
Scalable LLM Math Reasoning Acceleration with Low-rank Distillation

Harry Dong 1 Bilge Acun 2 Beidi Chen 1 Yuejie Chi 1 2

Abstract
Due to long generations, LLM math reasoning
demands significant computational resources and
time. While many existing efficient inference
methods have been developed with excellent per-
formance preservation on language tasks, they
often severely degrade math performance. We
propose Caprese, a resource-efficient distillation
method to recover lost capabilities from deploying
efficient inference methods, focused primarily in
feedforward blocks. With original weights unper-
turbed, ∼1% of additional parameters, and only
20K synthetic training samples, we can recover
much if not all of the math capabilities lost from
efficient inference for thinking LLMs and without
harm to language tasks for instruct LLMs. More-
over, Caprese slashes the number of active param-
eters (∼2B cut for Gemma 2 9B and Llama 3.1
8B) and integrates cleanly into existing model lay-
ers to reduce latency (>11% reduction to generate
2048 tokens with Qwen 2.5 14B) while encourag-
ing response brevity.

1. Introduction
With the increasing capabilities of large language models
(LLMs) (Vaswani et al., 2017), evaluations are also becom-
ing increasingly sophisticated, typically involving multi-step
reasoning such as in math problem solving. These tasks tend
to demand long generation which drives up latency, making
efficiency a dire issue. Fortunately, many efficient LLM
inference algorithms have shown great promise, slashing
expensive computational bottlenecks with little damage to
the original performance on a variety of language-based
tasks like reading comprehension and summarization. How-
ever, for math reasoning tasks, many efficient inference
algorithms begin to break down, decimating performance,
despite their robustness in language settings. Thus, there is

1Department of Electrical and Computer Engineering, Carnegie
Mellon University, USA 2FAIR at Meta. Correspondence to: Harry
Dong <harryd@andrew.cmu.edu>.

Proceedings of the 2nd Workshop on Long-Context Foundation
Models, Vancouver, Canada. 2025. Copyright 2025 by the au-
thor(s).

a need to design efficient inference algorithms that simulta-
neously maintain language and math capabilities.

A critical difference between math reasoning and many
language tasks is the generation length. Reasoning typi-
cally involves long generation due to improved performance
from chain-of-thought (CoT) (Wei et al., 2022), which often
surpasses the length of the input query. However, CoT per-
formance falls apart with efficient algorithms that introduce
approximation errors which build up over time. For instance,
deploying CATS (Lee et al., 2024), a sparse thresholding
method, on Gemma 2 2B (Team et al., 2024) has little impact
on language generation performance, but knocks GSM8K
(Cobbe et al., 2021) accuracy from 51.02% to 34.42% (Ta-
ble 1). Similarly, for thinking models: applying GRIFFIN
(Dong et al., 2024a), an adaptive structured pruning method,
on the first half of DeepSeek-R1-Distill-Qwen 1.5B (Guo
et al., 2025) drops MATH-500 (Lightman et al., 2023) ac-
curacy from 79.40% to 42.00% (Table 2). As generation is
much more demanding computationally than prefill, there
is a dire need to make long reasoning CoTs efficient, espe-
cially with the rise of test-time scaling. This poses two key
inference challenges with math reasoning:

1. Instability: Long CoTs can be sensitive to mistakes.
Even single token mistakes can sometimes drive the
generation trajectory off course, leading to an incorrect
response (Zhou et al., 2024). Hence, efficient inference
algorithms should respect the delicacy of CoT.

2. Inefficiency: Due to the reliance on CoT, which tend
to lead to long generation, the already computationally
expensive LLM autoregressive decoding process is
accentuated. This problem is further exaggerated as
CoTs scale in length (Guo et al., 2025) and quantity
(Brown et al., 2024; Wu et al., 2024; Snell et al., 2024)
for better performance.

An ideal method should be efficient, performance preserv-
ing, and easy to integrate. Thankfully, low-rank structure
in the feedforward (FF) output features can help make this
possible. We choose to focus on FF blocks since, contribut-
ing ∼2/3 of an LLM’s parameters, detrimental in latency-
sensitive applications with small batch sizes such as in per-
sonal devices and robotics. Because of the success of works
that exploit contextual sparsity in FF blocks on language

1

Submission and Formatting Instructions for LCFM 2025

tasks for efficiency, like CATS and GRIFFIN, we peek into
the residuals of FF sparsity-based efficient methods. Using
an oracle top-k filter on FF nonlinearity output magnitudes,
we observe huge reductions in error with a low-rank ap-
proximation to the FF output residuals (Figure 1). Since
FF intermediate feature sizes can be on the order of 105,
adding 256 for a low-rank approximation is comparatively
mundane. This observation motivates us to estimate the
residual from sparse FF methods with low-rank layers.

0.1 0.2 0.3 0.4 0.5
Density

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

Llama 3.1 8B Instruct
Top-k
Top-k + rank 128
Top-k + rank 256
Top-k + rank 512

0.1 0.2 0.3 0.4 0.5
Density

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e

Er
ro

r
Gemma 2 2B Instruct

Top-k
Top-k + rank 128
Top-k + rank 256
Top-k + rank 512

Figure 1: Average relative FF output error of generated
tokens with varying top-k densities and low-rank approxi-
mations. The density is the fraction of non-zero intermediate
FF features maintained by top-k. A relatively small low-rank
approximation to the top-k residual dramatically reduces
error much more effectively than just increasing density.

We introduce Caprese (CAPability REcovery with Scalable
Efficiency) to learn FF residuals from any sparse FF al-
gorithm using small low-rank linear layers for improved
performance (Figure 2). Through distillation of math knowl-
edge into these low-rank layers, Caprese is able to overcome
both challenges of math reasoning and makes significant
progress towards an ideal efficient method:

1. Performance Enhancement: Demonstrated across
instruct and thinking models, Caprese recovers much if
not all of the math performance lost from deploying a
sparse FF algorithm without harming language tasks,
even with different techniques of test-time scaling. For
example, scaling generations with Caprese on Llama
3.2 3B Instruct improves Pass@100 by 7.0% from the
original model while using 15.8% less compute.

2. Efficiency: Due to the ability to combine our low-
rank layers with existing FF layers, Caprese reduces
generation latency. For instance, Caprese reduces la-
tency by 11.7% when generating 2048 tokens using
DeepSeek-R1-Distill-Qwen 14B with GRIFFIN.

3. Low Budget: We can see significant gains in math
performance by training Caprese layers on only 20K
synthetic math samples. Moreover, with a low-rank
layer size of only 256, this equates to adding roughly
0.8% additional parameters into Llama 3.1 8B and
Gemma 2 9B, dwarfed by savings in active parameters
(∼2B cut for both models with Caprese (CATS)).

The remainder of this paper is organized as follows. Sec-
tion 2 describes two efficient sparse FF algorithms that serve

as baselines. Section 3 details Caprese’s methodology. Then
in Section 4, we showcase the strong performance of Cap-
rese on instruct LLMs, scaling generation outputs, scaling
generation length, and efficiency. Although we focus on
math in this paper, Caprese is not restricted to math tasks.

2. Adaptively Sparse FF Methods
In this section, we provide descriptions of GRIFFIN and
CATS which we use as baselines and backbones to Caprese.
Let X ∈ RS×D be the input into the FF block during prefill
with sequence length S and feature size D. Define the FF
block as FF(X) = FF2(FF1(X)) such that

Z = FF1(X) = σ(XWg)⊙XW1, (1)
FF2(Z) = ZW2, (2)

where Wg,W1 ∈ RD×DFF , W2 ∈ RDFF×D, σ is a nonlin-
ear function, ⊙ is an element-wise multiplication operator,
and DFF ≫ D is the FF intermediate feature size.

GRIFFIN. GRIFFIN (Dong et al., 2024a) adaptively
prunes columns and rows in the FF block weights per prefill.
GRIFFIN finds [Z]i = |[Z]i|/∥[Z]i∥2 for each token index
i, followed by an aggregation across the FF feature axis:
[s]j = ∥[Z]·,j∥2. The result s ∈ RDFF gives a metric to per-
form top-k selection across corresponding columns of Wg

and W1, and rows of W2 to produce Ŵg, Ŵ1 ∈ RD×k,
and Ŵ2 ∈ Rk×D. Then, for the generation phase, the
following FF block is used for input x ∈ RD:

ẑ = F̂F1(x) = σ(xŴg)⊙ xŴ1, (3)

F̂F2(ẑ) = ẑŴ2. (4)

CATS. CATS (Lee et al., 2024) uses hard thresholding to
skip computation in part of the FF block. Letting Tτ be the
hard thresholding function with threshold τ ,

ẑ = F̂F1(x) = Tτ (σ(xWg))⊙ xW1, (5)

F̂F2(ẑ) = ẑW2. (6)

W1 and W2 should be sparsified into Ŵ1 and Ŵ2, respec-
tively, based on the non-zero entries of Tτ (σ(xWg)) for
latency improvement, which can vary from token to token
and require a custom kernel for wall clock speed-up. We cal-
ibrate τ based on prefill features and only threshold during
the generation phase, analogous to GRIFFIN.

3. Method: Caprese
Motivated by the low-rank structure of residuals in Figure 1,
we introduce Caprese which distills approximation errors in
embeddings into low-rank linear layers in FF blocks. See
Figure 2 for an illustration of our method.

2

Submission and Formatting Instructions for LCFM 2025

Figure 2: A full FF block will contain the complete performance of the original model without any benefit to efficiency.
Sparse FF algorithms can be very efficient by using subsets of the FF block but harm math performance. Our method,
Caprese, uses a sparse FF algorithm and a small distilled low-rank linear layer, which can be merged with existing FF
weights, for highly performative inference in language and math settings while being efficient.

Inference efficiency algorithms often introduce feature ap-
proximation errors in favor of faster generation, which we
mitigate with distillation. Let the efficient and approximate
FF block be F̂F(x) = F̂F2(F̂F1(x)). In our design of Cap-
rese, we do not constrain F̂F to be any specific method or
architecture. For instance, F̂F could be an FF block with
GRIFFIN or CATS. Then, the error is ∥FF(x)− F̂F(x)∥22.
We choose to reduce this residual with a low-rank linear
layer, meaning we want to solve

min
L,R

1

|X |
∑
x∈X

∥FF(x)− F̂F(x)− xLR∥22 (7)

for input set X , L ∈ RD×r, and R ∈ Rr×D where
r ≪ DFF. The optimal solution can be computed ana-
lytically since this is a reduced rank regression problem, but
the size of |X | and D may make it prohibitively expensive.
Therefore, we opt to learn L and R independently for every
FF block (i.e., previous FF blocks are assumed to be from
the original model), allowing for parallel layer-wise (LW)
training, taking inspiration from Dong et al. (2024b). Each
R is initialized as a zero matrix since the efficient approxi-
mation is assumed to be of good quality, and original model
weights are frozen, similar to LoRA (Hu et al., 2022).

We also distill end-to-end (E2E) to further improve the
performance. Using the learned low-rank layers as an ini-
tialization, we put them all together to distill the final model
embedding into the efficient model, again using MSE:

min
(Li,Ri)i=1,...,L

1

|X |
∑
x∈X

∥M(x)− Mstudent(x)∥22 (8)

where M and Mstudent are the original L-layered LLM and
LLM with Caprese layers, respectively, excluding the final
linear head. Again, only each FF block’s L and R are tuned.

4. Experiments
We showcase the effectiveness of Caprese at recovering
much, if not all, of the math performance lost from efficient

Table 1: Instruct models’ 0-shot accuracies on mathematical
reasoning (GSM8K and MATH) and language generation
tasks (CoQA and QASPER). More results in Table 7.

MODEL GSM8K MATH COQA QASP.

Llama 3.2 3B IT 51.55 14.32 63.95 12.45
GRIFFIN 28.96 10.98 64.52 12.52
LW CAPRESE 40.18 13.70 64.33 11.60
E2E CAPRESE 44.66 16.96 64.83 12.35
CATS 41.24 12.04 58.87 11.36
LW CAPRESE 45.49 13.62 60.53 12.26
E2E CAPRESE 46.85 14.40 61.72 12.36

Gemma 2 2B IT 51.02 16.06 63.77 10.96
GRIFFIN 33.74 11.32 63.28 11.07
LW CAPRESE 42.53 12.32 63.77 10.75
E2E CAPRESE 48.14 13.70 63.37 11.05
CATS 34.42 10.56 61.53 10.11
LW CAPRESE 46.32 13.90 61.92 10.82
E2E CAPRESE 46.17 14.16 63.92 11.03

inference algorithms without sacrificing efficiency or per-
formance on language tasks. When ambiguous, we denote
Caprese (CATS) to be our method with CATS as the under-
lying sparse method and similarly for GRIFFIN. Otherwise,
we use “Caprese” for brevity. Unless specified, the FF inter-
mediate feature sparsity is set at 50% and r = 256. For a
more meaningful baseline, we only apply GRIFFIN to the
first half of the model for all experiments since we observed
much steeper drops in math performance if used for all lay-
ers. Regardless, Caprese still improves the performance
of GRIFFIN on all layers. CATS is applied to all layers.
Additional experiments are found in Appendix J.

Instruct Models. We show Caprese is able to preserve
math performance without sacrificing performance on pure
language tasks like question answering with instruct LLMs.
We test Llama 3 (Dubey et al., 2024) and Gemma 2 (Team
et al., 2024) models on zero-shot GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), CoQA (Reddy et al.,
2019), and QASPER (Dasigi et al., 2021), using LM Evalu-
ation Harness (Gao et al., 2023) and CoT prompts for math.

3

Submission and Formatting Instructions for LCFM 2025

100 101 102

Relative Compute Units
0.1

0.2

0.3

0.4

0.5

0.6
Co

ve
ra

ge
Llama 3.2 3B Instruct

Full
GRIFFIN
Layer-wise Caprese
End-to-end Caprese

100 101 102

Relative Compute Units
0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Llama 3.2 3B Instruct
Full
CATS
Layer-wise Caprese
End-to-end Caprese

Figure 3: Coverage and standard deviation of 140 sam-
ples from MATH as the number of generation attempts, N ,
scales. We define Relative Compute Units = N ×A where
A is the fraction of total parameters activated per input.
More results in Figure 9.

Table 1 shows that Caprese is able to preserve most if not
all of the math capabilities in the original models without
damaging performance on the language tasks, despite the
distillation dataset being all math. In most cases, CATS and
GRIFFIN severely harm GSM8K and MATH accuracy, but
Caprese is able to effectively recover the lost performance.
In addition, Caprese’s performance is consistent at differ-
ent sparsity levels and r (Appendix B). Best performers in
CoQA and QASPER are a toss-up, but all methods have lit-
tle impact on the accuracy of these tasks (the main purpose
of these tasks is to show no degradation in language tasks).

Scaling Best-of-N . Now, we see the generalizability of
Caprese on the first axis of test-time scaling: sampling mul-
tiple responses and selecting the best one, known as Best-of-
N (BoN). To evaluate, we find the coverage (Pass@K) on
140 samples from MATH. We use an oracle verifier to accu-
rately assess the quality of the pool of generated responses.
To combat the high variance when K is close to N , we
calculate the average coverage for K = 1, . . . , 100 across
10 independent pools of 100 generations for each sample.
Factoring in the saved compute, E2E Caprese is able to
have similar or better coverage scaling compared to the
original model, as shown in Figure 3. Notably, E2E Caprese
(GRIFFIN) on Llama 3.2 3B Instruct improves Pass@100
by 7.0% from the original model with 15.8% less compute.

Scaling Length. Thinking models provide another axis of
test-time scaling by augmenting the CoT length before giv-
ing a final answer. Because this entails very long generation
lengths, it is critical that error accumulation across tokens be
minimized. We test on DeepSeek-R1-Distill-Qwen models
(Yang et al., 2024; Guo et al., 2025) using configurations
from Open R1 (Face, 2025). We evaluate on MATH-500
(Hendrycks et al., 2021; Lightman et al., 2023), AIME 2024,
and AMC 2023 for a max generation length of 32768. Due
to the small number of problems in AIME 2024 and AMC
2023, we evaluate these 3 independent times, reporting the
average accuracy and sample standard deviation. From Ta-
ble 2, Caprese is the most performative. In Appendix E, we
show a way to recover even more with reselection.

Table 2: Thinking models’ 0-shot performance. More results
in Table 8. Further improvements with reselection are shown
in Table 4.

MODEL MATH-500 AMC 2023

DeepSeek-R1-Distill-Qwen 1.5B 79.40 57.50 ± 5.00

GRIFFIN 42.00 16.67 ± 1.44

LW CAPRESE 47.20 27.50 ± 2.50

E2E CAPRESE 60.40 35.83 ± 7.22

CATS 72.00 38.33 ± 3.82

LW CAPRESE 73.80 46.67 ± 2.89

E2E CAPRESE 74.80 48.33 ± 3.82

DeepSeek-R1-Distill-Qwen 7B 90.20 76.67 ± 2.89

GRIFFIN 80.60 58.33 ± 3.82

LW CAPRESE 84.80 60.83 ± 1.44

E2E CAPRESE 85.40 70.00 ± 5.00

CATS 89.20 62.50 ± 2.50

LW CAPRESE 87.00 65.83 ± 7.22

E2E CAPRESE 90.00 79.17 ± 5.77

Efficiency. Caprese reduces end-to-end generation la-
tency. Table 3 shows the latencies of different setups and
models. Caprese cuts latency by >11% when generating
2048 or fewer tokens from a prompt of 2048 tokens using
DeepSeek-R1-Distill-Qwen 14B (Qwen 2.5 14B architec-
ture) or Gemma 2 9B. Latency improvements are smaller
with generation length 8192 but still faster than the full
model. Moreover, the latency differences between GRIFFIN
and Caprese are fairly small, suggesting that Caprese has
minimal overhead. Metrics were collected on an NVIDIA
L40 GPU using BF16 precision and pre-allocated memory
for the KV cache. More metrics included in Appendix H.

Table 3: End-to-end generation latency (s) for GRIFFIN
and Caprese (GRIFFIN). For the “Setup” column, P +G
indicates input and generation lengths of P and G tokens,
respectively. Percentages show the reduction in latency.

SETUP FULL GRIFFIN CAPRESE

Qwen 2.5 14B
2048+256 12.8 11.1 (−13.3%) 11.3 (−11.7%)

2048+2048 113.3 98.6 (−13.0%) 100.1 (−11.7%)

2048+8192 661.9 603.2 (−8.9%) 603.7 (−8.8%)

Gemma 2 9B
2048+256 9.6 8.4 (−12.5%) 8.5 (−11.5%)

2048+2048 84.4 74.5 (−11.7%) 75.1 (−11.0%)

2048+8192 483.6 444.4 (−8.1%) 445.8 (−7.8%)

5. Conclusion
To combat the inefficiency of the long and brittle generation
process associated with math reasoning, we introduce Cap-
rese, a highly performant and efficient method with strong
math and language capabilities that is compatible with a
broad class of efficient FF algorithms. In the future, it would
be interesting to evaluate its benefit in other reasoning do-
mains besides math and explore the use of input-dependent
low-rank layers.

4

Submission and Formatting Instructions for LCFM 2025

Acknowledgments
The work of H. Dong is supported in part by the Wei Shen
and Xuehong Zhang Presidential Fellowship at Carnegie
Mellon University.

References
Arora, D. and Zanette, A. Training language models to rea-

son efficiently. arXiv preprint arXiv:2502.04463, 2025.

Aytes, S. A., Baek, J., and Hwang, S. J. Sketch-of-thought:
Efficient llm reasoning with adaptive cognitive-inspired
sketching, 2025. URL https://arxiv.org/abs/
2503.05179.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dai, D., Deng, C., Zhao, C., Xu, R., Gao, H., Chen, D., Li, J.,
Zeng, W., Yu, X., Wu, Y., et al. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts lan-
guage models. arXiv preprint arXiv:2401.06066, 2024.

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., and
Gardner, M. A dataset of information-seeking questions
and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

Dong, H., Chen, B., and Chi, Y. Towards structured sparsity
in transformers for efficient inference. In Workshop on
Efficient Systems for Foundation Models@ ICML2023,
2023.

Dong, H., Chen, B., and Chi, Y. Prompt-prompted adaptive
structured pruning for efficient llm generation. In First
Conference on Language Modeling, 2024a.

Dong, H., Yang, X., Zhang, Z., Wang, Z., Chi, Y., and
Chen, B. Get more with less: Synthesizing recurrence
with kv cache compression for efficient llm inference. In

Forty-first International Conference on Machine Learn-
ing, 2024b.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Face, H. Open r1: A fully open reproduction of deepseek-
r1, January 2025. URL https://github.com/
huggingface/open-r1.

Frantar, E. and Alistarh, D. Massive language models
can be accurately pruned in one-shot. arXiv preprint
arXiv:2301.00774, 2023.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/
10256836.

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer
feed-forward layers are key-value memories. arXiv
preprint arXiv:2012.14913, 2020.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

5

https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2503.05179
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Submission and Formatting Instructions for LCFM 2025

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 2,
1989.

Lee, D., Lee, J.-Y., Zhang, G., Tiwari, M., and Mirhoseini,
A. Cats: Contextually-aware thresholding for sparsity in
large language models. arXiv preprint arXiv:2404.08763,
2024.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Z., You, C., Bhojanapalli, S., Li, D., Rawat, A. S., Reddi,
S. J., Ye, K., Chern, F., Yu, F., Guo, R., et al. The
lazy neuron phenomenon: On emergence of activation
sparsity in transformers. In The Eleventh International
Conference on Learning Representations, 2022.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Manvi, R., Singh, A., and Ermon, S. Adaptive inference-
time compute: Llms can predict if they can do better,
even mid-generation. arXiv preprint arXiv:2410.02725,
2024.

Nayab, S., Rossolini, G., Simoni, M., Saracino, A., But-
tazzo, G., Manes, N., and Giacomelli, F. Concise
thoughts: Impact of output length on llm reasoning and
cost. arXiv preprint arXiv:2407.19825, 2024.

Qu, Y., Yang, M. Y., Setlur, A., Tunstall, L., Beeching, E. E.,
Salakhutdinov, R., and Kumar, A. Optimizing test-time
compute via meta reinforcement finetuning. In Workshop
on Reasoning and Planning for Large Language Models,
2025.

Reddy, S., Chen, D., and Manning, C. D. Coqa: A conversa-
tional question answering challenge. Transactions of the
Association for Computational Linguistics, 7:249–266,
2019.

Renze, M. and Guven, E. The benefits of a concise chain of
thought on problem-solving in large language models. In
2024 2nd International Conference on Foundation and
Large Language Models (FLLM), pp. 476–483. IEEE,
2024.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Sun, H., Haider, M., Zhang, R., Yang, H., Qiu, J., Yin,
M., Wang, M., Bartlett, P., and Zanette, A. Fast best-
of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. An
empirical analysis of compute-optimal inference for
problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Xu, S., Xie, W., Zhao, L., and He, P. Chain of
draft: Thinking faster by writing less. arXiv preprint
arXiv:2502.18600, 2025.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Zhang, Z., Lin, Y., Liu, Z., Li, P., Sun, M., and Zhou,
J. Moefication: Transformer feed-forward layers are
mixtures of experts. arXiv preprint arXiv:2110.01786,
2021.

Zhou, Y., Chen, Z., Xu, Z., Lin, V., and Chen, B. Sir-
ius: Contextual sparsity with correction for efficient llms.
arXiv preprint arXiv:2409.03856, 2024.

6

Submission and Formatting Instructions for LCFM 2025

A. Related Works
Efficient Inference for FF Blocks. To improve the efficiency of FF blocks in LLMs, various methods leverage existing
sparse structures in FF features (Geva et al., 2020; Dettmers et al., 2022; Li et al., 2022; Dong et al., 2023; Liu et al., 2023).
Pruning sets a parameter subset to zero to enforce static sparsity (LeCun et al., 1989; Sun et al., 2023; Frantar & Alistarh,
2023; Ma et al., 2023). Mixtures of experts (MoEs) adaptively select predefined parameter subsets in FF blocks, though
they tend to require significant fine-tuning or training from scratch (Jacobs et al., 1991; Zhang et al., 2021; Dai et al., 2024;
Liu et al., 2023). Similar to MoEs, another line of work aims at exploiting contextual sparsity to dynamically select FF
neurons for each input without training. GRIFFIN (Dong et al., 2024a) is a calibration-free method that uses FF activations
from the prefill phase to adaptively prune FF neurons for generation. CATS (Lee et al., 2024) uses hard thresholding to skip
computation in parts of the FF block with a custom kernel. More details of GRIFFIN and CATS can be found in Section 2.

Shorter CoTs. Several works aim to improve reasoning efficiency by directly reducing the number of generated tokens
(Renze & Guven, 2024; Nayab et al., 2024; Arora & Zanette, 2025; Aytes et al., 2025; Xu et al., 2025; Qu et al., 2025).
Since we aim to reduce the per-token latency, this line of research to encourage brevity is orthogonal to ours and could be
used alongside our method.

Test-time Scaling. To enhance LLM performance, the priority has historically been to scale training with more data and
bigger models (Kaplan et al., 2020; Hoffmann et al., 2022). More recently, there is an increasing effort towards test-time
scaling to boost performance on difficult tasks like math. Two ways of test-time scaling that have seen great success. First,
for a single prompt, multiple responses can be sampled from the LLM (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024;
Manvi et al., 2024; Sun et al., 2024). This increases the probability that a desired response lies in the pool of responses.
While this method of scaling is highly parallelizable, it also relies on a verifier model to select the best one. Second, CoTs
can be lengthened for each response (Guo et al., 2025). By extrapolating the success of CoTs to extreme lengths (e.g.,
DeepSeek-R1 generates up to 32K tokens per response), the accuracy of the final answer improves significantly, but this
method has low parallelizability due to the autoregressive nature of generation.

B. Effect of Rank & Sparsity
Here, we ablate the relationship between varying ranks in Caprese and sparsity levels in CATS. Using Llama 3.2 1B Instruct,
we show the test performance of MATH in Figure 4. The same training procedure and data are used as outlined in Section 3.
For all ablated ranks, Caprese consistently outperforms pure CATS by a large margin when CATS performs poorly relative
to the full model. With a couple of exceptions (perhaps due to randomness in the generation process), greater performance is
correlated with higher rank.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Density

0

2

4

6

8

10

12

Ac
cu

ra
cy

Full
CATS
Caprese (r = 128)
Caprese (r = 256)
Caprese (r = 512)

Figure 4: Llama 3.2 1B Instruct’s performance on MATH with varying densities of CATS and ranks in Caprese with
end-to-end training.

C. Caprese Parameters
Caprese has a tiny parameter footprint. In Figure 5, we see that Caprese adds roughly 1% new parameters relative to the full
model with a trend downwards as model size increases.

7

Submission and Formatting Instructions for LCFM 2025

109 1010

Model Parameters

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ca
pr

es
e

Pa
ra

m
et

er
s (

%
) Llama 3

Gemma 2
Qwen 2.5

109 1010

Model FF Parameters

1.0

1.2

1.4

1.6

1.8

2.0

Ca
pr

es
e

Pa
ra

m
et

er
s (

%
) Llama 3

Gemma 2
Qwen 2.5

Figure 5: The percent of new parameters that Caprese (r = 256) adds relative to the entire model (left) and relative to only
the FF parameters (right) for the Llama 3, Gemma 2, and Qwen 2.5 model families.

D. Parallel Inference Computation
The computation with Caprese parameters, xLR, can be done in parallel with the original FF operations. In fact, L and
R can be concatenated with the up and down projection matrices, respectively. In other words, the Caprese FF block is
F̂F

+
(x) = F̂F

+

2 (F̂F
+

1 (x)), such that

ẑ+ = F̂F
+

1 (x) =
[
σ(xŴg) 1r

]
⊙ x

[
Ŵ1 L

]
, (9)

F̂F
+

2 (ẑ
+) = ẑ+

[
Ŵ⊤

2 R⊤
]⊤

, (10)

where 1r is a one-vector with length r. In practice, to save memory and time, we do not materialize 1r but directly assign
the product with σ(xŴg) to corresponding entries of xŴ+

1 . Recall that the prefill stage still just uses the original model.

E. Enhancing Thinking Models with Reselection
We can push the performance of Caprese with neuron reselection. For a sample, GRIFFIN and CATS calculate metrics (s
and τ) to determine subsets of the FF block to use, but these metrics are fixed during the generation phase. After generating
many tokens, these selection metrics can benefit from regular updates mid-generation.

For GRIFFIN, updating the metric s entails integrating the FF feature statistics of generated tokens into s. While this can
be done by re-running prefill on all tokens, there is a more efficient way. This can be done by passing in the generated
tokens following the last reselection through the full model. As these tokens propagate through each layer, we find the
selection metric for the generated tokens sG and update corresponding KV pairs. This is similar to verification in speculative
decoding (Chen et al., 2023; Leviathan et al., 2023). Since s and sG are ℓ2-norms along the token axis, we can define
the updated metric as

√
(s⊙ s) + (sG ⊙ sG) and use that to reselect different subsets of the FF block to use. This setup

updates the pruned layers yet avoids prefill for all tokens. Table 4 shows a clear benefit of reselection (even if infrequent) in
Caprese by pushing the performance much closer to the full model.

Table 4: E2E Caprese AMC 2023 accuracies and standard deviations when recalculating the GRIFFIN pruning metric
during generation. ρ is the rate at which we reselect pruned neurons in terms of generated tokens. No reselection and the
full model are special cases where ρ = ∞ and ρ = 1, respectively.

MODEL NO RESELECT ρ = 1024 ρ = 256 FULL

DEEPSEEK-R1-DISTILL-QWEN 1.5B 35.83 ± 7.22 40.83 ± 5.77 40.00 ± 7.50 57.50 ± 5.00

DEEPSEEK-R1-DISTILL-QWEN 7B 70.00 ± 5.00 68.17 ± 1.44 74.17 ± 5.20 76.67 ± 3.82

DEEPSEEK-R1-DISTILL-QWEN 14B 82.50 ± 6.61 87.50 ± 4.33 89.17 ± 3.82 90.83 ± 2.89

Reselection is also possible with CATS but requires recomputing prefill for all tokens. The parameter to update is the hard
thresholding parameter τ , but because this requires finding the desired percentile of intermediate values in the FF block, we
would need to access to all values, which likely cannot be fully stored in memory. Consequently, prefill will need to be
redone anytime we want to update τ . Additionally, since τ represents a cutoff for a desired percentile (e.g., median), it is
fairly robust to new observations. Given this and the lack of computational incentive, we focus primarily on reselection for
GRIFFIN.

8

Submission and Formatting Instructions for LCFM 2025

F. Natural Response Lengths
Caprese implicitly encourages brevity, often even producing shorter responses than from the full thinking model. Intriguingly,
this behavior arises despite any enforcement or regularization on response lengths anywhere during training or inference
(except for cutting off generation at 32K tokens). Shown in Figure 6 with MATH-500, the shortest mean response length
for all problem difficulties and subjects is either the full model or Caprese. Meanwhile, CATS consistently outputs the
longest responses, averaging roughly 1K more across every sample. It is also interesting to note that with increasing problem
difficulty, all models and methods naturally allocate more inference tokens towards answering the question. Given CATS
and Caprese (CATS) achieve similar MATH-500 accuracies to the full DeepSeek-R1-Distill-Qwen 7B and 14B models, the
ability of Caprese to cut down the lengthy responses of CATS down to the response lengths of the original model or shorter
without compromising performance is a direct memory and latency benefit.

1 2 3 4 5
Levels

0

2000

4000

6000

8000

10000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-1.5B
Overall Mean
Full
CATS
E2E Caprese

1 2 3 4 5
Levels

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-7B
Overall Mean
Full
CATS
E2E Caprese

1 2 3 4 5
Levels

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-14B
Overall Mean
Full
CATS
E2E Caprese

Alg
Count Geo

Int Alg Num
Prealg

Precalc

Subjects

0

2000

4000

6000

8000

10000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-1.5B
Overall Mean
Full
CATS
E2E Caprese

Alg
Count Geo

Int Alg Num
Prealg

Precalc

Subjects

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-7B
Overall Mean
Full
CATS
E2E Caprese

Alg
Count Geo

Int Alg Num
Prealg

Precalc

Subjects

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-14B
Overall Mean
Full
CATS
E2E Caprese

Figure 6: Average number of response tokens for MATH-500 queries across different problem difficulties (top) and subjects
(bottom). The subjects are algebra, counting & probability, geometry, intermediate algebra, number theory, prealgebra, and
precalculus. The global averages are indicated by the dashed lines. Sparsity is set at 50%.

Complementing Figure 6 for CATS, we show the natural response lengths to MATH-500 samples in Figure 7. Here, we
see the similar observations, though the difference between Caprese (GRIFFIN) and the full model is slightly larger but
decreasing with model size. Even so, response lengths of Caprese is still significantly shorter than GRIFFIN.

1 2 3 4 5
Levels

0

5000

10000

15000

20000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-1.5B
Overall Mean
Full
GRIFFIN
E2E Caprese

1 2 3 4 5
Levels

0

2000

4000

6000

8000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-7B
Overall Mean
Full
GRIFFIN
E2E Caprese

1 2 3 4 5
Levels

0
1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-14B
Overall Mean
Full
GRIFFIN
E2E Caprese

Alg
Count Geo

Int Alg Num
Prealg

Precalc

Subjects

0

5000

10000

15000

20000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-1.5B
Overall Mean
Full
GRIFFIN
E2E Caprese

Alg
Count Geo

Int Alg Num
Prealg

Precalc

Subjects

0

2000

4000

6000

8000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-7B
Overall Mean
Full
GRIFFIN
E2E Caprese

Alg
Count Geo

Int Alg Num
Prealg

Precalc

Subjects

0

2000

4000

6000

8000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-14B
Overall Mean
Full
GRIFFIN
E2E Caprese

Figure 7: Average number of response tokens for MATH-500 queries across different problem difficulties (top) and subjects
(bottom) when using GRIFFIN. The subjects are algebra, counting & probability, geometry, intermediate algebra, number
theory, prealgebra, and precalculus. The global averages are indicated by the dashed lines. Sparsity is set at 50%.

9

Submission and Formatting Instructions for LCFM 2025

G. Robustness to Test-time Density
Trained with a CATS density of 50%, Caprese shows great robustness to deviations from this percentage at test-time,
consistently outperforming CATS at across a wide range (Figure 8).

0.2 0.4 0.6 0.8 1.0
Test-time Density

5

10

15

20

25
Ac

cu
ra

cy

Llama 3.2 1B Instruct
CATS
Caprese

0.2 0.4 0.6 0.8 1.0
Test-time Density

0

10

20

30

40

50

Ac
cu

ra
cy

Llama 3.2 3B Instruct
CATS
Caprese

Figure 8: GSM8K performance at different test-time density levels for CATS. The Caprese parameters are trained once at
50% CATS and tested with different densities without fine tuning.

H. Additional Efficiency Metrics
We also report the average time to first token (TTFT) and time to next token (TTNT) in Table 5. The GRIFFIN and Caprese
add a small overhead during the prefill phase but generally improve TTNT by 7ms and 5ms for Qwen 2.5 14B and Gemma 2
9B, respectively. There is hardly any difference in TTFT and TTNT between GRIFFIN and Caprese, reinforcing the fact
that Caprese adds negligible overhead on top of GRIFFIN.

Table 5: Time to first and next token (s) for GRIFFIN and Caprese (GRIFFIN). For the “Setup” column, P +G indicates
input and generation lengths of P and G tokens, respectively. As before, GRIFFIN is applied to the first half of the model,
sparsity is set at 50%, and r = 256.

MODEL SETUP
AVG. TIME TO FIRST TOKEN AVG. TIME TO NEXT TOKEN

FULL GRIFFIN CAPRESE FULL GRIFFIN CAPRESE

QWEN 2.5 14B 2048+256 0.64 0.67 0.67 0.048 0.041 0.042
2048+2048 0.67 0.68 0.68 0.055 0.048 0.049
2048+8192 0.77 0.80 0.80 0.081 0.074 0.074

GEMMA 2 9B 2048+256 0.42 0.46 0.46 0.036 0.031 0.032
2048+2048 0.45 0.49 0.50 0.041 0.036 0.036
2048+8192 0.50 0.53 0.53 0.059 0.054 0.054

10

Submission and Formatting Instructions for LCFM 2025

I. Training Details
We set the inner dimension of our low-rank layer to r = 256 (to see the effect of different r, see Appendix B). In comparison
to the enormous inner dimension of FF layers (e.g., DFF = 14336 for Llama 3.1 8B and Gemma 2 9B), our choice of r is
relatively miniscule, adding only ∼ 1% new parameters for all tested models. We use a 20K subset of a common synthetic
math training set for training. For a fair comparison, the same subset is used for both layer-wise and E2E distillation for
every model. Each training sample is prepended with a CoT instruction: “Please reason step by step.” At test time, the actual
instructions may be vastly different. Layer-wise and E2E training consists of 20 epochs and 3 epochs, respectively. Training
and inference are done in BF16. Table 6 lists the hyperparameter settings for training Caprese layers. The E2E learning
rates lie in the interval [4e-6, 2e-4], where larger models tend to learn better with smaller learning rates.

Table 6: Caprese LW and E2E training hyperparameters.

LAYER-WISE END-TO-END

OPTIMIZER ADAM ADAM
LEARNING RATE 1E-3 [4E-6, 2E-4] (VARIES)
BATCH SIZE 128 16
EPOCHS 20 3
TRAINING SAMPLES 2E5 2E5
SCHEDULER LINEAR LINEAR
WARMUP 2% 2%

11

Submission and Formatting Instructions for LCFM 2025

J. Further Evaluations
This section contains more accuracy evaluations to supplement Section 4.

Table 7: Instruct models’ 0-shot accuracies on mathematical reasoning (GSM8K and MATH) and language generation tasks
(CoQA and QASPER).

MODEL GSM8K MATH COQA QASP.

Llama 3.1 8B IT 27.90 13.94 63.88 15.16
GRIFFIN 17.44 6.16 63.37 12.63
LW CAPRESE 27.14 9.72 65.05 14.21
E2E CAPRESE 40.49 12.64 65.50 15.35
CATS 40.56 11.80 58.85 12.26
LW CAPRESE 37.68 13.66 63.92 14.34
E2E CAPRESE 51.86 13.88 64.27 14.42

Llama 3.2 1B IT 22.44 10.66 55.43 14.43
GRIFFIN 7.13 5.42 56.05 14.11
LW CAPRESE 13.72 6.62 56.07 13.40
E2E CAPRESE 21.00 8.44 56.55 13.88
CATS 19.18 7.54 54.40 13.88
LW CAPRESE 18.65 8.28 55.58 14.35
E2E CAPRESE 20.39 9.04 56.12 13.75

Llama 3.2 3B IT 51.55 14.32 63.95 12.45
GRIFFIN 28.96 10.98 64.52 12.52
LW CAPRESE 40.18 13.70 64.33 11.60
E2E CAPRESE 44.66 16.96 64.83 12.35
CATS 41.24 12.04 58.87 11.36
LW CAPRESE 45.49 13.62 60.53 12.26
E2E CAPRESE 46.85 14.40 61.72 12.36

Gemma 2 2B IT 51.02 16.06 63.77 10.96
GRIFFIN 33.74 11.32 63.28 11.07
LW CAPRESE 42.53 12.32 63.77 10.75
E2E CAPRESE 48.14 13.70 63.37 11.05
CATS 34.42 10.56 61.53 10.11
LW CAPRESE 46.32 13.90 61.92 10.82
E2E CAPRESE 46.17 14.16 63.92 11.03
Gemma 2 9B IT 78.17 27.64 63.78 9.91
GRIFFIN 59.21 25.22 63.82 10.14
LW CAPRESE 76.72 25.84 64.20 9.82
E2E CAPRESE 76.65 25.30 64.42 9.92
CATS 76.50 27.32 64.37 9.78
LW CAPRESE 77.18 28.16 64.52 10.46
E2E CAPRESE 77.18 28.00 64.87 10.02

12

Submission and Formatting Instructions for LCFM 2025

100 101 102

Relative Compute Units
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Llama 3.2 1B Instruct
Full
GRIFFIN
Layer-wise Caprese
End-to-end Caprese

100 101 102

Relative Compute Units
0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Llama 3.2 3B Instruct
Full
GRIFFIN
Layer-wise Caprese
End-to-end Caprese

100 101 102

Relative Compute Units

0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Gemma 2 2B Instruct
Full
GRIFFIN
Layer-wise Caprese
End-to-end Caprese

100 101 102

Relative Compute Units
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Llama 3.2 1B Instruct
Full
CATS
Layer-wise Caprese
End-to-end Caprese

100 101 102

Relative Compute Units
0.1

0.2

0.3

0.4

0.5

0.6
Co

ve
ra

ge
Llama 3.2 3B Instruct

Full
CATS
Layer-wise Caprese
End-to-end Caprese

100 101 102

Relative Compute Units

0.1

0.2

0.3

0.4

0.5

0.6

Co
ve

ra
ge

Gemma 2 2B Instruct
Full
CATS
Layer-wise Caprese
End-to-end Caprese

Figure 9: Coverage and standard deviation of 140 samples from MATH as the number of generation attempts, N , scales. We
define Relative Compute Units = N ×A where A is the fraction of total parameters activated per input.

Table 8: Thinking models’ 0-shot accuracies on math reasoning tasks. Sparsity is set at 50%, and r = 256. AIME 2024 and
AMC 2023 columns also include the sample standard deviation across 3 runs. Further improvements with reselection are
shown in Table 4.

MODEL MATH-500 AIME 2024 AMC 2023

DeepSeek-R1-Distill-Qwen 1.5B 79.40 31.11 ± 1.92 57.50 ± 5.00
GRIFFIN 42.00 2.22 ± 1.92 16.67 ± 1.44
LW CAPRESE 47.20 3.33 ± 0.00 27.50 ± 2.50
E2E CAPRESE 60.40 6.67 ± 3.33 35.83 ± 7.22
CATS 72.00 14.44 ± 5.09 38.33 ± 3.82
LW CAPRESE 73.80 16.67 ± 3.33 46.67 ± 2.89
E2E CAPRESE 74.80 21.11 ± 1.92 48.33 ± 3.82

DeepSeek-R1-Distill-Qwen 7B 90.20 51.11 ± 3.85 76.67 ± 2.89
GRIFFIN 80.60 20.00 ± 3.33 58.33 ± 3.82
LW CAPRESE 84.80 27.78 ± 1.92 60.83 ± 1.44
E2E CAPRESE 85.40 28.89 ± 6.94 70.00 ± 5.00
CATS 89.20 37.78 ± 5.77 62.50 ± 2.50
LW CAPRESE 87.00 35.56 ± 5.09 65.83 ± 7.22
E2E CAPRESE 90.00 32.22 ± 5.09 79.17 ± 5.77

DeepSeek-R1-Distill-Qwen 14B 92.80 63.33 ± 3.33 90.83 ± 2.89
GRIFFIN 89.80 30.00 ± 6.67 79.17 ± 2.89
LW CAPRESE 90.80 38.89 ± 1.92 87.50 ± 5.00
E2E CAPRESE 89.20 37.78 ± 10.72 82.50 ± 6.61
CATS 92.80 57.78 ± 1.92 91.67 ± 5.20
LW CAPRESE 91.00 60.00 ± 5.77 88.33 ± 1.44
E2E CAPRESE 92.00 58.89 ± 11.71 85.83 ± 3.82

13

