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Abstract

Deep learning frameworks have become power-
ful tools for approaching scientific problems such
as turbulent flow, which has wide-ranging appli-
cations. In practice, however, existing scientific
machine learning approaches have difficulty fit-
ting complex, multi-scale dynamical systems to
very high precision, as required in scientific con-
texts. We propose using the novel multistage neu-
ral network approach with a spectrum-informed
initialization to learn the residue from the previ-
ous stage, utilizing the spectral biases associated
with neural networks to capture high frequency
features in the residue, and successfully tackle
the spectral bias of neural networks. This ap-
proach allows the neural network to fit target func-

tions to double floating-point machine precision
0(10716),

1. Introduction
1.1. Precision machine learning

Typical machine learning applications, such as computer
vision or natural language processing, do not necessarily
require neural networks to fit data to extremely high preci-
sion. For instance, the training loss function may simply
be a proxy for the true metric, and moreover noise present
in the training data may cause models with very low train-
ing loss to overfit (Michaud et al., 2023). Recently, deep
learning techniques are being increasingly developed for
scientific purposes where high precision is desirable or re-
quired (Wang et al., 2023; Michaud et al., 2023; Wang &
Lai, 2024; Miiller & Zeinhofer, 2023; Jnini et al., 2024).
For instance, neural networks used as interpolators for equa-
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tion discovery, which infers an exact equation or formula
based on data, the correctness of the learned equation re-
quires very high accuracy across multiple scales (Udrescu
& Tegmark, 2020; Mojgani et al., 2024). Another appli-
cation requiring high precision is physics-informed neural
networks (PINNSs), which behave as numerical solvers for
partial differential equations (PDEs), where high accuracy
is an intrinsic requirement. When solving a well-posed PDE
problem, there exists a theoretical global minimum for the
PINN training where the training loss should converge to
zero (Raissi et al., 2019).

In this study, we focus on studying the regression problem
as a preliminary example to demonstrate the challenge of
training neural networks to approach a target function with
high precision. The regression problem is given as: given
a dataset {(x;,u; = u(x;))} sampled from a continuous
target function u, the neural network Ny, with parameters 6,
is trained to fit the data points to approximate the function
u. We assume that the number of data points is sufficient,
and that each of them has zero noise, which guarantees
that the data set contains sufficient authentic information of
the target functions. Although the universal approximation
theorem is a theoretical guarantee that neural networks of
large enough size can approximate any function arbitrarily
well (Hornik et al., 1989), in practice, the training loss is
easily trapped in local minima and eventually plateaus after
a certain number of iterations. Many advanced techniques
exist to expedite training (Sitzmann et al., 2020; Michaud
et al., 2023; Liu et al., 2020), but are unable to consistently
reduce the training error down to the required precision,
which is one of the significant challenges of using deep
learning methods for scientific objectives. In contrast, clas-
sical numerical methods can consistently reduce error, for
instance by increasing the mesh resolution.

1.2. Spectrum-informed initialization for regression

To resolve the precision limit of PINNs, Wang & Lai (2024)
proposed the multistage training scheme which divides neu-
ral network training into different stages. For each stage
of training, a new neural network was introduced and op-
timized to learn the residues from previous stages, which
largely increases the convergence rate from linear decay
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to approximately exponential decay. The combined neu-
ral networks after several stages of training can approxi-
mate the target function up to double floating-point ma-
chine precision O(107!%) for one-dimensional problems.
However, this fails to hold for two- or higher-dimensional
problems (Figure 1a). This indicates that more advanced
techniques are required to enhance the multistage neural
networks (MSNNG5s) to ensure high-precision approximation
for higher-dimensional problems.

The training of neural networks is known to suffer from spec-
tral bias, which is a phenomenon in which neural networks
tend to fit low-frequency features of the target function, and
may fail to capture high-frequency information (Rahaman
et al., 2019; Xu et al., 2022). Spectral bias is particularly
problematic when using neural networks as function ap-
proximators for multiscale problems, such as turbulence
(Mojgani et al., 2024; Rybchuk et al., 2023; Chattopadhyay
& Hassanzadeh, 2023; Lai et al., 2024). Various frequency
domain approaches have been proposed to mitigate this prob-
lem, including the scale factor approach (Cai et al., 2019;
Liu et al., 2020; Jin et al., 2024; Li et al., 2023), which
were applied in the multistage neural networks (Wang &
Lai, 2024) by multiplying a large scale factor to the weight
between the input and first hidden layer. The optimal value
of the scale factor was found to be = 7 f4/+/Var, where
fa is the domain frequency of the target function and V.
is the variance of first layer weights. Although this setting
works effectively for fitting one-dimensional functions, it
remains limited when approximating high-frequency func-
tion in higher dimensions. Here, to resolve the issue, we
provide an advanced method that can further alleviate spec-
tral bias and enhance the multistage neural network training,
by initializing the neural network weights based on more
straightforward spectral information from the target func-
tion. In more details, this spectrum-informed initialization
uses the discrete Fourier transform of the target function or
the residues to inform the initialization of the neural net-
work, ensuring fast convergence across the spectral modes
present. In doing so, the spectrum-informed multistage neu-
ral network (SI-MSNN) is able to approximate the target
function down to O(10716). Moreover, the regression pro-
vided by the neural network is accurate across the Fourier
spectrum, even for challenging multi-scale target functions.

In Section 2, we provide an overview of Fourier feature em-
beddings, the discrete Fourier transform, and neural tangent
kernel theory. In Section 3, we introduce the spectrum-
informed initialization of network weights, and its usage
for multi-stage neural networks (MSNNs). In Section 4, we
provide experimental results demonstrating the advantage
of SI-MSNNs over the original MSNNs on error reduction
and its ability to reach machine precision for complex re-
gression problems. Lastly, in Section 5, we provide further
discussions and future work on the spectrum-informed ini-

tialization for multistage neural networks.

2. Preliminaries
2.1. Discrete Fourier transform

The Fourier transform decomposes a function into the var-
ious frequencies and corresponding amplitudes that are
present, writing the function in terms of a complex exponen-
tial or sinusoidal/cosinusoidal basis (Sneddon, 1995). The
discrete Fourier transform (DFT) of a function with values
provided at N equally spaced points can be computed using
the fast Fourier transform (FFT) algorithm in O(N log V).
The one-dimensional DFT of a function u, specified at N
points x,,, is given by

) exp(—ikx,), 1

HMZ

for which the inverse Fourier transform is

N-1

Z xn €Xp Zkirn) 2

where k is the wavenumber. Analogously, the two-
dimensional DFT of a function specified on a grid with
N, values x,, and N, values y,, is given by

N, Ny
U k) = Z Z eXp(f’L'(kx:Cn + kyym))a 3)

n=0m=0

where k = (k,, k) is the wavenumber vector.

2.2. Fourier feature networks

Spectral bias, which is also referred to as the frequency prin-
ciple, is a well-known phenomenon of standard multi-layer
perceptrons (MLPs), which tend to exhibit a bias towards fit-
ting low-frequency information in target functions, and learn
high-frequency information more slowly, or fail to converge
on high frequency modes (Rahaman et al., 2019; Xu et al.,
2022). To allow MLPs to learn high-frequencies, Fourier
feature networks first pass input points x through a Fourier
feature mapping ~y(x), before passing the result through the
MLP (Rahimi & Recht, 2007; Tancik et al., 2020). The
Fourier feature mapping «y(z) can be alternatively consid-
ered as the first layer of the MLP, as a composition of a
nonlinear, periodic activation function and a linear function
with added bias weights.

2.2.1. RANDOM FOURIER FEATURES

Random Fourier features are a non-trainable input mapping

~(z) = cos(2rBx + b) 4
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Figure 1. (a) Target function ug(z, y) for a 2-D regression problem. (b) Errors of neural networks with the target function u, after different
stages of training using the original multi-stage neural networks (MSNNs) where the scaling factor was used to mitigate the spectral biases

of the network training. The 3rd-stage residue reaches O (10~

8). (¢) Errors after different stages of training using spectrum-informed

initialization for both weights and biases of the network, which reaches O(10™'?) by the 3rd stage of training.

where B and b are fixed random variables, and the cosinu-
soidal function is applied component-wise (Rahimi & Recht,
2007).

2.2.2. FOURIER FEATURE MAPPING

Fourier feature mapping extends this technique, using the
positional encoding

v(x) =

where B € R™* are the weights for the feature map-
ping, which can be either fixed or trainable. Typically, these
weights are initialized as B ~ N(0, o), where o is a hyper-
parameter that determines the span of the initialized weights
and can be set to 1 as a default, or determined based on the
problem (Tancik et al., 2020).

[A cos(2rBzx), Asin(2rBx)] 7, 5)

2.2.3. COSINUSOIDAL ACTIVATION

Since cosine and sine differ only by a phase, which can
be recovered using the trainable phase parameter b, it is
comparable to use the cosinusoidal mapping

v(z) =

where the weights B are initialized as in the previous section,
and the biases b can be initialized to zero or following a nor-
mal distribution. Equivalently, the cosinusoidal feature map-
ping can be seen as a modified first layer of an MLP, where

[Acos(2m Bz + b)), (6)

the activation function is o(z) = A cos(2mz) rather than
the typical choices o(z) = tanh(z) or o(z) = ReLU(z).

2.3. Neural tangent kernel

The neural tangent kernel (NTK) theory describes the evolu-
tion of neural networks by gradient descent during training.
In the limit of an infinite-width neural network, the NTK can
be used to approximate the result of training a neural net-
work as the learning rate approaches zero. In fact, the neural
network converges in the eigenvectors of the NTK at an ex-
ponential rate with respect to the corresponding eigenvalue
(Jacot et al., 2018; Tancik et al., 2020). For a conventional
MLP, the spectral bias can be viewed as an eigenvector bias,
as the eigenvalues decay rapidly (Wang et al., 2021). When
using a Fourier feature mapping, the principal eigenvectors
of the NTK correspond to the embedded frequencies from
B, and thus embedding the frequencies of the target function
u into the neural network using Fourier feature mapping
allows rapid convergence in those directions (Tancik et al.,
2020).

3. Methods
3.1. Problem setup

We consider the supervised learning regression problem,
where N, data points {(x;, u(x;))} are provided, and the
task is to fit a neural network to the target function w. In the
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precision machine learning setting, we assume that the data
is exact, in order to test the capacity of neural networks as
universal function approximators.

A neural network with L hidden layers, given a feature
embedding (z), is a mapping A/ : R¢ — R which acts
as N(x;0) = froop o+ ooy o f1 o~y(x), where
fr(z) = Wy + by is a linear function and oy (x) is a
nonlinear activation function, such as tanh or reLLU.

3.2. Multi-stage neural networks (MSNN)

As mentioned above, multi-stage neural networks (Wang
& Lai, 2024) are a novel approach dividing the training
into stages, maintaining a high rate of convergence and
allowing the regression for one-dimensional problems to
reach machine precision (Wang & Lai, 2024).

Given a target function u, a typical neural network wug(x)
with Xavier weight initialization is trained to approximate
u/eg, with the input coordinates x normalized to within
[—1,1]. The normalizing factor ¢y is taken to be the root

N SNt 42, where u/eq has
order of magnitude O(1) matching the output of the network
at initialization. The first stage residue is e; (z) = u(x) —

uo(x), and is typically a high-frequency function.

mean square value €0 —

Then, the second-stage neural network is trained to approx-
imate the normalized first stage residue e;/¢; as a target
function, where €; is the root mean square value of the error
e on the provided data points. To effectively fit the high-
frequency first stage residue given the dominant frequency
fa and the variance of weights in the first layer V., the
activation function of the first layer is taken to be the peri-
odic, high-frequency o (z) = cos(kz), where its inputs are
first multiplied by the optimal scale factor k = 7 fq/v/Var
(Wang & Lai, 2024). The re-scaling of the input to enable
learning of high-frequency functions has also been imple-
mented as adaptive activation functions (Jagtap et al., 2020).

In general, the (n + 1)th stage neural network u,, 1 is the
previous stage residue e,, (z) = u(z) —>_ | £,up (), nor-
malized by its root mean square value €,,. The final result
with s stages is Y > _; £nun () ~ u(x). By tuning the neu-
ral network in each stage to capture the desired magnitudes
and frequencies of the residue, the multistage neural net-
work approach is able to reach machine precision O(10716)
for the regression problem in one dimension.

3.3. L? Norm

The typical loss function for training and evaluation in re-
gression problems is the mean squared error (MSE), which
is the squared L? norm, defined as |[z]|,z = SN 22 A

more general loss function uses the LP norm, where

Ny 1/p
2|z, = (Zmﬂ) : )

n=1

which has a comparable order of magnitude to the root mean
squared error (RMSE). As p increases, larger deviations are
more heavily penalized. For our purposes, we use the LP
norm with p = 10, which prevents large spikes in the residue
so the next stage of the multistage neural network can learn
the residue more readily.

3.4. Spectrum-informed initialization

In two or more dimensions, the multistage neural network is
not able to reach machine precision, and fails to capture the
high frequencies present in the later stage residues. We pro-
pose a spectrum-informed initialization to replace the cosi-
nusoidal mapping with a scale factor x used in Wang & Lai
(2024). Instead, here we tailor the neural network to the spe-
cific frequencies present in the dataset. Consider a dataset
with input-output pairs (x;, u; = u(x;)) for x; € [-1,1]2
on a grid with IV points in both dimensions, where the input
domain is assumed to already be transformed to [—1, 1],
and u; € R. The spectrum-informed initialization provides
a targeted initialization of B and b for the input mapping
layer (z; B,b) = [Acos(Bxz + b)]T of a neural network
predicting the quantity u(x) given the input coordinates x,
where B and b are tunable parameters and A is a fixed hyper-
parameter. The remainder of the neural network layers can
be initialized with the usual Xavier initialization scheme,
which prevents gradient vanishing or explosion (Glorot &
Bengio, 2010).

Algorithm 1 Spectrum-informed initialization

Compute the discrete Fourier transform u of u, where
a(k) = a(k)e?™ in polar form. Let a(k) = Zza(k)
if k, > 0, and a(k) = wza(k) if k, = 0 be a normalized
version of the magnitude.

Let k(@) be the Fourier mode corresponding to the jth largest
magnitude | (k7))|, considering only the modes such that
ky > 0. Take o) = a(k()) and 00) = 0(k\)).

Given a desired first layer width ny, let B =
KD, ... kN7 b = [0V, ... 00T and A =
[a® T

Initialize the first layer of the neural network, which has
width n s, with the Fourier feature mapping v(x; B,b) =
[A cos(Bz + b)]”. Initialize the other parameters based on
the Xavier scheme.

, a(nf)

x
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Figure 2. (a) Target function ¥ (z, y), a single time snapshot of the numerical solution of the stream function for the 2D incompressible
Navier-Stokes equations (11) and (12) with Re = 2000. (b—e) The residues after each of the four stages of training, which are the
target functions for the next stages. After four stages, the residue has approached machine precision O(107'%). (g) Result of the
Spectrum-Informed Multistage Neural Network (SI-MSNN) with four stages of training. (h—j) The spectral domain of each of the residues.

The two-dimensional DFT of u satisfies

1

w(@,y) = 5 > ks, ky) exp(i(kex + kyy))  (8)
Koy
1
= Y Latoesp(itex+00) O
K oy
= a(k) cos(k - x + 6(k)), (10)
Ky >0

where a(k) are as defined in Algorithm 1. The last equality
comes from the conjugate symmetry @(k) = a(—k) of
u, since u is a real-valued function. Using the conjugate
symmetry avoids embedding redundant information.

Then, given the ns largest modes, the Fourier feature map-
ping, which can be considered the first layer of the neural
network, is y(z) = Acos(Bz +b) = 3, ,,, a® cos(k(® .
x + #("), which contains precisely the information from the
top ns modes of the Fourier transform of u. If ny = N2 /2
and the neural network contains only one layer, which is
the Fourier feature embedding, the single-layer neural net-
work will exactly match the DFT representation of u, as in
Equation 10.

Based on the neural tangent kernel (NTK) theory (Jacot
et al., 2018), embedding these primary Fourier modes k
allows the neural network to effectively learn the target
function across the frequency spectrum.

4. Experiments

In this section, we experimentally demonstrate the ability
of the spectrum-informed initialization to learn the target
frequencies, and to train neural networks as approximators
down to the limits of numerical precision.

4.1. Comparison with scale factor approach

In Figure 1, we compare the results of a three-stage neu-
ral net with the original scale factor approach and the
spectrum-informed initialization, fitting a simple target func-
tion ug(z) = [sin(2z + 1) — 0.52](1 — y?). For the scale
factor approach, the Fourier feature embedding is of the
form y(x) = cos(kw@ 2z + b), where w(® are the first-
layer weights following the Gaussian distribution A/ (0, V)
with the variance V. set by the Xavier initialization method.
The scale factor k = 7 f3//V,, is determined based on the
dominant frequency f; of the target function. In contrast,
the spectrum-informed initialization employs the Fourier
feature embedding v(x) = A cos(Bx + b) with A, B, and
b being directly initialized by the spectral information of the
target function, as described in Algorithm 1.

Experimentally, the scale factor approach yields a 3rd-stage
residue of O(10~%) (Figure 1b), whereas the spectrum-
informed initialization allows the MSNN to fit the data up
to O(10~13) (Figure 1¢), which is five orders of magnitudes
more accurate. We note that the number of iterations used
in each stage of the two experiments are the same.



Spectrum-Informed Multistage Neural Network: Multiscale Function Approximator of Machine Precision, ICML 2024

Power spectrum

109_
105<

101 4

10—3_
=
B 1074
Target
10-114 —— 1st-stage, SI-MSNN
P B 2nd-stage, SF-MSNN
1074 3rd-stage, SI-MSNN
10-194 — 4th-stage, SI-MSNN

—— Single-stage SI-MSNN

10?2 103

Wavenumber k

10!

Loss

Loss convergence

10-14
1034
1075
1077 4
10—9 4
10-114 — 1st-stage, SI-MSNN

—— 2nd-stage, SI-MSNN
107134 3rd-stage, SI-MSNN

—— 4th-stage, SI-MSNN
1074 single-stage SIEFMSNN

0 100000 200000 300000 400000 500000
Iterations

Figure 3. Left: A comparison of the power spectrum of the 2D Navier-Stokes example in Fig. 2 given by a single-stage SI-MSNN and
a four-stage SI-MSNN, each with three hidden layers of width 30. The single-stage SI-MSNN has first layer width ny = 10000. The
first stage of the four-stage SI-MSNN has first layer width ny = 1359, based on the number of primary Fourier modes present, and the
remaining stages all have first layer width ny = 10000. Right: The loss convergence of a single-stage SI-MSNN compared to a four-stage
SI-MSNN, where training terminates when machine precision is reached.

4.2. 2D incompressible Navier-Stokes

As an example problem, we consider fitting a snapshot of
two-dimensional homogeneous isotropic decaying turbu-
lence (2D-DHIT), which is a broadly multi-scale problem.
Random Fourier features have been shown to be effective
for similar multi-scale turbulence problems (Mojgani et al.,
2024). The Fourier coefficients of the target function de-
cay exponentially with the wavenumber, where the high-
frequency, small-scale information plays a large role in the
behavior of the system. Taking the curl of the 2D incom-
pressible Navier-Stokes equations yields the vorticity equa-
tion, which can be written in terms of the stream function v
and the vorticity w:

O OVow _owdw _ 1,
ot Oy ox Oxdy ReV v (in

and
V3 = —w, (12)

which can model a variety of geophysical flows (Subel et al.,
2023). Using a direct numerical simulation (DNS), on a
[0,27)? grid with resolution N = 512 and Reynolds num-
ber Re = 2000, the 2D-DHIT equations are solved using a
pseudo-spectral solver with third-order Runge-Kutta time
stepping, with the timestep determined by the CFL condi-
tion. The initial condition is taken to be a random vorticity
field with a broad banded energy spectrum (McWilliams,
1984).

We perform regression with the target function as a snap-
shot of the stream function ¢(x,¢ = 1.25). The coordinate
inputs to the neural network are re-scaled to the domain
[—1, 1], and the spectrum-informed initialization is based

on the re-scaled coordinates. The results are transformed
back to the original coordinates from [0, 27). In terms of
experimental setup, we employ a fully-connected neural net-
work with the first layer as the spectrum-informed Fourier
feature embedding with cosine as the activation function, as
well as three hidden layers with 30 units in each layer using
hyperbolic tangent activation functions. The first layer con-
tains ny = 1359 units for the first-stage neural network, and
ny = 10000 units for the second, third, and fourth-stage
neural networks, based on the number of primary Fourier
modes in the target function of each stage. The spectrum-
informed initialization is used for the first Fourier feature
layer, and the Xavier scheme is used to initialize the other
parameters, as described in Algorithm 1. The neural net-
works are trained with full batch gradient descent using
Adam optimizer with initial learning rate of 10~ and incor-
porating learning rate annealing. The models are trained for
150000 iterations, with the fourth stage terminating when
machine precision is reached.

In Figure 2, the SI-MSNN method is successfully able to
reduce the error down to the machine precision of a 64-bit
double float, O(10~1), after four stages of training. This
result experimentally validates the ability of SI-MSNNs to
approximate a target function with arbitrarily high accuracy.

In Figure 3, the multistage setup is shown to be necessary.
With a single stage of training, the loss convergence plateaus
to a linear decay rate, and the neural network is not able to
correct the residues relative to the target function. However,
by incorporating multiple stages, with a neural network ini-
tialized based on the magnitude and spectrum of the residue,
an exponential convergence rate can be maintained, allow-
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ing efficient learning.

Moreover, the spectrum-informed initialization allows the
multistage neural network to accurately represent the
function across the spectral domain. Here, the two-
dimensional Fourier transform of the stream function v/ satis-
fies ¥ (kq ky) = 0o oo (@, Yim) exp(—i(kay +
kyym)), where k = (kg,k,) is the wavenumber vector.
Given the Fourier transform 1;, the angle-averaged power
spectrum E(k) is defined as

E(k) = >

k—Ak<|k|<k+Ak

(k)2 (13)

for a given spectral band Ak (Kag et al., 2022). The spectral
band is defined so that the wavenumber k falls into 200 bins.

In Figure 3, as the number of stages increases, the SI-MSNN
is able to match the power spectrum F(k) of the target func-
tion ¢ (x, y) up to increasing wavenumbers. Successfully
fitting both the target function and its power spectrum is im-
portant for multi-scale scientific problems, and the capacity
to do so is shown with this 2D Navier-Stokes example.

5. Discussions

We introduce a novel spectrum-informed initialization, al-
lowing efficient training of neural networks for solving the
regression problem to machine precision. By utilizing the
spectral biases of neural networks, a spectrum-informed
Fourier embedding of the input allows the neural network
to learn in the spectral domain and converge rapidly. The
spectrum-informed initialization for multistage neural net-
works (SI-MSNN) allows the neural network to fit target
functions down to machine precision, even for multi-scale
target functions, as validated experimentally. The results
using the SI-MSNN demonstrate that this approach can
achieve residues many orders of magnitude smaller than
state-of-the-art approaches, down to machine precision.

In the future, we plan on applying the spectrum-informed
initialization for scientific machine learning problems re-
quiring precision as high as possible. In particular, we pro-
pose using the spectrum-informed initialization for multi-
stage physics-informed neural networks as partial differ-
ential equation solvers (Wang & Lai, 2024; Raissi et al.,
2019), where the boundary and initial conditions are the
error-free data provided, along with a set of governing equa-
tions. Our work provides a promising approach towards
precision machine learning.

Impact Statement

This paper presents work which aims to advance scientific
machine learning, by providing an approach allowing neu-
ral networks to reach machine precision in scientific con-

texts where very high precision is necessary. Our work has
broader impact in many scientific fields, with a goal of de-
veloping useful tools for machine learning for science, with
potential applications in using neural networks as partial dif-
ferential equation solvers, equation discovery, and climate
science. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here.
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