Struct-Bench: A Benchmark for Differentially Private
Structured Text Generation

Shuaiqi Wang'*%, Vikas Raunak?*?, Arturs Backurs?, Victor Reis®, Pei Zhou?$, Sihao Chen?, Longgi
Yang?, Zinan Lin®$, Sergey Yekhanin?, and Giulia Fanti'

1Carnegie Mellon University, Pittsburgh, PA, United States 2Microsoft Corporation, Redmond, WA,
United States *Microsoft Research, Redmond, WA, United States
1{shuaiqiw, gfanti} @andrew.cmu.edu 2{viraunak, pei.zhou, sihaochen,
longqi.yang} @microsoft.com *{arturs.backurs, victorol, zinanlin, yekhanin} @microsoft.com

Abstract

Differentially private (DP) synthetic data generation is a promising technique for
utilizing private datasets that otherwise cannot be exposed for model training or
other analytics. While much research literature has focused on generating private
unstructured text and image data, in enterprise settings, structured data (e.g.,
tabular) is more common, often including natural language fields or components.
Existing synthetic data evaluation techniques (e.g., FID) struggle to capture the
structural properties and correlations of such datasets. In this work, we propose
Struct-Bench, a framework and benchmark for evaluating synthetic datasets derived
from structured datasets that contain natural language data. The Struct-Bench
framework requires users to provide a representation of their dataset structure
as a Context-Free Grammar (CFG). Our benchmark comprises 5 real-world and
2 synthetically generated datasets. We show that these datasets demonstrably
present a great challenge even for state-of-the-art DP synthetic data generation
methods. Struct-Bench provides reference implementations of different metrics
and a leaderboard, offering a standardized platform to benchmark and investigate
privacy-preserving synthetic data methods. We also present a case study showing
how Struct-Bench improves the synthetic data quality of Private Evolution (PE)
on structured data. The benchmark and the leaderboard have been publicly made
available at https://struct-bench.github.io.

1 Introduction

Enterprise settings often feature datasets that include both structured relationships between fields or
objects, and fields that contain natural language data. For example, consider a dataset of user queries
to a search engine, and the corresponding results. The dataset is structured in a question-and-response
format, and both the query and the response contain natural language. Another example consists of
patients’ medical records, which can include multiple events over time, visits with different providers
for different ailments, and associated (natural language) doctors’ notes. Such datasets are valuable for
downstream use cases (e.g., training predictive models, understanding preferences), but they cannot
always be used directly, due to privacy or data use restrictions.

*These authors contributed equally to this work.

TThis work was partially done while an intern at Microsoft.
#Now at Google DeepMind.

$Primary internship mentors: Pei Zhou, Zinan Lin.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://struct-bench.github.io

Real
Dataset

(DP) synthetic
data generator

Synthetic Data Generation Struct-Bench

Attribute
(Sample level)

oken Length
CFG Parsing and Struct-Bench n Sample Conversation <
Node Extraction Representation Eatsicl # Nodes

Synthetic Node Query 1 Response 1 Query n Response n

Dataset

Attribute

ntent Topic Speakel
(Node level) ™" P peaket

(a) Struct-Bench evaluation pipeline. The synthetic dataset can (b) Sample level view of the Struct-Bench.
be generated via DP generation methods with private access to As an example, a multi-round conversation
the private dataset. Struct-Bench evaluates a synthetic dataset by is parsed by CFG into several nodes with
parsing samples and extracting nodes and their attributes using types Query and Response. Struct-Bench
context-free grammar (CFG) with full access to both private and extracts its sample-level and node-level at-
synthetic datasets. tributes for evaluation.

Figure 1: Dataset level and sample level views into the Struct-Bench framework.

Differentially private (DP) synthetic data generation is an increasingly important technique for

making use of such sensitive datasets in machine learning (ML) pipelines [66, 42, 60]. There exist
many data synthesis techniques tailored to unstructured data like images or text [54, 27, 60, 16] and
tabular data [36, 55, 66]. However, existing synthetic data evaluation frameworks do not naturally

capture the salient properties of datasets that feature both general structural properties and natural
language elements. Evaluation metrics for unstructured data, like Fréchet Inception Distance (FID)
[20], or precision and recall [25, 43], do not capture the structural properties of data. In fact, we
show that synthetic data that completely fails to capture structural constraints can still achieve high
precision and recall scores. For example, the ShareGPT dataset [1], which consists of multi-round
conversations between a human and an Al agent, requires the format tokens ‘HUMAN:’ before
queries and ‘GPT:’ before responses. Consider the synthetic sample: "How are you? I'm doing well."
Although semantically reasonable—and therefore scoring high on precision—it violates the required
format. This underscores the importance of structure-aware evaluation. On the other hand, evaluation
frameworks for tabular data are designed primarily for datasets with categorical or numeric fields
[19, 62, 8], and do not naturally extend to natural language fields. For instance, these frameworks
often compare k-way marginal distributions in the real and synthetic data, which is not tractable for
natural language.

In this work, drawing inspiration from Natural Language Generation (NLG) benchmarks such as
GEM [12], we present Struct-Bench: a composite benchmark and an automatic evaluation protocol
that measures the quality of structured, natural language-based synthetic data relative to their cor-
responding real (possibly private) datasets. In the Struct-Bench framework, a user first selects one
or more real datasets for which they want to evaluate a corresponding synthetic dataset. For each
dataset, the user provides a set of production rules under the generative grammar formalism (i.e., a
context-free grammar [2 1]); the user then selects key nodes, which will be programmatically extracted
from the parse tree of dataset samples; key nodes are used to measure important correlations and
properties of the synthetic data. Based on this dataset representation, Struct-Bench measures an array
of syntactic (i.e., structural) and semantic properties of the synthetic dataset. We illustrate the dataset
level and sample level views into Struct-Bench in Fig. 1.

Our contributions are as follows:

1. Benchmark: We propose Struct-Bench, a novel evaluation framework and a benchmark to
evaluate synthetic data quality relative to a real dataset, where the real dataset features complex
inter-field structural relations, and at least some fields contain natural language. A key observation
is that many structural properties (and even semantic properties) can be modeled and evaluated
with the help of a context-free grammar. We also provide a public leaderboard and a reference,
extensible implementation of the Struct-Bench framework, which can be used to benchmark new
DP synthetic data generation methods on other datasets in a standardized manner.

2. Findings: We use Struct-Bench to benchmark and analyze state-of-the-art (SOTA) DP synthetic
data generation techniques on seven diverse datasets, including real-world textual and tabular

datasets, as well as synthetic datasets with controllable data attributes. Our main findings are (1)
no single metric fully describes synthetic data quality; (2) none of the existing SOTA DP synthetic
data generation techniques are able to reliably capture the structural properties of data without
sacrificing semantic performance. Finding (1) highlights the importance of using multiple metrics
to evaluate synthetic data, which is a key contribution of our work, and (2) underscores the need
for further research in synthetic structured data generation. We also conduct a case study to show
how to algorithmically improve on SOTA DP synthetic data generation methods, Private Evolution
(PE) [27, 60, 28], using the insights from Struct-Bench. These improvements achieve nearly 100%
compliance with dataset structural constraints, while also improving semantic and statistic metrics.

2 Struct-Bench Framework and Evaluation Protocol

We aim to design an evaluation framework that measures how closely a real, private dataset D matches
a synthetic dataset D’. The real dataset D features (1) an inherent structure, and (2) natural language
fields. Our evaluation framework must therefore quantify how well D’ has acquired the structure and
content of the private dataset. As these are not well-defined quantities, we define a framework for
representing a real dataset D, as well as a suite of metrics to capture how well the synthetic dataset
matches the syntax and semantics of the real dataset.

Notation Consider a dataset D = (D;)™; with m samples. As a concrete example, suppose D is
the ShareGPT dataset [1], which contains multi-round conversations between a human and an Al
agent. We illustrate a sample of ShareGPT in §B.1. A dataset is a set of samples; in ShareGPT, each
sample D; € D is one full conversation (e.g., a few iterations of conversation between the human
and the agent). Each sample D, contains a set of nodes O1, Oa, . .., O, (the number of nodes can
vary across samples). In the ShareGPT example, each node O is one text snippet—either a single
query from the human or a response from the Al agent, as illustrated in Fig. 1b.

Samples and nodes can have attributes, which are either numeric or categorical. Each sample D; is
associated with sample-level attributes ay, . . ., a,,. These can be any derived property of the whole
sample, such as token length of the conversation in ShareGPT. A node O; can also have node-level
attributes v1, . . ., Up, . In ShareGPT, attributes could include the token length of a node, the identity
of the speaker (agent or human), and the topic of the query or response (obtained through human or
LLM-based labeling).

Dataset Representation The nodes of a dataset may satisfy complex structural relations. For
example, in ShareGPT, each node can only have human or agent as its speaker attribute, and
successive nodes should always alternate speaker between human and agent. This information is
considered public (to the synthetic data holder); for example, if an enterprise is training a DP synthetic
dataset to model a private dataset of search engine queries, the enterprise is likely to know the schema
of the data, even if they do not know the contents. Such relations are captured in Struct-Bench
by a context-free grammar (CFG), which specifies different categories of nodes and the relations
between them. As an example, we provide the CFG of ShareGPT in §B.1. To add a new dataset
to Struct-Bench, a user must write structural dependencies that should be enforced in the form of a
CFG.! For each dataset (real or synthetic), Struct-Bench then uses the dataset-holder-provided CFG
to construct a parse tree for each sample.

Remark: An alternate design choice could be to specify each dataset under the formalism of context-
sensitive grammars (CSGs), which are more expressive than CFGs and can capture semantic de-
pendencies. Specifying a CSG, however, requires significantly more domain knowledge and detail,
making it a more burdensome—and potentially error-prone—process than specifying a CFG. Hence,
instead of encoding semantic dependencies as hard constraints via CSG, we empirically assess them
by introducing a metric Key Node Dependency (KND) in §2.1. KND is simple to implement, requires
less domain expertise than a full CSG specification, and statistically captures correlations in the data.

Once the CFG is defined, the user also specifies a set of key nodes. For instance, if the CFG defines a
set of node types S = {Query, Response, Follow-Up}, the set of key nodes K can be any subset of
S. Key nodes are expected to exhibit strong dependencies in the data. For example, in ShareGPT, we
would define each query-response as a pair of key nodes. We will assess whether the correlations

The CFG specification only needs to be performed manually once when the dataset is onboarded, and it
may be possible to leverage LLMs to summarize the structure and generate the CFG automatically [53].

among these key nodes are preserved in the synthetic data, as detailed later in §2.1. If a user does not
specify key nodes, all nodes are treated as key nodes.

Privacy Constraint In this work, our goal is to evaluate differentially private synthetic data
generation algorithms. A data generator M is (¢, ¢)-differentially-private if for any neighboring
datasets Dy and D, (i.e., Dy and D, differ one sample), and any set S C range (M), we have

P (M (Do) € S) < e -B(M(Dy)eS)+3d .

Intuitively, the output synthetic data distribution should not depend too much on any single sample
in the input dataset. Today, there exist many algorithms for generating DP synthetic data (some of
which can accommodate text and/or structured data) [63, 60, 22, 49, 51]. Struct-Bench provides a
systematic way of comparing DP synthetic data generators.

Struct-Bench can also be applied to other forms of privacy-preserving synthetic data, such as those
generated under frameworks like quantitative information flow [46], statistical maximal leakage
[31, 58], and distribution privacy [48], among others. To ensure a fair comparison, all synthetic data
generation baselines should be compared under the same privacy framework.

Remark: Private DP data synthesis and non-private data synthesis are two problems with different
applications and objectives. In the private setting, the goal is typically to match synthetic data to a
private dataset as closely as possible under a DP constraint [51, 42, 29, 22, 60]. On the other hand, if
there is no privacy constraint and if one wants to match the real data as closely as possible, one should
just use the real data. Indeed, in the non-private setting, synthetic data is typically designed to deviate
from the “real” dataset (e.g., conditional generation of a specific class of data) [18, 35, 9, 10, 11, 30].
In our design and evaluation, we focus on DP synthetic data, so Struct-Bench is designed to measure
similarity between synthetic and real datasets. However, the metrics in Struct-Bench could be helpful
for benchmarking non-private synthetic data as well; we leave this to future work.

Summary of Inputs In summary, the Struct-Bench framework takes as input: (1) a real dataset D2
(2) a synthetic dataset D', (3) a CFG that represents the structural characteristics of the data, (4) a set
of key nodes (optional) from the CFG, which represent the types of nodes whose correlations are
important. Given these inputs, Struct-Bench automatically calculates the following suite of metrics.

2.1 Struct-Bench Metrics
We report three types of metrics: structural, non-structural, and downstream task accuracy.

Structural Metrics These are metrics that depend on the CFG in some way. Within a sample,
structure can be defined at the level of the whole sample (CFG Pass Rate, Attribute Match), groups
of nodes (Key Node Dependency), and individual nodes (Attribute Match). (1) CFG Pass Rate
(CFG-PR) measures the fraction of samples in the synthetic dataset D’ that parse correctly under
the CFG. (2) Key Node Dependency (KND) measures the semantic dependencies between “key
node pairs”, which are pairs of nodes believed to have a meaningful relation;® for example, in a
question-and-answer dataset, we would expect that each associated question and answer pair should
have a strong correlation. Programmatically, users specify pairs of key nodes with Tregex [20], a
tool for matching regular expressions on trees. Typically, we can measure the dependencies by cosine
similarity of the node embeddings, while one can also adopt LLM as a judge or other dependency
functions defined by the users. For a dataset, we can construct a distribution of dependencies of node
pairs in the same pattern. To evaluate the similarity of the node dependencies captured by the private
and synthetic dataset, we then calculate the distributional distance, e.g., Wasserstein-2 distance,
between the private and synthetic dependency distributions. (3) Attribute Match (AM) measures
the distributional distance of sample-level attributes (e.g., number of nodes) or node-level attributes
(e.g., node token length) between the private and synthetic datasets. The attribute can be a statistical
property or a semantic property, and it can be derived either from an explicit attribute function or
through human annotation or LLM-based labeling. The distributional distance can be Wasserstein-2
distance if the attribute is numeric or total variation distance if the attribute is categorical. Precise
definitions and instantiation guidelines for KND and AM are in §A. For structural metrics, higher
CFG-PR is better, whereas lower KND and AM indicate better performance.

The input data should be in string format. For structured data with categorical or numerical values, we
convert it to a JSON object where the attribute of each column is the key, and the actual value/text is its value.

3We measure dependencies between node pairs and do not consider higher-order relationships, as they are
more computationally intensive and the dependency functions can vary across different scenarios.

Table 1: List of datasets with descriptions, key nodes, and sizes of real and generated data.

Number of Samples

Dataset Description Key Nodes Real Generated

ShareGPT Human-GPT conversations query, response 3000 600

ICLR ICLR paper reviews & rebuttals — review, rebuttal, comment 3 000 300

Adult Census dataset native country, workclass 50 000 31561

Water Water-bottle reviews title, review 25000 20000

Arena Chatbot-Arena conversations conversation 1 & 2 25000 20000

Reviews Synthetic product reviews review, rating 2000 2000

Grounding Synthetic grounded QA query, response 2500 2000

Non-Structural Metrics Following prior precedent [51, 5], non-structural metrics are per-sample

metrics that do not rely on the CFG, i.e. they are unrelated to the structure of the data. These metrics
quantify the similarity between the content of the generated synthetic data and the real/private data.
Moreoever, as in prior works on unstructured DP synthetic data [25, 60], we report the precision
(KNN-Precision) and recall (KNN-Recall) for each synthetic dataset. Roughly, KNN-Precision
(resp. KNN-Recall) calculates the proportion of synthetic (resp. private) samples whose embedding
distance to a private (resp. synthetic) sample is smaller than this sample’s k-th nearest neighbor within
its own dataset. KNN-Precision evaluates the average semantic quality of the synthetic samples, and
KNN-Recall assesses the semantic diversity of the samples [25].

Downstream Evaluations (DE) Based on Label Prediction The eventual goal of synthetic data is
typically a Downstream Task, e.g., training a machine learning (ML) model. Struct-Bench allows
users to design their own downstream label prediction tasks. Our pipeline includes label generation,
downstream model training, and evaluation. (1) Label Generation: The evaluation pipeline requires
labels both for the synthetic and real data. Labels can either be generated by a human or we can use
large language models (LLMs) to simulate a human labeler. In our evaluation, we adopted GPT-40 to
label the samples, but the Struct-Bench codebase gives users flexibility to choose a different LLM.
We provide guidelines for the label generation process in §A.3. (2) Downstream Model Training:
To conduct label prediction, we fine-tune a language model based on the synthetic dataset and its
label. Since the samples may have long text, we adopt Longformer [7] in this paper. (3) Evaluation:
We evaluate the downstream task by calculating the prediction accuracy (Acc) on a held-out test
set from the real data. This is commonly done in synthetic data evaluations, and is known as the
train-synthetic-test-real (TSTR) framework [56, 39, 30].4

3 Benchmarking Differentially Private Synthetic Data

To demonstrate the utility of the Struct-Bench framework, we instantiate and implement it on a set of
seven datasets and four DP synthetic data generation methods.

3.1 Struct-Bench Datasets
We include three types of datasets in Struct-Bench (details in §B.2).

Real-World Datasets with Graph-Structured Dependencies We use ShareGPT [1] and ICLR
2024 paper reviews [2], two real-world graph-structured datasets that differ in (1) Content: multi-
round user—GPT conversations vs. author-reviewer reviews, rebuttals, and comments; (2) topic:
open-domain vs. Al-research—specific; and (3) structure: linear query—response chains vs. tree-
structured threads (multiple reviews, rebuttals, and follow-up discussions). Both offer diverse
semantics, clear structure, and at least two node types. Notably, the ICLR 2024 dataset was released
after the training data cut-off date for the LLMs we evaluate.

Real-World Tabular Datasets Although there exist benchmarks for tabular data [5, 51], they do not
naturally extend to natural language fields. We evaluate Struct-Bench on three tabular datasets: Water
[52] and Arena [67], which include textual fields, and Adult [6], which contains only numeric and
categorical values. We include Adult to demonstrate that Struct-Bench can be applied to non-textual

4Some evaluation frameworks compare TSTR with train-real-test-real (TRTR) for a self-contained evaluation
[64]. However, since we are comparing different synthetic data generation algorithms against each other, we
compute only TSTR in this case, which is slightly more interpretable.

data as well, though this data type is not the focus of our work. Water comprises water-bottle reviews,
Arena pairs human—-model conversations, and Adult provides census records.

Synthetic Datasets with Controllable Data Attributes To explicitly control structural and seman-
tic complexity, we create two datasets: Synthetic Reviews, with reviews varying in sentiment and
scores, and Synthetic Grounding, with source documents paired with question—answer tasks.

We show the key nodes of each dataset and the sizes of the real and generated data in Table 1, and
defer the detailed data modeling to §B.3.

3.2 Struct-Bench Synthetic Data Generation Baselines

Since we focus on structured datasets that contain natural language, we select LLM-based DP
synthetic data generators as our baselines, specifically, Private Evolution (PE) [27, 60, 28], DP
model fine-tuning [63, 59, 65], and some variants. While several methods have been proposed to
generate DP tabular data using LLMs [4, 55], they are typically limited to handling only numerical or
categorical values and cannot generate structured data that incorporates natural language.

Private Evolution (PE) [27, 60, 28] PE is a leading training-free DP synthetic data generation
algorithm that makes use of foundation models pre-trained on public data [27, 60, 28, 22, 16, 57]. PE
first uses a Random API to generate initial samples from the foundation language model. Then, it
iteratively: (1) constructs a differentially private (noisy) voting histogram based on private samples
voting for their nearest synthetic counterparts; (2) draws samples according to this histogram; and (3)
creates new samples with a Variation API that generates perturbed versions of the original samples.
We use the PE variant, Augmented Private Evolution (Aug-PE) [60], provided by the Private Evolution
library;> our only modification is to choose the prompt for the Random and Variation APIs.

Instruction Following (IF) IF prompts a foundation model with the target structure and uses no
private data (e = 0). It is effectively a zero-shot PE, i.e., equivalent to using only Random API in PE.

DP Fine-Tuning (DP-FT) [63, 59, 65] DP-FT adopts DP stochastic gradient descent (DP-SGD)
[3] to fine-tune the language model on the next token prediction task. We generate synthetic data
unconditionally from the fine-tuned model. This simple baseline remains competitive when training
is allowed [16]. Since PE generates synthetic data based on the instructions in a prompt in the
Random and Variation APIs, we also include a variant of DP-FT that conditionally generates samples
according to the same instructions after DP fine-tuning, which we refer to as Instruct DP-FT. We
provide details of this instruction fine-tuning in §C.

Real Data Fine-Tuning (FT) FT fine-tunes models without privacy guarantees (¢ = 00), serving as
a best-case reference for DP-FT. We also include Instruct FT with instruction-conditioned generation.

Since DP-FT and FT require model training, we are limited to open-source models and thus use only
GPT-2. In contrast, PE and IF do not use model weights, and require only API access. We evaluate
them on both GPT-2 and the state-of-the-art GPT-40. We further evaluate our baselines on additional
foundation models in §C.3. PE is run for 10 iterations, and DP-FT and FT are run for 20 epochs. We
take € € {1, 2,4} for PE and DP-FT, and 6 = 0.

3.3 Experimental Results

We present the results of benchmarking the DP synthetic data generation methods under ShareGPT
and ICLR datasets with ¢ = 4 in Table 2, and defer the results on other datasets to §C.1. We illustrate
the performance of the baselines on CFG-PR and KNN-Recall across all datasets in radar plots shown
in Fig. 2. We specify the metrics reported and the whole set of evaluation metrics we adopt in §B.4;
additional results for ¢ = 2 and ¢ = 1 the on the ShareGPT and ICLR datasets can be found in §C.2.
Table 2 and Fig. 2 highlight several main takeaways:

* No single metric fully describes synthetic data quality. For a single algorithm and dataset, some
metrics can be high, while others remain low (e.g., see CFG-PR and KNN-Recall in Fig. 2). This
further motivates the need for Struct-Bench, which aggregates many diverse metrics.

*https://github.com/microsoft/DPSDA

https://github.com/microsoft/DPSDA

Existing DP synthetic data generators struggle to learn complicated data structures. All baselines
achieve a CFG-PR score below 0.2 on the ICLR dataset, which features more node types and a
significantly more intricate graph structure than ShareGPT.

DP fine-tuning alone cannot learn structure. At ¢ = 4, it achieves a CFG-PR of 0 on all of our
datasets. Even at e = oo, it fails to learn structural information on all datasets except ShareGPT,
where it achieves a CFG-PR of 0.53; this is likely because ShareGPT contains fewer formatting
tokens compared to other datasets (e.g., JSON tags in tabular datasets).

PE and IF learn structure at the expense of semantic performance. Although PE and IF reliably
capture data structure with SOTA models, they have poor semantic performance (low KNN-Recall).

The performance gap between PE and DP-FT may arise from the foundation models they employ
and the use of instruction-guided generation. Unlike DP-FT, PE does not require model training,
which allows us to leverage SOTA models in the Random and Variation APIs. In contrast, DP-FT
relies on fine-tuning, and we thus need to use smaller, open-source models due to computational
restrictions and the weight access requirement. Nevertheless, with instruction-guided conditional
generation, Instruct DP-FT achieves performance comparable to PE across most metrics on both
ShareGPT and ICLR, when both use the same foundation model (GPT-2).

Table 2: DP synthetic data generation benchmarking results on Struct-Bench with e = 4. All baselines
use GPT-2 unless otherwise specified.

Structural Metrics Non-Structural Metrics DE

Dataset Baseline CFG-PR1T KND| AM/| KNN-PrecisionT KNN-Recall T Acct
ShareGPT IF (e = 0) 0.03 0.07 41.86 0.64 0.31 0.28

IF (e =0)

(GPT-40) 0.87 0.06 43.85 0.72 0.26 0.38

FT (e = 00) 0.53 0.03 52.70 0.76 0.66 0.37

Instruct FT 059 004 3070 0.80 054 037

(e = 00)

DP-FT 0 - - 0.02 0 -

Instruct DP-FT 0.55 0.18 32.59 0.77 0.31 0.35

PE 0.57 0.12 34.51 0.78 0.33 0.38

PE (GPT-40) 0.86 0.07 38.17 0.81 0.15 0.39
ICLR IF (e =0) 0.09 0.11 207.62 0.66 0.28 0.39

IF (¢ = 0)

(GPT-40) 0.17 0.26 204.80 0.84 0.03 0.47

FT (e = 00) 0 - - 0.71 0.47 0.46

Instruct FT

0.09 0.16 208.37 0.77 0.29 0.51

(e = 0)

DP-FT 0 - - 0 0 0.18

Instruct DP-FT 0.08 0.22 237.52 0.49 0.18 0.40

PE 0.10 0.20 248.73 0.49 0.20 0.41

PE (GPT-40) 0.19 0.26 240.94 0.98 0.02 0.52

4 Case Studies

In this section, we demonstrate how users can leverage Struct-
Bench to better understand and improve PE. We focus on PE
because, unlike DP-FT, it does not require training on private
data, offering both efficiency and qualitative advantages [60,

]. We use the the ShareGPT dataset for this case study.
While GPT-40 might achieve stronger performance, we adopt
Llama3-8b as the foundation model in this section since it is
more cost-efficient for our experiments and, importantly, more
affordable and accessible to end users.

We mainly focus on improving structural validity and semantic
diversity of the PE synthetic data in this section, and defer a
more thorough analysis as well as methods on improving node
dependency (KND) to §D.

CFG-PR (1)

Figure 3: CFG-PR of vanilla PE on
ShareGPT. Each data point is aver-
aged over three independent trials.
CFG-PR is low for all €.

—— IF —s— PE —— FT
Water, Water
A ICLR Real-world ICLR Real-world
Tabular Datasets Tabular Datasets
Datasets Datasets
Arena Arena
ShareGPT ShareGPT
»./ ‘-
0 02 04 08 u/& 1 702 04 06 08 1
Adult” Adult
“Grounding Grounding
Synthetic Reviews Synthetic

Datasets

(a) CFG-PR 1

Datasets

(b) KNN-Recall 1

Figure 2: CFG-PR and KNN-Recall of baselines on Struct-Bench with different datasets. While
frontier models capture the syntactic structure (high CFG-PR), existing DP synthetic data generators
fail on semantic diversity (KNN-Recall). With GPT-4o, IF and PE achieve perfect CFG-PR on tabular
and synthetic data, while FT with GPT-2 fails to learn the format. All baselines show near-zero
KNN-Recall on tabular and synthetic datasets. We exclude DP-FT because it scores zero on both
metrics. Instruction-tuned DP-FT and FT may perform better, as noted in Table 2.

Problem 1: Structural Validity (CFG-PR) is low. Structural validity, i.e., CFG-PR, is a critical
metric, as many downstream applications on structured datasets expect data to be formatted in a
particular way for compatibility with utilities and dataset-specific pipelines. Fig. 3 shows that the
CFG-PR of vanilla PE is below 60% when ¢ < 4, and only achieves ~ 63% in the non-private
setting (i.e., we run PE with no added noise). This suggests that with smaller foundation models (e.g.,
Llama3-8B), vanilla PE fails to capture even simple structural constraints.

Solution 1: LLM-Assisted reformatting can improve CFG compliance. To improve structural
validity, we introduce a reformatting feature to the Random and Variation APIs by prompting

CFG-PR (1) LLMs to explicitly check and reformat CFG-invalid samples
(see §D.2). For example, if PE generates ‘HUMAN: How are
you?’, the model detects the missing response and reformats it to
06 ‘HUMAN: How are you? GPT: I'm fine.’

7

Vanilla PE

0.8

0.

IS

As described in §3.2, PE iteratively generates candidate samples
and uses private voting to select the highest-quality ones. Sample
reformatting can happen before or after the PE private voting
process. We compare both reformatting methods with vanilla
PE at ¢ = 4 in Fig. 4. We see that the CFG-PR of both our
methods increases by over 20% compared with vanilla PE, and
reformatting after the private voting process does the best.

0.2

Reformat
(after voting)

Reformat
(before voting)

Figure 4: CFG-PR of vanilla PE
and PE with reformatting, ¢ = 4.

Reformatting can help enforce structural correctness but may distort semantics. For example, as
illustrated in Fig. 6, if PE generates “How are you? I'm fine. Thanks.”, the model may detect
missing format tokens and reformat it to “HUMAN: How are you? I'm fine. GPT: Thanks!”
While the reformatted version follows a valid structure, its
semantics are flawed—the user’s query includes part of the
response. Thus, reformatting-before-voting can bias vot-
ing against such semantically distorted samples. In con-
trast, reformatting-after-voting directly reformats only the most
highly-voted samples, which are either used as a final output
(at the last iteration of PE) or used as seeds in the next iteration.

0.70
0.65
0.60

055
—%— KNN-Precision (1)

0.0 KNN-Recall (1)

Problem 2: Semantic diversity (KNN-Recall) is low. As de- 1 2 a -
scribed in §2.1, KNN-Precision measures the semantic quality €

of the generated samples, and the KNN-Recall measures how
well the semantic diversity of the private dataset is captured
in the synthetic data. As we see in Fig. 5, as € increases, i.e.,
with looser privacy constraints, the KNN-Precision of vanilla
PE increases from 0.56 to 0.69, increases from 0.56 to 0.69,

Figure 5: KNN-Precision and
KNN-Recall of vanilla PE on
ShareGPT under different privacy
guarantees. Both are low.

Semantically incorrect
Structurally

Valid l HUMAN: How are you? I'm fine. l

GPT: Thanks! O
How are you? I'm fine. Thanks! —— @ |
/ Vote

Reformat How are you? I'm fine. Thanks!

Structurally
Invalid

Figure 6: Illustration of reformatting-before-voting on the ShareGPT dataset. The syntactically-
correctly reformatted sample follows a valid structure but has flawed semantics—the user’s query
includes part of the response. The incorrectly reformatted sample preserves semantic integrity; the
voting process can select samples that are semantically consistent but structurally invalid.

while KNN-Recall remains very low, around 0.35. This suggests that vanilla PE focuses on semantic
quality while sacrificing diversity.

Solution 2: Node extraction & auto-generation can improve semantic diversity. In the Variation
API, PE generates new samples by first masking a subset of the original text and then using the
LLM to fill in the blanks based on the remaining context. This process largely preserves the original
meanings, which limits semantic diversity. For example, if a conversation is about weather, and its
masked version retains keywords like ‘cloudy’ or ‘rainy’, the blank-filled new sample will likely still
be about weather, rather than an unrelated topic like dogs.

To improve semantic diversity, we extract specific nodes for blank-filling, and use the LLM to
conditionally generate the remaining nodes. We call this “Node extraction and auto-generation”
(example on the ShareGPT dataset in Fig. 7). The user specifies which nodes to extract—for instance,
roots in the parse tree of the CFG. The remaining nodes are generated by asking an LLM to generate
the remaining nodes in the sample, given only the extracted nodes (with blank-filled variations). This
pipeline incurs no additional privacy cost due to the post-processing property of DP.

We compare the performance of vanilla PE and PE with node extraction in Fig. 8. Recall that the
ShareGPT dataset has only two types of nodes: query and response nodes. In Fig. 8, we consider
two variants of the node extraction method: (1) extract all queries and auto-generate all responses
(listed as Extract Query), and (2) extract all responses and auto-generate all queries (shown as Extract
Response). We show three metrics: KNN-Recall, KNN-Precision, and CFG-PR.

Fig. 8 shows that Extract Query not only improves the KNN-Recall but also the KNN-Precision,
(i.e., semantic quality) as auto-generation also ensures the semantic meaning is more consistent and
natural across nodes. However, Extract Response does not improve KNN-Recall as the semantic
diversity depends mainly on responses, while queries are fairly constrained for a given response.
This indicates that the type of nodes extracted is crucial to the performance of semantic diversity.

Vanllla PE
HUMAN: How are _? Blankflling HUMAN: How are you doing?
. —_—
GPT: _fine GPT: Doing fine.
o Potential
B GPT: I' ite fine.
HUMAN: How are you? o A:l qful e fine. Responses
H 's fine.
GPT: I'm fine
Extract Query
HUMAN: Howare _? planicfilling HUMAN: How are you doing? Ao generation | '\ How are you doing?
— —— GPT: Hi there. I'm good. .
GPT: It's been a tough day. Potential
Responses
GPT: Same old, same old.
Orlginal Sample Varlatlon API

Figure 7: Example executions of the Variation API of vanilla PE and PE with node extraction and
auto-generation on ShareGPT. Vanilla PE masks parts of the original text and has the LLM fill the
blanks from the remaining context. In our variant, we first extract a node (here, the “Query”), perform
blank-filling only on that node, and then generate responses conditioned on the query. By imposing
fewer semantic constraints, this approach yields more semantically diverse samples.

@z Vanilla PE
KNN-Recall (1)

B Extract Query
KNN-Precision (1)

I Extract Response
CFG-PR (1)

0.8

0.40 0.8

0.7

0.35 0.7
0.6
0.30 0.6

0.25

0.5
0.5
04

0.20

0.4

0.15 03

03

010 02

0.05

0.2

0.1

0.1

0.00

Figure 8: KNN-Precision & KNN-Recall and CFG-PR of vanilla PE and PE with node extraction.

0.0 0.0

Additionally, since the formatting tokens around the extracted critical nodes will not be accidentally
modified by Variation API, the CFG-PR of PE with node extraction is also higher than vanilla PE.

Combination of our solutions achieves the best performance on most metrics. We fi-
nally compare the performance of our proposed methods. In Fig. 9, we plot the per-
formance of vanilla PE, PE + Reformat, PE + Extract Query, and PE + Reformat +

Extract Query.
we scale the metrics in these radar plots as fol-
lows: We assign a score of 0 if CFG-PR=0 or a
structure-related metric is not applicable for the
dataset, and rescale the values of other metrics
from 20 to 100, where 20 indicates the worst
performance among all methods, and 100 indi-
cates the performance upper bound the synthetic
data can achieve (e.g., CFG-PR=1 or AM=0).

The combination of our proposed methods (or-
ange curve) significantly improves in CFG-PR,
achieving up to 94%, and it also outperforms
or performs comparably to other methods in
most metrics, including semantic metrics (KNN-
Precision, KNN-Recall), and statistic metrics
(AM on response length and node count).

To better visualize differences in the performance of different methods,

Structural Metrics:
KND

AM: Query Token Length KND: (response, query)

AM: Response Token Length

/ S 7> CFG-PR

b
)zl

KND: (query, response)

AM: Number of Nodes

AM: Topic

Structural Metrics:
AM

Intent Prediction
AM: Intent Downstream
Topic Prediction Eyaluations

KNN-Precision KNN-Recall

Non-structural Metrics

—e— Vanilla PE
—=— PE with Reformat

~—=— PE with Extract Query
PE with Reformat & Extract Query

Figure 9: Performance of Different Methods on
ShareGPT with € = 4.

5 Related Work

Differentially Private (DP) Synthetic Data Generation DP synthetic data generation has devel-
oped as an effective tool in the machine learning model development pipeline [66, 42, 27, 60, 28, 55],
especially with the advent of instruction-following LLMs generating natural and fluent text
[4, 60, 38, 17, 50]. Prior methods, such as Private Evolution (PE) [27, 60, 28, 22, 68, 23, 57],
leverage pretrained models (e.g., large language models) or non-neural approaches (e.g., computer
graphics tools) for DP synthetic data generation. [27, 60, 28] show that PE could be competitive with
DP fine-tuning baselines [63, 59, 65, 13] while does not require training on the private data.

DP Synthetic Data Evaluation Evaluating DP synthetic data presents a unique challenge, namely
of quantifying adherence of the synthetic data to arbitrary private datasets [51, 44]. Several bench-
marks have been proposed to evaluate DP synthetic data in image [16, 24, 32, 61], text [40, 45, 64],
tabular [42, 14, 5, 37, 34, 33], time series [47], and graph data [15]. However, these benchmarks either
do not explicitly consider data structure, or their evaluation is confined to numerical or categorical
data types, thus limiting their scope.

6 Conclusion

In this work, we proposed a new benchmark for DP synthetic data generation named Struct-Bench.
To the best of our knowledge, Struct-Bench is the first benchmark to comprehensively evaluate DP
synthetic data derived from structured datasets that contain natural language data. Struct-Bench also
has the strength of being a composite benchmark, wherein a diverse collection of datasets might
preclude algorithmic research to overfit to only a few data types. Through our evaluations, we also
characterize the limitations of existing SOTA DP synthetic data generation methods and conduct a
case study to show how to improve on SOTA methods using the insights from Struct-Bench.

10

Acknowledgements

The authors would like to thank Sivakanth Gopi for his helpful suggestions. This work was supported
in part by the National Science Foundation under grants CCF-2338772 and CNS-2148359.

References

[1] ShareGPT_Vicuna_unfiltered Dataset. Hugging Face Datasets https://
huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/
bcd32a724d8460ebe14e1d05b0195e30e9a46¢bl, apr 2023.

[2] The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024.

[3] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar, and L. Zhang. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308-318, 2016.

[4] Tejumade Afonja, Hui-Po Wang, Raouf Kerkouche, and Mario Fritz. Dp-2stage: Adapting lan-
guage models as differentially private tabular data generators. arXiv preprint arXiv:2412.02467,
2024.

[5] Christian Arnold and Marcel Neunhoeffer. Really useful synthetic data—a framework to evaluate
the quality of differentially private synthetic data. arXiv preprint arXiv:2004.07740, 2020.

[6] Barry Becker and Ronny Kohavi. Adulthttps://doi.org/10.24432/C5XW20. UCI Machine
Learning Repository, 1996.

[7] 1z Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[8] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, Mukund Lahoti, and Pratik Narang. A
universal metric for robust evaluation of synthetic tabular data. IEEE Transactions on Artificial
Intelligence, 5(1):300-309, 2022.

[9] Hari Prasanna Das, Ryan Tran, Japjot Singh, Xiangyu Yue, Geoffrey Tison, Alberto Sangiovanni-
Vincentelli, and Costas J Spanos. Conditional synthetic data generation for robust machine
learning applications with limited pandemic data. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 11792-11800, 2022.

[10] Georgios Douzas and Fernando Bacao. Effective data generation for imbalanced learning using
conditional generative adversarial networks. Expert Systems with applications, 91:464—471,
2018.

[11] Justin Engelmann and Stefan Lessmann. Conditional wasserstein gan-based oversampling of
tabular data for imbalanced learning. arXiv preprint arXiv:2008.09202, 2020.

[12] Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu,
Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin Durmus, Ondfej Dusek, Chris Chinenye
Emezue, Varun Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite,
Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman
Madaan, Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder,
Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg,
Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei,
Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego
Rodriguez, Sashank Santhanam, Jodo Sedoc, Thibault Sellam, Samira Shaikh, Anastasia
Shimorina, Marco Antonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei
Xu, Diyi Yang, Akhila Yerukola, and Jiawei Zhou. The GEM benchmark: Natural language
generation, its evaluation and metrics. In Antoine Bosselut, Esin Durmus, Varun Prashant
Gangal, Sebastian Gehrmann, Yacine Jernite, Laura Perez-Beltrachini, Samira Shaikh, and Wei
Xu, editors, Proceedings of the 1st Workshop on Natural Language Generation, Evaluation,

11

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/bcd32a724d8460ebe14e1d05b0195e30e9a46cb1
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/bcd32a724d8460ebe14e1d05b0195e30e9a46cb1
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/bcd32a724d8460ebe14e1d05b0195e30e9a46cb1
https://doi.org/10.24432/C5XW20

and Metrics (GEM 2021), pages 96—120, Online, August 2021. Association for Computational
Linguistics.

[13] Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes,
Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion
models generate useful synthetic images. arXiv preprint arXiv:2302.13861, 2023.

[14] Matteo Giomi, Franziska Boenisch, Christoph Wehmeyer, and Borbéla Tasnadi. A unified
framework for quantifying privacy risk in synthetic data. arXiv preprint arXiv:2211.10459,
2022.

[15] Alexander Goldberg, Giulia Fanti, Nihar Shah, and Steven Wu. Benchmarking fraud detectors
on private graph data. KDD, 2025.

[16] Chen Gong, Kecen Li, Zinan Lin, and Tianhao Wang. Dpimagebench: A unified benchmark for
differentially private image synthesis. arXiv preprint arXiv:2503.14681, 2025.

[17] Mandeep Goyal and Qusay H Mahmoud. An llm-based framework for synthetic data generation.
In 2025 IEEE 15th Annual Computing and Communication Workshop and Conference (CCWC),
pages 00340-00346. IEEE, 2025.

[18] Begiim Hattatoglu, Abdulhakim A Qahtan, Heysem Kaya, and Yannis Velegrakis. Synthfair:
Ensuring subgroup fairness in classification via synthetic data generation. In World Congress
in Computer Science, Computer Engineering & Applied Computing, pages 347-363. Springer,
2024.

[19] Mikel Hernadez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic tab-
ular data evaluation in the health domain covering resemblance, utility, and privacy dimensions.
Methods of information in medicine, 62(S 01):e19—e38, 2023.

[20] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local nash equilibrium. In Advances in neural information
processing systems, volume 30, 2017.

[21] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60-65, 2001.

[22] Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar,
Giulia Fanti, and Daniel Lazar. Pre-text: training language models on private federated data
in the age of llms. In Proceedings of the 41st International Conference on Machine Learning,
pages 19043-19061, 2024.

[23] Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, and Giulia Fanti. Private federated learning
using preference-optimized synthetic data. arXiv preprint arXiv:2504.16438, 2025.

[24] Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin
Ding, David Forsyth, Bo Li, and Dawn Song. Sok: Privacy-preserving data synthesis. In 2024
IEEE Symposium on Security and Privacy (SP), pages 4696-4713. IEEE, 2024.

[25] T. Kynkédnniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila. Improved precision and recall
metric for assessing generative models. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[26] Roger Levy and Galen Andrew. Tregex and tsurgeon: Tools for querying and manipulating tree
data structures. In LREC, pages 2231-2234. Genoa, 2006.

[27] Z. Lin, S. Gopi, J. Kulkarni, H. Nori, and S. Yekhanin. Differentially private synthetic data via
foundation model APIs 1: Images. In International Conference on Learning Representations
(ICLR), 2024.

[28] Zinan Lin, Tadas Baltrusaitis, Wenyu Wang, and Sergey Yekhanin. Differentially private

synthetic data via apis 3: Using simulators instead of foundation model. arXiv preprint
arXiv:2502.05505, 2025.

12

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differen-
tially private synthetic data via foundation model apis 1: Images. In ICLR, 2024.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing
networked time series data: Challenges, initial promise, and open questions. In Proceedings of
the ACM internet measurement conference, pages 464—483, 2020.

Zinan Lin, Shuaiqi Wang, Vyas Sekar, and Giulia Fanti. Summary statistic privacy in data
sharing. IEEE Journal on Selected Areas in Information Theory, 5:369-384, 2024.

Yintong Liu, U Rajendra Acharya, and Jen Hong Tan. Preserving privacy in healthcare: A
systematic review of deep learning approaches for synthetic data generation. Computer Methods
and Programs in Biomedicine, page 108571, 2024.

Ioannis E Livieris, Nikos Alimpertis, George Domalis, and Dimitris Tsakalidis. An evaluation
framework for synthetic data generation models. In IFIP International Conference on Artificial
Intelligence Applications and Innovations, pages 320-335. Springer, 2024.

Yunbo Long, Liming Xu, and Alexandra Brintrup. Evaluating inter-column logical relationships
in synthetic tabular data generation. arXiv preprint arXiv:2502.04055, 2025.

Maria Antonietta Longo. A Synthetic Data Generation Approach for Subgroup-Based Bias
Mitigation in Structured Data. PhD thesis, Politecnico di Torino, 2025.

Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. Aim: An adaptive and
iterative mechanism for differentially private synthetic data. arXiv preprint arXiv:2201.12677,
2022.

Parisa Movahedi, Valtteri Nieminen, Ileana Montoya Perez, Hiba Daafane, Dishant Sukhwal,
Tapio Pahikkala, and Antti Airola. Benchmarking evaluation protocols for classifiers trained on
differentially private synthetic data. IEEE Access, 2024.

Md Mahadi Hasan Nahid and Sadid Bin Hasan. Safesynthdp: Leveraging large language
models for privacy-preserving synthetic data generation using differential privacy. arXiv
preprint arXiv:2412.20641, 2024.

Zhaozhi Qian, Thomas Callender, Bogdan Cebere, Sam M Janes, Neal Navani, and Mihaela
van der Schaar. Synthetic data for privacy-preserving clinical risk prediction. Scientific Reports,
14(1):25676, 2024.

Krithika Ramesh, Nupoor Gandhi, Pulkit Madaan, Lisa Bauer, Charith Peris, and Anjalie Field.
Evaluating differentially private synthetic data generation in high-stakes domains. arXiv preprint
arXiv:2410.08327, 2024.

Brian Richards. Type/token ratios: What do they really tell us? Journal of child language,
14(2):201-209, 1987.

Lucas Rosenblatt, Xiaoyan Liu, Samira Pouyanfar, Eduardo de Leon, Anuj Desai, and Joshua
Allen. Differentially private synthetic data: Applied evaluations and enhancements. arXiv
preprint arXiv:2011.05537, 2020.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. As-
sessing generative models via precision and recall. Advances in neural information processing
systems, 31, 2018.

Viktor Schlegel, Anil A Bharath, Zilong Zhao, and Kevin Yee. Generating synthetic data with
formal privacy guarantees: State of the art and the road ahead. arXiv preprint arXiv:2503.20846,
2025.

Viktor Schlegel, Yuping Wu, Warren Del-Pinto, Goran Nenadic, and Anil Anthony Bharath. Ai

for data science: A benchmark for differentially private text dataset generators. In AI4X 2025
International Conference.

13

[46] Geoffrey Smith. On the foundations of quantitative information flow. In International Con-
ference on Foundations of Software Science and Computational Structures, pages 288-302.
Springer, 2009.

[47] Michael Stenger, Robert Leppich, Ian Foster, Samuel Kounev, and André Bauer. Evaluation is
key: a survey on evaluation measures for synthetic time series. Journal of Big Data, 11(1):66,
2024.

[48] Anshuman Suri and David Evans. Formalizing and estimating distribution inference risks. arXiv
preprint arXiv:2109.06024, 2021.

[49] Bowen Tan, Zheng Xu, Eric Xing, Zhiting Hu, and Shanshan Wu. Synthesizing privacy-
preserving text data via finetuning without finetuning billion-scale llms. arXiv preprint
arXiv:2503.12347, 2025.

[50] Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan
Lin, Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context
learning with differentially private few-shot generation. arXiv preprint arXiv:2309.11765, 2023.

[51] Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Gerome Miklau.
Benchmarking differentially private synthetic data generation algorithms. arXiv preprint
arXiv:2112.09238, 2021.

[52] Tharunmss. Water Bottle Dataset - Flipkart https://www.kaggle.com/datasets/
tharunmss/water-bottle-dataset-flipkart. Kaggle, 2024.

[53] Mohammad Jalili Torkamani. Kajal: Extracting grammar of a source code using large language
models. arXiv preprint arXiv:2412.08842, 2024.

[54] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differentially private
synthetic data and label generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 0-0, 2019.

[55] Toan V Tran and Li Xiong. Differentially private tabular data synthesis using large language
models. arXiv preprint arXiv:2406.01457, 2024.

[56] Boris Van Breugel, Zhaozhi Qian, and Mihaela Van Der Schaar. Synthetic data, real errors:
how (not) to publish and use synthetic data. In International Conference on Machine Learning,
pages 34793-34808. PMLR, 2023.

[57] Haoxiang Wang, Zinan Lin, Da Yu, and Huishuai Zhang. Synthesize privacy-preserving
high-resolution images via private textual intermediaries. arXiv preprint arXiv:2506.07555,
2025.

[58] Shuaiqi Wang, Zinan Lin, and Giulia Fanti. Statistic maximal leakage. In 2024 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 2742-2747. IEEE, 2024.

[59] Lukas Wutschitz, Huseyin A Inan, and Andre Manoel. dp-transformers: Training transformer
models with differential privacy, 2022.

[60] Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori,
Haotian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via

foundation model apis 2: Text. In International Conference on Machine Learning, pages
54531-54560. PMLR, 2024.

[61] Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and Kristin P Ben-
nett. Generation and evaluation of privacy preserving synthetic health data. Neurocomputing,
416:244-255, 2020.

[62] Scott Cheng-Hsin Yang, Baxter Eaves, Michael Schmidt, Ken Swanson, and Patrick Shafto.
Structured evaluation of synthetic tabular data. arXiv preprint arXiv:2403.10424, 2024.

[63] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath,
Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private
fine-tuning of language models. arXiv preprint arXiv:2110.06500, 2021.

14

https://www.kaggle.com/datasets/tharunmss/water-bottle-dataset-flipkart
https://www.kaggle.com/datasets/tharunmss/water-bottle-dataset-flipkart

[64] Yefeng Yuan, Yuhong Liu, and Liang Cheng. A multi-faceted evaluation framework for
assessing synthetic data generated by large language models. arXiv preprint arXiv:2404.14445,
2024.

[65] X. Yue, H. A. Inan, X. Li, G. Kumar, J. McAnallen, H. Sun, D. Levitan, and R. Sim. Synthetic
text generation with differential privacy: A simple and practical recipe. In ACL, 2023.

[66] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo He, Jiming
Chen, and Yang Zhang. {PrivSyn}: Differentially private data synthesis. In 30th USENIX
Security Symposium (USENIX Security 21), pages 929-946, 2021.

[67] L.Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
et al. Judging LLM-as-a-judge with MT-bench and chatbot arena, 2023.

[68] Tianyuan Zou, Yang Liu, Peng Li, Yufei Xiong, Jianqing Zhang, Jingjing Liu, Xiaozhou Ye,

Ye Ouyang, and Ya-Qin Zhang. Contrastive private data synthesis via weighted multi-plm
fusion. arXiv preprint arXiv:2502.00245, 2025.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly states the claims made, including the
contributions made in the paper and important assumptions and limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Although our Struct-Bench is general to evaluate synthetic data in any type, we
mainly focus on evaluating synthetic datasets derived from structured datasets that contain
natural language data in this paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]

Justification: the paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the dataset descriptions and experimental settings in § B to C, and
provide our codes at https://github.com/struct-bench/structpe.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

https://github.com/struct-bench/structpe

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our synthetic datasets at https://www.kaggle.com/datasets/
structpedataset/structpe-synthetic-datasets, and provide our codes at https:
//github.com/struct-bench/structpe.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental settings are provided in § 3 to D.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We include the statistical significance of the experiments in § 4 and D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18

https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets
https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets
https://github.com/struct-bench/structpe
https://github.com/struct-bench/structpe
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide compute resources in § C and D.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work aims to benchmark privacy-preserving synthetic data generation
techniques, which can aid in building machine learning models in privacy-critical domains
such as healthcare. We believe that our work can have a positive impact by allowing ML
practitioners and researchers to develop better algorithms for privacy-preserving machine
learning. However, this may also creates a risk that companies could gain access to datasets
they would otherwise not use or be permitted to access.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset in § B
and 3.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

20

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our synthetic datasets at https://www.kaggle.com/datasets/
structpedataset/structpe-synthetic-datasets, and provide our codes at https:
//github.com/struct-bench/structpe.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

21

paperswithcode.com/datasets
https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets
https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets
https://github.com/struct-bench/structpe
https://github.com/struct-bench/structpe

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Metric Definitions and Instantiation Guidelines

A.1 Key Node Dependency (KND)

Definition KND measures the distributional distance of node pair dependencies between the
synthetic and original data. For a key node pair (O;, O;), let C; ; be the cosine similarity between
their embeddings, and let wc, ; and w’CH be the distributions of these similarities in the original and
synthetic data, respectively. Then, KND is defined as:

KND(0;,0;) = Dis(wc, ;,we, ,)s

where Dis is the Wasserstein-2 distance.

Instantiation Guideline We allow the user to specify key nodes. If not specified, all nodes parsed
by CFG are treated as key nodes by default. To instantiate key nodes, we recommend users ask
the question “Which nodes are central to our downstream tasks, and which nodes are semantically
related to them?”. For example, key node pairs could be a query and response in a conversation
dataset, or a review and its rating in a product review dataset. We’ve specified the key nodes of our
datasets in Table 1.

A.2 Attribute Match (AM)

Definition AM calculates the distributional distance of a given attribute between the synthetic and
original data. For attribute a, let w, and w/, denote its distributions in the original and synthetic data,
respectively. Then, AM is defined as:

AM(a) = Dis(wq,w)).

For distributional distance Dis, we use Wasserstein-2 distance for numeric attributes and total
variation distance for categorical attributes.

Instantiation Guideline Users can specify semantic or statistical attributes. A guiding question
is: “Which data properties matter for our downstream tasks?” Common semantic attributes include
topic, intent, and sentiment; statistical attributes include token length (overall or per node). Original
categorical/numerical values are also often relevant. The selected attributes for our datasets are
detailed in §B.4.

A.3 Downstream Evaluations (DE)

Label Generation Guideline To instantiate labels for downstream evaluation, we recommend that
users first determine whether the label should be extracted directly from the sample or generated.
Extracted labels typically include original categorical or numerical values—such as income level in
our Adult dataset or paper decision in the ICLR dataset. If the label is to be generated, we suggest
considering the question: “What is a data property that is present and can be inferred from each
node in a sample and is relevant to our downstream tasks?” Generated labels are usually semantic
attributes of the samples or nodes, such as topic, intent, or sentiment. To discourage prompt gaming
by data uploaders, we provide a suggested prompt template for labeling: “For each sample in __
scenarios, label the ____ property. Possible answers include { __,...}.” The specific
labels used for our datasets are detailed in §B.4.

R —

B Data Modeling and Evaluation Items of Each Dataset

B.1 Examples on ShareGPT

To support the running example of data modeling and representation discussed in §2, we first show
a sample of the ShareGPT dataset, the data modeling of it, and the context-free grammar (CFG)
according to its data structure.

A sample of ShareGPT

=T RN I . N NIV R SR

B = 2

HUMAN: Pretend you are a successful and very thorough real estate
investor and financial analyst

GPT: Sure, I can help you with that. As a successful real estate
investor and financial analyst, I have a deep understanding of the

real estate market and the financial factors that drive its

performance. Here are some key things that I would keep in mind
when analyzing investment opportunities:...

HUMAN: Assume the debt down payment is 50

GPT: Sure, I can adjust the calculations to assume a 50% down payment.
Here is how the projections would change:...

HUMAN: What is the IRR from the perspective of the equity

GPT: To calculate the IRR from the perspective of the equity, we need
to adjust the cash flows to reflect the equity portion of the
profits. Here is how we can calculate the equity IRR:...

Hlustration of the data modeling of ShareGPT
We illustrate the data modeling of ShareGPT in Fig. 10.

a,: #nodes: 4

Sample Dy a,: Token length: 12
HUMAN: Hi
GPT: Hi there
I HUMAN: Can you help me? Node 0,
GPT: Sure

vy: Token length: 5

v,: Topic: need help

v3: Intent: request for help
v,: Speaker: User

Figure 10: Illustration of the data modeling of ShareGPT.

CFG of ShareGPT

ShareGPT: conversation (conversation)x*

// ShareGPT contains one or more conversation rounds
conversation: query response

// Each conversation round contains a query and a response
query: "HUMAN:_," query_text

// The query starts with "HUMAN:, "
response: "GPT:_" response_text

// The response starts with "GPT: "
query_text: /(?s).+7(?=(7:GPT: [$))/

// The query text ends before "GPT:_," or the end of the string
response_text: /(?7s) .+7(7=(7:HUMAN: [$))/

// The response text ends before "HUMAN:_," or the end of the

string

B.2 Dataset Descriptions

ShareGPT [1] The ShareGPT dataset contains multi-round conversations between users and GPT.
We structure each conversation such that each user’s query starts with ‘HUMAN: ’ and each GPT’s
response starts with ‘GPT: . The downstream task we conduct is to predict the user’s intent and
conversation topic based on user queries.

ICLR [2] The ICLR dataset contains the reviews, author rebuttals, follow-up discussions, and final
decisions of the papers submitted to ICLR 2024 [2]. Each review or reviewer’s comment starts with

‘Reviewer n” where n represents the reviewer’s identity, and each author rebuttal or discussion starts
with ‘Response’. The downstream task is to predict the research area of the paper based on the review
and rebuttals.

Water [52] The Water dataset contains reviews of water bottles. The columns are product_name,
overall_rating, title, cleaned_review and the goal is to predict the current rating (column "rating") of
the bottle, which takes values 1, 2, 3, 4, 5.

Arena [67] The Arena dataset contains pairs of human-model conversations. The columns are
conversation_a, conversation_b and the goal is to predict which of the conversations are better
(column "winner"), which takes values model_a, model_b, tie, "tie (bothbad)".

Adult [6] The Adult dataset contains census data. The columns are age, workclass, fnlwgt,
education, education-num, marital-status, occupation, relationship, race, sex, capital-gain, capital-
loss, hours-per-week, native-country and the goal is to predict income (column "income"), which
takes values <= 50k or > 50k.

Synthetic Datasets with Controllable Data Attributes We include two synthetic datasets® named
Synthetic Reviews and the Synthetic Grounding Dataset. The reviews dataset has 4 fields, namely
text, sentiment, emotion, and rating. The grounding dataset has 4 fields including two source
documents, a query, and a response. We generate these datasets through a multi-step synthetic data
generation process with GPT-40 wherein we verify whether the fields satisfy certain conditions, e.g.,
the reviews dataset is a 1:1 split of extreme negative and extreme positive reviews about products
and the grounding dataset is a 1:1:1:1 split of relevant/irrelevant queries and consistent/inconsistent
source documents. In particular, the reviews dataset is composed on only extreme reviews, either
very positive or very negative. This differs from a typical review distribution and is unique to this
particular dataset. Similarly, for the grounding dataset, we vary the samples along two axes, first on
the consistency of the information between the sources and second, on the relevancy of the query to
the sources. Each of the synthetic datasets is balanced in both their training and (downstream) test
sets on these variations.

B.3 Data Modeling of Each Dataset

Tables 3 and 4 shows the data modeling and structure rules of each dataset.

Table 3: Data modeling of each dataset

Dataset Sample D Sample Attributes Node O Node Attributes
v1: token length
. a1: number of nodes va: topic
ShareGPT a conversation as: token length a query/response vg: intent
vy: speaker
a1: number of nodes 01+ token lensth
reviews & rebuttals as: token length a post from the Lt eng
ICLR . . V9! Writer
of a paper as: topic reviewer/author Lo
- V3. review score
a4: final decision
water bottle a1: number of nodes a column of v1: token length
Water . L -
review aq: attitude the tabular data Vo' TeView score
2 conversations a1: number of nodes a column of v1: token length
Arena L. o
to compare ao: winner the tabular data Vo: winner
Adult census information of an adult a1- age a column of v1: token length
ao: workclass the tabular data V9. income
Reviews annotated product review ay: number 0 f nodes areview text v1: token l ength
ag: rating Vg rating
. 2 sources a1: number of nodes v1: token length
Grounding . a grounded response
and a QA pair ao: answer Vg answer

Shttps://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets

Table 4: Structure rules of each dataset

Dataset Rules

[Alternate Speakers] VO;, O, 1 : O;[Speaker]| # O, 1[Speaker].
ShareGPT | [Format] O[Speaker]| € {User, AI Agent}. If O[Speaker| = User, the text
starts with ‘HUMAN: ’; If O[Speaker]| = AI Agent, the text starts with ‘GPT: .

[Format] O[Writer| € {Author,Reviewer 1-9,Meta Reviewer}.

If O[Writer| = Author, the text starts with ‘Response:’;

ICLR if O[Writer] = Reviewer n, the text starts with ‘Reviewer n:” (1 < n <9).
[Format] O[Review Score] € {1,3,5,6,8,10}.

[Format] D[Final Decision] € {Reject, Accept:poster, Accept:top5%, Accept:top25%, }.

Water [Format]O[Overall_rating] € {1.0,1.1,1.2,...,4.9,5.0}.
[Format]O[Rating] € {1,2,3,4,5}
[Format]O[Winner| € {model_a,model_b,tie, tie (bothbad)}.
Arena O[Conversation_a] starts with "Question:" and has "Answer:" before somewhere in the following text.

O[Conversation_b] starts with "Question:" and has "Answer:" before somewhere in the following text.

[Format]O[income] € {<= 50k, > 50k}.
Adult [Format] Some of the columns are categorical (e.g. workclass, native-country).
[Format] Some of the columns are numerical (e.g. age, capital-gain).

Reviews | [Format]O[Rating] € {1,2,3,4,5}

Groundi [Format]O[Consistency] € {1,2,3,4,5}.
rounding | rpormat]O relevancy| € {1,2,3,4,5}

B.4 Evaluation Metrics of Each Dataset

The evaluation items of each dataset are summarized in Table 5.

For ShareGPT, in our experimental results, we show the semantic similarity of the node pair (query,
response) as KND, show the distributional distance of the queries’ token lengths as AM, and present
the prediction accuracy of the conversation topics in downstream task performance.

For ICLR, we show the semantic similarity of the node pair (review, rebuttal) as KND, show the
distributional distance of the reviews’ token lengths as AM, and present the prediction accuracy of
the paper’s research area in downstream task performance.

C Additional Results on Struct-Bench

Resource Costs All baselines are implemented and performed on a server with eight H100 GPUs.
Running experiments took approximately 400 GPU hours.

Implementation Details on Instruction Fine-tuning For both Instruct DP-FT and Instruct FT, we
use the same instructions as those in the Random API of PE. We prepend the instructions to each
training sample and fine-tune the foundation model for 20 epochs with batch size 32, weight decay
0.01, and learning rate 10~*. The fine-tuned model then generates new samples conditioned on the
given instructions.

C.1 Benchmarking DP Synthetic Data Generation Across Datasets

We present the results of benchmarking the DP synthetic data generation methods under different
datasets with ¢ = 4 in Table 6. We use GPT-2 for FT and DP-FT, and use GPT-40 for IF and PE.

C.2 Benchmarking DP Synthetic Data Generation with Varying Privacy Budget

We illustrate the performance of PE and DP-FT on all metrics under different privacy budgets
e € {1,2,4, 00} on ShareGPT and ICLR datasets by radar plots in Figs. 11 and 12. Similar to §C.1,
we use GPT-2 for FT and DP-FT, and use GPT-40 for IF and PE.

Table 5: Metrics for Different Datasets.

Dataset

Structural Metrics

Non-structural Metrics

Downstream Task

ShareGPT

CFG-PR
KND
1. (query, response) pair
2. (response, query) pair

1. number of nodes
2.query token length
3. response token length
4. topic
5. intent

1. KNN-Precision
2. KNN-Recall

1. topic prediction
2. intent prediction

ICLR

CFG-PR
KND
1. (review, rebuttal) pair
2. (rebuttal, comment) pair
3. (review, review) pair
from different reviewers
AM
1. number of nodes
2. review token length
3. rebuttal token length
4. Recommendation
5. final decision
6. topic

1. KNN-Precision
2. KNN-Recall

topic prediction

Arena

CFG-PR
KND
1. (conversation_a, conversation_b) pair
AM
1. winner

1. KNN-Precision
2. KNN-Recall

winner prediction

Water

CFG-PR
KND
1. (title, cleaned_review) pair
AM
1. attitude

1. KNN-Precision
2. KNN-Recall

rating prediction

Adult

CFG-PR
KND
1. (native country, workclass) pair
AM
1. income

1. KNN-Precision
2. KNN-Recall

income prediction

Reviews

CFG-PR
KND
1. (text, sentiment) pair
AM
1. review token length

1. KNN-Precision
2. KNN-Recall

review label prediction

Grounding

CFG-PR
KND
1. (sourcel, source2) pair
AM
1. query relevancy

1. KNN-Precision
2. KNN-Recall

query relevancy prediction

AM. lery Token Length
Query o KND: (response, query) Pair
AM: Response Token Length

KND: (query, response) Pair

AM: Number of Nodes

CFG-PR
0 60 80 100
AM: Topic
Intent Prediction
AM: Intent

Topic Prediction
KNN-Precision KNN-Recal

== PE =s= DP-FT

(a) e = o0

AM: Token Length
Query Token Leng KND: (response, query) Pair
AM: Response Token Length

KND: (query, response) Pair

AM: Number of Nodes

CFG-PR
40 60 80 100
AM: Topic
Intent Prediction
AM: Intent

Topic Prediction
KNN-Precision KNN-Recall

=e= PE =s= DP-FT

c)e=2

AM: ery Token Length
Query 9 KND: (response, query) Pair
AM: Response Token Length

KND: (query, response) Pair

AM: Number of Nodes

CFG-PR
2 0 60 80 100
AM: Topic
Intent Prediction
AM: Intent

Topic Prediction
KNN-Precision KNN-Recal

=e= PE == DP-FT

b)e=4

AM: Token Length
Query Token Leng KND: (response, query) Pair
AM: Response Token Length

KND: (query, response) Pair

AM: Number of Nodes

CFG-PR
20 60 80 100
AM: Topic
Intent Prediction
AM: Intent

Topic Prediction
KNN-Precision KNN-Recall

=e= PE == DP-FT

de=1

Figure 11: Performance of PE and DP-FT on all metrics under different privacy budgets on ShareGPT.

KND: (rebuttal, comment) Pair
AM: Review Token Length KND: (review, rebuttal) Pair

AM: Rebuttal Token Length KND: (review, review) Pair

AM: Recommendation CFG-PR

60 80 100

AM: Final Decision Topic Prediction

AM: Number of Nodes KNN-Recall

AM: Topic KNN-Precision

== Vanilla PE =#= DP-FT

(a) e = 0o

KND: (rebuttal, comment) Pair
AM: Review Token Length KND: (review, rebuttal) Pair

AM: Rebuttal Token Length KND: (review, review) Pair

AM: Recommendation CFG-PR

0 60 80 100

AM: Final Decision Topic Prediction

AM: Number of Nodes KNN-Recall

AM: Topic KNN-Precision

== Vanilla PE =#= DP-FT

(©e=2

KND: (rebuttal, comment) Pair
AM: Review Token Length KND: (review, rebuttal) Pair

AM: Rebuttal Token Length KND: (review, review) Pair

AM: Recommendation CFG-PR

0 60 80 100

AM: Final Decision Topic Prediction

AM: Number of Nodes KNN-Recall

AM: Topic KNN-Precision

=e= Vanilla PE == DP-FT

b)e=4

KND: (rebuttal, comment) Pair
AM: Review Token Length KND: (review, rebuttal) Pair

AM: Rebuttal Token Length KND: (review, review) Pair

AM: Recommendation CFG-PR

60 80 100

AM: Final Decision Topic Prediction

AM: Number of Nodes KNN-Recall

AM: Topic KNN-Precision

== Vanilla PE == DP-FT

de=1

Figure 12: Performance of PE and DP-FT on all metrics under different privacy budgets on ICLR.

Table 6: DP synthetic data generation benchmarking results on Struct-Bench with e = 4

Structural Metrics Non-Structural Metrics

DE

Dataset Baseline CFG-PR1 KND | AM | KNN-Precision T KNN-Recall T Acc?t

ShareGPT IF (¢ = 0) 08700 0.0635 43.8514 0.7217 0.2627 0.3754
FT(e=o00) 05378 00315 52.6984 0.7594 0.6588 0.3718
DP-FT 0 - - 0.0161 0.0000 -
PE 0.8633 0.0660 38.1678 0.8050 0.1528 0.3816
ICLR IF (¢ = 0) 0.1733 0.2582 204.7997 0.8400 0.0257 04715
FT (e = c0) 0 - - 0.7056 0.4747 0.4584
DP-FT 0 - - 0.0000 0.0000 0.1806
PE 0.1900 0.2599 240.9434 0.9800 0.0207 0.5218
Water IF (¢ = 0) 1.0000 04222 0.1574 0.0000 0.0060 0.5485
FT (e = o) 0 - - 0.0000 0.0060 -
DP-FT 0 - - 0.0000 0.0060 -
PE 1.0000 0.2877 0.0236 0.0000 0.0070 0.6130
Arena IF (¢ = 0) 1.0000 0.1257 0.9395 0.0000 0.0090 0.3607
FT (e = o) 0 - - 0.0000 0.0060 -
DP-FT 0 - - 0.0000 0.0060 -
PE 1.0000 0.1054 0.9193 0.0000 0.0070 0.3510
Adult IF (¢ = 0) 1.0000 0.0290 0.0332 0.0030 0.0030 0.7920
FT (e = o0) 0 - - 0.0030 0.0030 -
DP-FT 0 - - 0.0030 0.0030 -
PE 1.0000 0.0042 0.0000 0.0030 0.0060 0.8017
Reviews IF (¢ = 0) 1.0000 03510 0.4010 0.0334 0.0344 0.6000
FT (e =) 0 - - 0.0020 0.0900 0.5400
DP-FT 0 0.0020 0.0060 0.0020 0.0900 0.5600
PE 1.0000 0.2495 0.0770 0.0290 0.0900 0.5400
Grounding IF (¢ = 0) 1.0000 0.5800 0.6006 0.0500 0.0600 0.6400
FT (e = 0) 0 - - 0.0290 0.0900 0.4000
DP-FT 0 - - 0.0430 0.0900 0.4000
PE 10000 0.1435 04710 0.0300 0.0600 0.6000

C.3 Benchmarking DP Synthetic Data Generation on ShareGPT using Llama2-7b

We illustrate the performance of PE, DP-FT, and Instruct DP-FT in Fig. 13 , where each dimension
corresponds to a different metric from Struct-Bench. To better visualize differences in the performance
of different methods, we scale the metrics in these radar plots as follows: We assign a score of O if
CFG-PR=0 or a structure-related metric is not applicable for the dataset, and rescale the values of
other metrics from 20 to 100, where 20 indicates the worst performance among all methods, and 100
indicates the performance upper bound the synthetic data can achieve (e.g., CFG-PR=1 or AM=0).

Fig. 13 shows that (1) DP-FT does not learn any structural information (CFG-PR); and (2) with
instruction-guided conditional generation, Instruct DP-FT achieves similar performance to PE on
most metrics and has a slight edge in terms of structure learning CFG-PR.

D Detailed analysis of the case study on PE

Resource Costs All baselines are implemented and performed on a server with eight H100 GPUs.

Running experiments took approximately 1000 GPU hours.

1

Structural Metrics:
KND
AM: Query Token Length KND: (response, query)
AM: Response Token Length

KND: (query, response)

AM: Number of Nodes

CFG-PR
. B 10-2¥ 30 40 50 60
AM: Topic y
Structural Metrics: Intent Prediction
AM
AM: Intens Downstream
Topic Prediction Evaluations

KNN-Precision KNN-Recall

Non-structural Metrics

—e— PE —— Instruct DP-FT —— DP-FT

Figure 13: Performance of different baselines on ShareGPT using Llama2-7b with e = 4. With
instruction-guided conditional generation, Instruct DP-FT achieves similar performance to PE on
most metrics and has a slight edge in terms of CFG-PR.

D.1 Analyzing Vanilla PE on ShareGPT Dataset
In this section, we analyze the performance of PE under the ShareGPT dataset according to our

proposed benchmark. We further divide the metrics into semantic and statistic metrics, and the
evaluation items for ShareGPT can be categorized in Table 7.

Table 7: Metrics for ShareGPT.

Statistic Metrics Semantic Metrics CFG-PR
KND:
AM: 1. (query, response) pair
Structural 1. number of statements | 2. (response, query) pair CFG-PR
Metrics 2. query token length AM:
3. response token length 1. topic
2. intent
Non-structural 1. KNN-Precision
Metrics) 2. KNN-Recall)
Downstream 1. topic prediction
Tasks) 2. intent prediction)

We illustrate and compare the performance of PE with privacy parameter ¢ € {1,2,4, 0o} under
structural semantic and statistic metrics in Figs. 14c and 14d respectively, and plot the CFG-PR and
KNN-Precision & KNN-Recall in Figs. 14a and 14b. We do not include PE with ¢ = 0 (that is, IF) as
its CFG-PR is only 2% and thus its performance under structural metrics is unreliable.

As we can observe, only CFG-PR and KNN-Precision improve with the increase of €, while the value
of KNN-Recall always keep around 0.35 and the performance under other semantic metrics and all
statistic metrics does not necessarily increase with more relaxed privacy constraints. Additionally,
CFG-PR drops below 60% when € < 4. Since downstream tasks also depend on structural information,
we can conclude that PE mainly focuses on non-structural semantic quality of the synthetic samples,
while suffers from poor performance on semantic diversity and structure-based properties.

D.2 CFG Reformat Prompt

You are required to REFORMAT the provided conversation between a user
and an AI agent in ChatGPT. The format should be:
-User prompt must start with "HUMAN:_,", and ChatGPT response must
start with "GPT:_,".

CFG-PR (1) 0.70
0.64
0.65
0.624 0.60
0.60 0.55
—$%— KNN-Precision (1)
0.58 1 0-30 KNN-Recall (1)
0.45
0.561
0.40
0.54+4
0.35
0.524 0.30 .
1 2 4 © 1 2 4 o
£ £
(a) CFG-PR (b) KNN-Precision & KNN-Recall

Intent Prediction
KND: (query, response) Pair AM: Response Token Length

ﬁ\ Topic Prediction AM: Query Token Length
KND: (response, query) Pair \] ‘7}"\“’ G i 0/%0 40 60 80 100

AM: Intent
AM: Topic AM: Number of Nodes

—e= —e=o
=4 ——e=t
———e=2 ———=2

e=1 e=1

(¢) Performance on structural semantic metrics (d) Performance on statistic metrics

Figure 14: Performance of Vanilla PE with different privacy guarantees under ShareGPT dataset

-The conversation may contain one or multiple rounds. Each round
includes ONE user prompt and ONE ChatGPT response.
-User prompts and ChatGPT responses appear alternately.
-The conversation begins with a user prompts.
The reformatted conversation follows the following context-free
grammar :
sharegpt: round (round)*
round: request response
request: "HUMAN:_" user_string
response: "GPT:_" gpt_string
user_string: /(?7s) .+7(?=(7:GPT: |HUMAN: [$))/
gpt_string: /(7s) .+7(?=(?:GPT: |HUMAN: [$))/
%import common.WS
%ignore WS
Do NOT change the content of the conversation.
For example: If the input conversation is: "Howparepyyou?,I’myfine."
You should reformat it as "HUMAN:_ How,are,you?,GPT: I’m,fine."

D.3 Further Analysis on CFG Reformat as Self-debugging

We compare the performance of vanilla PE and PE with CFG reformat on all evaluation items in
Fig. 15. Self-debugging after voting directly reformats voted samples, which are taken as output or
utilized as seeds in the next PE iteration without further selection, resulting in higher CFG-PR while
lower performance on semantic and statistic properties.

D.4 Improving Node Dependency (KND): Fix Format Token in Variation API

Key node dependency (i.e., KND) is an important semantic metric that measures the similarity of
the node pair dependencies between the private and synthetic datasets. To improve KND, we fix the
format tokens during blank-filling in variation APIL. Since nodes are recognized and separated by

AM: Token Length
Query Token Leng KND: (response, query) Pair

AM: Response Token Length
KND: (query, response) Pair

AM: Number of Nodes

CFG-PR
. 0 40 60 80 100
AM: Topic
Intent Prediction
AM: Intent

Topic Prediction

KNN-Precision KNN-Recall

—e— Vanilla PE —— Reformat —— Reformat (after voting)

Figure 15: Performance of PE with CFG Reformat on ShareGPT with € = 4

format tokens in textual datasets, fixing the format tokens ensures that multiple nodes will not be
mistakenly merged into one and thus helps to remain the original semantic meaning of each node,
and therefore the node semantic dependencies. We compare the performance of vanilla PE and PE
with fixed format token on KND on (query, response) and (response, query) pairs and CFG-PR in
Fig. 16, where we consider two variants of our method: fix all the format tokens (shown as Fixed
Token) and randomly fix 65% of the format tokens (shown as Fixed Selected Token). We can observe
that our methods achieve better semantic performance on KND compared to vanilla PE, and Fixed
Token outperforms since it keeps more node structures than Fixed Selected Token. Additionally, as
fixing format tokens avoids node merging, it also improves the structural validity, i.e., CFG-PR.

@z Vanilla PE B Fixed Token I Fixed Selected Token

KNS on (query, response) pair (1) KNS on (response, query) pair (1) CFG-PR (1)
0.7

0.200
0.175 0.6

0.150 0.5

0.125 0.4

0.100 0.3
0.075
0.2
0.050

0.025 01

0.000

Figure 16: Performance of Vanilla PE and PE with fix token on CFG-PR and KND

0.0

We then compare the performance of vanilla PE and our methods on all metrics in Fig. 17. Since
Fixed Token fixes all format tokens, the blank-filling process becomes less flexible, e.g., the number
of nodes after blank-filling will never decrease, which is ensured by existing format tokens. Therefore,
its performance in most statistic properties is worse than that of vanilla PE and Fixed Selected Token.

D.5 Further Analysis on Node extraction & Auto-generation

To further examine the semantic diversity of the dataset, we adopt another metric Type to Token Ratio
(TTR) [41] to provide auxiliary information. TTR measures diversity in the tokens used in the dataset
by dividing the number of unique tokens by the total number of tokens in the dataset. A higher TTR
suggests a more diverse vocabulary. Fig. 18 shows that Extract Query has a higher TTR than vanilla
PE.

10

AM: Token Length
Query Token Leng KND: (response, query) Pair

AM: Response Token Length
KND: (query, response) Pair

AM: Number of Nodes

CFG-PR
. 0 40 60 80 100
AM: Topic
Intent Prediction
AM: Intent

Topic Prediction

KNN-Precision KNN-Recall

—— Vanilla PE —— Fixed Token —— Fixed Selected Token

Figure 17: Performance of PE with Fix Format Token on ShareGPT with € = 4

TTR (1)

0.05

0.04

0.03

0.02

0.01

0.00

Figure 18: Performance of vanilla PE and PE with node extraction on Type to Token Ratio (TTR).

To illustrate the semantic quality and diversity of the synthetic dataset, we then focus on the embed-
dings of the generated sample, and draw them in a 2-dimensional plot after principal component
analysis (PCA). As shown in Figs. 19a and 19b, the embeddings of vanilla PE and PE with query
node extraction (blue dots) are drawn together with the embeddings of private data (yellow dots). We
can easily observe that the embeddings of PE with query node extraction have more overlaps with the
private data embeddings, indicating a higher sample semantic quality and diversity.

.
Private Data - Private Data
o Synthetic Data . o Synthetic Data o © o oo

(a) Embeddings of Vanilla PE (b) Embeddings of PE with node extraction

Figure 19: Embedding distributions of Vanilla PE and PE with node extraction.

11

We them compare the performance of vanilla PE and PE with node extraction on all metrics in Fig. 20,
where we consider several variants of our method: extract all query nodes and auto-generate all
response nodes (shown as Extract Query); combination of query node extraction, reformat before
voting, and fix format token (Extract Query & Reformat & Fixed Token); combination of query
node extraction, reformat before voting, and fix 65% format token (Extract Query & Reformat &
Fixed Selected Token); combination of response node extraction, reformat before voting, and fix
65% format token (Extract Response & Reformat & Fixed Selected Token). We can observe that
(1) Extract Query outperforms vanilla PE across most statistic properties, CFG-PR, and semantic
properties including KNN-Precision, KNN-Recall, and KND on (response, query) pair. (2) Extract
Query & Reformat & Fixed Selected Token outperforms or achieves similar performance to other
node extraction variants on CFG-PR, most statistic and semantic metrics. This indicates that the
combination of reformat and fix selected format tokens to node extraction improves CFG-PR and
structural semantic performance without degrading statistic performance. (3) Extracting query nodes
outperforms extracting response nodes, indicating that the type of nodes extracted significantly
influences the synthetic data performance.

AM: Query Token Length
AM: Response Token Length

AM: Number of Nodes Y /‘
/ Cite

KND: (response, query) Pair

KND: (query, response) Pair

— CFG-PR
AM: Topic S 20670 60 80 100
I/ el
Intent Prediction
AM: Intent
Topic Prediction
KNN-Precision

KNN-Recall

—e— Vanilla PE

—e— Extract Query

—e— Extract Query & Reformat & Fixed Token
Extract Query & Reformat & Fixed Selected Token
Extract Response & Reformat & Fixed Selected Token

Figure 20: Performance of PE with Node Extraction on ShareGPT with € = 4

D.6 Performance Comparison between Different Methods

We compare the performance of our proposed methods and some combinations of them according to
our benchmark. Specifically, in Fig. 21, we illustrate the performance of vanilla PE; PE with CFG
reformat; PE with fixed format token; combination of CFG reformat and fix format token (Fixed
Token & Reformat); and combination of CFG reformat, fix partial format token, and query node
extraction (Extract Query & Reformat & Fixed Selected Token). As we can observe, Extract Query
& Reformat & Fixed Selected Token outperforms on structural validity CFG-PR, semantic properties
KNN-Precision and KNN-Recall, and statistic properties AM on conversation round and response
token length; while Fixed Token & Reformat outperforms mainly on semantic properties KND on
(query, response) and (response, query) pair. As different methods focus on different aspects of the
synthetic data, users can choose the method according to their practical needs. The algorithm design
and analysis based on our benchmark also pave the way to propose a method that outperforms on all
evaluation metrics, which we leave as a future work.

12

AM: Query Token Length
AM: Response Token Length

KND: (response, query) Pair

KND: (query, response) Pair
AM: Number of Nodes

CFG-PR
AM: Topic 40 60 80 100
Intent Prediction
AM: Intent

B Topic Prediction
KNN-Precision KNN-Recall
—e— Vanilla PE
—e— Fixed Token
—e— Reformat

Fixed Token & Reformat

—e— Extract Query & Reformat & Fixed Selected Token

Figure 21: Performance of Different Methods on ShareGPT with € = 4

13

	Introduction
	Struct-Bench Framework and Evaluation Protocol
	Struct-Bench Metrics

	Benchmarking Differentially Private Synthetic Data
	Struct-Bench Datasets
	Struct-Bench Synthetic Data Generation Baselines
	Experimental Results

	Case Studies
	Related Work
	Conclusion
	Metric Definitions and Instantiation Guidelines
	Key Node Dependency (KND)
	Attribute Match (AM)
	Downstream Evaluations (DE)

	Data Modeling and Evaluation Items of Each Dataset
	Examples on ShareGPT
	Dataset Descriptions
	Data Modeling of Each Dataset
	Evaluation Metrics of Each Dataset

	Additional Results on Struct-Bench
	Benchmarking DP Synthetic Data Generation Across Datasets
	Benchmarking DP Synthetic Data Generation with Varying Privacy Budget
	Benchmarking DP Synthetic Data Generation on ShareGPT using Llama2-7b

	Detailed analysis of the case study on PE
	Analyzing Vanilla PE on ShareGPT Dataset
	CFG Reformat Prompt
	Further Analysis on CFG Reformat as Self-debugging
	Improving Node Dependency (KND): Fix Format Token in Variation API
	Further Analysis on Node extraction & Auto-generation
	Performance Comparison between Different Methods

