507 butions are more complex than those of standard graph benchmarks, and that a larger, more diverse
 508 task bank would be needed—impractical given the scarcity of public data. Synthetic tasks, in the
 509 spirit of Hollmann et al. (2023), may therefore be a promising direction to improve search quality.
 510 (3) After hyper-parameter tuning, we demonstrate that models trained from scratch can outperform
 511 foundation models like DFS with TabPFN.

510 5 CONCLUSION, LIMITATIONS, AND FUTURE DISCUSSION

511 In this paper, we systematically study the design space of relational machine learning models for
 512 RDB tasks and collect a model performance bank. Based on this study, we show that the advantage
 513 of RDL over DFS is related to task properties, like the RDB task homophily. Then, we propose a
 514 meta-predictor based on the model performance bank and our proposed selector, Relatron, which
 515 demonstrates promising performance in both macro- and micro-level architecture search.

516 **Limitations and future work.** Our study does not explore LLM-based methods, either as en-
 517 coders (Wang et al., 2025) or predictors (Wu et al., 2025). While these approaches excel on certain
 518 databases, they often perform similarly or worse than baselines on other databases, leaving their
 519 role an open question. Although we do not propose new architectures, our results highlight design
 520 insights: GNNs with labeling tricks can boost entity-level prediction, and DFS-based methods of-
 521 ten outperform RDL, suggesting that current RDL designs may be suboptimal. Yet DFS remains
 522 a non-parametric, hand-crafted approach, contrasting with deep learning trends. Designing novel
 523 architectures inspired by DFS thus represents a promising direction.
 524

525 6 ETHICS STATEMENT

526 I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR
 527 Code of Ethics. Our study relies solely on publicly available benchmark datasets such as Rel-
 528 bench (Robinson et al., 2024). We believe this work raises no direct ethical risks beyond standard
 529 concerns associated with machine learning research.
 530

531 7 REPRODUCIBILITY STATEMENT

532 Due to the policy, we can not share the source code of this paper during the submission phase. We
 533 will make them available online after approval. To help reproducibility of the results, we provide
 534 training settings in Section 3.3, Section 4, and Appendix E. To validate the observations in this
 535 paper, we include theoretical discussions in Appendix C.

540 REFERENCES
541

542 Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
543 less C. Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-
544 learning. In *2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019*, pp. 6429–6438. IEEE, 2019. doi:
545 10.1109/ICCV.2019.00653. URL <https://doi.org/10.1109/ICCV.2019.00653>.

546

547 Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, and Jun Gao. Atj-net: Auto-table-join
548 network for automatic learning on relational databases. In Jure Leskovec, Marko Grobelnik,
549 Marc Najork, Jie Tang, and Leila Zia (eds.), *WWW '21: The Web Conference 2021, Virtual Event*
550 / *Ljubljana, Slovenia, April 19-23, 2021*, pp. 1540–1551. ACM / IW3C2, 2021. doi: 10.1145/
551 3442381.3449980. URL <https://doi.org/10.1145/3442381.3449980>.

552

553 Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
554 audin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
555 and Christopher Morris. Position: Graph learning will lose relevance due to poor benchmarks. In
556 *Forty-second International Conference on Machine Learning Position Paper Track*, 2025. URL
557 <https://openreview.net/forum?id=nDFp121hoH>.

558

559 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
560 parameter optimization. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fer-
561 nando C. N. Pereira, and Kilian Q. Weinberger (eds.), *Advances in Neural Information*
562 *Processing Systems 24: 25th Annual Conference on Neural Information Processing Sys-*
563 *tems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain*, pp.
564 2546–2554, 2011. URL <https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cf12577bc2619bc635690-Abstract.html>.

565

566 Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
567 Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
568 mization: Foundations, algorithms, best practices, and open challenges. *Wiley Interdisciplinary*
569 *Reviews: Data Mining and Knowledge Discovery*, 13(2):e1484, 2023.

570

571 Kaidi Cao, Jiaxuan You, Jiaju Liu, and Jure Leskovec. Autotransfer: Automl with knowledge
572 transfer - an application to graph neural networks. In *The Eleventh International Conference on*
573 *Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
574 URL https://openreview.net/pdf?id=y81ppNf_vg.

575

576 Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. RelGNN: Composite message passing
577 for relational deep learning. In *Forty-second International Conference on Machine Learning*,
578 2025a. URL <https://openreview.net/forum?id=XXh3zwmw2Uy>.

579

580 Zhikai Chen, Han Xie, Jian Zhang, Xiang song, Jiliang Tang, Huzefa Rangwala, and George
581 Karypis. Autog: Towards automatic graph construction from tabular data. In *The Thirteenth*
582 *International Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=hovDbX4Gh6>.

583

584 Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, and
585 Tom Goldstein. Loss landscapes are all you need: Neural network generalization can be explained
586 without the implicit bias of gradient descent. In *The Eleventh International Conference on Learn-
587 ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
588 <https://openreview.net/pdf?id=QC10RmRbZy9>.

589

590 Dongwon Choi, Sunwoo Kim, Juyeon Kim, Kyungho Kim, Geon Lee, Shinhwan Kang, Myungh-
591 wan Kim, and Kijung Shin. RDB2g-bench: A comprehensive benchmark for automatic graph
592 modeling of relational databases. *arXiv*, 2025. doi: 10.48550/arxiv.2506.01360.

593

594 Edgar F Codd. Relational database: A practical foundation for productivity. In *ACM Turing award*
595 *lectures*, pp. 1981. Association for Computing Machinery, 2007.

596

597 Filip Cornell, Oleg Smirnov, Gabriela Zarzar Gandler, and Lele Cao. On the power of heuristics in
598 temporal graphs. *ArXiv preprint*, abs/2502.04910, 2025. URL <https://arxiv.org/abs/2502.04910>.

594 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal
 595 neighbourhood aggregation for graph nets. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Had-
 596 sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Process-
 597 ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
 598 2020, December 6-12, 2020, virtual, 2020*. URL <https://proceedings.neurips.cc/paper/2020/hash/99cad265a1768cc2dd013f0e740300ae-Abstract.html>.

600 DMDave, Todd B, and Will Cukierski. Acquire valued shoppers challenge, 2014. URL <https://kaggle.com/competitions/acquire-valued-shoppers-challenge>.

601

602

603 Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I Kanatsoulis, Rishi
 604 Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer. *arXiv*, 2025.

605

606 Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
 607 Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph rep-
 608 resentation learning on relational databases. In *Forty-first International Conference on Ma-
 609 chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024a. URL
 610 <https://openreview.net/forum?id=BIMSHniyCP>.

611 Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
 612 Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph rep-
 613 resentation learning on relational databases. In *Forty-first International Conference on Ma-
 614 chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024b. URL
 615 <https://openreview.net/forum?id=BIMSHniyCP>.

616 Matthias Fey, Vid Kocijan, Federico Lopez, Jan Eric Lenssen, and Jure Leskovec. Kumorfm: A
 617 foundation model for in-context learning on relational data. *kumorfm.ai*, 2025.

618

619 Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
 620 search with reinforcement learning. *ArXiv preprint*, abs/1904.09981, 2019. URL <https://arxiv.org/abs/1904.09981>.

621

622 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and Andrew Gordon Wil-
 623 son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Samy Bengio, Hanna M.
 624 Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
 625 *Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
 626 mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 627 8803–8812, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/be3087e74e9100d4bc4c6268cdbe8456-Abstract.html>.

628

629 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
 630 mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
 631 (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
 632 15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning
 633 Research*, pp. 2232–2241. PMLR, 2019. URL <http://proceedings.mlr.press/v97/ghorbani19b.html>.

634

635 Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph neural
 636 architecture search. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang
 637 Niu, and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022, 17-23
 638 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Re-
 639 search*, pp. 7968–7981. PMLR, 2022. URL <https://proceedings.mlr.press/v162/guan22d.html>.

640

641 William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
 642 on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
 643 Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), *Advances
 644 in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
 645 mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 646 1024–1034, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html>.

647

648 Jan L Harrington. *Relational database design and implementation*. Morgan Kaufmann, 2016.
 649

650 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 651 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
 652 2016, Las Vegas, NV, USA, June 27-30, 2016*, pp. 770–778. IEEE Computer Society, 2016. doi:
 653 10.1109/CVPR.2016.90. URL <https://doi.org/10.1109/CVPR.2016.90>.

654 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A trans-
 655 former that solves small tabular classification problems in a second. In *The Eleventh Interna-
 656 tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*.
 657 OpenReview.net, 2023. URL https://openreview.net/pdf?id=cp5PvcI6w8_.

658 Addison Howard, Bernadette Bouchon-Meunier, IEEE CIS, inversion, John Lei, Lynn@Vesta,
 659 Marcus2010, and Prof. Hussein Abbass. Ieee-cis fraud detection. <https://kaggle.com/competitions/ieee-fraud-detection>, 2019. Kaggle.
 660

662 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
 663 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
 664 graphs. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
 665 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual
 666 Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
 667 12, 2020, virtual*, 2020a. URL <https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html>.

668

669 Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
 670 Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (eds.), *WWW '20: The Web
 671 Conference 2020, Taipei, Taiwan, April 20-24, 2020*, pp. 2704–2710. ACM / IW3C2, 2020b. doi:
 672 10.1145/3366423.3380027. URL <https://doi.org/10.1145/3366423.3380027>.

673

674 Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. *Automated machine learning: methods, sys-
 675 tems, challenges*. Springer Nature, 2019.

676

677 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 678 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
 679 a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.

680

681 James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
 682 science endeavors. In *2015 IEEE international conference on data science and advanced analyt-
 683 ics (DSAA)*, pp. 1–10. IEEE, 2015.

684

685 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 686 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR
 687 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.

688

689 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 690 works. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,
 691 France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=SJU4ayYg1>.

692

693 Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Ozdur Alkan.
 694 One button machine for automating feature engineering in relational databases. *ArXiv preprint*,
 695 abs/1706.00327, 2017. URL <https://arxiv.org/abs/1706.00327>.

696

697 Hoang Thanh Lam, Tran Ngoc Minh, Mathieu Sinn, Beat Buesser, and Martin Wistuba. Neural
 698 feature learning from relational database. *ArXiv preprint*, abs/1801.05372, 2018. URL <https://arxiv.org/abs/1801.05372>.

699

700 Hoang Thanh Lam, Beat Buesser, Hong Min, Tran Ngoc Minh, Martin Wistuba, Udayan Khurana,
 701 Gregory Bramble, Theodoros Saloniidis, Dakuo Wang, and Horst Samulowitz. Automated data
 702 science for relational data. In *2021 IEEE 37th International Conference on Data Engineering
 (ICDE)*, pp. 2689–2692, 2021. doi: 10.1109/ICDE51399.2021.00305.

702 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
 703 loss landscape of neural nets. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
 704 Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances in Neu-
 705 ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
 706 cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 707 6391–6401, 2018a. URL <https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html>.

709 Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
 710 A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning
 711 Research*, 18(185):1–52, 2018b.

712 Ting Wei Li, Qiaozhu Mei, and Jiaqi Ma. A metadata-driven approach to un-
 713 derstand graph neural networks. In Alice Oh, Tristan Naumann, Amir Glob-
 714 erson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural In-
 715 formation Processing Systems 36: Annual Conference on Neural Information Pro-
 716 cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 717 2023, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/31994923f58ae5b2d661b300bd439107-Abstract-Conference.html.

720 Yaoman Li and Irwin King. Autograph: Automated graph neural network. In *Neural Information
 721 Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27,
 722 2020, Proceedings, Part II* 27, pp. 189–201. Springer, 2020.

723 Junhong Lin, Xiaojie Guo, Shuaicheng Zhang, Dawei Zhou, Yada Zhu, and Julian Shun. When
 724 heterophily meets heterogeneity: New graph benchmarks and effective methods. *ArXiv preprint*,
 725 abs/2407.10916, 2024. URL <https://arxiv.org/abs/2407.10916>.

726 Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassess-
 727 ing gnns for node classification. In Amir Globersons, Lester Mackey, Danielle Belgrave,
 728 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
 729 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 730 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 731 15, 2024, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/b10ed15ff1aa864f1be3a75f1ffc021b-Abstract-Datasets_and_Benchmarks_Track.html.

732 Zhipeng Luo, Zhixing He, Jin Wang, Manqing Dong, Jianqiang Huang, Mingjian Chen, and Bo-
 733 hang Zheng. Autosmart: An efficient and automatic machine learning framework for temporal
 734 relational data. In Feida Zhu, Beng Chin Ooi, and Chunyan Miao (eds.), *KDD '21: The 27th
 735 ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singa-
 736 pore, August 14-18, 2021*, pp. 3976–3984. ACM, 2021. doi: 10.1145/3447548.3467088. URL
 737 <https://doi.org/10.1145/3447548.3467088>.

738 Weishuo Ma, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Reconsidering the performance of
 739 gae in link prediction. *ArXiv preprint*, abs/2411.03845, 2024. URL <https://arxiv.org/abs/2411.03845>.

740 Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
 741 networks? In *The Tenth International Conference on Learning Representations, ICLR 2022,
 742 Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=ucASPPD9GKN>.

743 Darnelle Melvin. Relational database schema to support research profiling studies, natural language
 744 processing, and bibliometric analysis. *UNLV*, 2025.

745 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 746 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In *ICML
 747 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)*, 2020. URL www.graphlearning.io.

756 Namyong Park, Ryan A. Rossi, Nesreen K. Ahmed, and Christos Faloutsos. Metagl: Evaluation-
 757 free selection of graph learning models via meta-learning. In *The Eleventh International Conference
 758 on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net,
 759 2023a. URL <https://openreview.net/pdf?id=C1ns08q9jZ>.

760 Namyong Park, Ryan A. Rossi, Xing Wang, Antoine Simoulin, Nesreen K. Ahmed, and Christos
 761 Faloutsos. GLEMON: benchmark for instantaneous graph learning model selection. In
 762 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 763 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 764 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
 765 - 16, 2023*, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/dcd18e50ebca0af89187c6e35dabb584-Abstract-Datasets_and_Benchmarks.html.

766 Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
 767 graph datasets for node classification: Homophily-heterophily dichotomy and beyond. In
 768 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 769 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 770 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 771 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/01b681025fdbda8e935a66cc5bb6e9de-Abstract-Conference.html.

772 Yijian Qin, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Graph differentiable architecture
 773 search with structure learning. In Marc'Aurelio Ranzato, Alina Beygelzimer,
 774 Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in
 775 Neural Information Processing Systems 34: Annual Conference on Neural Information
 776 Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 16860-
 777 16872, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/8c9f32e03aeb2e3000825c8c875c4edd-Abstract.html>.

778 Rishabh Ranjan, Saurabh Garg, Mrigank Raman, Carlos Guestrin, and Zachary Lipton. Post-hoc
 779 reversal: Are we selecting models prematurely? *Advances in Neural Information Processing
 780 Systems*, 37:91460-91491, 2024.

781 Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
 782 Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec.
 783 Relbench: A benchmark for deep learning on relational databases. In Amir Globersons,
 784 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 785 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on
 786 Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
 787 cember 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html.

788 Ion-Sorin Stroe. Mysql databases as part of the online business, using a platform based on linux.
 789 *Database Syst. J.*, 2(3):3-12, 2011.

790 Minjie Wang, Quan Gan, David Wipf, Zheng Zhang, Christos Faloutsos, Weinan Zhang, Muhan
 791 Zhang, Zhenkun Cai, Jiahang Li, Zunyao Mao, Yakun Song, Jianheng Tang, Yanlin Zhang, Guang
 792 Yang, Chuan Lei, Xiao Qin, Ning Li, Han Zhang, Yanbo Wang, and Zizhao Zhang. 4dbinfer: A
 793 4d benchmarking toolbox for graph-centric predictive modeling on rdbs. In Amir Globersons,
 794 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 795 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on
 796 Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
 797 ber 10 - 15, 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/2fd67447702c8eff5683dda507a1b0a2-Abstract-Datasets_and_Benchmarks_Track.html.

798 Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
 799 prediction. In *The Twelfth International Conference on Learning Representations, ICLR 2024,
 800 Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024b. URL <https://openreview.net/forum?id=sNFLN3itAd>.

810 Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, and Muhan Zhang.
 811 Griffin: Towards a graph-centric relational database foundation model. In *Forty-second Interna-*
 812 *tional Conference on Machine Learning*, 2025. URL [https://openreview.net/forum?](https://openreview.net/forum?id=TxeCxVb3cL)
 813 [id=TxeCxVb3cL](https://openreview.net/forum?id=TxeCxVb3cL).

814 Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R. Benson, and Pan Li. Understanding non-
 815 linearity in graph neural networks from the bayesian-inference perspective. In Sanmi Koyejo,
 816 S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-*
 817 *ral Information Processing Systems 35: Annual Conference on Neural Information Process-*
 818 *ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
 819 *2022, 2022*. URL [http://papers.nips.cc/paper_files/paper/2022/hash/](http://papers.nips.cc/paper_files/paper/2022/hash/dbe0e575e4604367a989e850c9b28401-Abstract-Conference.html)
 820 [dbe0e575e4604367a989e850c9b28401-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2022/hash/dbe0e575e4604367a989e850c9b28401-Abstract-Conference.html).

821 Jacob White. Pubmed 2.0. *Medical reference services quarterly*, 39(4):382–387, 2020.

822 Fang Wu, Vijay Prakash Dwivedi, and Jure Leskovec. Large language models are good relational
 823 learners. *arXiv*, 2025. doi: 10.48550/arxiv.2506.05725.

824 Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling prediction tasks in relational
 825 databases with LLMs. *arXiv*, 2024. doi: 10.48550/arxiv.2411.11829.

826 Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at deep
 827 learning methods on tabular datasets. *ArXiv preprint*, abs/2407.00956, 2024. URL <https://arxiv.org/abs/2407.00956>.

828 Minji Yoon, Théophile Gervet, Bryan Hooi, and Christos Faloutsos. Autonomous graph mining
 829 algorithm search with best speed/accuracy trade-off. In *2020 IEEE International Conference on*
 830 *Data Mining (ICDM)*, pp. 751–760. IEEE, 2020.

831 Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Abstract.html>.

832 Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan Shah,
 833 Shenyang Huang, Blaž Stojanovič, Alan Krumholz, Jan Eric Lenssen, Jure Leskovec, and
 834 Matthias Fey. ContextGNN: Beyond two-tower recommendation systems. *arXiv*, 2024. doi:
 835 10.48550/arxiv.2411.19513.

836 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy Bengio,
 837 Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
 838 (eds.), *Advances in Neural Information Processing Systems 31: Annual Conference on Neural In-*
 839 *formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 840 5171–5181, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html>.

841 Zeyang Zhang, Ziwei Zhang, Xin Wang, Yijian Qin, Zhou Qin, and Wenwu Zhu. Dynamic hetero-
 842 geneous graph attention neural architecture search. In Brian Williams, Yiling Chen, and Jennifer
 843 Neville (eds.), *Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth*
 844 *Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Sym-*
 845 *posium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,*
 846 *February 7-14, 2023*, pp. 11307–11315. AAAI Press, 2023. doi: 10.1609/AAAI.V37I9.26338.
 847 URL <https://doi.org/10.1609/aaai.v37i9.26338>.

848 Wenqian Zhao, Xiangxiang Li, Guoping Rong, Mufeng Lin, Chen Lin, and Yifan Yang. Dafee: A
 849 scalable distributed automatic feature engineering algorithm for relational datasets. In *Algorithms*
 850 *and Architectures for Parallel Processing: 20th International Conference, ICA3PP 2020, New*
 851 *York City, NY, USA, October 2–4, 2020, Proceedings, Part II*, pp. 32–46, Berlin, Heidelberg,
 852 2020. Springer-Verlag. ISBN 978-3-030-60238-3. doi: 10.1007/978-3-030-60239-0_3. URL
 853 https://doi.org/10.1007/978-3-030-60239-0_3.

864 Yilun Zheng, Sitao Luan, and Lihui Chen. What is missing for graph homophily? disen-
 865 tangling graph homophily for graph neural networks. In Amir Globersons, Lester Mackey,
 866 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 867 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-*
 868 *formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -*
 869 *15, 2024, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/7e810b2c75d69be186cadd2fe3febeab-Abstract-Conference.html.

871 Kaixiong Zhou, Xiao Huang, Qingquan Song, Rui Chen, and Xia Hu. Auto-gnn: Neural architecture
 872 search of graph neural networks. *Frontiers in big Data*, 5:1029307, 2022.

874 Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural bellman-
 875 ford networks: A general graph neural network framework for link prediction. In Marc’Aurelio
 876 Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
 877 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neu-*
 878 *ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*,
 879 pp. 29476–29490, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html>.

881 Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In *5th In-*
 882 *ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,*
 883 *2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=r1Ue8Hcxg>.

886 A USAGE OF LARGE LANGUAGE MODELS

888 We utilize large language models to refine our writing and also employ a large language model-
 889 based coding agent to assist with code writing. We have reviewed the generated content provided
 890 by large language models and will be responsible for the correctness of the polished content.

892 B SUPPLEMENTARY INFORMATION FOR DATASETS AND TASKS

894 Our adopted datasets and tasks are summarized in Table 7. It should be noted that we skip the **rel-**
 895 **amazon** datasets because the source is crawled from Amazon, which contains sensitive information
 896 and doesn’t present a valid license. We then briefly introduce each dataset and task as follows:

- 898 • **rel-hm** (Robinson et al. (2024)): This database contains comprehensive customer and product
 899 data from online retail platforms, including detailed purchase histories and diverse metadata
 900 such as customer demographics and product attributes.
 - 901 – **user-churn**: For each customer, predict whether they will churn—i.e., have no trans-
 902 actions—in the next 7 days.
 - 903 – **user-item-purchase**: Predict the list of articles each customer will purchase in the
 904 next 7 days.
 - 905 – **item-sales**: Predict the total sales (sum of prices of associated transactions) for an
 906 article in the next 7 days.
- 907 • **rel-stack** (Robinson et al. (2024)): This database is about a Q&A platform with a rep-
 908 utation system. Data is dumped from the stats-exchange site, and data from the 2023-09-12
 909 dump.
 - 910 – **post-votes**: For each post, predict how many votes it will receive in the next 3 months.
 - 911 – **user-engagement**: For each user, predict whether they will make any votes, posts, or
 912 comments in the next 3 months.
 - 913 – **user-badge**: For each user, predict whether they will receive a new badge in the next 3
 914 months.
 - 915 – **user-post-comment**: Predict a list of existing posts that a user will comment on in
 916 the next two years.
 - 917 – **post-post-related**: Predict a list of existing posts that users will link a given post
 918 to in the next two years.

918 – `user-comment-count`: Predicts how many comments each user will post over the
 919 next 30 days.

920 • `rel-event` (Robinson et al. (2024)): An anonymized event recommendation dataset from
 921 the Hangtime app, containing user actions, event metadata, demographics, and social relations.
 922 – `user-repeat`: Predict whether a user will attend another event (respond “yes” or
 923 “maybe”) in the next 7 days, given they attended an event in the last 14 days.
 924 – `user-ignore`: Predict whether a user will ignore more than two event invitations in the
 925 next 7 days.
 926 – `user-attendance`: Predict how many events each user will respond “yes” or “maybe”
 927 to in the next 7 days.

928 • `rel-avito` (Robinson et al. (2024)): A marketplace-style relational database.
 929 – `user-visits`: Predict whether each customer will visit more than one ad in the next 4
 930 days.
 931 – `user-clicks`: Predict whether each customer will click on more than one ad in the
 932 next 4 days.
 933 – `ad-ctr`: Assuming an ad will be clicked in the next 4 days, predict its click-through rate
 934 (CTR).
 935 – `user-ad-visit`: Predict the list of ads a user will visit in the next 4 days.

936 • `rel-trial` (Robinson et al. (2024)): A clinical-trial oriented relational database.
 937 – `study-outcome`: Predict whether trials in the next 1 year will achieve their primary
 938 outcome.
 939 – `study-adverse`: Predict the number of patients with severe adverse events/deaths for
 940 the trial in the next 1 year.
 941 – `site-success`: Predict the success rate of a trial site in the next 1 year.
 942 – `condition-sponsor-run`: For each condition, predict which sponsors will run tri-
 943 als.
 944 – `site-sponsor-run`: For each (site, sponsor) pair, predict whether the sponsor will
 945 run a trial at the site.

946 • `avs` (Wang et al. (2024a); DMDave et al. (2014)): A Kaggle e-commerce dataset of offers and
 947 customer interactions.
 948 – `retention`: For each (offer, customer) pair, predict whether the customer will repeat
 949 the promoted purchase (become a “repeater”) within a specified follow-up period.

950 • `ieee-cis` (Chen et al. (2025b); Howard et al. (2019)): Transactional fraud-style interactions.
 951 – `fraud`: For each transaction, predict whether it is fraudulent at the time of authorization.

952 • `rel-f1`: F1 competition results database.
 953 – `driver-top3`: Predict whether each driver will qualify in the top 3 for a race within the
 954 next month.
 955 – `driver-dnf`: Predict whether each driver will not finish (DNF) a race in the next month.
 956 – `driver-position`: Predict the average finishing position of each driver in all races
 957 over the next two months.
 958 – `driver-wins`: Predict the number of races each driver will win over the next year.
 959 – `constructor-scores-points`: Predict whether each constructor team will score
 960 any championship points in the next three months.
 961 – `driver-position-change`: Predict the average change between a driver’s starting
 962 grid position and final position over the next four months.

963 • `rel-arxiv`: A database recording the publication relation across the arxiv
 964 – `paper-citation`: Predict whether a paper will be cited by other papers in the next six
 965 months.
 966 – `author-publication`: Predict how many papers an author will publish in the next
 967 six months.

968 In terms of RDB predictive tasks, Robinson et al. (2024) provides a unified interface to define tasks
 969 and generate corresponding training, validation, and test tables through SQL. We then demonstrate
 970 an example SQL query for each example task below:

971 **Example entity-level task (`user-churn` in `rel-hm`):**

```

972 1 class UserChurnTask(EntityTask):
973 2     r"""Predict the churn for a customer (no transactions) in the next
974 3     week."""
975 4
976 5     task_type = TaskType.BINARY_CLASSIFICATION
977 6     entity_col = "customer_id"
978 7     entity_table = "customer"
979 8     time_col = "timestamp"
980 9     target_col = "churn"
98110     timedelta = pd.Timedelta(days=7)
98211     metrics = [average_precision, accuracy, f1, roc_auc]
98312
98413     def make_table(self, db: Database, timestamps: "pd.Series[pd.
98514     Timestamp]") -> Table:
98615         customer = db.table_dict["customer"].df
98716         transactions = db.table_dict["transactions"].df
98817         timestamp_df = pd.DataFrame({"timestamp": timestamps})
98918
99019         df = duckdb.sql(
99120             f"""
99221                 SELECT
99322                     timestamp,
99423                     customer_id,
99524                     CAST(
99625                         NOT EXISTS (
99726                             SELECT 1
99827                             FROM transactions
99928                             WHERE
99629                                 transactions.customer_id = customer.
99730                                 customer_id AND
99831                                     t_dat > timestamp AND
99932                                     t_dat <= timestamp + INTERVAL '{self.
99933                                     timedelta}'
99934
99935                         ) AS INTEGER
99936                     ) AS churn
99937             FROM
99938                 timestamp_df,
99939                 customer,
99940             WHERE
99941                 EXISTS (
99942                     SELECT 1
99943                     FROM transactions
99944                     WHERE
99945                         transactions.customer_id = customer.customer_id
99946             AND
99947                 t_dat > timestamp - INTERVAL '{self.timedelta}'
99948             AND
99949                 t_dat <= timestamp
99950
99951             )
99952         """
99953         ) .df()
99954
99955         return Table(
99956             df=df,
99957             fkey_col_to_pkey_table={self.entity_col: self.entity_table},
99958             pkey_col=None,
99959             time_col=self.time_col,
99960         )
99961
99962
99963
99964
99965
99966
99967
99968
99969
99970
99971
99972
99973
99974
99975
99976
99977
99978
99979
99980
99981
99982
99983
99984
99985
99986
99987
99988
99989
99990
99991
99992
99993
99994
99995
99996
99997
99998
99999

```

1022 As we can see, the time information is split into several time windows and given in the function
1023 parameter `timestamps`. Then, this timestamp will be used to create a time constraint, and the
1024 target label will be generated based on the SQL logic.

1025 **Example recommendation task** (user-item-purchase in rel-hm):

```

1026 1 class UserItemPurchaseTask(RecommendationTask):
1027 2     """Predict the list of articles each customer will purchase in the
1028     next seven
1029 3     days."""
1030 4
1031 5     task_type = TaskType.LINK_PREDICTION
1032 6     src_entity_col = "customer_id"
1033 7     src_entity_table = "customer"
1034 8     dst_entity_col = "article_id"
1035 9     dst_entity_table = "article"
1036 10    time_col = "timestamp"
1037 11    timedelta = pd.Timedelta(days=7)
1038 12    metrics = [link_prediction_precision, link_prediction_recall,
1039 13    link_prediction_map]
1040 14    eval_k = 12
1041 15
1042 16    def make_table(self, db: Database, timestamps: "pd.Series[pd.
1043 17    Timestamp]") -> Table:
1044 18        customer = db.table_dict["customer"].df
1045 19        transactions = db.table_dict["transactions"].df
1046 20        timestamp_df = pd.DataFrame({"timestamp": timestamps})
1047 21
1048 22        df = duckdb.sql(
1049 23            f"""
1050 24                SELECT
1051 25                    t.timestamp,
1052 26                    transactions.customer_id,
1053 27                    LIST(DISTINCT transactions.article_id) AS article_id
1054 28                FROM
1055 29                    timestamp_df t
1056 30                LEFT JOIN
1057 31                    transactions
1058 32                ON
1059 33                    transactions.t_dat > t.timestamp AND
1060 34                    transactions.t_dat <= t.timestamp + INTERVAL '{self.
1061 35    timedelta} days'
1062 36                GROUP BY
1063 37                    t.timestamp,
1064 38                    transactions.customer_id
1065 39                """
1066 40            ).df()
1067 41
1068 42        return Table(
1069 43            df=df,
1070 44            fkey_col_to_pkey_table={
1071 45                self.src_entity_col: self.src_entity_table,
1072 46                self.dst_entity_col: self.dst_entity_table,
1073 47            },
1074 48            pkey_col=None,
1075 49            time_col=self.time_col,
1076 50        )

```

1070 Similarly, recommendation tasks are based on the joined table between the timestamp table and the target entity tables. A groupby operation is then applied to generate the list of target entities.

1072 Example autocomplete task:

```

1074 1 def make_table(self, db: Database, timestamps: "pd.Series[pd.Timestamp]") -> Table:
1075 2     entity_table = db.table_dict[self.entity_table].df # noqa: F841
1076 3     entity_table_removed_cols = db.table_dict[ # noqa: F841
1077 4         self.entity_table
1078 5     ].removed_cols
1079 6
1080 7     time_col = db.table_dict[self.entity_table].time_col

```

```

1080 8     entity_col = db.table_dict[self.entity_table].pkey_col
1081 9
1082 10    # Calculate minimum and maximum timestamps from timestamp_df
1083 11    timestamp_df = pd.DataFrame({"timestamp": timestamps})
1084 12    min_timestamp = timestamp_df["timestamp"].min()
1085 13    max_timestamp = timestamp_df["timestamp"].max()
1086 14
1087 15    df = duckdb.sql(
1088 16        f"""
1089 17        SELECT
1090 18            entity_table.{time_col},
1091 19            entity_table.{entity_col},
1092 20            entity_table_removed_cols.{self.target_col}
1093 21        FROM
1094 22            entity_table
1095 23        LEFT JOIN
1096 24            entity_table_removed_cols
1097 25        ON
1098 26            entity_table.{entity_col} = entity_table_removed_cols.{entity_col}
1099 27        WHERE
1100 28            entity_table.{time_col} > '{min_timestamp}' AND
1101 29            entity_table.{time_col} <= '{max_timestamp}'
1102 30        """
1103 31    ) .df()
1104 32
1105 33    # remove rows where self.target_col is nan
1106 34    df = df.dropna(subset=[self.target_col])
1107 35
1108 36    return Table(
1109 37        df=df,
1110 38        fkey_col_to_pkey_table={
1111 39            entity_col: self.entity_table,
1112 40        },
1113 41        pkey_col=None,
1114 42        time_col=time_col,
1115 43    )

```

1112 Autocomplete tasks are based on the entity table itself, which is a setting closer to traditional RDB
1113 predictive tasks used in Wang et al. (2024a).

1115 C SUPPLEMENTARY THEORETICAL DISCUSSION

1117 C.1 DEFINITION OF METRICS

1119 In this section, we present the formal definition of missing homophily-related features adopted in
1120 this paper, as discussed in Section 4.1.1.

1121 **Definition 2** (Class-insensitive homophily). *For a classification task with class prior $\pi :=$
1122 $\frac{1}{|L|} \sum_{u \in L} \hat{y}_u \in \Delta^{C-1}$, define the class-conditional edge similarity for metapath m by*

$$1124 \quad h_k(G; m) := \frac{\sum_{(u,v) \in \mathcal{E}_m} K(\hat{y}_u, \hat{y}_v) \hat{y}_{v,k}}{\sum_{(u,v) \in \mathcal{E}_m} \hat{y}_{v,k}} \quad (k = 1, \dots, C).$$

1128 The class-insensitive homophily for m is

$$1130 \quad H_{\text{ins}}(G; m) := \frac{1}{C-1} \sum_{k=1}^C [h_k(G; m) - \pi_k]_+.$$

1132 For regression tasks, where class imbalance is irrelevant, we set

$$1133 \quad H_{\text{ins}}(G; m) := H_{\text{edge}}(G; m).$$

Summary of databases, tasks, task types, and evaluation metrics used in our experiments			
Database Name	Task Name	Task Type	Metric
rel-f1	driver-dnf	classification	ROC-AUC
	driver-top3	classification	ROC-AUC
	driver-position	regression	MAE
	driver-wins	regression	MAE
	constructor-scores-points	classification	ROC-AUC
	driver-position-change	regression	MAE
rel-hm	user-churn	classification	ROC-AUC
	user-item-purchase	recommendation	MAP
	item-sales	regression	MAE
rel-stack	post-votes	regression	MAE
	user-engagement	classification	ROC-AUC
	user-badge	classification	ROC-AUC
	user-post-comment	recommendation	MAP
	post-post-related	recommendation	MAP
	user-comment-count	regression	MAE
rel-event	user-repeat	classification	ROC-AUC
	user-ignore	classification	ROC-AUC
	user-attendance	regression	MAE
rel-avito	user-visits	classification	ROC-AUC
	user-clicks	classification	ROC-AUC
	ad-ctr	regression	MAE
	user-ad-visit	recommendation	MAP
rel-trial	study-outcome	classification	ROC-AUC
	study-adverse	regression	MAE
	site-success	regression	MAE
	condition-sponsor-run	recommendation	MAP
	site-sponsor-run	recommendation	MAP
avs	retention	autocomplete	ROC-AUC
ieee-cis	fraud	autocomplete	ROC-AUC
rel-arxiv	paper-citation	classification	ROC-AUC
	author-publication	regression	MAE

1188
 1189 **Definition 3** (Aggregation homophily). *Let $\Gamma_m(u) = \{v \in L : (u, v) \in \mathcal{E}_m\}$ be the labeled
 1190 m -neighbors of u and $\deg_m(u) = |\Gamma_m(u)|$. Define the neighbor-aggregated label*

$$1191 \bar{\mathbf{y}}_u^{(m)} := \frac{1}{\deg_m(u)} \sum_{v \in \Gamma_m(u)} \hat{\mathbf{y}}_v \quad (\text{classification}), \quad \bar{y}_u^{(m)} := \frac{1}{\deg_m(u)} \sum_{v \in \Gamma_m(u)} \hat{y}_v \quad (\text{regression}).$$

1192
 1193 *Let $U_m := \{u \in L : \deg_m(u) > 0\}$. The aggregation homophily for m is*

$$1194 H_{\text{agg}}(G; m) := \frac{1}{|U_m|} \sum_{u \in U_m} \begin{cases} K(\hat{\mathbf{y}}_u, \bar{\mathbf{y}}_u^{(m)}) , & \text{classification,} \\ K(\hat{y}_u, \bar{y}_u^{(m)}) , & \text{regression,} \end{cases}$$

1195
 1196 *with K dot product for classification; Gaussian kernel $K(a, b) = \exp(-\|a - b\|^2/(2\sigma_y^2))$ for re-
 1197 gression).*

1201
 1202 **C.2 WHY RDL IS BETTER AT THE LOW-HOMOPHILY REGION FOR THE CLASSIFICATION
 1203 TASK?**

1204 In this section, we analyze why *RDL* exhibits advantages in *low-homophily* regimes. Our argument
 1205 adapts the Bayes-optimal analysis of Wei et al. (2022), which characterizes how the optimal one-hop
 1206 classifier changes with label/feature homophily. We do not provide original proof here; instead, we
 1207 specialize their framework to *metapath-projected RDB graphs* and use it to explain the observed
 1208 behavior of *RDL*.

1209 Following §4.1.1, let $\mathcal{G} = (V, \mathcal{E})$ be the heterogeneous graph induced by the RDB task with labeled
 1210 entity type F and node set V_F . Let \mathcal{M} be a finite family of self-looped metapaths m that start and end
 1211 at F ; each m induces edges \mathcal{E}_m on V_F and neighbor sets $N_v^{(m)}$. For clarity, we work with a binary
 1212 label space $Y_v \in \{-1, +1\}$ drawn i.i.d. with prior $\Pr(Y_v = +1) = \pi \in (0, 1)$. We next specify the
 1213 generative model that underpins our analysis. We make the RDB data fall under the framework of
 1214 Wei et al. (2022) by considering the metapath-induced graphs.

1215
 1216 **Definition 4** (Metapath-wise contextual SBM (tCSBM)). *Let V_F be the labeled entity set and \mathcal{M} a
 1217 finite set of self-looped metapaths on F . The generative model for $(Y, X, \{\mathcal{E}_m\}_{m \in \mathcal{M}})$ is:*

1218 **(Labels).** *Each node $v \in V_F$ has a class label $Y_v \in \{+1, -1\}$ drawn i.i.d. from a prior $\Pr(Y_v =$
 1219 $1) = \pi \in (0, 1)$*

1220 **(Node features).** *Conditional on Y_v , the attribute X_v is drawn i.i.d. from a class-conditional distri-
 1221 bution P_{Y_v} with density $p(\cdot | Y_v)$ (e.g., a Gaussian mixture). Features are conditionally independent
 1222 across nodes given Y .*

1223 **(Edges along each metapath).** *For every metapath $m \in \mathcal{M}$, conditional on labels Y the edges in
 1224 \mathcal{E}_m are independent and*

$$1225 \Pr(\{u, v\} \in \mathcal{E}_m | Y_u = Y_v) = p_m, \quad \Pr(\{u, v\} \in \mathcal{E}_m | Y_u \neq Y_v) = q_m.$$

1226 Moreover, edges are conditionally independent of features given labels: $\{\mathcal{E}_m\}_m \perp\!\!\!\perp X | Y$.

1227
 1228 **Remark 1** (Metapath-induced graphs as the substrate for DFS and RDL). *Def. 4 specifies, for each
 1229 self-looped metapath m , an induced edge set \mathcal{E}_m on V_F . In practice, both DFS and RDL operate on
 1230 this metapath-induced F - F graph: one first projects the heterogeneous joins along m back to F (e.g.,
 1231 via path counts or normalized weights) to obtain an adjacency $A^{(m)}$, and then aggregates informa-
 1232 tion over $A^{(m)}$. Concretely, DFS produces non-parametric, linear aggregates (e.g. SUM/MEAN)
 1233 of base features on V_F through $A^{(m)}$ (or its row-normalized form), which algebraically coincides
 1234 with multiplying by $A^{(m)}$. In contrast, RDL uses the same metapath-induced structure but applies
 1235 relation-aware (per-metapath) transformations or gates to the propagated signals before or during
 1236 aggregation. Thus, after the metapath projection, both methods are defined on the same F - F graph
 1237 if DFS only utilizes the mean aggregator; they differ only in whether the propagation is purely linear
 1238 and fixed (DFS) or relation-conditioned and learned (RDL).*

1239
 1240 Then, following Wei et al. (2022), we consider the MAP estimation of the classifier that can mini-
 1241 mize the misclassification rate. The estimation of a node label depends on its own attributes and the
 1242 attributes of its 1-hop metapath-induced neighbors.

The one-hop *maximum a posteriori* (MAP) rule at node v selects the label $y \in \{-1, +1\}$ that maximizes the joint posterior of y and the (latent) neighbor labels $\{y_u\}_{u \in \cup_m N_v^{(m)}}$ given the local observations $(X_v, \{X_u\}, \{\mathbf{1}\{(v, u) \in \mathcal{E}_m\}\}_m)$:

$$\hat{Y}_v = \arg \max_{y \in \{\pm 1\}} \max_{\{y_u\}} \pi_y p(X_v | y) \prod_{m \in \mathcal{M}} \prod_{u \in N_v^{(m)}} \left[\pi_{y_u} p(X_u | y_u) p_m^{1\{y_u=y\}} q_m^{1\{y_u \neq y\}} \right].$$

Taking logs (monotone) and subtracting the two class scores yields a decision function whose sign gives \hat{Y}_v :

$$\hat{Y}_v = \text{sign} \left(\log \frac{\pi}{1-\pi} + \underbrace{\log \frac{p(X_v|+1)}{p(X_v|-1)}}_{\psi(X_v)} + \sum_{m \in \mathcal{M}} \sum_{u \in N_v^{(m)}} \underbrace{\log \frac{\max\{p_m p(X_u | +1), q_m p(X_u | -1)\}}{\max\{q_m p(X_u | +1), p_m p(X_u | -1)\}}}_{\phi_{\max}(\psi(X_u); \gamma_m)} \right),$$

where $\gamma_m := \log \frac{p_m}{q_m}$ encodes metapath homophily and $\psi(X_u) := \log \frac{p(X_u|+1)}{p(X_u|-1)}$ is the feature log-likelihood ratio. The per-neighbor MAP message admits the closed form

$$\phi_{\max}(s; \gamma) = \log \frac{\max\{e^{\gamma+s}, 1\}}{\max\{e^s, e^\gamma\}} = \text{clip}(s, -\gamma, +\gamma),$$

Basic properties of the MAP message on metapaths. For $m \in \mathcal{M}$ let $\gamma_m := \log \frac{p_m}{q_m}$ and define the per-neighbor joint-MAP message $\phi_{\max}(s; \gamma) = \text{clip}(s, -\gamma, \gamma)$ applied to $s = \psi(X_u)$.

Lemma 1 (Gate-off, flip, and linear region). *For all $s \in \mathbb{R}$ and $m \in \mathcal{M}$,*

- (i) (gate-off) if $\gamma_m = 0$ then $\phi_{\max}(s; \gamma_m) \equiv 0$;
- (ii) (flip) if $\gamma_m < 0$ then $\phi_{\max}(s; \gamma_m) = -\phi_{\max}(s; |\gamma_m|)$;
- (iii) (linear region) if $|s| \leq \gamma_m$ then $\phi_{\max}(s; \gamma_m) = s$.

Proof. All three statements follow immediately from the piecewise form of $\phi_{\max}(s; \gamma)$: $\phi_{\max}(s; \gamma) = -\gamma$ for $s \leq -\gamma$, equals s for $|s| < \gamma$, and equals $+\gamma$ for $s \geq \gamma$. In particular, $\gamma = 0$ gives the zero map; replacing γ by $-\gamma$ flips signs; and on $[-\gamma, \gamma]$ the function is the identity. \square

Remark 2 (Interpretation of Lemma 1). *Lemma 1 summarizes the three key regimes of the MAP message $\phi_{\max}(s; \gamma)$. These properties clarify how structure and features interact: (i) when $\gamma = 0$ the metapath carries no information and should be shut off (gate-off); (ii) when $\gamma < 0$, the neighbor evidence must be flipped to align with the center label (heterophily flip); and (iii) when $|s| \leq \gamma$ the nonlinearity reduces to the identity. So in highly homophilous settings, the MAP rule coincides with linear DFS-style aggregation. These simple facts underpin the later SNR comparison: they explain why linear propagation is adequate in strong homophily, but why relation-aware gating is necessary and beneficial in low or negative homophily regimes.*

We then come up with the vectorized form of the MAP score vector by aggregating each element

Proposition 1 (Vector form on the metapath-projected F–F graph.). *Let $A^{(m)}$ be the (possibly normalized) metapath-induced adjacency on V_F obtained by projecting m back to F; put $s \in \mathbb{R}^{|V_F|}$ with $s_v = \psi(X_v)$. Writing ϕ_{\max} elementwise, the one-hop joint-MAP score vector is*

$$z = \log \frac{\pi}{1-\pi} \mathbf{1} + s + \sum_{m \in \mathcal{M}} A^{(m)} \phi_{\max}(s; \gamma_m), \quad \hat{Y}_v = \text{sign}(z_v). \quad (1)$$

Proof. For each $v \in V_F$, the one-hop joint-MAP score derived earlier is $\text{score}(v) = \log \frac{\pi}{1-\pi} + \psi(X_v) + \sum_m \sum_{u \in N_v^{(m)}} \phi_{\max}(\psi(X_u); \gamma_m)$. Let $s \in \mathbb{R}^{|V_F|}$ with $s_v = \psi(X_v)$ and define $\phi_m(s)$ elementwise by $[\phi_m(s)]_u = \phi_{\max}(s_u; \gamma_m)$. By the definition of the metapath-projected adjacency $A^{(m)}$ (with entries $A_{vu}^{(m)}$ supported on $u \in N_v^{(m)}$), we have $[A^{(m)} \phi_m(s)]_v = \sum_u A_{vu}^{(m)} [\phi_m(s)]_u = \sum_{u \in N_v^{(m)}} \phi_{\max}(s_u; \gamma_m)$, which reproduces the inner sum for metapath m ; summing over m gives the full neighbor contribution. Hence the v -th coordinate of $z := \log \frac{\pi}{1-\pi} \mathbf{1} + s + \sum_m A^{(m)} \phi_m(s)$ equals $\text{score}(v)$, and the MAP decision is $\hat{Y}_v = \text{sign}(z_v)$, proving the vector form. \square

We then introduce a key concept of *signal-to-noise ratio* (SNR) to compare the linear DFS-style aggregation and the gated RDL-style aggregation. The SNR is a standard metric in statistical signal processing and communication theory that quantifies the strength of the signal relative to the noise. In our context, it measures how well the aggregated neighbor information can distinguish between different classes, taking into account the variability introduced by the features and the graph structure.

Definition 5 (SNR bookkeeping on metapaths). *Let $\mu_+ := \mathbb{E}[\psi(X) | Y = +1]$, $\mu_- := \mathbb{E}[\psi(X) | Y = -1]$, $\delta := \mu_+ - \mu_-$, and let $\sigma^2 := \max\{\text{Var}(\psi(X) | Y = +1), \text{Var}(\psi(X) | Y = -1)\} + \delta^2/4$ (to upper bound the class-mixture variance). Denote the expected degree $d_m := \mathbb{E}[|N_v^{(m)}|]$ and*

$$\alpha_m := \Pr(Y_u = Y_v | \{u, v\} \in \mathcal{E}_m) - \Pr(Y_u \neq Y_v | \{u, v\} \in \mathcal{E}_m) = \frac{p_m - q_m}{p_m + q_m} = \tanh\left(\frac{\gamma_m}{2}\right), \quad (2)$$

so that $\Pr(Y_u = Y_v | \{u, v\} \in \mathcal{E}_m) = (1 + \alpha_m)/2$.

We then introduce an assumption that controls the gap between the variance of the sum of metapath-wise neighbor contributions and the sum of their variances. It should be noted that the proof here assumes the feature is in the informative regime.

Assumption 1 (Cross-metapath covariance control). *There exists $\Lambda \geq 1$ such that for any choice of (centered) neighbor functions $Z_m(v) = \sum_{u \in N_v^{(m)}} g_m(X_u)$, $\text{Var}(\sum_m Z_m(v) | Y_v) \leq \Lambda \sum_m \text{Var}(Z_m(v) | Y_v)$. This holds with $\Lambda = 1$ under conditional independence across metapaths.*

Here $g_m : \mathcal{X} \rightarrow \mathbb{R}$ denotes the *per-metapath neighbor contribution* for m —e.g., in the linear/DFS case $g_m(x) = \psi(x) - \mathbb{E}[\psi(X) | Y_v]$, while in the gated/RDL case $g_m(x) = \phi_{\max}(\psi(x); \gamma_m) - \mathbb{E}[\phi_{\max}(\psi(X); \gamma_m) | Y_v]$ (both centered given Y_v).

Lemma 2 (Mean-variance ledgers for linear vs. gated aggregation). *Consider the linear (DFS-style) neighbor sum $S_{\text{lin}}(v) = \sum_m \sum_{u \in N_v^{(m)}} \psi(X_u)$ and the gated sum $S_{\text{gate}}(v) = \sum_m \sum_{u \in N_v^{(m)}} \phi_{\max}(\psi(X_u); \gamma_m)$. d_m denotes the degree of metapaths. Then*

$$\mathbb{E}[S_{\text{lin}} | Y_v = +1] - \mathbb{E}[S_{\text{lin}} | Y_v = -1] = \sum_m d_m \alpha_m \delta, \quad \text{Var}(S_{\text{lin}} | Y_v) \leq \Lambda \sum_m d_m \sigma^2.$$

Moreover, in the informative-feature regime of Wei et al. (2022, Lemma. C1),

$$\mathbb{E}[S_{\text{gate}} | Y_v = +1] - \mathbb{E}[S_{\text{gate}} | Y_v = -1] \approx \sum_m 2d_m \alpha_m \gamma_m, \quad \text{Var}(S_{\text{gate}} | Y_v) \leq \Lambda \sum_m d_m \tilde{\sigma}_m^2,$$

with $\tilde{\sigma}_m^2 \lesssim \gamma_m^2 e^{-c\Delta^2}$ for some universal $c > 0$ (here Δ denotes a class-separation measure, e.g., the Gaussian separation or a calibrated logit separation).

Proof. **Linear mean.** By exchangeability along metapath m and linearity of expectation,

$$\mathbb{E}\left[\sum_{u \in N_v^{(m)}} \psi(X_u) \mid Y_v = y\right] = d_m \mathbb{E}[\psi(X_u) \mid Y_v = y, \{u, v\} \in \mathcal{E}_m].$$

Conditioning on Y_u and using $\Pr(Y_u = y | \text{edge}) = \frac{1+\alpha_m}{2}$,

$$\mathbb{E}[\psi(X_u) \mid Y_v = y, \text{edge}] = \frac{1+\alpha_m}{2} \mu_y + \frac{1-\alpha_m}{2} \mu_{-y}.$$

Subtracting the two classes yields $d_m \alpha_m (\mu_+ - \mu_-) = d_m \alpha_m \delta$. Summing m gives the first display. **Linear variance.** For each m , $\text{Var}(\sum_{u \in N_v^{(m)}} \psi(X_u) | Y_v) \leq d_m \sigma^2$ by a binomial-variance bound and the definition of σ^2 . Assumption 1 gives the sum across m .

Gated mean. Using the same conditioning, and Wei et al. (2022, Lemma. C1) together with their regime analysis, we have $\mathbb{E}[\phi_{\max}(\psi(X_u); \gamma_m) | Y_u = \pm 1] \approx \pm \gamma_m$ in the informative regime. Therefore

$$\mathbb{E}[\phi_{\max}(\psi(X_u); \gamma_m) | Y_v = y, \text{edge}] \approx \frac{1+\alpha_m}{2} \gamma_m + \frac{1-\alpha_m}{2} (-\gamma_m) = \alpha_m \gamma_m,$$

So the class difference is $\approx 2d_m \alpha_m \gamma_m$. **Gated variance.** By Wei et al. (2022, Thm. 2), the class-conditional variance of $\phi_{\max}(\psi; \gamma_m)$ is at most $C \gamma_m^2 e^{-c\Delta^2}$ for constants $C, c > 0$. Summing over neighbors contributes a factor d_m , and Assumption 1 handles the sum over m . \square

1350

1351 **Definition 6** (Metapath-level SNR proxies). Define

1352

1353

1354

$$\rho_{\text{lin}} := \frac{(\sum_m d_m \alpha_m \delta)^2}{\Lambda \sum_m d_m \sigma^2}, \quad \rho_{\text{gate}} := \frac{(\sum_m d_m \alpha_m \gamma_m)^2}{\Lambda \sum_m d_m \tilde{\sigma}_m^2}.$$

1355

1356

1357

By Wei et al. (2022, Thm. 2) (single-relation), larger SNR implies a strictly smaller misclassification error up to universal constants; we use $\rho_{\text{lin}}, \rho_{\text{gate}}$ as proxies for multi-metapath graphs under Assumption 1.

1358

1359

We then discuss the high-homophily case.

1360

1361

Proposition 2 (Multi-metapath DFS equivalence under strong homophily). *If for every active m one has $\Pr(|\psi(X)| \leq \gamma_m) \geq 1 - \varepsilon_m$, then*

1362

1363

1364

$$z = \log \frac{\pi}{1-\pi} \mathbf{1} + s + \sum_m A^{(m)} \phi_{\max}(s; \gamma_m) = \log \frac{\pi}{1-\pi} \mathbf{1} + s + \sum_m A^{(m)} s + r,$$

1365

1366

where $\|r\|_1 \leq \sum_m \varepsilon_m \cdot \|A^{(m)} \mathbf{1}\|_1$. In particular, $\rho_{\text{gate}} = \rho_{\text{lin}}(1 + o(1))$ as $\max_m \varepsilon_m \rightarrow 0$.

1367

1368

1369

1370

Proof. By Lemma 1(iii), $\phi_{\max}(s_v; \gamma_m) = s_v$ whenever $|s_v| \leq \gamma_m$. Write the error vector $e^{(m)} := \phi_{\max}(s; \gamma_m) - s$, which has support contained in $E_m := \{v : |s_v| > \gamma_m\}$, and satisfies $\|e^{(m)}\|_{\infty} \leq \max\{|s_v| - \gamma_m, \gamma_m\} \leq 2|s_v|$. Then

1371

1372

$$\sum_m A^{(m)} \phi_{\max}(s; \gamma_m) = \sum_m A^{(m)} s + \sum_m A^{(m)} e^{(m)}.$$

1373

1374

1375

1376

1377

By Markov and the assumption, $\Pr(v \in E_m) \leq \varepsilon_m$, so $\|A^{(m)} e^{(m)}\|_1 \leq \|A^{(m)} \mathbf{1}\|_1 \cdot \|e^{(m)}\|_{\infty} \cdot \Pr(E_m) \leq C \varepsilon_m \|A^{(m)} \mathbf{1}\|_1$ for a universal C (after rescaling s), giving the stated bound with $r = \sum_m A^{(m)} e^{(m)}$. The SNR statement follows because replacing ϕ_{\max} by s changes the mean and variance only on the rare set E_m . \square

1378

1379

1380

1381

When nonlinearity is necessary in the multi-metapath setting. The next theorem upgrades Wei et al. (2022, Thm. 2) from a single relation to multiple metapaths by summing contributions under Assumption 1.

1382

1383

1384

1385

1386

Theorem 1 (Multi-metapath gating advantage in low/negative homophily). *Assume the feature separation is in the informative regime of Wei et al. (2022, Thm. 2), so that each active metapath m admits $\tilde{\sigma}_m^2 \lesssim \gamma_m^2 e^{-c\Delta^2}$. If either (i) there exists at least one $m_- \in \mathcal{M}$ with $\gamma_{m_-} < 0$ (heterophilous metapath), or (ii) a non-negligible subset \mathcal{M}_0 satisfies $|\gamma_m| \leq \epsilon$ (near-zero homophily), then there exist constants $C, c' > 0$ such that*

1387

1388

1389

$$\rho_{\text{gate}} \geq C e^{c' \Delta^2} \cdot \frac{(\sum_m d_m |\alpha_m \gamma_m|)^2}{\sum_m d_m \gamma_m^2} \quad \text{while} \quad \rho_{\text{lin}} \leq \frac{\delta^2}{\sigma^2} \cdot \frac{(\sum_m d_m \alpha_m)^2}{\sum_m d_m}.$$

1390

1391

1392

Consequently, whenever the signed sum $\sum_m d_m \alpha_m$ is small due to sign-mixing or near-zero homophily, one has $\rho_{\text{gate}} \gg \rho_{\text{lin}}$, and the gated aggregation strictly dominates linear aggregation.

1393

1394

1395

Proof. By Lemma 2, $\rho_{\text{gate}} = \frac{(\sum_m d_m \alpha_m \gamma_m)^2}{\Lambda \sum_m d_m \tilde{\sigma}_m^2}$. Using $\tilde{\sigma}_m^2 \leq C_1 \gamma_m^2 e^{-c\Delta^2}$ from Wei et al. (2022, Thm. 2),

1396

1397

1398

$$\rho_{\text{gate}} \geq \frac{(\sum_m d_m |\alpha_m \gamma_m|)^2}{\Lambda C_1 e^{-c\Delta^2} \sum_m d_m \gamma_m^2} \geq C e^{c' \Delta^2} \cdot \frac{(\sum_m d_m |\alpha_m \gamma_m|)^2}{\sum_m d_m \gamma_m^2},$$

1399

1400

1401

1402

1403

absorbing constants into C, c' . For the linear SNR, Lemma 2 gives $\rho_{\text{lin}} = \frac{(\sum_m d_m \alpha_m \delta)^2}{\Lambda \sum_m d_m \sigma^2} \leq \frac{\delta^2}{\sigma^2} \cdot \frac{(\sum_m d_m \alpha_m)^2}{\sum_m d_m}$ (after rescaling Λ into the constant). Under condition (i) or (ii), $\sum_m d_m \alpha_m$ can be made small (sign-mixing and near-zero homophily, respectively), whereas $\sum_m d_m |\alpha_m \gamma_m|$ remains of the order $\sum_m d_m \gamma_m^2$ because $\alpha_m = \tanh(\gamma_m/2)$ has the same sign as γ_m and $|\alpha_m| \gtrsim |\gamma_m|$ for small $|\gamma_m|$. Combined with the exponential factor $e^{c' \Delta^2}$, this yields $\rho_{\text{gate}} \gg \rho_{\text{lin}}$. \square

1404
1405 **Corollary 1** (Sign-mixing amplifies the gain of gating). *If there exist m_+ and m_- with $\gamma_{m_+} > 0$
1406 and $\gamma_{m_-} < 0$, then*

$$1407 \frac{\rho_{\text{gate}}}{\rho_{\text{lin}}} \gtrsim e^{c' \Delta^2} \cdot \frac{\left(\sum_m d_m |\alpha_m \gamma_m| \right)^2}{\left(\sum_m d_m |\alpha_m| \right)^2} \cdot \frac{\sigma^2}{\bar{\sigma}^2}, \quad \bar{\sigma}^2 := \frac{\sum_m d_m \tilde{\sigma}_m^2}{\sum_m d_m},$$

1410 *So the advantage grows with the degree-weighted sign diversity across metapaths.*

1411 **Corollary 2** (Zero-information robustness). *If $|\gamma_m| = 0$ for a subset \mathcal{M}_0 (no homophily), then
1412 these metapaths contribute nothing to ρ_{gate} (by Lemma 1(i)) but still inflate the denominator of
1413 ρ_{lin} , decreasing the linear SNR. Thus, gating is robust to uninformative relations, whereas linear
1414 averaging is not.*

1415 **Corollary 3** (Average-homophily can be misleading). *Let $\Gamma_{\text{avg}} := \frac{\sum_m d_m \gamma_m}{\sum_m d_m}$ and $\Gamma_{\text{abs}} :=$
1416 $\frac{\sum_m d_m |\gamma_m|}{\sum_m d_m}$. Even if $\Gamma_{\text{avg}} > 0$ (net assortative), when the disagreement $\Gamma_{\text{abs}} - |\Gamma_{\text{avg}}|$ is large (sign-
1417 mixing/heterogeneity across metapaths) and features are informative, one still has $\rho_{\text{gate}} \gg \rho_{\text{lin}}$;
1418 hence average homophily alone does not decide in favor of linear aggregation.*

1421 C.3 SAMPLE-SIZE DEPENDENCE OF RDL VS. DFS

1423 We complement the homophily analysis by explaining why the number of training rows N_{train} sys-
1424 tematically modulates the RDL–DFS gap. The key observation is that RDL realizes a strictly richer
1425 hypothesis class than DFS (due to learnable, relation-specific nonlinear aggregation), so it enjoys
1426 smaller approximation error but larger estimation error. Standard generalization bounds then imply
1427 a sample-size threshold: DFS tends to dominate in low-data regimes, while RDL becomes superior
1428 once N_{train} is large enough. This argument applies to both classification (cross-entropy loss) and
1429 regression (squared loss), and we do not distinguish them below.

1430 **Setup and error decomposition.** Let \mathcal{Z} denote the space of task-table rows (after feature/aggre-
1431 gation), and let $\ell(\cdot, \cdot)$ be a bounded, L -Lipschitz loss (e.g. cross-entropy or squared error). For a
1432 pipeline $\pi \in \{\text{DFS}, \text{RDL}\}$, denote by $\mathcal{F}_\pi \subset \{f : \mathcal{Z} \rightarrow \mathbb{R}\}$ the induced prediction class, and by

$$1434 \mathcal{R}(f) = \mathbb{E}[\ell(f(Z), Y)]$$

1435 its population risk under the task’s data-generating distribution. Let $\widehat{\mathcal{R}}_N(f)$ be the empirical risk
1436 on N training rows, and let $\hat{f}_\pi \in \arg \min_{f \in \mathcal{F}_\pi} \widehat{\mathcal{R}}_N(f)$ be the empirical risk minimizer (or an
1437 approximate one).

1438 **Lemma 3** (Approximation–estimation decomposition). *For each pipeline π , define the Bayes risk
1439 $\mathcal{R}^* := \inf_f \mathcal{R}(f)$, the approximation error $A_\pi := \inf_{f \in \mathcal{F}_\pi} (\mathcal{R}(f) - \mathcal{R}^*)$, and the estimation error
1440 $E_\pi(N) := \mathbb{E}[\mathcal{R}(\hat{f}_\pi)] - \inf_{f \in \mathcal{F}_\pi} \mathcal{R}(f)$. Then*

$$1441 \mathbb{E}[\mathcal{R}(\hat{f}_\pi)] - \mathcal{R}^* = A_\pi + E_\pi(N).$$

1442 *Moreover, if $\mathfrak{R}_N(\mathcal{F}_\pi)$ denotes the empirical Rademacher complexity of \mathcal{F}_π on N samples, then there
1443 exists a universal constant $C > 0$ such that*

$$1444 E_\pi(N) \leq C \mathfrak{R}_N(\mathcal{F}_\pi).$$

1445 The lemma is standard from statistical learning theory: A_π is a purely *bias* (approximation) term,
1446 while $E_\pi(N)$ is a *variance* (estimation) term controlled by the complexity of the function class.

1447 **Lemma 4** (Capacity ordering of DFS and RDL). *Let d_{DFS} be the dimension of $\phi_{\text{DFS}}(x)$, and let
1448 $d_{\text{RDL}} = d_{\text{DFS}} + d_{\text{gate}}$ be an effective representation dimension at the input of the last linear layer
1449 of r_θ , where $d_{\text{gate}} > 0$ accounts for the extra channels created by the encoder–GNN stack.*

1450 *Then:*

1451 1. *(Expressivity) $\mathcal{F}_{\text{DFS}} \subsetneq \mathcal{F}_{\text{RDL}}$. In particular, the approximation errors satisfy $A_{\text{RDL}} \leq A_{\text{DFS}}$,
1452 and are strictly ordered on nontrivial tasks.*

1458 2. (Complexity) There exist constants $c_{\text{DFS}}, c_{\text{RDL}} > 0$ such that for all sample sizes N ,

$$1460 \quad \mathfrak{R}_N(\mathcal{F}_{\text{DFS}}) \leq \frac{c_{\text{DFS}}}{\sqrt{N}}, \quad \mathfrak{R}_N(\mathcal{F}_{\text{RDL}}) \leq \frac{c_{\text{RDL}}}{\sqrt{N}},$$

1462 with $c_\pi \propto \sqrt{d_\pi}$ and thus $c_{\text{RDL}} > c_{\text{DFS}}$ whenever $d_{\text{gate}} > 0$.

1464 *Proof. Expressivity.* By assumption, e_θ and G_θ can be set to implement the same deterministic DFS-
1465 style aggregates as ϕ_{DFS} (or to just pass those features through), and r_θ can simulate any $g \in \mathcal{G}_{\text{tab}}$
1466 up to approximation error. Hence every $g \circ \phi_{\text{DFS}}$ is realized (or approximated arbitrarily well) by
1467 some f_θ , giving $\mathcal{F}_{\text{DFS}} \subseteq \mathcal{F}_{\text{RDL}}$. The extra relation-aware nonlinearity in G_θ yields hypotheses that
1468 cannot be written as $g \circ \phi_{\text{DFS}}$, so the inclusion is strict on generic tasks.

1469 *Complexity.* DFS has no learnable parameters in ϕ_{DFS} ; only the tabular model contributes to es-
1470 timation error. RDL, in contrast, learns the encoder, GNN and MLP. Under standard norm con-
1471 straints on these modules, classical results give $\mathfrak{R}_N(\mathcal{F}_\pi) \lesssim \sqrt{d_\pi}/\sqrt{N}$ for $\pi \in \{\text{DFS}, \text{RDL}\}$;
1472 the encoder–GNN stack strictly increases the effective dimension and parameter count, so $c_{\text{RDL}} >$
1473 c_{DFS} . \square

1475 **Theorem 2.** Let \hat{f}_{DFS} and \hat{f}_{RDL} be empirical risk minimizers in \mathcal{F}_{DFS} and \mathcal{F}_{RDL} trained on N
1476 i.i.d. labeled examples (classification or regression). Decompose the expected risk as $\mathbb{E}[\mathcal{R}(\hat{f}_\pi)] =$
1477 $A_\pi + E_\pi(N)$, where A_π is the approximation error and $E_\pi(N)$ the estimation error of pipeline π .

1478 Assume that RDL has strictly smaller approximation error:

$$1479 \quad A_{\text{DFS}} - A_{\text{RDL}} = \Delta_A > 0,$$

1481 and let $c_{\text{DFS}}, c_{\text{RDL}}$ be as in Lemma 4, with $c_{\text{RDL}} > c_{\text{DFS}}$. Then there exists a universal constant
1482 $C > 0$ such that for all N ,

$$1484 \quad \mathbb{E}[\mathcal{R}(\hat{f}_{\text{DFS}})] - \mathbb{E}[\mathcal{R}(\hat{f}_{\text{RDL}})] \geq \Delta_A - \frac{C(c_{\text{RDL}} - c_{\text{DFS}})}{\sqrt{N}}.$$

1486 Define the crossover scale

$$1487 \quad N_0 := \left(\frac{C(c_{\text{RDL}} - c_{\text{DFS}})}{\Delta_A} \right)^2.$$

1490 Then:

$$1491 \quad N < N_0 \implies \mathbb{E}[\mathcal{R}(\hat{f}_{\text{DFS}})] < \mathbb{E}[\mathcal{R}(\hat{f}_{\text{RDL}})],$$

$$1493 \quad N > N_0 \implies \mathbb{E}[\mathcal{R}(\hat{f}_{\text{RDL}})] < \mathbb{E}[\mathcal{R}(\hat{f}_{\text{DFS}})].$$

1494 *Proof.* By definition,

$$1496 \quad \mathbb{E}[\mathcal{R}(\hat{f}_{\text{DFS}})] - \mathbb{E}[\mathcal{R}(\hat{f}_{\text{RDL}})] = (A_{\text{DFS}} - A_{\text{RDL}}) + (E_{\text{DFS}}(N) - E_{\text{RDL}}(N)).$$

1498 Using $\Delta_A > 0$ and the Rademacher bounds $E_\pi(N) \leq C \mathfrak{R}_N(\mathcal{F}_\pi) \lesssim C c_\pi / \sqrt{N}$, we obtain

$$1500 \quad E_{\text{DFS}}(N) - E_{\text{RDL}}(N) \geq - \frac{C(c_{\text{RDL}} - c_{\text{DFS}})}{\sqrt{N}}.$$

1502 Combining with the approximation term yields the stated lower bound. The threshold N_0 is exactly
1503 the sample size at which this lower bound becomes nonnegative, giving the crossover conditions.
1504 \square

1506 **Interpretation for N_{train} .** Identifying N with the number of training rows N_{train} , Theorem 2 formalizes
1507 the empirical trend that the DFS–RDL gap is controlled by a bias–variance trade-off: When
1508 N_{train} is small, the variance penalty $\propto (c_{\text{RDL}} - c_{\text{DFS}})/\sqrt{N_{\text{train}}}$ dominates and the simpler DFS
1509 pipeline is safer. Once $N_{\text{train}} \gg N_0$, the complexity term vanishes and the approximation advantage
1510 Δ_A of RDL dominates, yielding a systematic performance gain. The argument only uses generic
1511 generalizations and bounds and therefore applies uniformly to both classification and regression
losses.

1512 C.4 RELATIONSHIP BETWEEN RANDOMLY INITIALIZED MODEL AND HASHING
15131514 Following the notation in Section 3.3, consider the (atemporal) attributed, typed graph
1515

1516
$$\mathcal{G} = (V, E, \phi, \psi, f_V, f_E),$$

1517 where $\phi : V \rightarrow \text{NodeTypes}$ maps entities to node types, $\psi : E \rightarrow \text{LinkTypes}$ maps links to relation
1518 types, and $f_V : V \rightarrow \mathbb{R}^{d_V}$, $f_E : E \rightarrow \mathbb{R}^{d_E}$ provide node and link attributes.
15191520 **NBFNet message passing.** NBFNet can be viewed as dynamic programming (DP) over the
1521 schema graph, replacing Bellman–Ford’s *sum* and *product* by learnable operators. Fix a state width
1522 $d \in \mathbb{N}$ and horizon $T \in \mathbb{N}$. Each node $v \in V$ maintains a d -dimensional state $H^{(\ell)}(v) \in \mathbb{R}^d$ at DP
1523 layer $\ell = 0, \dots, T$:

1524 **(Indicator)** $H^{(0)}(v) = \mathbf{1}_\theta(v; s) \in \mathbb{R}^d,$ (3)
1525

1526 **(Message)** $M_\theta^{(\ell)}(H^{(\ell-1)}(u), \xi(u \rightarrow v)) = H^{(\ell-1)}(u) \otimes_\theta \Gamma_\theta^{(\ell)}(\xi(u \rightarrow v)) \in \mathbb{R}^d,$ (4)
1527

1528 **(Aggregate)** $H^{(\ell)}(v) = \bigoplus_{(u \rightarrow v) \in E} M_\theta^{(\ell)}(H^{(\ell-1)}(u), \xi(u \rightarrow v)), \quad \ell = 1, \dots, T.$ (5)
1529

1530 Here $\xi(u \rightarrow v) \in \mathcal{X}$ bundles the schema edge context (e.g., $\tau(u \rightarrow v)$ and endpoint types via ϕ). All
1531 functions are chosen permutation-invariant over incoming edges. There are three key design choices
1532 of NBFNet.1533 **Indicator.** A simple indicator is $\mathbf{1}_\theta(v; s) = \mathbf{1}\{v = s\} \phi_{emb}(v)$, where $\phi_{emb}(v)$ is a learned (or
1534 fixed) embedding of the source node type $s \in V_{\text{src}}$ to distinguish sources from non-sources.
15351536 **Readout.** Given a source node $s \in V_{\text{src}}$, we pool across layers and endpoints to obtain
1537

1538
$$Z_\theta(s) = \sum_{\ell=1}^T a_\ell \sum_{v \in V} \beta(v) \Pi_\theta^{(\ell)}(H^{(\ell)}(v)) \in \mathbb{R}^{d_r},$$
 (6)
1539

1540 where $\Pi_\theta^{(\ell)} : \mathbb{R}^d \rightarrow \mathbb{R}^{d_r}$ is an optional projection (identity if not needed), (a_ℓ) are length weights,
1541 and $\beta : V \rightarrow \mathbb{R}_{\geq 0}$ selects/emphasizes endpoint types.
15421543 **Edge representation.** For graphs induced from RDBs, edges come from PK–FK relations. We
1544 abstract each edge e as a discrete *edge token* $\tau(e) \in \Sigma$ with
1545

1546
$$\tau(e) = (\phi(\text{tail}(e)), \psi(e), \phi(\text{head}(e))) \in \Sigma,$$

1547

1548 so that any path $p = (e_1, \dots, e_L)$ maps to the token sequence $\tau(p) = (\tau(e_1), \dots, \tau(e_L)) \in \Sigma^L$.
15491550 The Bellman-Ford–style recursion multiplies edge-local “messages” along a path and sums over all
1551 paths and endpoints. Unrolling the recursion, therefore, yields a path-wise expansion in which each
1552 coordinate collects contributions from every typed path reachable from the source.
15531554 **Frozen NBFNet as random features.** We first replace the learned message operators by *random*
1555 scalar maps and show that the resulting DP computes random features that aggregate typed paths.
15561557 Fix width d and horizon T . For each coordinate $k \in [d]$ and layer $\ell \in [T]$, independently sample
1558

1559
$$g_k^{(\ell)} : \mathcal{X} \rightarrow \mathbb{R}, \quad \mathbb{E}[g_k^{(\ell)}(x)] = 0, \quad \mathbb{E}[g_k^{(\ell)}(x) g_k^{(\ell)}(x')] = \kappa(x, x'),$$

1560

1561 for a positive semidefinite (PSD) kernel $\kappa : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$. Intuitively, $g_k^{(\ell)}$ is the ℓ -th *message*
1562 *coordinate* of an untrained NBFNet at random initialization.
15631564 **Proposition 3** (Path-wise expansion of frozen NBFNet features). *For $s \in V_{\text{src}}$ and $k \in [d]$, the k -th
1565 feature computed by a frozen NBFNet admits the path-wise form*

1566
$$z_k(s) = \sum_{L=1}^T a_L \sum_{p \in \mathcal{P}_L(s \rightarrow *)} \left(\prod_{\ell=1}^L g_k^{(\ell)}(\xi(e_\ell)) \right) \beta(\text{head}(p)),$$
 (7)
1567
1568
$$z(s) := (z_1(s), \dots, z_d(s)) \in \mathbb{R}^d.$$

1569

1566 *Proof.* Start from the layer recursion; each step distributes over incoming edges and multiplies
 1567 by the layer- ℓ message $g_k^{(\ell)}(\cdot)$. Inductively expanding to depth L enumerates all length- L paths
 1568 $p = (e_1, \dots, e_L)$ from s , producing the product of edge messages along p . Pooling with weights a_L
 1569 and endpoint weights β yields equation 7.
 1570

1571 **Dynamic-programming realization.** The expansion in equation 7 can be evaluated in $O(T|E|)$
 1572 per feature by the following Bellman–Ford–style recurrences:
 1573

$$\begin{aligned} h_k^{(0)}(v) &= \mathbf{1}\{v = s\}, \\ h_k^{(\ell)}(v) &= \sum_{(u \rightarrow v) \in E} g_k^{(\ell)}(\xi(u \rightarrow v)) h_k^{(\ell-1)}(u), \quad \ell = 1, \dots, T, \\ z_k(s) &= \sum_{\ell=1}^T a_\ell \sum_{v \in V} \beta(v) h_k^{(\ell)}(v). \end{aligned} \tag{8}$$

1581 This view makes clear that a *frozen* NBFNet is a DP that sums over paths while multiplying edge-
 1582 wise random features.
 1583

1584 **Step 2: The induced kernel.** We now identify the kernel implicitly computed by these random
 1585 features.
 1586

Define the finite-width kernel

$$K_d(s, s') := \frac{1}{d} z(s)^\top z(s') \quad (s, s' \in V_{\text{src}}).$$

1590 **Theorem 3** (Anchored typed-path kernel). *With the construction above,*

$$\mathbb{E}[K_d(s, s')] = \sum_{L=1}^T a_L^2 \sum_{\substack{p \in \mathcal{P}_L(s \rightarrow *) \\ q \in \mathcal{P}_L(s' \rightarrow *)}} \left(\prod_{\ell=1}^L \kappa(\xi(e_\ell), \xi(f_\ell)) \right) \beta(\text{head}(p)) \beta(\text{head}(q)), \tag{7}$$

1595 where $p = (e_1, \dots, e_L)$ and $q = (f_1, \dots, f_L)$. The right-hand side defines a PSD kernel K on V_{src} .
 1596

1597 Theorem 3 follows by expanding $z(s)^\top z(s')$, observing that mixed lengths cancel due to zero mean,
 1598 and using layer-wise independence to factor expectations across edges. Thus, a randomly initialized
 1599 NBFNet computes random features for the typed-path kernel K .
 1600

1601 *Proof.* Expanding $z_k(s)z_k(s')$ and taking expectations over $\{g_k^{(\ell)}\}$, mixed-length terms vanish by
 1602 zero mean; for equal lengths, independence across layers yields the product of second moments
 1603 $\prod_{\ell=1}^L \kappa(\xi(e_\ell), \xi(f_\ell))$. Summing over paths and averaging over k gives equation 7. PSD follows
 1604 since K is an expectation of Gram matrices. \square
 1605

1606 **Step 3: Concentration at finite width.** Having identified the limiting kernel, we quantify how fast
 1607 K_d concentrates around K .
 1608

1609 **Lemma 5** (Concentration). *Assume each $g_k^{(\ell)}(x)$ is subgaussian uniformly in x with proxy σ^2 , and
 1610 set $\nu = \sup_x \kappa(x, x) < \infty$. Let $N_L(s \rightarrow *) = |\mathcal{P}_L(s \rightarrow *)|$. If $\sum_{L=1}^T a_L^2 \nu^L N_L(s \rightarrow *) < \infty$ for
 1611 every s , then there exist constants $c, C > 0$ such that for all $\varepsilon > 0$,*

$$\Pr(|K_d(s, s') - \mathbb{E}K_d(s, s')| \geq \varepsilon) \leq 2 \exp(-cd\varepsilon^2/C^2).$$

1612 Hence $K_d \rightarrow K$ in probability at rate $O_{\mathbb{P}}(1/\sqrt{d})$.
 1613

1614 Lemma 5 ensures that training only a linear classifier atop $z(\cdot)$ realizes a standard random-feature
 1615 approximation to the RKHS induced by K . We now specialize the kernel choice to make the hashing
 1616 connection explicit.
 1617

1618 **Remark 1.** *Training only a linear classifier on $z(\cdot)$ implements random-feature learning for the
 1619 kernel K ; as $d \rightarrow \infty$, the solution converges to the kernel method in \mathcal{H}_K .*

1620 **Step 4: Discrete edge tokens and the Dirac kernel.** Let $\tau(e) \in \Sigma$ be a discrete edge token (e.g.,
 1621 $\psi(e)$ or $(\phi(\text{tail}(e)), \psi(e), \phi(\text{head}(e)))$) and consider the Dirac (identity) kernel
 1622

$$1623 \quad \kappa_\delta(x, x') = \mathbf{1}\{\tau(x) = \tau(x')\}.$$

1624 Realize κ_δ with *Rademacher codes* by drawing, for each layer ℓ , random maps $r^{(\ell)} : \Sigma \rightarrow \{\pm 1\}^d$
 1625 independently across ℓ and setting $g_k^{(\ell)}(x) = r_k^{(\ell)}(\tau(x))$ ⁴. Then Theorem 3 yields
 1626

$$1627 \quad \mathbb{E}[K_d(s, s')] = \sum_{L=1}^T a_L^2 \sum_{\substack{p \in \mathcal{P}_L(s \twoheadleftarrow) \\ q \in \mathcal{P}_L(s' \twoheadleftarrow)}} \mathbf{1}\{\tau(e_1) = \tau(f_1), \dots, \tau(e_L) = \tau(f_L)\} \beta(\text{head}(p)) \beta(\text{head}(q)). \\ 1631 \quad (8)$$

1632 **Bag-of-typed-paths view.** Let $\Psi_s \in \mathbb{R}^{\Sigma^{\leq T}}$ be the *bag of typed path sequences* out of s , where the
 1633 coordinate for $\sigma = (\sigma_1, \dots, \sigma_L)$ is
 1634

$$1635 \quad \Psi_s[\sigma] = a_L \times (\text{count of length-}L \text{ paths } p \text{ with } \tau(p) = \sigma, \text{ weighted by } \beta(\text{head}(p))). \\ 1636$$

1637 Then equation 8 is exactly the inner product $\mathbb{E}[K_d(s, s')] = \langle \Psi_s, \Psi_{s'} \rangle$. Moreover, each random
 1638 coordinate implements a multiplicative sign code over sequences:
 1639

$$1640 \quad z_k(s) = \sum_{\sigma \in \Sigma^{\leq T}} \Psi_s[\sigma] \underbrace{\prod_{i=1}^{|\sigma|} r_k^{(i)}(\sigma_i)}_{=: r_k(\sigma)}. \\ 1641 \quad (9)$$

1644 **Sparse CountSketch/TensorSketch realization.** We then bridge the bag-of-typed view to the
 1645 countskeetch algorithm. First, introduce pairwise independent hash functions
 1646

$$1647 \quad h^{(i)} : \Sigma \rightarrow [d], \quad s^{(i)} : \Sigma \rightarrow \{\pm 1\}, \quad i = 1, \dots, T.$$

1649 For a typed sequence $\sigma = (\sigma_1, \dots, \sigma_L)$ define combined bucket and sign
 1650

$$1651 \quad H(\sigma) = (h^{(1)}(\sigma_1) + \dots + h^{(L)}(\sigma_L)) \bmod d, \quad S(\sigma) = \prod_{i=1}^L s^{(i)}(\sigma_i), \\ 1652$$

1653 and the sketch $y(s) \in \mathbb{R}^d$ by
 1654

$$1655 \quad y_j(s) = \sum_{\sigma \in \Sigma^{\leq T}} \Psi_s[\sigma] S(\sigma) \mathbf{1}\{H(\sigma) = j\}, \quad j \in [d]. \\ 1656 \quad (10)$$

1658 This is the standard *TensorSketch* construction specialized to sequences (metapaths). Then:
 1659

1660 **Proposition 4** (Unbiased CountSketch of typed-path bags). *With the construction in equation 10
 1661 using independent $h^{(i)}$ and $s^{(i)}$ with pairwise independence, we have*

$$1662 \quad \mathbb{E}[\langle y(s), y(s') \rangle] = \langle \Psi_s, \Psi_{s'} \rangle,$$

1663 and

$$1664 \quad \text{Var}(\langle y(s), y(s') \rangle) \lesssim \frac{\|\Psi_s\|_2^2 \|\Psi_{s'}\|_2^2}{d}.$$

1667 *Proof.* Expand $\langle y(s), y(s') \rangle = \sum_j \sum_{\sigma, \sigma'} \Psi_s[\sigma] \Psi_{s'}[\sigma'] S(\sigma) S(\sigma') \mathbf{1}\{H(\sigma) = H(\sigma') = j\}$ and
 1668 take expectations. The sign hashes kill cross terms ($\sigma \neq \sigma'$) by zero mean, while bucket colli-
 1669 sions contribute only when $H(\sigma) = H(\sigma')$; pairwise independence ensures these events occur with
 1670 probability $1/d$ and cancel with the outer sum over j . Variance follows from standard CountS-
 1671 ketch/TensorSketch analyses using limited independence. \square
 1672

1673 ⁴Normalization: we deliberately omit a $1/\sqrt{d}$ factor inside $g_k^{(\ell)}$; the outer $1/d$ in K_d provides the correct
 1674 scaling. Inserting $1/\sqrt{d}$ inside each layer would undesirably shrink longer paths by $d^{-L/2}$.

1674
 1675 **How frozen NBFNet implements the sketch.** The dense realization (A) is exactly what equa-
 1676 tion 8 computes when $g_k^{(\ell)}(x) = r_k^{(\ell)}(\tau(x))$: each DP layer multiplies by layer- ℓ signs, and aggre-
 1677 gation sums across paths—precisely the linear form in equation 9.

1678 **Takeaway.** Steps 1–3 show that a randomly initialized NBFNet realizes random features for a typed-
 1679 path kernel; Step 4 reveals that, under a Dirac edge kernel, those features are *precisely* CountSketch-
 1680 style projections of the bag of typed metapaths reachable from s . In short: *frozen NBFNet = DP-*
 1681 *powered CountSketch of typed-path counts*. This perspective clarifies both the inductive bias (which
 1682 typed patterns are matched) and the approximation behavior (controlled by d , T , and the path growth
 1683 rates).

1684 D MORE RELATED WORKS

1685 D.1 RELATIONAL DEEP LEARNING MODELS

1686 To effectively address the challenges in RDB benchmarks, Robinson et al. (2024); Wang et al.
 1687 (2024a) propose GNN-based pipelines with two main components: (1) transforming original tab-
 1688 ular features into a unified latent space using type-specific encoders, and (2) aggregating latent
 1689 features with a temporal-aware GNN conditioned on primary key-foreign key relationships. Chen
 1690 et al. (2025a) further extended the message passing function to capture higher-order information by
 1691 introducing atomic routes. Yuan et al. (2024) adapts the original GNN for recommendation tasks
 1692 by implementing a path-based routing mechanism combining an ID-based GNN (Zhu et al., 2021)
 1693 with shallow learnable embedding-based retrieval. Dwivedi et al. (2025) explores the potential of
 1694 transformer-based backbones for RDL tasks; however, these currently require significantly more
 1695 computational resources than GNN-based methods for limited performance gain, so we do not in-
 1696 clude them in our design space.

1697 Wu et al. (2025); Wydmuch et al. (2024) investigate the potential of large language models for pre-
 1698 dictive tasks on RDBs. Currently, they exhibit a much lower performance-to-resource ratio than
 1699 GNN-based methods, and it is difficult to evaluate the influence of duplication between pre-training
 1700 knowledge and downstream tasks. We thus leave their study to future work.

1701 Compared to these models trained from scratch, Fey et al. (2025); Wang et al. (2025) propose foun-
 1702 dation models for RDB tasks. Wang et al. (2025) relies on a cross-table attention module that
 1703 mimics DFS aggregation, but its performance can't consistently outperform state-of-the-art GNN-
 1704 based methods. Fey et al. (2025) utilizes a graph transformer-based backbone and delivers superior
 1705 performance and in-context learning capabilities. However, it is not yet open-sourced, and training
 1706 details are not revealed. With the help of tabular foundation models like TabPFN (Hollmann et al.,
 1707 2023), it's also possible to achieve in-context learning by utilizing online DFS to achieve promising
 1708 performance.

1709 D.2 AUTOML FOR GRAPH MACHINE LEARNING

1710 AutoML (Hutter et al., 2019) seeks to automate expert tasks—data engineering, model engineer-
 1711 ing, and evaluation—into an end-to-end machine learning pipeline. Model engineering typically
 1712 encompasses neural architecture search (NAS) (Zoph & Le, 2017) and hyper-parameter optimiza-
 1713 tion (HPO) (Bischl et al., 2023). Many works have adapted AutoML ideas to GML: for example,
 1714 Gao et al. (2019) and Zhou et al. (2022) use reinforcement learning to search architectures, while
 1715 Yoon et al. (2020) applies Bayesian optimization to improve search efficiency together with an algo-
 1716 rithm budget constraint. One-shot NAS approaches first train a supernet and then prune it to obtain
 1717 target architectures (Li & King, 2020; Guan et al., 2022; Qin et al., 2021), and Zhang et al. (2023)
 1718 extends this paradigm to dynamic heterogeneous graphs. However, supernet-based methods are not
 1719 well-suited to RDB settings due to the heterogeneity of model designs required there.

1720 Beyond model-centric search, data-centric AutoML leverages dataset properties to guide selection.
 1721 MetaGL (Park et al., 2023a;b) uses structural embeddings and graph statistics as task embeddings for
 1722 meta-learned GNN selection. GraphGym and AutoTransfer (You et al., 2020; Cao et al., 2023) fol-
 1723 low a knowledge-transfer strategy; AutoTransfer in particular constructs loss-landscape-based task
 1724 embeddings and employs pre-trained embeddings to steer HPO. In contrast, our work is driven by
 1725 empirical observations and targets architecture selection at both macro and micro levels, especially
 1726 across heterogeneous model classes (RDL and DFS) in relational-database predictive tasks.

1728 Bai et al. (2021); Luo et al. (2021); Lam et al. (2021) propose dedicated systems for AutoML over
 1729 relational data. These efforts share DFS’s motivation for automatic feature engineering but generally
 1730 lack ready-to-use open-source implementations; accordingly, we adopt DFS as a representative,
 1731 practical framework for automatic feature engineering.

1732 Ranjan et al. (2024) studies post-hoc model selection and argues that picking what to deploy purely
 1733 by the “best base validation score” is brittle.
 1734

1735 D.3 REAL-WORLD GRAPH MACHINE LEARNING BENCHMARKS 1736

1737 Benchmarking is essential for evaluating methods in graph machine learning. Representative
 1738 datasets include the Open Graph Benchmark (Hu et al., 2020a) and TUDataset (Morris et al., 2020).
 1739 However, recent work questions whether these benchmarks, like predicting the category of academic
 1740 papers, reflect real-world tasks (Bechler-Speicher et al., 2025). To address this gap, benchmarking
 1741 GNNs on relational-database (RDB) predictive tasks has become increasingly popular; notable ex-
 1742 amples are 4DBInfer (Wang et al., 2024a), H2GB (Lin et al., 2024), and RelBench (Robinson et al.,
 1743 2024). In particular, RelBench provides a SQL-based framework to standardize task generation,
 1744 which has helped it become a widely used benchmark for RDB predictive tasks.

1745 In addition to model-centric benchmarks, recent works propose benchmarks focused on graph con-
 1746 struction (Chen et al., 2025b; Choi et al., 2025). Jointly studying automatic graph construction and
 1747 automatic model selection is a promising direction for future research.
 1748

1749 E SUPPLEMENTARY INFORMATION FOR MODELS 1750

1751 In this section, we present more details on model designs, including model parameter design space
 1752 and more training details.
 1753

1754 E.1 DISCUSSION ON THE IMPLEMENTATION DIFFERENCE BETWEEN 4DBINFER AND 1755 RELBENCH 1756

1757 It’s noteworthy to discuss the difference between the implementation details of 4dbinfer (Wang et al.,
 1758 2024a) and relbench (Robinson et al., 2024), which are two main frameworks used to research RDB
 1759 prediction tasks. We find that these implementation discrepancies are essential for a fair comparison
 1760 between macro-level and micro-level architecture comparisons.

1761 **Feature encoding part.** First, Relbench and 4DBInfer both adopt a type-specific encoder to project
 1762 categorical/numerical/text into a latent space with the same dimension. However, after this transfor-
 1763 mation, Relbench further adopts a tabular encoder to transform the latent embeddings, which is not
 1764 present in 4DBInfer. Furthermore, due to the implementation differences between PyG and DGL,
 1765 4DBInfer doesn’t utilize relative positional encoding when encoding temporal features. Another
 1766 difference is that 4DBInfer will normalize all features. To align this with Relbench metrics, we save
 1767 the scaler and do the inverse transform at the test stage.

1768 **Neighborhood sampling part.** Both frameworks adopt a temporal sampling strategy to avoid tem-
 1769 poral leakage. However, there’s a difference in implementation details. For relbench, it adopts the
 1770 temporal sampling of PyG, which generates disjoint subgraphs (when using the latest neighbor-
 1771 hood sampling). This aligns with the time dynamics of the relbench task, such as user behavior over
 1772 the past few months. For 4dbinfer, it’s similar to standard subgraph-based sampling with a time mask.

1773 **Evaluation setting.** There’s also a difference in how the two frameworks do the evaluation, espe-
 1774 cially for the recommendation task. 4dbinfer adopts a pre-selected negative sample set, whereas
 1775 relbench uses the entire target set as candidates. Moreover, 4dbinfer focuses on bipartite graphs,
 1776 while for relbench, there are some tasks where the source and target lie between several-hop metap-
 1777 aths. This makes the method design not compatible across two types of problems. For example, any
 1778 methods requiring pairwise information are not scalable for relbench settings.
 1779

1780 E.2 DETAILED TASK FEATURE DESIGNS 1781

In this subsection, we introduce the detailed task feature designs.

1782 **Simple heuristic performance** It characterizes the target entity distribution across different data splits. Specifically, we compute `entity_mean_val`, `entity_median_val`,
 1783 `entity_mean_train`, and `entity_median_train`, which capture the central tendency of tar-
 1784 get entities in both validation and training sets.
 1785

1786 For example, for entity mean, we first generate the following prediction,
 1787

```
1 fkey = list(train_table.fkey_col_to_pkey_table.keys())[0]
2 df = train_table.df.groupby(fkey).agg({task.target_col: "mean"})
3 df.rename(columns={task.target_col: "__target__"}, inplace=True)
4 df = pred_table.df.merge(df, how="left", on=fkey)
5 pred = df["__target__"].fillna(0).astype(float).values
```

1792 Then we take the performance on the validation set as a feature.
 1793

1794 **Homophily + stats + temporal** It aggregates 13 model-free heuristics designed to capture intrinsic
 1795 properties of the relational structure and task characteristics without requiring any model training.
 1796 This group synthesizes four distinct categories of structural features:
 1797

1798 (1) **Homophily Features:** We compute five adjacency-based correlation statistics—
 1799 `h_adjs_corr_mean`, `h_adjs_corr_max`, `h_adjs_corr_min`, `h_adjs_corr_mode`, and
 1800 `h_adjs_corr_weighted_mean`. The weighted mean variant accounts for edge importance
 1801 based on degrees.
 1802

1803 (2) **Temporal Autocorrelation Features:** We include two lag-based autocorrelation measures—
 1804 `lag1_autocorr_corr` and `lag2_autocorr_corr`—that capture temporal dependencies in
 1805 time-aware relational tasks. These features measure whether target values at time t correlate with
 1806 values at $t - 1$ and $t - 2$, respectively.
 1807

1808 (3) **DFS homophily Features:** This is the "homophily" metric calculated in the DFS
 1809 manner. By doing a random walk from the task table, based on the retrieved con-
 1810 text, we calculate how many target columns share the same label as the seed ones.
 1811 `mean_same_class_ratio_ignore` computes the average proportion of same-class neighbors
 1812 while ignoring unlabeled nodes; `adjusted_mean_same_class_ratio` provides a normalized
 1813 version accounting for class imbalance; `sparsity_ratio` quantifies the density of the relational
 1814 graph; and `mean_past_task_nodes` captures the average number of historical entities available
 1815 for temporal tasks.
 1816

1817 (4) **Stats:** We include `log_total_rows`, computed as $\log(1 + \text{train_rows} + \text{val_rows})$, which
 1818 captures the logarithmic scale of the dataset. The log transformation ensures that the feature values
 1819 are comparable across tasks with vastly different sizes.
 1820

1821 **AutoTransfer Features** We use 24 anchors in total. 12 for RDL and 12 for DFS.
 1822

1823 **Model-Based Features** It comprises eight performance indicators derived from lightweight model
 1824 probes on the target task itself.
 1825

1826 (1) **TabPFN Features:** We compute `tabPFN_1hop` and `tabPFN_2hop` by evaluating TabPFN on
 1827 1-hop and 2-hop neighborhood aggregations of the relational features.
 1828

1829 (2) **Random Initialization Features:** We include six features derived from randomly initial-
 1830 ized graph neural networks: `rfr_randomsage_1`, `rfr_randomsage_2`, `rfr_randomsage_3`,
 1831 `rfr_randomnbfnet_1`, `rfr_randomnbfnet_2`, and `rfr_randomnbfnet_3`. These probes
 1832 test whether the task's relational structure is inherently easy to exploit (even without learning), which
 1833 can indicate task difficulty and the potential benefit of sophisticated architectures.
 1834

1835 E.3 DETAILED DESIGN SPACE

1836 In this paper, we consider two classes of models: end-to-end learning (relational deep learning)
 1837 models and non-parametric graph-based feature synthesis (DFS) models. Specifically, when the
 1838 number of propagation hops for the latter is 1, the corresponding model will be a relation-agnostic
 1839 one. We then elaborate on the module design inside each class.
 1840

1836 **RDL.** Following wisdom in the design of the GNN architecture (You et al., 2020; Luo et al., 2024),
 1837 we modularize the RDL module into the following parts: feature encoding, (optional) structural
 1838 feature, message passing module, (optional) architecture design tricks, readout function, hyperpa-
 1839 rameters, and training objective. The design choices and rationales are detailed below.
 1840

1841 Table 8: Design space of a unified architecture for end-to-end RDL models. “Grid” indicates that the
 1842 module is selected from a predefined grid, whereas “random” indicates that the module is randomly
 1843 sampled.

Module name	Possible choices
Feature encoding	ResNet (Robinson et al., 2024)
Structural features (grid)	Learnable embeddings (for the destination table, or for both the source and destination tables) (Yuan et al., 2024; Ma et al., 2024); partial-labeling tricks from NBFNet (Zhu et al., 2021)
Message passing (grid)	Sparse message passing: GraphSAGE (Robinson et al., 2024; Hamilton et al., 2017), HGT (Wang et al., 2024a; Hu et al., 2020b), PNA (Corso et al., 2020; Wang et al., 2024a); sparse message passing with higher-order information: Rel-GNN (Chen et al., 2025a)
Architecture design trick (random)	Residual connections (He et al., 2016)
Readout (grid)	MLP, ContextGNN, Shallow-Item (Yuan et al., 2024)
Hyperparameters (random)	Learning rate, weight decay, batch size, dropout rate, number of layers, hidden dimension, temporal sampling strategy, number of sampled neighbors
Training objective	Classification tasks: cross-entropy; regression tasks: MSE or MAE; link-level tasks: cross-entropy, BPR, or margin-based losses

1862

- 1863 1. For feature encoding, we stick to the ResNet-based encoder used in Robinson et al. (2024).
- 1864 2. The structure feature is particularly useful for link-level prediction, which aims to break
- 1865 the original symmetry of the GNN designed for node-level tasks. We consider learnable
- 1866 embedding and partial labeling tricks because of their effectiveness demonstrated in exist-
 1867 ing benchmarks (Robinson et al., 2024; Yuan et al., 2024). Other features, such as random
- 1868 embeddings, are neglected because of their limited effectiveness.
- 1869 3. For message passing, we consider all alternatives used in the existing literature to study the
- 1870 correlation between the message passing function and task performance.
- 1871 4. For architecture design tricks, we consider residual connection (He et al., 2016) because of
- 1872 their effectiveness shown in Luo et al. (2024). However, under the RDB setting, we find
- 1873 that these tricks do not always improve performance and result in much more computation
- 1874 overhead.
- 1875 5. Readout is another important module in architectural design. For entity-level tasks, we
- 1876 only consider MLP as the readout function. For link-level tasks, we consider ContextGNN
- 1877 and Shallow-Item (Yuan et al., 2024), which integrates graph-free learnable embeddings to
- 1878 mitigate the pitfalls of GNNs on link-level tasks. It should be mentioned that all pairwise
- 1879 methods like NCN (Wang et al., 2024b), SEAL (Zhang & Chen, 2018) are not applicable
- 1880 because of the complexity.
- 1881 6. Training objective is designed based on common loss functions for different task formats.

1882 The detailed hyper-parameter search space is presented as follows:

```
1884 1 RDL_SEARCH_SPACE = {
1885 2     ## these will go through a grid search
1886 3     "full_entities": {
1887 4         'pre_sf': ['src_dst', 'zero_learn', 'none'],
1888 5         'mpnn_type': ['relgnn', 'sage', 'hgt', 'pna'],
1889 6         'post_sf': {'link': ['none', 'shallow', 'contextgnn'], 'node': ['
1890     none']}
1891     },
1892 }
```

```

1890 8     "model_config": {
1891 9         "encoder_num_layers": [4],
1892 10        "torch_frame_model_cls": ['resnet'],
1893 11        "batch_size": [128, 256],
1894 12        "gnn_config": {
1895 13            # src: learnable embedding for src, src_dst: learnable
1896 14            embedding for src and dst,
1897 15            "loss_fn": {
1898 16                "binary_classification": ["bce"],
1899 17                "regression": ["mse", "mae"],
1900 18                "recommendation": ['bpr'],
1901 19                "multiclass_classification": ["ce"]
1902 20            },
1903 21            "hidden_channels": [64, 128, 256],
1904 22            "num_heads": [1, 4],
1905 23            "dropout": [0.0, 0.5],
1906 24            "norm": ["layernorm", "batchnorm", 'none'],
1907 25            "aggregation": ["mean", "sum"],
1908 26            # jk is turned off because it almost always leads no
1909 27            performance gain with huge computation overhead
1910 28            "jk": [False],
1911 29            "skip_connection": [True, False]
1912 30        },
1913 31        "sampler_config": {
1914 32            "temporal": ["uniform", "last"],
1915 33            "num_neighbors": [32, 64, 128],
1916 34            "num_layers": [1, 2, 3, 4],
1917 35            "loader_type": ["node", "edge"]
1918 36        },
1919 37        "optimizer_config": {
1920 38            "lr": [1e-3, 1e-4, 1e-2],
1921 39            "weight_decay": [0.0, 1e-5],
1922 40            "scheduler": ["exponential"],
1923 41            "gamma": [.8, .9, 1.]
1924 42        }
1925    }
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

```

E.4 GRAPH-INDUCED NON-PARAMETRIC FEATURE SYNTHESIS MODEL

DFS. The graph-induced non-parametric feature synthesis approach follows a different paradigm compared to end-to-end RDL models. Instead of learning parameters through gradient descent, DFS models leverage graph topology and statistical aggregation to synthesize features. We modularize the DFS framework into the following components: feature aggregation strategy, propagation depth, model backbone, and hyperparameters. The design choices and rationales are detailed below.

Table 9: Design space of graph-induced non-parametric feature synthesis (DFS) models. Grid means the module is selected from a predefined grid, while random means the module is randomly sampled.

Module name	Possible choices
Feature aggregation strategy (fixed)	Mean, sum, max, min, count, weighted mean, target encoding
Propagation depth (grid)	Number of hops (1 = relation-agnostic): 1, 2, 3
Downstream predictor (grid)	TabPFN (Hollmann et al., 2023), FT-Transformer, LightGBM
Hyper-parameters (random)	Learning rate, weight decay, scheduler gamma, hidden dimension, number of attention heads, normalization
Training objective	Classification tasks: cross-entropy loss; Regression tasks: MSE or MAE

1. Feature aggregation strategies determine how information flows through the graph structure. We follow Wang et al. (2024a) to adopt a fixed set of aggregation strategies.

1944 2. Propagation depth controls the scope of information aggregation. When the number of
 1945 hops is 1, the model becomes relation-agnostic and only uses entity-level features.
 1946
 1947 3. We consider three typical types of downstream task predictors: tabular foundation model,
 1948 gradient boosting tree, and neural networks.
 1949
 1950 4. Training objectives are task-dependent and align with the evaluation metrics used in the
 1951 benchmark datasets.

1951 The detailed hyper-parameter search space is presented as follows: LightGBM and TabPFN, in
 1952 general, don't require many hyper-parameters, so model-related hyper-parameters are only applied
 1953 to FT-Transformer.

```

1955 1 DFS_SEARCH_SPACE = {
1956 2   ## dfs_layer will go through a grid search
1957 3   "dfs_layer": [1, 2, 3],
1958 4   "model_type": ["tabPFN", "ft_transformer", "lgbm"],
1959 5   "batch_size": [128, 256],
1960 6   "model_config": {
1961 7     ## only for ft_transformer
1962 8     "hidden_size": [128, 256, 512],
1963 9     "dropout": [0.0, 0.5],
1964 10    "num_layers": [1, 2, 3, 4],
1965 11    "attn_dropout": [0.0, 0.5],
1966 12    "num_heads": [1, 4],
1967 13    "normalization": ["layernorm", "batchnorm", 'none'],
1968 14    "loss_fn": {
1969 15      "binary_classification": ["bce"],
1970 16      "regression": ["mse", "mae"],
1971 17      "ranking": ['bce', 'bpr'],
1972 18      "multiclass_classification": ["ce"]
1973 19    }
1974 20  },
1975 21  "optimizer_config": {
1976 22    "lr": [1e-3, 1e-4],
1977 23    "weight_decay": [0.0, 1e-5],
1978 24    "scheduler": ["exponential"],
1979 25    "gamma": [.8, .9, 1.]
1980 26  }
1981 27 }
```

1979 E.5 SUPPLEMENTARY EXPERIMENTAL DETAILS

1980 E.5.1 EXPERIMENTAL RESULTS FOR RECOMMENDATION TASKS

1982 Here, we discuss the recommendation tasks skipped in the main text. First, we wanna emphasize
 1983 that the design space of recommendation tasks is much smaller since DFS-based methods can't work
 1984 well on recommendation tasks. The main reason is that the recommendation is more about capturing
 1985 the collaborative signal across pairs of entities, which goes beyond the feature synthesis patterns of
 1986 DFS. To make DFS work on recommendation tasks, we need to design common neighborhood-
 1987 based or path-based features, which makes it no longer "automatic" but requires substantial feature
 1988 engineering efforts.

1989 In terms of RDL, we also need to emphasize that only a small portion of graph-related models
 1990 can work under the RDB settings. Revisiting the traditional link prediction tasks on OGB (Hu
 1991 et al., 2020a), the positive and negative sample pairs are usually pre-defined, with negative samples
 1992 coming only from a small portion of the whole set. This makes it possible to use pairwise models
 1993 like NCN (Wang et al., 2024b) and SEAL (Zhang & Chen, 2018). However, in RDB settings, the
 1994 candidate set is usually the entire target table, which makes it impossible to use these pairwise
 1995 models. That's why NBFNet (Zhu et al., 2021), a source-only model, is first considered in Yuan
 1996 et al. (2024). Such a scalability problem also affects the implementation of vanilla GNN. Unlike
 1997 using a link-level sampler in Wang et al. (2024a), we have to use two node-level loaders, one for
 1998 the source type and one for the target type, for representation computation. These properties make

1998 it only possible to use vanilla GNN, shallow embedding, NBFNet, or a combination of them in the
 1999 current stage.

2000
 2001 We then present the HPO experiments based on these methods. As shown in Figure 5, we observe
 2002 the following phenomena:

2003 1. Overall, node-based loader dominates the link-based loader (or more accurately, the loader
 2004 based on source and target types). One potential reason is that the node-based loader is closer to
 2005 the idea of path-based retrieval, which is more effective in RDB recommendation tasks with rich
 2006 relational paths. A potential exception is the REL-AMAZON datasets, which we don't use here.
 2007 For these kinds of datasets whose path patterns are super sparse, the path-based collaborative
 2008 signal may live in distant neighbors. As a result, on these tasks, we typically need a neighbor
 2009 loader with more than 6 hops with dense neighbors to get good performance.

2010 2. For the number of layers, unlike entity-level tasks, it presents that the deeper the better within a
 2011 certain range. This is because, for path-based retrieval, deeper layers can capture more *distant*
 2012 signals.

2013 3. For message passing designs, it's also somewhat different from the phenomenon in entity-level
 2014 tasks. Here, Relgnn presents clearly better performance. The reason is that there are some
 2015 tables with multiple foreign keys. Semantically, these tables are closer to an edge, while in the
 2016 PK-FK graphs, they are treated as nodes. RelGNN can simulate transforming these tables into
 2017 hyperedges, and thus makes the model capture more distant signals. HGT and PNA are better
 2018 at capturing feature interactions, which are more important for entity-level tasks.

2019 4. For structural features, partial labeling tricks of NBFNet are more effective. One noteworthy
 2020 phenomenon is that on many tasks, a node-level loader without any structural features can
 2021 also deliver good performance. The reason is that the original features in the graph can act as
 2022 implicit type embeddings, which makes a multi-source path-based retrieval.

2023 5. For readout functions, contextgnn doesn't always bring a performance boost. However, it won't
 2024 degrade performance as well. This is also based on the sparsity of path patterns.

2025 **Takeaways for recommendation.** Across RelBench-
 2026 style recommendation tasks, ContextGNN is a ro-
 2027 bust default that delivers competitive performance with
 2028 modest tuning. This largely reflects task properties:
 2029 path-aware retrieval with shallow ID embeddings plus
 2030 GNN context works well when collaborative signals are
 2031 captured via multi-hop relational paths. On some other
 2032 recommendation tasks on bipartite graphs, two-tower
 2033 (dual-encoder) architectures may scale training and in-
 2034 ference more effectively and simplify candidate genera-
 2035 tion, though they typically require task-specific compo-
 2036 nents (e.g., hard-negative mining, retrieval infrastruc-
 2037 ture, and reranking) to reach top accuracy. Overall,
 2038 these observations suggest that for recommendation, fully automatic architecture design may be
 2039 less effective than crafting a task-tailored framework—consistent with prevailing industrial practice.

E.5.2 SUPPLEMENTARY EXPERIMENTAL RESULTS FOR THE MAIN TEXT

2040 **Full experimental results for Figure 2.** The full result for Figure 2 is presented in Table 11.

2041 Table 11: Full experimental results for Figure 2.

Task	Type	RelGNN	RelGT	Graphsage	Rel-LLM	KumoRFM (icl)	KumoRFM (fine-tuned)	RDL (val-selected)	RDL (ours)	DFS (val-selected)	DFS (ours)	Best (ours)	Griffin
driver-top3	classification	85.69	83.52	75.54	82.22	91.07	99.62	82.41	85.94	84.70	85.71	85.94	77.95
driver-dnf	classification	75.29	75.87	72.62	77.15	82.41	82.63	74.35	77.20	76.89	79.42	79.42	70.91
driver-position	regression	3.798	3.920	4.022	3.967	2.747	2.731	4.0491	3.8029	3.3660	3.2730	3.2730	4.2000
user-churn	classification	70.93	69.27	69.88	70.55	67.71	71.23	70.98	70.98	65.29	68.23	70.98	68.04
item-sales	regression	0.0540	0.0536	0.0560	0.0520	0.0400	0.0340	0.0511	0.0509	0.0780	0.0750	0.0509	0.0810
post-votes	regression	0.0650	0.0654	0.0650	0.0620	0.0650	0.0650	0.0665	0.0651	0.0680	0.0660	0.0651	0.0622
user-engagement	classification	90.75	90.53	90.59	91.21	87.09	90.70	88.95	90.56	78.47	87.28	90.56	87.56
user-badge	classification	88.99	86.32	88.86	89.64	80.00	89.86	88.41	88.51	85.1	86.47	88.51	85.99
user-education	classification	79.41	79.09	76.42	79.26	76.08	80.64	81.25	82.89	79.20	79.46	82.89	77.93
user-fignore	classification	86.18	81.57	81.62	83.74	89.20	89.43	83.66	86.77	77.20	84.43	86.77	82.35
user-attendance	regression	0.2380	0.2500	0.2580	0.2510	0.2640	0.2380	0.2397	0.2397	0.2620	0.2380	0.2380	0.3336
user-visits	classification	66.18	66.78	66.20	67.01	64.85	78.30	66.77	66.87	65.29	66.74	66.87	64.68
user-clicks	classification	68.23	68.30	65.90	66.74	64.11	66.83	67.16	68.77	62.34	69.19	69.19	63.30
adctr	regression	0.0370	0.0345	0.0410	0.0370	0.0350	0.0340	0.0346	0.0340	0.0380	0.0370	0.0340	0.0639
study-autocore	classification	71.24	68.61	68.60	71.08	70.79	71.76	71.41	74.13	70.59	71.82	74.13	69.08
study-adverse	regression	44.681	43.990	44.473	43.682	58.231	44.225	44.5706	43.9880	49.9500	44.1100	43.9880	45.2100
site-success	regression	0.3010	0.3260	0.4000	0.3970	0.4170	0.3010	0.3932	0.3236	0.3910	0.3490	0.3236	0.3765

2024 Table 10: Validation-selected and test-
 2025 selected performance gap. For RDL, we show
 2026 the top 2 architectures with the largest gap.

Method name	Mean test clf perf	Mean val clf perf	Mean gap
RDL Overall	78.21	76.73	1.49
Sage (top1)	76.90	72.77	4.13
HGT (top2)	77.19	74.95	2.24
DFS overall	76.90	75.22	1.68
TabPFN	75.91	75.70	0.21
FT-transformer	75.87	74.45	1.42

Method name	Mean test reg perf	Mean val reg perf	Mean gap
RDL Overall	6.9292	7.0578	0.1287
HGT (top1)	6.9407	7.1036	0.1630
PNA (top2)	7.1376	7.1795	0.0419
DFS overall	3.6881	3.7135	0.0254
TabPFN	3.7544	3.7692	0.0148
FT-transformer	4.0630	4.0883	0.0254

Figure 5: HPO results for recommendation tasks.

Influence of micro-level design choices. Looking further into the influence of micro-level architecture choices shown in Figure 6, we can observe that: (1) different design choices present in the top performing configurations, underscoring the importance of architecture design; (2) compared to older models like HGT and PNA, RelGNN doesn't present advantages in terms of prediction performance, which inspires us to revisits the wisdom of past research. (3) For RDL-based methods, learnable embeddings are mainly required to achieve top performance. (4) For DFS-based methods, the FT-transformer works better for large-scale tasks, while TabPFN can well fit small-scale ones. Tree-based methods, such as LightGBM, are not optimal in most cases; therefore, we don't consider them in the following text.

Performance gap between validation-selected and test-selected configurations. As shown in Table 10, we can see that both RDL and DFS suffer from this performance gap. Specifically, RDL presents a much larger gap for regression tasks. TabPFN, the tabular foundation model utilizing in-context learning for inference, shows an advantage in mitigating such performance drift.

Analysis of affinity-based features. Here, we show some empirical results on the analysis of affinity-based features and empirical performance. For each task from the model performance bank, we have three task-level *anchor* scores (TabPFN, RandomSAGE, RandomNBFNet) and mean test performance for two model families (RDL, DFS). Anchors are constant within a task; performances are task-wise means over validated runs. For RDL we also compare two preprocessing options, $\text{pre_sf} \in \{\text{zero_learn, none}\}$; define the per-task difference $\Delta = \text{RDL}_{\text{zero_learn}} - \text{RDL}_{\text{none}}$.

(i) *RDL vs DFS from TabPFN vs graphs.* Using all tasks, a log–log fit shows

$$\log(\text{RDL}/\text{DFS}) \approx 0.091 - 0.262 \log(\text{TabPFN}/\text{NBFNet}) \quad (R^2 \approx 0.58, n=19),$$

so when TabPFN exceeds the graph anchors, DFS tends to outperform RDL; simple thresholds $\text{TabPFN}/\text{NBFNet} \geq 1.10$ or $\text{TabPFN}/\text{SAGE} \geq 1.18$ classified the winner at about 79% accuracy. (ii) *RDL pre_sf from graph-graph ratio.* With $R = \max(\text{NBFNet})/\max(\text{SAGE})$, the linear association with Δ is small (Pearson $\approx -0.114, n=19$), but as a one-bit chooser it is useful: $\text{AUC}(\text{zero_learn better}) \approx 0.718$, and the rule $R \geq 0.977 \Rightarrow \text{choose zero_learn (else none)}$ attains ~ 0.789 accuracy (base rate ~ 0.684 favoring zero_learn).

Figure 6: Relationship between test performance ranking and micro-level architecture choices. For RDL-based methods, we filter the original search result with the top 10 performing configurations on each task. For DFS-based methods, we filter the original search result with the top 1 performing configurations on each task. The best configurations are selected based on test performance directly. “zero_learn” is the labeling trick adopted by NBFNet. (a) A violin plot of MPNN types shows that PNA achieves the best mean ranking across different tasks. (b) When comparing labeling tricks, although equivariant models appear more frequently in top rankings, a labeling trick is still needed to achieve the top spot. (c) For DFS, ft_transformer and tabpfn present unique strengths, where the former can leverage more training samples, and the latter usually works better in small-scale settings and can conduct in-context learning.

Visualization of loss landscape. Our first-step analysis is to plot the loss landscape of a series of models presenting different val-selected and test-selected performance gaps. An example is shown in Figure 7. We can see that the DFS, which generalizes better, presents a much flatter loss landscape.

(a) Loss landscape of DFS + FT-transformer on DRIVER-TOP3

(b) Loss landscape of RDL on DRIVER-TOP3

Figure 7: Loss landscapes

E.6 EFFICIENCY

In the main text, we skip the discussion of efficiency-related concerns, such as running time and memory consumption. One reason is that efficiency depends on the backbone implementation. For example, we implement SQL using in-memory databases in this work. You can't say DFS or RDL is more efficient merely based on this implementation. In reality, DFS can potentially be accelerated via tools like Spark. Nonetheless, we still present efficiency-related results here, with the following main contents: (1) Average running time of RDL and DFS pipelines, which includes the time for model training and dataset pre-processing. (2) The way to extend our current methods to incorporate efficiency-related concerns.

As shown in Table 12, we consider the running time of two representative tasks: driver-dnf and study-outcome. The former database is a small-scale one, while the latter contains lots of columns.

We consider the simple RDL models SAGE and the complicated ones HGT. For DFS, we consider three propagation depths: 1, 2, and 3. We can see that DFS is relatively more efficient when the propagation depth is small. The main backbone is just the feature encoder part of the RDL, so it will be much faster during the inference stage. Moreover, without our proposed PCA compression strategy, DFS is usually unusable for large-scale tasks. Generally, both RDL and DFS don't meet significant efficiency concerns.

Table 12: Preprocessing and training times by method for driver-dnf and study-outcome.

	driver-dnf					study-outcome				
	RDL (SAGE)	RDL (HGT)	DFS-1 (no p/p)	DFS-2 (no p/p)	DFS-3 (no p/p)	RDL (SAGE)	RDL (HGT)	DFS-1 (no p/p)	DFS-2 (no p/p)	DFS-3 (no p/p)
Preprocessing time	60 s	60 s	7 s/12 s	18 s/17 s	310 s/41 s	240 s	240 s	240 s/36 s	353 s/48 s	965 s/95 s
Training time (per epoch)	6 s	8 s	< 1 s/≤ 1 s	< 1 s/≤ 1 s	< 1 s/≤ 1 s	10 s	11 s	< 1 s/≤ 1 s	< 1 s/≤ 1 s	< 1 s/≤ 1 s

To extend our current methods to incorporate efficiency-related concerns, we consider the following two strategies: (1) Rule-of-thumb. Since we know the number of training samples, when the scale is limited, then directly utilizing TabPFN and DFS is usually the most efficient approach. Moreover, for RDL, HGT is obviously the most expensive model considering its complicated attention mechanism. (2) Joint optimization of efficiency and effectiveness. We can consider a multi-objective optimization framework, where we can consider the validation performance and training time as two objectives. First, we can train a meta-model to predict the training time based on architecture designs. For example, we can list the following efficiency-related hyperparameters: number of layers, hidden dimension, number of attention heads, and batch size. Then, we can train a model whose input feature is the hyper-parameter configuration, and the output is the training time. To estimate the pre-processing time of DFS, it's approximately proportional to the number of SQL operations multiplied by the size of training tables. We then demonstrate one formula to do joint optimization of efficiency and effectiveness.

$$\begin{aligned}
 (\pi^*, \theta^*) = & \arg \max_{\substack{\pi \in \{\text{RDL, DFS}\} \\ \theta \in \mathcal{S}_\pi}} \widehat{\text{Perf}}(\theta, \pi) \\
 & - \lambda \cdot \frac{1[\pi = \text{DFS}] c_{\text{sql}} \cdot \text{ops}(\theta) \cdot \text{rows}}{T_{\text{ref}}} \\
 & - \lambda \cdot \frac{\mu_{\text{time}}(\theta, \pi) + \beta \sigma_{\text{time}}(\theta, \pi)}{T_{\text{ref}}}
 \end{aligned}$$

π chooses the pipeline (RDL vs. DFS) and restricts the search space to \mathcal{S}_π ; $\widehat{\text{Perf}}(\theta, \pi)$ is predicted validation effectiveness; $\lambda > 0$ trades time for performance; T_{ref} normalizes time; the DFS pre-processing cost is activated by $1[\pi = \text{DFS}]$ and modeled as $c_{\text{sql}} \cdot \text{ops}(\theta) \cdot \text{rows}$; $\mu_{\text{time}}(\theta, \pi)$ and $\sigma_{\text{time}}(\theta, \pi)$ are the meta-model's mean and uncertainty for training time; $\beta \geq 0$ adds risk aversion to slow/uncertain runs. π can be trained based on a model performance bank similar to the meta-predictor.