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ABSTRACT

Diffusion models have emerged as a powerful tool for generating diverse types of
data, including sequential data such as audio, video, and motion. As the temporal
consistency in sequential data is crucial for maintaining fidelity and realism, this
paper introduce the AutoRegressive Temporal diffusion (ARTDiff) approach to
address the challenge of temporal consistency in diffusion models. ARTDiff offers a
straightforward and efficient solution that requires minimal computational overhead.
Our proposed ARTDiff method leverages the inherent autoregressive dependence
structure in time by introducing a Gaussian noise distribution whose correlations
between time frames have a functional form in terms of time difference. This
design explicitly captures the temporal dependencies and enhances the consistency
in generated sequences. We evaluate the effectiveness of ARTDiff on audio,
motion and video generation tasks. Experimental results demonstrate that ARTDiff
significantly improves the fidelity and realism of generated samples compared
to baseline diffusion models. The simplicity and efficiency of ARTDiff make
it a practical choice for incorporating temporal consistency in diffusion-based
generation models.

1 INTRODUCTION

Deep generative models have found applications across a wide array of data types, including images,
audio, video, motion, and more. Among this diverse range, a significant subset is sequential data.
Unlike other data types whose order does not matter, sequential data possess a temporal dimension
that is distinct from other feature dimensions. The coherence and dynamics of this particular
dimension play a vital role in generating valid samples. To tackle this challenge, an intuitive
solution is to employ an autoregressive framework, where each subsequent data frame is generated
by conditioning explicitly on previous frames. Notable examples of such frameworks include
Convolutional Neural Networks (CNN) (Van den Oord et al., 2016a;b), Transformers (Radford et al.,
2018; Brown et al., 2020), autoregressive Generative Adversarial Networks (GANs) (Morrison et al.,
2021), and autoregressive normalizing flows (Valle-Pérez et al., 2021). The autoregressive framework
establishes correlations among time frames; yet it may lead to an excessively slow sampling time,
especially for long sequences.

On the other hand, there is a surge of interest in the family of diffusion models (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020). They have been extensively used in generating sequential
data such as audio (Kong et al., 2021; Yang et al., 2023), video (Ho et al., 2022; Blattmann et al.,
2023), and motion (Tevet et al., 2022; Chen et al., 2023). These models have garnered recognition
due to their stable training and efficient parallel sampling techniques, which can be attributed to
their non-autoregressive nature that circumvents the need for sequential sampling. However, the
non-autoregressive property of diffusion models raises the question of their ability to effectively
capture and preserve the temporal dependencies inherent in sequential data.

Various approaches have been explored to incorporate the autoregressive framework into diffusion
models, with the goal of enhancing temporal consistency. For instance, Han et al. (2023) explicitly
introduced the autoregressive framework by iteratively generating motion clips conditional on the
previous timestamp. Rasul et al. (2021) added a Recurrent Neural Network (RNN) alongside to model
the sequence, where the reverse diffusion process at each time frame t is conditioned on the t-th
output of the RNN. Unsurprisingly, these methods inherit the potential drawback of the autoregressive
framework, as the time-consuming reverse diffusion process needs to be repeated multiple times.
Alternatively, there are more subtle designs that introduce autoregressiveness. For example, in Luo
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et al. (2023), the video sequences are divided into distinct frames, and instead of generating the
entire video as a whole, the model generates the difference between each frame and a central frame.
Latent diffusion models (Lovelace et al., 2022; Blattmann et al., 2023; Chen et al., 2023) utilized
encoders and decoders to transform the target data into a latent space with reduced dimensions.
The diffusion models then operate in this latent space whose temporal dynamics are concentrated.
However, these methods either require complex training schemes or struggle to effectively capture
long-range dependencies because of the limited latent space dimension.

This paper presents a novel and seamless approach to address temporal inconsistency by integrating
autoregressiveness directly into the diffusion process. Specifically, we design a new sampling
distribution where the temporal correlations are added into noises. These correlations adhere to an
autoregressive structure, with stronger correlations among closer time frames and weaker correlations
among farther time frames. Inspired by autocorrelation patterns of autoregressive (AR) models
in time series literature (Fuller, 1996; Cryer & Chan, 2008) and temporal patterns of Recurrent
Neural Networks (RNNs) (Huang et al., 2023) and state space models (Gu et al., 2022; Smith
et al., 2023), we propose three different correlation designs. A localized design is also devised to
adapt for extremely long sequences. Within the local window, the correlations decay exponentially
as the distance between time frames increases. The noises for different windows also follow an
order-1 autoregressive model to strengthen the temporal consistency. The implementation of our
new sampling scheme is straightforward and incurs nearly no computational overhead as empirically
validated in Section 3.4.

The main contributions of our paper are threefold:

1. We propose a novel method to address the challenge of temporal inconsistency in diffusion
models by introducing autoregressive techniques directly into the diffusion process. By
designing a new sampling distribution that incorporates temporal correlations into the noise,
we enable the diffusion models to effectively capture and preserve the temporal dependencies
inherent in sequential data.

2. The new method maintains the efficient non-autoregressive sampling scheme of diffusion
models while incurring minimal computational overhead. This allows the generation of long
sequences in an efficient and scalable manner, making our approach applicable to real-world
scenarios that involve the synthesis of large-scale sequential data.

3. We extensively evaluate the effectiveness of our method in enhancing temporal coherence,
preserving fidelity, and capturing long-range dependencies through various sequential data
generation tasks, including audio, motion and video synthesis. Moreover, our ablation study
reveals an interesting finding that highlights the potential harm caused by a mismatch in
sampling distribution, particularly for long sequences.

1.1 OTHER RELATED WORKS

Noise design in diffusion models Several works have explored the design of noises used in diffusion
models, each with specific objectives. Nichol & Dhariwal (2021) and Chen (2023) investigated
alternative noise scheduling methods beyond the linear scheduling in Ho et al. (2020). Avrahami et al.
(2022) blended the noised background and foreground images in each diffusion step to enable local
editing, and similar idea is also adopted in Couairon et al. (2023). Regarding the noise distribution,
Nachmani et al. (2021) studied the use of Gamma distribution and a mixture of Gaussian distributions,
which offer more degrees of freedom. Luo et al. (2023) separated the noise into two parts, one for the
central frame and another for the difference from the central frame to improve temporal consistency
in video generation. Ge et al. (2023) directly imposed an AR(1) model to the noises, which does not
account for other temporal decay patterns and long-term dependencies; instead, our correlation design
has richer and more flexible patterns. Lee et al. (2022) introduced an informative prior distribution
for noise by leveraging conditional context information. However, their method requires manual
design adjustments for each new data type and task. Our paper also considers modifying the noise
distribution, however, our approach can be easily implemented in both conditional and unconditional
sequential generation tasks and be generalized for different data types.

Autoregressive framework in sequence modeling In the context of sequence modeling, capturing the
temporal dynamics with autoregressive frameworks without compromising computational efficiency is
also of interest. Recent advancements include integrating RNNs into Transformers while maintaining
parallelization (Huang et al., 2023) and using state space models to capture temporal dependencies
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Figure 1: Illustration of the comparison between ARTDiff and vanilla diffusion. In the upper part,
ARTDiff utilizes Gaussian noises that are generated from designed distributions featuring temporal
correlations. In contrast, noises are generated from standard Gaussian in vanilla diffusion.

(Gu et al., 2022; Smith et al., 2023). Despite the different autoregressive frameworks utilized in
these studies, they all highlight that the temporal dynamics of RNNs and state space models can be
characterized by two fundamental patterns: exponential decays and damped sine or cosine waves.
Remarkably, these patterns also match the shapes of autocorrelation functions for AR models in time
series literature (Fuller, 1996; Cryer & Chan, 2008).

2 METHODS

2.1 REVISIT DIFFUSION MODELS

We start with reviewing the vanilla diffusion process following the DDPM in Ho et al. (2020) and
consider a case where the data is sequential. Denote a sequential data sample with the number
of time frames (or sequence length) equal to F by X ∈ RD1×···×Dp×F , where the last dimension
corresponds to the temporal dimension and the first p dimensions are other feature dimensions.

In vanilla diffusion process, the p+ 1 dimensions are not distinguished and we may treat the tensor
X as a vector x. The diffusion models encompass two processes: forward diffusion and reverse
diffusion. In the forward diffusion process, the sample x is gradually destroyed by adding standard
Gaussian noises at each diffusion step t+ 1:

xt+1 =
√
1− βtxt +

√
βtϵt, ϵt ∼ N (0, I),

where I ∈ RD1···DpF×D1···DpF . Conversely, the reverse diffusion process initiates with a standard
Gaussian noise and progressively removes the noise to obtain a high-quality sample. Notably, a
neural network is employed to learn the distribution of xt−1 given xt:

xt−1|xt ∼ N (µθ(xt, t),Σθ(xt, t)) .

In the inference step, in addition to the neural denoising procedure, another standard Gaussian noise
is added back to the sample in order to increase diversity.

2.2 AUTOREGRESSIVENESS IN TEMPORAL NOISE

Manipulating the noise within diffusion models has proven to be an effective approach for enhancing
generation quality, as discussed in Section 1.1. In this paper, we propose a noise design aimed at
improving the temporal consistency of generated data. Instead of using standard Gaussian noise
during both training and inference stages, we introduce autoregressive-structured correlations for the
noises across time. This targeted approach enables a more cohesive and coherent generation process.

To begin with, consider a simple case where the data sample x ∈ RF , i.e. it is a univariate time
sequence. Let the noise ϵ ∈ RF follow a Gaussian distribution with mean zero and covariance matrix
Σ having a parametric form: the (i, j)-th entry Σi,j = f|i−j|(λ) where λ is the hyper-parameter.
The structure of Σ is artificially designed so that the ϵ’s and hence the noised xt’s in the diffusion
process exhibit nonzero correlations that depend on their temporal distance. Moreover, it is natural to

3



Under review as a conference paper at ICLR 2024

assume these correlations decay as the temporal distance of two time frames increases. We therefore
provide three choices for f|i−j|(λ), which match the common temporal decay patterns provided by
the simple yet powerful autoregressive (AR) model in time series literature (Box et al., 2008; Basu &
Michailidis, 2015).

The first option is to set f|i−j|(λ) = λ|i−j| with |λ| ∈ (0, 1) and therefore

Σ(λ, F ) =


1 λ λ2 · · · λF−1

λ 1 λ · · · λF−2

λ2 λ 1 · · · λF−3

...
...

...
. . .

...
λF−1 λF−2 λF−3 · · · 1

 . (1)

This resembles the AR(1) structure in time series, where the correlation between adjacent time
frames is the strongest while decaying exponentially with increasing temporal distance. Alternatively,
we may let λ = (γ, θ) with γ ∈ (0, 1) and θ ∈ (−π/2, π/2) and set f|i−j|(λ) = f|i−j|(γ, θ) =

γ|i−j| cos
(
|i− j|θ

)
or γ|i−j| sin

(
|i− j|θ

)
. Such two designs of Σ render the temporal decay pattern

to be exponentially damped cosine or sine waves and mimics the autocorrelation structures of an AR
model when the corresponding AR characteristic polynomial equation has complex roots; see Section
2.6 of Fuller (1996) and Chapter 4.3 of Cryer & Chan (2008) for details.

However, in certain applications, the temporal dimension can be excessively long, making it impracti-
cal to sample from a full F × F covariance matrix. In such scenarios, we adopt a localized approach
by introducing correlations only within local windows. Specifically, we let ϵ = (ϵ⊤1 , ϵ

⊤
2 , · · · , ϵ⊤n )⊤

with ϵi ∈ Rw, where n is the number of local windows, w is the window size and F = nw. Then we
let ϵi ∼ N(0,Σ(λ,w)). To further enhance the consistency between local windows, we can model
each noise clip ϵi using an AR(1) model:

ϵi+1 =
√
cϵi +

√
1− cϵ̃ with ϵ1, ϵ̃ ∼ N (0,Σ(λ,w)). (2)

By this construction, the combined noise ϵ will also have a closed-form distribution with the
covariance matrix

Σ(λ, c, w, n) =


Σ(λ,w)

√
cΣ(λ,w) · · · (

√
c)n−1Σ(λ,w))√

cΣ(λ,w) Σ(λ,w) · · · (
√
c)n−2Σ(λ,w)

...
...

. . .
...

(
√
c)n−1Σ(λ,w) (

√
c)n−2Σ(λ,w) · · · Σ(λ,w)

 . (3)

It is worth noting that the overall covariance matrix exhibits similar exponential-type decays of local
covariance structures due to the AR construction.

To extend to the multivariate case where X ∈ RD1×···×Dp×F , we can adopt a simple and straightfor-
ward approach by assuming independence in the first p dimensions while introducing correlations
solely in the temporal dimension. Specifically, let xd1,··· ,dp

∈ RF denote a vector extracted from
X and let the corresponding ϵd1,··· ,dp

follow the aforementioned Gaussian distribution N (0,Σ).
Please refer to Figure 1 for an illustration. Although the independent and identically distributed
setting suffices, it can be extended to incorporate correlations in spatial dimension as well. For more
comprehensive information, please see Section 5 and the discussions therein.

In addition, changing the covariance matrix from identity to a general symmetric positive semi-definite
matrix will not affect the DDPM framework and can be implemented very easily, see Appendix A.2
and B.1 for more details. To summarize, we present the complete autoregressive temporal diffusion
(ARTDiff) algorithm for training and inference in Algorithms 1 and 2.

Algorithm 1 ARTDiff Training
1: Given λ, c, w, determine Σ
2: repeat
3: x0 ∼ q(x0)
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N(0,Σ)
6: Take gradient descent step on

∇θ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

7: until converged

Algorithm 2 ARTDiff Inference
1: Given Σ same as in training
2: xT ∼ N (0, I)
3: for t = T, . . . , 1 do
4: z ∼ N (0,Σ) if t ≥ 1, else z = 0
5: xt−1 = 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + σtz

6: end for
7: return x0
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3 EXPERIMENT

To show that the proposed ARTDiff can improve the fidelity of generated samples, we conduct
experiments on three types of sequential data, namely audio, motion and video, whose generation
inherently requires temporal consistency. We compare ARTDiff’s performances with vanilla diffusion.
All experiments are performed on a single A100 GPU.

3.1 AUDIO GENERATION

Audio data feature a large temporal dimension compared to other data types that generative models
often work on, which brings in challenge in modelling and capturing the correlations in such long
sequences (Mehri et al., 2017; Kreuk et al., 2023). To show that the ARTDiff can help alleviate this
problem and improve the quality of generation, we perform two tasks on audio data: neural vocoding
and unconditional generation, and compare the performance of ARTDiff with the vanilla diffusion.
We adopt two baseline models: DiffWave (Kong et al., 2021) and DiffWave-Sashimi (Goel et al.,
2022), and follow the same training scheme in Goel et al. (2022).

For neural vocoding, we utilize the LJSpeech (Ito & Johnson, 2017) dataset. It is an open-access
repository comprising 13,100 concise audio clips ranging from 1 to 10 seconds in length, with a total
length of approximately 24 hours. During training, the sequence length is F = 16, 000 for each batch;
and this length is extended to that of a complete audio clip with a sampling rate of 22,050Hz during
inference, making F to range from ∼20k to ∼200k. To evaluate the performance, we generate 13,100
samples condition on the true mel-spectrogram of original audio clips and adopt the KL-divergence
(KL), Fréchet Inception Distance (FID) in Heusel et al. (2017) and Fréchet audio distance (FAD) in
Kilgour et al. (2019)1.

For unconditional generation task, we employ the SC09 (Donahue et al., 2019) dataset, a subset of
the comprehensive Speech Commands (Warden, 2018) dataset. SC09 is a challenging benchmark for
unconditional speech generation, featuring 1-second clips of utterances of the digits zero through nine,
recorded by various speakers with diverse accents and noise conditions. The dataset has a sampling
rate of 16kHz, i.e. the number of time frames in data is F = 16, 000. To assess the generative quality,
we randomly generate 1,024 samples from each model and compare the three metrics: FID, FAD,
and Inception score (IS) in Salimans et al. (2016).

Table 1: Reported metrics for DiffWave versus DiffWave + ARTDiff, and DiffWave-Sashimi versus
DiffWave-Sashimi + ARTDiff on two audio generation tasks: (a) neural vocoding and (b) uncondi-
tional generation.

(a) Neural vocoding

Model KL FID FAD
DiffWave 0.023 1.705 4.199

+ARTDiff 0.018 0.893 2.656
DiffWave-sashimi 0.056 4.456 5.933

+ARTDiff 0.016 1.171 2.564

(b) Unconditional generation

Model FID FAD IS (std)
DiffWave 5.229 2.057 1.354 (0.104)

+ARTDiff 3.078 1.276 1.242 (0.044)

DiffWave-sashimi 2.955 2.264 1.078 (0.019)
+ARTDiff 3.910 1.579 1.236 (0.065)

The results for neural vocoding and unconditional generation are gathered in Table 1 (a) and (b)
respectively. We can see that by changing to ARTDiff, the performance of audio synthesis is greatly
improved, especially in the neural vocoding task and in the FAD (a tailor-made metric to evaluate

1The evaluation methods follow the guidelines in Liu et al. (2023)(https://github.com/haoheliu/audioldm_eval)
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Figure 2: Visualizations of generated motion frames in action-to-motion task. Motion clips in the left
column are produced by MDM and those in the right column are produced by MDM + ARTDiff.

generated audio) of the unconditional generation task, showing that the ARTDiff is very flexible
and can be extended to very long sequences. The inconsistencies observed in IS and FID scores
presented in Table 1(b) may be caused by insufficient sample size and FID’s focus on evaluating
image generation, respectively.

3.2 HUMAN MOTION GENERATION

Human motion is another type of sequential data where temporal consistency is crucial. We thus
conduct an extensive investigation into the effectiveness of ARTDiff across three tasks: unconditional
generation, action-to-motion generation, and text-to-motion generation. Throughout all three tasks,
we utilize the MDM (Tevet et al., 2023) as the backbone and replace the original diffusion mechanism
with the proposed temporal consistency diffusion, while maintaining the training scheme outlined
in the original paper. The reported results for each model are based on the checkpoint with the best
evaluation performance during training.

Unconditional generation We employ the HumanAct12 dataset (Guo et al., 2020) that is originally
designed for the action-to-motion task. In this case, we remove the action annotations to adapt the
dataset for unconditional purposes.

Action-to-motion generation The aforementioned HumanAct12 dataset are adopted, which consists
of 12 action classes, with varying sample sizes per class ranging from 47 to 218. The sequence length
for HuamanAct12 is set to 60 in both tasks.

Text-to-motion generation For this task, we utilize two datasets: HumanML3D (Guo et al., 2022)
and KIT (Plappert et al., 2016). The former consists of 14,616 samples, while the latter contains
3,911 samples. The datasets are annotated with 44,970 and 6,278 textual descriptions, respectively.

Temporal consistency measure To quantitatively assess the temporal consistency of the generated
data, we introduce a novel metric called Temporal Consistency Metric (TCM). The underlying notion
is that, at every time point, the data frames should exhibit smooth transitions without any outliers.
Inspired by the approach presented in Lai et al. (2018), we define the TCM as

TCM =
1

F

F−1∑
t=1

∥dt+1 − dt∥2,

where dt is the data frame at time t in vectorized form. It is important to note that the TCM will yield
a value of zero if the generated sample is static. Consequently, it cannot serve as the sole criterion
for evaluating the performance of a generative model. Instead, this metric should be considered in
conjunction with an overall assessment of the sample quality.

In the four tasks performed, as presented in Table 2 (a)-(c), the ARTDiff can improve the quality
of synthesised motion further in most metrics, and the temporal consistency is also enhanced as
evidenced by the TCM measure. We also present visualizations of the action-to-motion generation
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task in Figure 2, using the MDM and ARTDiff for comparison. The figure includes three example
prompts: “drink”, “run”, and “eat”. It can be observed that the motion generated by the baseline
model lacks temporal consistency, as evidenced by the movement of the left arm in the “drink” prompt
and the inclusion of irrelevant frames in the “eat” prompt. In contrast, our model generates motions
and postures with a significantly higher level of smoothness and temporal consistency.

Table 2: Reported metrics for MDM and MDM+ARTDiff on three motion generation tasks: (a)
unconditional generation; (b) action-to-motion generation; (c) text-to-motion generation tasks. Best
results are highlighted in boldface.

(a) Unconditional generation

Model FID KID Precision Recall Diversity TCM
MDM 32.82 0.378 0.695 0.638 17.48 0.063

+ARTDiff 30.97 0.377 0.701 0.658 17.04 0.060

(b) Action-to-motion generation on Humanact12 dataset.

Model Accuracy Diversity FID Multimodality TCM
MDM 0.989 6.852 0.100 2.515 0.488

+ARTDiff 0.991 6.880 0.097 2.426 0.466

(c) Text-to-motion generation on HumanML3D and KIT dataset.

Model Top-3 Accuracy Diversity FID Multimodality Matching Score TCM
HumanML3D

MDM 0.640 9.607 0.4775 2.697 5.3096 11.562
+ARTDiff 0.639 9.7052 0.3797 2.650 5.312 11.760

KIT

MDM 0.405 11.016 0.416 2.042 9.939 24.725
+ARTDiff 0.396 10.863 0.401 2.035 9.314 20.709

3.3 VIDEO GENERATION

Video generation is a rapidly involving topic in neural generative models, and most of the existing
works leverage the well-developed image generation models, which generate high-quality frames
but introduce the inconsistency problem along the temporal direction. Therefore, our ARTDiff may
be a promising solution to address the frame inconsistency in video generation tasks. We take the
one-shot text-to-video generation model Tune-A-Video (Wu et al., 2023) as the baseline. It consists
of a fine-tuning stage in which the pretrained image generation models (e.g. stable diffusion) are
fine-tuned on a single reference video-caption pair, and an inference stage in which new videos are
generated conditioned on edited prompts.

To improve temporal consistency, we add our ARTDiff in both the fine-tuning and inference stages.
In particular, ARTDiff is added to the DDIM inversion to produce a correlated initial noise. The
reference videos are sourced from the sample videos in Wu et al. (2023) and the DAVIS dataset
(Pont-Tuset et al., 2017). The corresponding captions are generated by the BLIP-2 model (Li et al.,
2023). Details of the dataset and prompts can be found in Appendix B.3. To evaluate the quality of
generated videos, we adopt three quantitative metrics: CLIP score, CLIP similarity and pixel TCM in
Table 3. The CLIP score measures whether the video matches the corresponding edited prompt and
is averaged over all frames. The CLIP similarity is the average cosine similarity between the CLIP
image embeddings of adjacent frames. In addition, the pixel TCM focuses more on the pixel level
and can better capture the abrupt change in video content. Qualitatively, we visualize the generated
video samples in Figure 3, which showcase the enhanced temporal consistency brought by ARTDiff.
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Table 3: Reported metrics for Tune-A-Video versus Tune-A-Video + ARTDiff on one-shot text-to-
video generation task.

Model CLIP score CLIP similarity Pixel TCM
Tune-A-Video 33.056 0.972 0.048

+ARTDiff 33.362 0.974 0.040

Figure 3: Visualizations of generated video frames. Video clips in the left column is from Tune-A-
Video and those in the right column are produced by Tune-A-Video + ARTDiff.

3.4 COMPUTATIONAL TIME EFFICIENCY

A notable concern when transitioning from a standard Gaussian noise distribution to a general
Gaussian distribution is the potential increase in computational time during the random sampling
phase. To address this concern, we choose two tasks: unconditional audio generation with the
number of time frames being F = 16, 000 and one-shot text-to-video generation with F = 24, and
measure the training and inference time for vanilla diffusion and ARTDiff. The comparison results
are presented in Figure 4. In terms of training time in the audio task, the additional amount attributed
to ARTDiff is not significant. When F is smaller, the discrepancy in time will be further reduced or
even negligible as shown in the right panel.

Figure 4: Time comparison of case (a) vanilla diffusion and (b) ARTDiff, in unconditional audio
generation task (left panel) and one-shot text-to-video generation task (right panel). In the audio
task, the training time is recorded for 100k iterations and the inference time is for generating 1,024
samples with batch size 128. In the video task, the finetuning is conducted for 500 steps and the
inference time contains DDIM inversion and the generation of four videos based on edited prompts.
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4 ABLATION STUDY

The proposed ARTDiff approach incorporates temporally correlated noises during both training and
inference stages. However, it is also possible to introduce the correlated noises during inference
only (Zhu et al., 2023). To demonstrate the benefits and, at times, the necessity of maintaining a
consistent distribution between training and diffusion, we conduct an ablation study. The study
compares the full ARTDiff approach, where correlated noises are used in both training and inference,
with a configuration employing vanilla diffusion during training and ARTDiff during inference.

To evaluate these two settings, we employ the SC09 dataset for unconditional audio generation and the
Humanact12 dataset for action-to-motion generation. In the case of unconditional audio generation,
we utilize the checkpoint at 500k iterations, trained using vanilla diffusion, and generate 1,024
samples following Algorithm 2, with the noises generated from the same distribution as ARTDiff.
For the action-to-motion generation task, the inference checkpoint selected is at 450k interations,
which is the best checkpoint obtained during training.

Based on the results presented in Table 4, it is evident that DiffWave + ARTDiff (inference) exhibits
poor performance in the audio task. However, in the motion task, this configuration demonstrates
performance levels between MDM and MDM + ARTDiff. This discrepancy can be attributed to
the lengthy sequence length of F = 16, 000 in audio data, where a distribution shift can lead to a
mismatch between the trained denoising model and the noises used during inference. Consequently,
it is crucial to ensure a closer alignment between the distribution employed during training and the
distribution utilized in inference.

Table 4: Ablation study to compare backbone models + ARTDiff in both training and inference, with
ARTDiff in inference only. The two conducted tasks are (a) unconditional audio generation and (b)
action-to-motion generation on Humanact12 dataset.

(a) Unconditional audio generation

Model FID FAD IS (std)
DiffWave 5.229 2.057 1.354 (0.104)

+ARTDiff 3.078 1.276 1.242 (0.044)
+ARTDiff (inference) 86.670 24.139 1.100 (0.007)

(b) Action-to-motion generation on Humanact12 dataset

Model Accuracy Diversity FID Multimodality TCM
MDM 0.989 6.852 0.100 2.515 0.488

+ARTDiff 0.991 6.880 0.097 2.426 0.466
+ARTDiff (inference) 0.987 6.866 0.102 2.525 0.488

5 CONCLUSION

By changing the noise distribution in diffusion models, we propose a new diffusion training and
inference scheme called ARTDiff to improve the temporal consistency in sequential data generation.
Specifically, we consider a Gaussian distribution where the correlations between two time frames
exponentially decay with the time difference. This inherently introduces an autoregressive dependence
structure in time dimension while maintaining the non-autoregressive nature of diffusion models.
In addition, for long sequence tasks, a local window correlation scheme is proposed to alleviate
the computational burden. Experiments on audio, motion and video generation tasks show the
improvement of fidelity in generated samples using ARTDiff.

This paper can be extended along three directions below. First, while the correlation pattern of
Gaussian noises is determined by several hyper-parameters, we may also consider more flexible, or
even data-driven patterns where correlations are learned from the data itself. Secondly, the ARTDiff
can be further applied to other sequential data such as time series and facial expressions. Finally, it
is of interest to explore a more general dependence pattern in the spatial dimension. For example,
one may consider a stronger dependence for the static background and a weaker dependence for the
moving object.
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APPENDIX

This Appendix contains three sections. The first section provides theoretical derivations for the
covariance matrix structure and DDPM framework. The second section illustrates the ARTDiff
formulation in images. An efficient method to construct the newly designed covariance matrix and
additional implementation details are included in the third section.

A THEORETICAL DERIVATIONS

A.1 PROOF OF EQUATION 3

Proposition 1. Given ϵ = (ϵ⊤1 , ϵ
⊤
2 , · · · , ϵ⊤n )⊤ with ϵi ∈ Rw, ϵ1 ∼ N (0,Σ(λ,w)) and

ϵi+1 =
√
cϵi +

√
1− cϵ̃ with ϵ̃ ∼ N (0,Σ(λ,w)),

where Σ(λ,w) is defined in equation 1. Then the combined ϵ ∼ N (0,Σ(λ, c, w, n)) and

Σ(λ, c, w, n) =


Σ(λ,w)

√
cΣ(λ,w) · · · (

√
c)n−1Σ(λ,w))√

cΣ(λ,w) Σ(λ,w) · · · (
√
c)n−2Σ(λ,w)

...
...

. . .
...

(
√
c)n−1Σ(λ,w) (

√
c)n−2Σ(λ,w) · · · Σ(λ,w)

 .

Proof. For each ϵi+1 in the vector AR(1) model, it can be equivalently written as

ϵi+1 =
√
cϵi +

√
1− cϵ̃i+1

=
√
c(
√
cϵi−1 +

√
1− cϵ̃i) +

√
1− cϵ̃i+1

= (
√
c)2ϵi−1 +

√
c(1− c)ϵ̃i +

√
1− cϵ̃i+1

= (
√
c)2ϵi−1 +

√
1− c2ϵ̃

= · · · = (
√
c)iϵ1 +

√
1− ciϵ̃, ϵ̃ ∼ N (0,Σ(λ,w)),

where the fourth equation follows from the conclusion that the sum of two independent normal
distributions is still a normal distribution. Then by similar arguments, we can get

ϵi+1 ∼ N (0,Σ(λ,w))

Then for the combined noise ϵ, we have µ = E(ϵ) = E(ϵ⊤1 , ϵ⊤2 , · · · , ϵ⊤n )⊤ = 0. And the covariance
matrix is

Σ(λ, c, w, n) = E[(ϵ− µ)(ϵ− µ)⊤] = E[ϵϵ⊤] = E



ϵ1
ϵ2
...
ϵn

 (ϵ1 ϵ2 · · · ϵn)



=


Γ(0) Γ(−1) · · · Γ(1− n)
Γ(1) Γ(0) · · · Γ(2− n)

...
...

. . .
...

Γ(n− 1) Γ(n− 2) · · · Γ(0)



=


Σ(λ,w)

√
cΣ(λ,w) · · · (

√
c)n−1Σ(λ,w))√

cΣ(λ,w) Σ(λ,w) · · · (
√
c)n−2Σ(λ,w)

...
...

. . .
...

(
√
c)n−1Σ(λ,w) (

√
c)n−2Σ(λ,w) · · · Σ(λ,w).


where E(ϵiϵ⊤i−k) is denoted as Γ(k) and Γ(−k)⊤ = Γ(k) = (

√
c)kΓ(0), for positive k with

Γ(0) = Σ(λ,w).
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A.2 DDPM WITH CORRELATED NOISE

Let Σ be a valid covariance matrix. Then the forward and reverse diffusion in DDPM can be
formulated as follows.

Forward diffusion: Given a data distribution x0 ∼ q(x0), xt follows a Markov process with

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtΣ)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

xt|xt−1 ∼ N (
√

1− βtxt−1, βtΣ) ⇔ xt =
√
1− βtxt−1 + βtϵt−1, ϵ ∼ N (0,Σ)

Let αt = 1− βt, ᾱt =
∏t

s=0 αs, then

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1ϵt−2) +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
αtαt−1ϵt−2 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ (ϵ ∼ N (0,Σ))

= · · · =
√
ᾱtx0 +

√
1− ᾱtϵ.

Then it gives
xt|x0 ∼ N (

√
ᾱtx0, 1− ᾱtΣ)

Reverse diffusion: By Bayes rule and Markov chain property, we have

q(xt−1|xt,x0) = q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)

∝ exp
(
− 1

2

(
(xt −

√
αtxt−1)

⊤Σ−1(xt −
√
αtxt−1)

βt
+

(xt−1 −
√
ᾱt−1x0)

⊤Σ−1(xt−1 −
√
ᾱt−1x0)

1− ᾱt−1

− (xt −
√
ᾱtx0)

⊤Σ−1(xt −
√
ᾱtx0)

1− ᾱt

))
= exp

(
− 1

2

(
x⊤
t Σ

−1xt −
√
αtx

⊤
t Σ

−1xt−1 −
√
αtx

⊤
t−1Σ

−1xt + αtx
⊤
t−1Σ

−1xt−1

βt

+
x⊤
t−1Σ

−1xt−1 −
√
ᾱt−1x

⊤
0 Σ

−1xt−1 −
√
ᾱt−1x

⊤
t−1Σ

−1x0 + ᾱt−1x
⊤
0 Σ

−1x0

1− ᾱt−1

− (xt −
√
ᾱtx0)

⊤Σ−1(xt −
√
ᾱtx0)

1− ᾱt

))
= exp

(
− 1

2

((
αt

βt
+

1

1− ᾱt−1

)
x⊤
t−1Σ

−1xt−1

−
(√

αt

βt

(
x⊤
t Σ

−1xt−1 + x⊤
t−1Σ

−1xt

)
+

√
ᾱt−1

1− ᾱt−1

(
x⊤
0 Σ

−1xt−1 + x⊤
t−1Σ

−1x0

))
+ C(x0,xt)

))
Thus,

xt−1|xt,x0 ∼ N
(√

ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

1− ᾱt−1

1− ᾱt
βtΣ

)
.

Following Appendix B in (Sohl-Dickstein et al., 2015), we have

LVLB = Eq[DKL(q(xT |x0) ∥ pθ(xT ))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

],
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and
LVLB = LT + LT−1 + · · ·+ L0

where LT = DKL(q(xT |x0) ∥ pθ(xT ))

Lt = DKL(q(xt|xt+1,x0) ∥ pθ(xt|xt+1)) for 1 ≤ t ≤ T − 1

L0 = − log pθ(x0|x1)

In Lt, the two compared distributions are still Gaussian. Apply the simplifications in Ho et al. (2020),
the loss function Lsimple still holds.

B EXPERIMENT DETAILS

B.1 EFFICIENT METHOD TO CONSTRUCT COVARIANCE MATRIX

We present below the python code for constructing the covariance matrix.

def construct_cov_mat(n_frames,decay_rate,theta=0):
seq = torch.pow(decay_rate,torch.arange(num_frames))
if theta != 0:

seq = torch.multiply(seq,torch.cos(torch.arange(n_frames)*theta))
return toeplitz(seq,seq)

def toeplitz(c, r):
vals = torch.cat((r, c[1:].flip(0)))
shape = len(c), len(r)
i, j = torch.ones(*shape).nonzero().T
return vals[j-i].reshape(*shape)

B.2 SELECTION OF HYPER-PARAMETERS

Table 5: Selected hyper-parameters of decay rate λ, coefficient c in the AR(1) model, and window size
w on both audio and motion generation tasks: neural vocoding and unconditional generation tasks for
audio, and unconditional generation, action-to-motion generation and text-to-motion generation for
motion.

Task/Problem Model λ c w

Audio generation

Neural vocoding DiffWave + ARTDiff 0.1 0.1 16
DiffWave-sashimi + ARTDiff 0.1 0.1 16

Unconditional generation DiffWave + ARTDiff 0.1 0.1 16
DiffWave-sashimi + ARTDiff 0.1 0.1 16

Motion generation

Unconditional generation MDM + ARTDiff 0.05 - -

Action-to-motion generation (Humanact12) MDM + ARTDiff 0.1 - -

Text-to-motion generation (HumanML3D) MDM + ARTDiff 0.1 0.1 49

Text-to-motion generation (KIT) MDM + ARTDiff 0.1 0.1 49

In the one-shot text-to-video generation task, we propose to grid search over the combinations of
λ(γ) ∈ {0.5, 0.6, 0.7, 0.8}, η ∈ {0.4, 0.6, 0.8}, θ ∈ {0, 0.05, 0.1, 0.15, 0.2}. And the coefficient for
controlling the random noise added in DDIM inversion is searched in τ ∈ {0, 0.1, 0.2, 0.3, 0.4}.

B.3 DATASET AND PROMPTS IN ONE-SHOT TEXT-TO-VIDEO GENERATION

We select 8 reference videos from the example videos in Wu et al. (2023) and the DAVIS dataset
(Pont-Tuset et al., 2017), covering a range of categories including animals, vehicles, and humans. The
selected video names are blackswan, car-turn, hike, kite-surf, mallard-water, man-skiing, man-surfing,
rabbit-watermelon. To obtain video caption, we use BLIP-2 (Li et al., 2023) for automated video
captioning. We then manually design four edited prompts for each video, resulting 32 edited prompts
and 32 generated videos in total. These edited prompts include object editing, background changes,
and style transfers.
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