
A Multi-Implicit Neural Representation for Fonts

Pradyumna Reddy1 Zhifei Zhang2

Zhaowen Wang2 Matthew Fisher2 Hailin Jin2 Niloy J. Mitra1,2

1University College London 2Adobe Research

Abstract

Fonts are ubiquitous across documents and come in a variety of styles. They are
either represented in a native vector format or rasterized to produce fixed resolution
images. In the first case, the non-standard representation prevents benefiting
from latest network architectures for neural representations; while, in the latter
case, the rasterized representation, when encoded via networks, results in loss of
data fidelity, as font-specific discontinuities like edges and corners are difficult
to represent using neural networks. Based on the observation that complex fonts
can be represented by a superposition of a set of simpler occupancy functions, we
introduce multi-implicits to represent fonts as a permutation-invariant set of learned
implicit functions, without losing features (e.g., edges and corners). However,
while multi-implicits locally preserve font features, obtaining supervision in the
form of ground truth multi-channel signals is a problem in itself. Instead, we
propose how to train such a representation with only local supervision, while the
proposed neural architecture directly finds globally consistent multi-implicits for
font families. We extensively evaluate the proposed representation for various
tasks including reconstruction, interpolation, and synthesis to demonstrate clear
advantages with existing alternatives. Additionally, the representation naturally
enables glyph completion, wherein a single characteristic font is used to synthesize
a whole font family in the target style.

1 Introduction

Fonts constitute the vast majority of documents. They come in a variety of styles spanning a range
of topologies representing a mixture of smooth curves and sharp features. Although fonts vary
significantly across families, they remain stylistic coherent across the different alphabets/symbols
inside any chosen font family.

Fonts are most commonly stored in a vector form (e.g., a collection of spline curves) that is compact,
efficient, and can be resampled at arbitrary resolutions without loss of features. This specialized
representation, however, prevents the adaptation of many deep learning setups optimized for regular
structures (e.g., image grids). In order to avoid this problem, custom deep learning architectures have
been developed for directly producing vector output but they typically require access to ground truth
vector data for training. This is problematic: first, collecting sufficient volume of vector data for
training is non trivial; and second, vector representations are not canonical (i.e., same fonts can be
represented by different sequence of vectors), which in turn requires hand-coded network parameters
to account for varying number of vector instructions.

An alternate approach is to rasterize vectorized fonts and simply treat them as images. While this
readily allows using image-based deep learning methods, the approach inherits problems of discretized

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Input Reconstruction Generation

OursImageVAE

Figure 1: Multi-implicit neural representation for high fidelity font reconstruction and generation.
Note that while ours perform similar to ImageVAE at lower/training resolution, the advantage of ours
become clear when we test at higher resolution (e.g, how corners continue to be preserved).

representations leading to aliasing artifacts and loss of sharp features. Further, the resultant images
are optimized for particular resolutions and cannot be resampled without introducing additional
artifacts.

Recently, implicit representation has emerged as an attractive representation for deep learning as,
once trained, they can resampled at different resolutions without introducing artifacts. Unfortunately,
implicit representations (e.g., signed distance fields) for fonts are often too complex to be represented
accurately by neural networks. As a results, although deep implicits work for simple fonts, they can
fail to retain characteristic features (i.e., edges and corners) for complex fonts.

Drawing inspiration from multi-channel SDFs [4], we observe that complex fonts can be expressed
as a composition of multiple simple regions. For example, a local corner can be represented as a
suitable composition of two half-planes, each of which can easily be individually encoded as deep
implicit functions. We build on this idea by hypothesizing that complex fonts can also be encoded as
suitable composition of global implicit functions. We call such a representation to be a multi-implicit
neural representation, as each (global) implicit function is neurally encoded.

Original Shape Single Channel
SDF Re-sampling

 Bitmap
Re-sampling

Multi-channel SDF
Re-sampling(Ours)

Figure 2: Corner preserving capability of dif-
ferent sampling methods.

Thus, multi-implicits provide a simple representation
that is amenable for processing by neural networks
and the output fidelity remains comparable, even un-
der resampling, to vector representations without los-
ing edge or corner features. A remaining challenge is
how to supervise such a network as there is no dataset
with reference multi-implicits that be directly used.
In this paper, we present a network structure and train-
ing procedure that allow multi-implicts to be trained
using only local supervision. We describe how to
extract necessary local supervision from vector input
and to adaptively obtain training information for the multi-implicits.

We extensively evaluated the proposed multi-implicits representation for various tasks including
reconstruction, interpolation, and synthesis to demonstrate clear advantages over several existing
state-of-the-art alternatives. Additionally, the representation naturally enables glyph completion,
wherein a single characteristic font glyph is used to synthesize a whole font family in consistent style.

2 Related Work

Raster-based representation. One of the most intuitive representation of shapes is raster, i.e.,
representing a 2D shape by pixels or a 3D shape by voxels, which provides the grid-format data that
is perfectly compatible with (regular) CNN models. Hence it has acted as a catalyst for many deep
learning based methods for semantic editing of raster-based shapes. A general idea is to learn an
encoding-decoding model and then manipulate the shape in the latent space. Sharing a similar spirit,
many generative models [21, 5, 15] engaged in the raster-based generation and attribute transfer.
[1, 25] narrowed down the scope to fonts specifically, which focus more on the shape instead of
texture. While the raster-based representation has shown strong semantic editability as incorporated

2

with deep models, it is still limited by its intrinsic resolution. Since image super-resolution is an
ill-posed problem, details cannot be fully recovered after upscaling.

Deep learning based vector graphs. Vector graphics (e.g., SVG) have been widely adopted as
a scalable representation. Typically, it is constructed by sequences of Bézier curves, which are
difficult to be modeled by traditional CNN models since the diverse sequence length across different
shapes, as well as diverse types and numbers of Bézier curves for the similar or even the same
shape. Therefore, RNN-based models (e.g., LSTM) are commonly adopted in recent works [17, 2] to
learn the dynamic sequence of curves. Although the sequential modeling could achieve semantic
editing and/or interpolation between shapes, it is still lagging behind CNN-based models (raster-
based methods) in terms of reconstruction accuracy because it has to model much longer temporal
dependency. Also, there is no specific attention given to features like edges and corners.

Transformation from raster to vector. Instead of directly modeling raster or vector, an idea of
achieving both scalability and editability is to model the transfer from raster to vector [20] (we will
not consider vectorization methods that purely transfer images to vectors). Such an approach inherits
the advantages of raster-based methods and supports easy editability. In addition, they output scalable
vectors directly. However, this method would be still limited by the raster resolution, i.e., the output
vector graph cannot capture enough details since the corresponding raster input may have already
lost those finer details. Another challenge for such methods is the high complexity of the shape, e.g.,
interpolation between shapes with different topologies leads to undesirable intermediate shapes.

Deep implicit representation. Deep implicit functions [10, 3, 8, 22, 18, 23] have achieved great
success in shape representation. They take advantage of deep learning techniques to fit an implicit
function, which provides a continuous representation breaking the grid limitation of a raster domain.
In addition, deep implicit functions model shapes spatially instead of modeling sequentially as afore-
mentioned in deep learning based vector graphs. Therefore, deep implicit functions could preserve
the editability like raster-based representation and potentially achieves scalable representation like
vectors. Unfortunately, existing works seldom explore the scalability and fidelity of shapes in their
representations, especially during editing, interpolation, and upscaling. For instance, sharp corners
always suffer from editing and scaling. This is particularly problematic in the domain of fonts, and
our work addresses this limitation via the proposed multi-implicit representations.

3 Methods

We represent fonts as the composition of multiple global implicit functions. An implicit representation
has two key advantages: it allows for rendering at arbitrary resolution; it can be locally supervised
in characteristic areas such as sharp edges and corners. Unlike a single implicit function, our
multi-implicit representation can faithfully reconstruct sharp features with low reconstruction error
(Figure 2).

Implicit
Model

Image
Rendering

Multi-SDF Differentiable
Rasterization

Multi-Curve Representation

Importance
Sampling

+
z

L 2 regularization Corner
Template Loss

 Global
Shape Loss

Gradient
 Loss

+

We train a generative neu-
ral network, as shown in the
inset, that models fonts us-
ing this representation. In-
stead of directly learning
the inside-outside status of
the font image [3], we pre-
dict a set of distance fields
of 2D shapes. Their com-
position is then fed into a differentiable rasterizer to produce the final image. We will show in
Section 4 how this generative model enables a diverse set of font reconstruction and editing opera-
tions. Section 3.1 details differentiable rasterization of 2D distance fields, and corresponding corner
preservation is discussed in Section 3.2. Finally, training losses and details are given in Section 3.3.

3.1 Differentiable Rasterization of Distance Field

As aforementioned, we use the signed distance field (SDF) to model 2D shapes. The common
supervisions for SDF are SDF labels from the ground truth curves or distance transform on the
silhouette [14]. Figure 3 compares the results between training with SDF and training with raster,

3

Ground Truth Only SDF Loss SDF + Raster Image Loss Raster Image Loss(Ours)Only SDF LossSDF + Raster LossSDF + Raster Loss Ours

Figure 3: Reconstruction with different training signals. Training using SDF (2nd column) does
not ensure good reconstruction in raster domain, while training with both SDF and rasterized image
(3rd column) and only rasterized SDF (ours) yields smoother boundary.

where training only on the ground truth SDF does not always result in a good raster image in terms of
boundary smoothness. In contrast, training with the supervision of raster yields smoother boundary.
Therefore, we will draw supervision on rasterized SDF to achieve better shape.

Sharing the spirit from vector graphics rasterization works [7, 11, 16, 19, 24], we simplify general
vector graphics rendering by analytically approximating the point to curve distance as,

I(x, y) = K (min
i∈F

di(x, y)) g (x, y) , (1)

K(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if d > γ,

k (d
γ
) = 1

2
+ 1

4
((d
γ
)
3

− 3 (d
γ
)) if − γ ≤ d ≤ γ,

0 if d < −γ,

(2)

where di(x, y) indicates an SDF of distance from pixel (x, y) center to the closest point on the i-th
curve corresponding the font F , and K denotes a function that approximates the opacity based on
the distance value. There are many works for estimating di(x, y) from scene parameters but most of
them are constrained by the choice of the parameterization. In this paper, we model each di(x, y)
using an implicit neural network. The function g models the spatially-varying texture of the shape.
For solid fonts, we set g = 1. In the supplemental we show examples of textured fonts where we
make use of spatially varying g. In the function K, γ is the anti-alias range, and the kernel k is
a radially symmetric continuous filter that satisfies the constraint k(1) = 0 and k(−1) = 1. In our
work, we approximate k(⋅) using a parabolic kernel similar to [19, 13]. Note that the rasterization
function I(x, y) has non-zero gradients only if (x, y) falls inside of the anti-aliasing range. We use a
progressively decreasing anti-aliasing range strategy for better convergence and fidelity (see Sec. 3.3).

3.2 Multi-Curve Representation for Sharp Corners

C
ur

ve
 1

C
ur

ve
 2

- Outside
- Inside F = max(C₁, C₂) F = min(C₁, C₂)

(a) Possible corner preserving shapes repre-
sented with n=2.

Q1

Q4

Q3Q2
O

(b) Corner tem-
plate.

Figure 4: Intersection of two curves to encode concave and
convex corners.

We will lose details like sharp corners
when upscaling bitmaps or sign dis-
tance functions. Resampling an im-
plicit model that encodes the pixel
values or signed distance values of
a shape similarly suffers from blurry
corners. An brute force solution is
to train the implicit model with ex-
tremely high-resolution images, but
this would drastically increase the bur-
den of training, and still limited by
the training resolution. Rather than
directly modeling corners, we represent corners as the intersection of multiple curves (e.g., lines or
parabolas), drawing inspiration from traditional representations [9]. Note that even though these
individual sub-curves may be smoothed after encoded by a deep model, the sharpness of their inter-
section will be preserved. With this insight, we construct sharp corners from multiple smooth curves

4

predicted by the implicit model. More specifically, the implicit model is designed to predict multiple
SDFs (and rasterization of distance fields), each of which carries smooth curves/shapes decoupled
from corners and edges as illustrated in Figure 4a.

Assume a shape F is represented by a set of curves C = {C1, C2,⋯, Cn}, where Cn is a binary
map indicating whether a pixel is inside (i.e., 1) or outside (i.e., 0) the n-th curve, like the example
in Figure 4a. In our scenario, Cn = K(dn), where dn is the n-th SDF channel estimated by the
implicit model. Then, a function over all curves F (C) will fuse those curves to reconstruct the
shape, preserving sharp corners. As illustrated in Figure 4a, two curves can sufficiently represent
a corner, either convex or concave by adopting maximum or minimum as the function F . To
represent a shape with arbitrary corners, however, it requires three curves at least. For example,
F (C) = min(max(C1, C2), C3) can model all corners in a shape. Therefore, we set n = 3, i.e.,
C = {C1, C2, C3}. Since deep models are sensitive to the permutation of guidance signals during
training, we use the median function as F , which achieves sharp corners and permutational invariance
to the order of these curves. Thus, a corner-related loss on F (C) could be robust to the ordering
ambiguity.

Based on F (C) (median function on three curves), a typical corner O is presented in Figure 4b, where
intersection of two curves divides its local space into four quadrants, i.e., from Q1 to Q4. There are
always two opposite quadrants that one is inside area (i.e., Q1) where corresponding values from
F (C) are 1, and the other is outside area (i.e., Q4) where corresponding values from F (C) are 0. The
rest two opposite quadrants (i.e., Q2 and Q3) are equal on F (C) but different on C. For example, the
values on {C1, C2, C3} corresponding to the Q2 area is (1, 0, 0), so F (C) on Q2 is 0. Then, F (C) on
Q3 should be 0 as well. However, the values on {C1, C2, C3} corresponding to the Q3 region must be
different from (1, 0, 0), i.e., could be (0, 1, 0) or (0, 0, 1). If F (C) on Q2 and Q3 is 1, O is a concave
corner. Otherwise, O is a convex corner. Such distribution of C along the four quadrants around a
corner O is referred to as corner template.

The shapes are encoded as the multi-curve representation through an implicit model. The implicit
model takes sample (x, y, l) (i.e., 2D spatial location (x, y) and glyph label l), as well as embedding z
that indicates the font style, and outputs three channels of SDF {d1, d2, d3}. Then, the rasterization
approach discussed in Differentiable Rasterization of Distance Field converts each di to Ci (i =
1, 2, 3). Finally, the median function F (C) renders the final shape. We optimize the global shape using
the final render output and (locally) supervise each corner to be locally represented as an intersection
of two curves. One could use the output of [4] to train a network. However, the edge coloring
approach presented in [4] has no canonical form, which prevents a neural network from learning a
continuous latent space between shapes. Please note that since we focus on corner supervision to
ensure sharp corners at higher resolution resampling, it is unnecessary to constraint the model by
multi-channel supervision globally.

In the optimization of rendered global shape, the median operation F (C) would route the gradients
to the correspondingly active value only, i.e., only update a single channel at each location of C.
However, at least two of the three channels of C at a certain location need to be updated to approaching
the ground truth because of the nature of the median operator. Therefore, in the training stage, we use
an approximation F̂ (C) defined as the average of the median and the closest value to the median, thus
two channels will be updated.

3.3 Training Details

We use three losses on the shape of glyph: (i) a global shape loss that captures glyph shapes globally,
(ii) corner template loss that supervises intersection of curves locally to make the shape robust against
resampling and editing; and (iii) Eikonal loss to adhere to true SDFs.

- Area Samples

- Edge Samples

- Corner Samples

For global shape training, since gradients are non-zero only at the anti-
aliasing range, i.e., edges of the shape, we sample the edges of the
rasterized glyph to train the implicit model. We shape 3 × 3 neigh-
borhoods around the anti-alias pixel, where we have a sample of one
value outside the shape (i.e., 0), one value inside the shape (i.e., 1),
and everything in between. Meanwhile, we sample from homogeneous
areas inside and outside of the glyph, such that the model does not fit
a degenerate solution. The edge/corner-aware sampling is referred to as

5

importance sampling (see inset). Such non-standard sampling further motivates the use of implicit
models, and importance sampling would significantly reduce the computational complexity for
training on higher resolution shapes as compared to the traditional training on grid images.

We measure global shape loss between the final rendering from F (C) and rasterized glyph I . We use
a differential approximation F̂ (C) at training time. All the edges, area, and corner samples from the
raster image are used to train the implicit model via mean square error as,

Lglobal = E (F̂ (C) − I)2 . (3)

For local corner template loss, we first perform corner detection. A corner is defined as a local where
two curves intersect at an angle less than a threshold (the threshold is 3rad or 171◦ in our experiments).
For each corner, we generate the corner template as discussed in section 3.2. The template size is
7× 7 corresponding to the image size of 128× 128. The size of the corner template is scaled based on
the size of the image, but the size of the sampling neighborhood for the global shape training remains
the same. We densely sample the edges and corners, and sparsely sample the homogeneous areas.

To represent glyph corners as the intersection of two curves, we supervise the corner samples by
the corresponding corner templates. Since the render function F (C) is invariant to the order of the
SDF/raster channels, the corner template loss inherits the permutation invariance to the channel order
and, in order to avoid unnecessarily constraining the network, we only supervise Q2 and Q3 of the
template using the loss,

Llocal = EO∈corner samples

n

∑
i=2

min
j∈{2,⋯,n}

(COi − Tj(O))2 , (4)

where O indicates a corner sample from ground truth, and n is the number of channels (i.e., n = 3

in our setting). The correspondingly predicted curves of the corner O are denoted by COi , and the
corresponding corner template is T (O) that has n channels indexed by j.

The gradient loss aims to constraint the output of the implicit network to resemble a distance field
this is so that the implicit re-sampling is more well behaved and resembles a closed continuous shape.
A special case of Eikonal partial differential equations [6] posits that the solution to d(x, y; θ) must
satisfy E∣∣∇d(x, y; θ)∣∣ = 1, where d(x, y; θ) denotes a simplified implicit model parameterized by θ.
Since satisfying this constraint is not completely necessary for our desired solution, we loosen it to
be greater than or equal to 1 as Eq. 5, which intuitively encourages the function to be monotonic.

Lgrad = { E∣1 − ∥∇d(x, y; θ)∥2∣ if ∥∇d(x, y; θ)∥2 < 1,
0 if ∥∇d(x, y; θ)∥2 ≥ 1, (5)

where ∥ ⋅ ∥2 represents the `2-norm, and ∣ ⋅ ∣ calculates the absolute values. Finally, the total loss is

L = Lglobal + αLlocal + βLgrad + γ∥z∥2, (6)

where α, β, and γ are weights to balance these terms during the training.

Training Warm-up. Since the gradients mainly fall into the anti-aliasing range, network initializa-
tion would significantly affect the convergence. To this perspective, we set the initial anti-aliasing
range to be the whole image range and slowly shrink it to k ⋅w−1 during the training, where w is image
width, and k = 4 in our experiments. Such warm-up helps the model converge more consistently,
and the estimated SDF is more well behaved. Comparison of SDF with and without warm-up is
conducted in the supplementary.

4 Experiments

We evaluate our method against the tasks of reconstruction, interpolation, and generation. In
reconstruction and interpolation, we compare our method to ImageVAE [12], DeepSVG [2], and
Im2Vec [20], while we compare to DeepSVG and Attr2Font [25] in the generation task. The metrics
for evaluating the rendered glyphs are mean squared error (MSE) and soft IoU (s-IoU), which is
defined as

s-IoU(I1, I2) = ∥I1I2∥1/∥(I1 + I2)∣0,1∣∥1, (7)

6

Table 1: Comparison with baselines on reconstructing training samples at different resolutions. In
training, we use resolution of 64 × 64. In testing, to achieve target resolution, we bilinearly upsample
ImageVAE output from 64, rasterize vector from DeepSVG and Im2Vec, and directly query ours.

MSE ↓ s-IoU ↑
Methods 128 256 512 1024 128 256 512 1024

ImageVAE .0072 .0120 .0160 .0186 .8252 .8416 .8482 .8494
DeepSVG .1022 .1081 .1108 .1121 .3073 .3124 .3162 .3164

Im2Vec .0435 .0518 .0557 .0571 .7279 .7293 .7294 .7294
Ours .0118 .0170 .0201 .0218 .8750 .8978 .9035 .9049

where I1 and I2 are the images to compare, ∥ ⋅ ∥1 denotes the `1-norm, and ∣0, 1∣ clips the values to
the interval of [0,1]. To evaluate the fidelity of glyph rendering in larger scales, glyphs are rendered at
the resolution of 128, 256, 512, and 1024 from each method without changing the training resolution
(64 × 64).

Input ImageVAE DeepSVG Im2Vec Ours Input ImageVAE DeepSVG Im2Vec Ours

Figure 5: Reconstruction examples (baseline vs. ours) with zoom-in box highlighting corners.
We have vectorized the zero-level-set of the SDF output in a piece-wise linear way. Please use
digital-zoom to take a closer look at the difference in reconstruction quality.

Reconstruction and Interpolation. We compute MSE and s-IoU over the training dataset at
different resolutions to quantify how different algorithms capture the input training dataset. For a fair
comparison, we train all the algorithms on the same dataset used by Im2Vec [20], which consists
of 12,505 images. Table 1 displays MSE and s-IoU metrics on the training set. For ImageVAE, we
perform bilinear interpolation to obtain higher resolution outputs. Our method outperforms the others
on s-IoU, indicating better reconstruction of the glyph shapes. ImageVAE gets higher scores on
MSE because its training objective aligns with the MSE metric. However, ImageVAE would show
blurry shapes in interpolation and editing as demonstrated in Figure 6a, where we achieve more
continuous interpolation/latent space. Even in reconstruction, as visualized in Figure. 5, ImageVAE
cannot preserve sharp boundary and corners as compared to the other methods. Since DeepSVG and
Im2Vec directly output vectors, they can always render shapes with clear boundaries, but they are
limited in capturing the global shapes as compared to our method. Another advantage of our method
over DeepSVG and Im2Vec is that we learn a smoother latent space, achieving better performance on
interpolation as demonstrated in Table 2. Even interpolating between complex shapes, as shown in
Figure 6b, our method performs better than the state-of-the-art Im2Vec. In Table 2 we present the
MSE and s-IOU calculated between a random interpolated glyph and its nearest neighbour in the
training dataset. This helps quantify similarity between training versus generation distribution.

We have also experimented with Fourier features, Sine activation and Sawtooth activation function
with a feed forward network, due to the high frequency nature of these functions the latent space
learned by such a network is not continuous. Since learning a continuous latent space is essential
for applications like interpolation and font family generation from a complete or partial glyph, we
resorted to using a LeakyReLU based activation function. However if the users main requirement is
only faithful reconstruction of the input dataset, single channel fitting with fourier features trained

7

using our differential rasterization function should yield similar results as multi channel fitting with
LeakyReLU activation.

Table 2: Comparison with baselines on interpolation at different resolutions.
MSE ↓ s-IoU ↑

Methods 128 256 512 1024 128 256 512 1024
ImageVAE .0181 .0183 .0185 .0185 .7715 .7721 .7731 .7734
DeepSVG .0544 .0556 .0569 .0575 .6337 .6347 .6365 .6372

Im2Vec .0434 .0445 .0463 .0473 .7213 .7218 .7232 .7238
Ours .0279 .0297 .0316 .0343 .8181 .8184 .8222 .8234

Im
ag

e
VA

E
D

ee
pS

V
G

Im
2V

ec
O

ur
s

Interpolation

Source Target

(a) Comparison of all methods.

Interpolation

Im
2V

ec
O

ur
s

Source Target

(b) A challenging example where baselines fail.

Figure 6: Comparison of interpolation between two random font styles. We color different curves in
the vector output to highlight details.

Generation. To generate new fonts and the corresponding glyphs, first the auto-decoder implicit
model is trained with latent vector z and glyph label (i.e., one-hot encoding) concatenated to spatial
locations as the input. We train on 1,000 font families, i.e., 52,000 images, and test on 100 font
families. In the inference stage, given an unseen glyph, we first find the optimal latent vector (i.e., font
style) that makes the rendered glyph closest to the given glyph. More specifically, fixing the glyph
label based on the given glyph, its font latent vector ẑ can be obtained by minimizing the distance
between the raster of the given glyph and the predicted glyph using gradient descent. With the optimal
ẑ, all the other glyphs with the same font style can be generated by iterating the glyph label. Figure 7
compares the font completion results between the baselines and ours, where a glyph “A” is given
with unseen font style. Our results outperform the others in terms of global shape and sharpness of
boundaries and corners. In general, raster-based methods (e.g., Attr2Font) tend to generate better
shape but get blurry at corners. By contrast, vector-based methods (e.g., DeepSVG) eliminate the
blurry effect while difficult to achieve good global shapes. It is a dilemma of generating better global
shapes or better local corners in recent works. Our method is achieving both good shapes and corners.
Table 3 provides statistical results that further demonstrates the superior generation capacity of our
method.

We conduct a more challenging task, i.e., glyph completion, to explore the potential generation
capacity of our method. As illustrated in Figure 8, given a partial glyph, it can still recover the whole
glyph, as well as other glyphs with the same font style. In addition, sharp corners are still preserved.

Table 3: Comparison with baselines on font generation task at different resolutions.
MSE ↓ s-IoU ↑

Methods 128 256 512 1024 128 256 512 1024
DeepSVG .2597 .2768 .2854 .2911 .3584 .3613 .3651 .3672
Attr2Font .2004 .2231 .2481 .2563 .6204 .6451 .6523 .6560

Ours .0946 .1027 .1065 .1083 .8429 .8462 .8469 .8471

8

Input

D
ee

pS
V

G
A

ttr
2F

on
t

O
ur

s

Figure 7: Font completion examples (baseline vs. ours) with zoom-in boxes highlighting the corners.

Input(D)

Figure 8: Glyph completion example. Given a partial glyph unseen in the training set, our method
can complete the given glyph and other glyphs with the same font style. The zoom-in boxes highlight
the corners. The mask region in the input is ignored during optimizing the latent vector ẑ.

5 Conclusion

We have presented multi-implicits – a new vector representation that is easy to process with neural
networks and maintains 2D shape fidelity under arbitrary resampling. The representation is learned
in a locally supervised manner allowing high precision recovery of corners and curves. The proposed
multi-implicits representation is extensively evaluated in various font applications, including high-
resolution reconstruction, font style interpolation, font family completion, and glyph completion, and
demonstrates clear advantages over prior image based and curve based approaches.

Broader Impact The proposed representation has the potential to be applied to other 2D vector
objects, such as icons and animations, which can empower artists’ creativity and productivity. If
trained on a handwriting dataset such a method could possibly be used for emulating a person’s
handwriting for forgery.

9

References
[1] S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell. Multi-content gan for few-shot

font style transfer. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7564–7573, 2018.

[2] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte. Deepsvg: A hierarchical generative network for vector
graphics animation. arXiv preprint arXiv:2007.11301, 2020.

[3] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5939–5948, 2019.

[4] V. Chlumskỳ, J. Sloup, and I. Šimeček. Improved corners with multi-channel signed distance fields. In
Computer Graphics Forum, volume 37, pages 273–287. Wiley Online Library, 2018.

[5] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative adversarial networks
for multi-domain image-to-image translation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8789–8797, 2018.

[6] M. G. Crandall and P.-L. Lions. Viscosity solutions of hamilton-jacobi equations. Transactions of the
American mathematical society, 277(1):1–42, 1983.

[7] A. E. Fabris and A. R. Forrest. Antialiasing of curves by discrete pre-filtering. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, pages 317–326, 1997.

[8] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser. Local deep implicit functions for 3d shape. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4857–4866,
2020.

[9] C. Green. Improved alpha-tested magnification for vector textures and special effects. In ACM SIGGRAPH
2007 courses, pages 9–18. 2007.

[10] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A papier-mâché approach to learning 3d
surface generation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 216–224, 2018.

[11] S. Gupta and R. F. Sproull. Filtering edges for gray-scale displays. ACM SIGGRAPH Computer Graphics,
15(3):1–5, 1981.

[12] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[13] T.-M. Li, M. Lukáč, G. Michaël, and J. Ragan-Kelley. Differentiable vector graphics rasterization for
editing and learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 39(6):193:1–193:15, 2020.

[14] C.-H. Lin, C. Wang, and S. Lucey. Sdf-srn: Learning signed distance 3d object reconstruction from static
images. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[15] M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen. Stgan: A unified selective transfer network
for arbitrary image attribute editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3673–3682, 2019.

[16] C. Loop and J. Blinn. Resolution independent curve rendering using programmable graphics hardware. In
ACM SIGGRAPH 2005 Papers, pages 1000–1009. 2005.

[17] R. G. Lopes, D. Ha, D. Eck, and J. Shlens. A learned representation for scalable vector graphics. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7930–7939, 2019.

[18] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020.

[19] D. Nehab and H. Hoppe. Random-access rendering of general vector graphics. ACM Transactions on
Graphics (TOG), 27(5):1–10, 2008.

[20] P. Reddy, M. Gharbi, M. Lukac, and N. J. Mitra. Im2vec: Synthesizing vector graphics without vector
supervision. arXiv preprint arXiv:2102.02798, 2021.

[21] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. Surfnet: Generating 3d shape surfaces using deep
residual networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6040–6049, 2017.

10

[22] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations with
periodic activation functions. Advances in Neural Information Processing Systems, 33, 2020.

[23] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson, M. McGuire, and
S. Fidler. Neural geometric level of detail: Real-time rendering with implicit 3D shapes. 2021.

[24] K. Turkowski. Anti-aliasing through the use of coordinate transformations. ACM Transactions on Graphics
(TOG), 1(3):215–234, 1982.

[25] Z. L. Yizhi Wang*, Yue Gao*. Attribute2font: Creating fonts you want from attributes. ACM Trans.
Graph., 2020.

11

	Introduction
	Related Work
	Methods
	Differentiable Rasterization of Distance Field
	Multi-Curve Representation for Sharp Corners
	Training Details

	Experiments
	Conclusion

