
Struct-Bench: A Benchmark for Differentially Private Structured Text Generation

Shuaiqi Wang^{1*†}, Vikas Raunak^{2*‡}, Arturs Backurs³, Victor Reis³, Pei Zhou^{2§}, Sihao Chen², Longqi Yang², Zinan Lin^{3§}, Sergey Yekhanin³, and Giulia Fanti¹

¹Carnegie Mellon University, Pittsburgh, PA, United States ²Microsoft Corporation, Redmond, WA, United States ³Microsoft Research, Redmond, WA, United States
¹{shuaiqiw, gfanti}@andrew.cmu.edu ²{viraunak, pei.zhou, sihaochen, longqi.yang}@microsoft.com ³{arturs.backurs, victorol, zinanlin, yekhanin}@microsoft.com

Abstract

Differentially private (DP) synthetic data generation is a promising technique for utilizing private datasets that otherwise cannot be exposed for model training or other analytics. While much research literature has focused on generating private unstructured text and image data, in enterprise settings, *structured data* (e.g., tabular) is more common, often including natural language fields or components. Existing synthetic data evaluation techniques (e.g., FID) struggle to capture the structural properties and correlations of such datasets. In this work, we propose Struct-Bench, a framework and benchmark for *evaluating* synthetic datasets derived from structured datasets that contain natural language data. The Struct-Bench framework requires users to provide a representation of their dataset structure as a Context-Free Grammar (CFG). Our benchmark comprises 5 real-world and 2 synthetically generated datasets. We show that these datasets demonstrably present a great challenge even for state-of-the-art DP synthetic data generation methods. Struct-Bench provides reference implementations of different metrics and a leaderboard, offering a standardized platform to benchmark and investigate privacy-preserving synthetic data methods. We also present a case study showing how Struct-Bench improves the synthetic data quality of Private Evolution (PE) on structured data. The benchmark and the leaderboard have been publicly made available at <https://struct-bench.github.io>.

1 Introduction

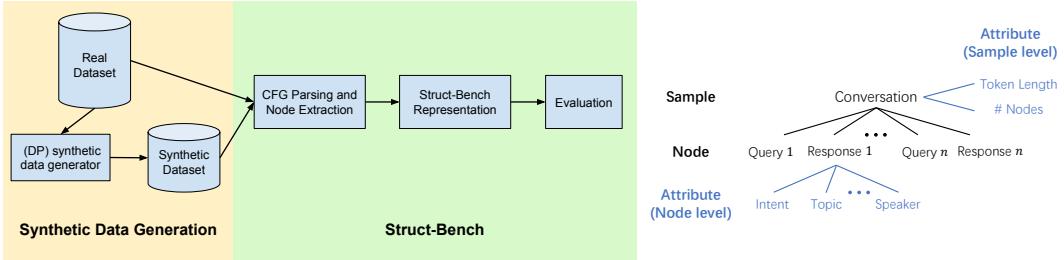
Enterprise settings often feature datasets that include both *structured* relationships between fields or objects, and fields that contain *natural language data*. For example, consider a dataset of user queries to a search engine, and the corresponding results. The dataset is structured in a question-and-response format, and both the query and the response contain natural language. Another example consists of patients’ medical records, which can include multiple events over time, visits with different providers for different ailments, and associated (natural language) doctors’ notes. Such datasets are valuable for downstream use cases (e.g., training predictive models, understanding preferences), but they cannot always be used directly, due to privacy or data use restrictions.

*These authors contributed equally to this work.

†This work was partially done while an intern at Microsoft.

‡Now at Google DeepMind.

§Primary internship mentors: Pei Zhou, Zinan Lin.



(a) Struct-Bench evaluation pipeline. The synthetic dataset can be generated via DP generation methods with private access to the private dataset. Struct-Bench evaluates a synthetic dataset by parsing samples and extracting nodes and their attributes using types Query and Response. Struct-Bench context-free grammar (CFG) with full access to both private and synthetic datasets.

(b) Sample level view of the Struct-Bench. As an example, a multi-round conversation is parsed by CFG into several nodes with types Query and Response. Struct-Bench extracts its sample-level and node-level attributes for evaluation.

Figure 1: Dataset level and sample level views into the Struct-Bench framework.

Differentially private (DP) synthetic data generation is an increasingly important technique for making use of such sensitive datasets in machine learning (ML) pipelines [66, 42, 60]. There exist many data synthesis techniques tailored to unstructured data like images or text [54, 27, 60, 16] and tabular data [36, 55, 66]. However, existing synthetic data evaluation frameworks do not naturally capture the salient properties of datasets that feature both general structural properties *and* natural language elements. Evaluation metrics for unstructured data, like Fréchet Inception Distance (FID) [20], or precision and recall [25, 43], do not capture the structural properties of data. In fact, we show that synthetic data that completely fails to capture structural constraints can still achieve high precision and recall scores. For example, the ShareGPT dataset [1], which consists of multi-round conversations between a human and an AI agent, requires the format tokens ‘HUMAN:’ before queries and ‘GPT:’ before responses. Consider the synthetic sample: “How are you? I’m doing well.” Although semantically reasonable—and therefore scoring high on precision—it violates the required format. This underscores the importance of structure-aware evaluation. On the other hand, evaluation frameworks for tabular data are designed primarily for datasets with categorical or numeric fields [19, 62, 8], and do not naturally extend to natural language fields. For instance, these frameworks often compare k -way marginal distributions in the real and synthetic data, which is not tractable for natural language.

In this work, drawing inspiration from Natural Language Generation (NLG) benchmarks such as GEM [12], we present *Struct-Bench*: a composite benchmark and an automatic evaluation protocol that measures the quality of structured, natural language-based synthetic data relative to their corresponding real (possibly private) datasets. In the Struct-Bench framework, a user first selects one or more real datasets for which they want to evaluate a corresponding synthetic dataset. For each dataset, the user provides a set of production rules under the generative grammar formalism (i.e., a context-free grammar [21]); the user then selects *key nodes*, which will be programmatically extracted from the parse tree of dataset samples; key nodes are used to measure important correlations and properties of the synthetic data. Based on this dataset representation, Struct-Bench measures an array of syntactic (i.e., structural) and semantic properties of the synthetic dataset. We illustrate the dataset level and sample level views into Struct-Bench in Fig. 1.

Our contributions are as follows:

1. **Benchmark:** We propose Struct-Bench, a novel evaluation framework and a benchmark to evaluate synthetic data quality relative to a real dataset, where the real dataset features complex inter-field structural relations, and at least some fields contain natural language. A key observation is that many structural properties (and even semantic properties) can be modeled and evaluated with the help of a context-free grammar. We also provide a public leaderboard and a reference, extensible implementation of the Struct-Bench framework, which can be used to benchmark new DP synthetic data generation methods on other datasets in a standardized manner.
2. **Findings:** We use Struct-Bench to benchmark and analyze state-of-the-art (SOTA) DP synthetic data generation techniques on seven diverse datasets, including real-world textual and tabular

datasets, as well as synthetic datasets with controllable data attributes. Our main findings are (1) no single metric fully describes synthetic data quality; (2) none of the existing SOTA DP synthetic data generation techniques are able to reliably capture the structural properties of data without sacrificing semantic performance. Finding (1) highlights the importance of using multiple metrics to evaluate synthetic data, which is a key contribution of our work, and (2) underscores the need for further research in synthetic structured data generation. We also conduct a case study to show how to algorithmically improve on SOTA DP synthetic data generation methods, Private Evolution (PE) [27, 60, 28], using the insights from Struct-Bench. These improvements achieve nearly 100% compliance with dataset structural constraints, while also improving semantic and statistic metrics.

2 Struct-Bench Framework and Evaluation Protocol

We aim to design an evaluation framework that measures how closely a real, private dataset \mathcal{D} matches a synthetic dataset \mathcal{D}' . The real dataset \mathcal{D} features (1) an inherent *structure*, and (2) *natural language* fields. Our evaluation framework must therefore quantify how well \mathcal{D}' has acquired the structure and content of the private dataset. As these are not well-defined quantities, we define a framework for representing a real dataset \mathcal{D} , as well as a suite of metrics to capture how well the synthetic dataset matches the syntax and semantics of the real dataset.

Notation Consider a dataset $\mathcal{D} = (D_i)_{i=1}^m$ with m samples. As a concrete example, suppose \mathcal{D} is the ShareGPT dataset [1], which contains multi-round conversations between a human and an AI agent. We illustrate a sample of ShareGPT in §B.1. A dataset is a set of *samples*; in ShareGPT, each sample $D_i \in \mathcal{D}$ is one full conversation (e.g., a few iterations of conversation between the human and the agent). Each sample D_i contains a set of nodes O_1, O_2, \dots, O_{n_i} (the number of nodes can vary across samples). In the ShareGPT example, each node O_j is one text snippet—either a single query from the human or a response from the AI agent, as illustrated in Fig. 1b.

Samples and nodes can have *attributes*, which are either numeric or categorical. Each sample D_i is associated with *sample-level attributes* a_1, \dots, a_m . These can be any derived property of the whole sample, such as token length of the conversation in ShareGPT. A node O_j can also have *node-level attributes* v_1, \dots, v_{n_j} . In ShareGPT, attributes could include the token length of a node, the identity of the speaker (agent or human), and the topic of the query or response (obtained through human or LLM-based labeling).

Dataset Representation The nodes of a dataset may satisfy complex structural relations. For example, in ShareGPT, each node can only have human or agent as its *speaker* attribute, and successive nodes should always alternate speaker between human and agent. This information is considered public (to the synthetic data holder); for example, if an enterprise is training a DP synthetic dataset to model a private dataset of search engine queries, the enterprise is likely to know the *schema* of the data, even if they do not know the contents. Such relations are captured in Struct-Bench by a *context-free grammar (CFG)*, which specifies different categories of nodes and the relations between them. As an example, we provide the CFG of ShareGPT in §B.1. To add a new dataset to Struct-Bench, a user must write structural dependencies that should be enforced in the form of a CFG.¹ For each dataset (real or synthetic), Struct-Bench then uses the dataset-holder-provided CFG to construct a parse tree for each sample.

Remark: An alternate design choice could be to specify each dataset under the formalism of *context-sensitive grammars (CSGs)*, which are more expressive than CFGs and can capture semantic dependencies. Specifying a CSG, however, requires significantly more domain knowledge and detail, making it a more burdensome—and potentially error-prone—process than specifying a CFG. Hence, instead of encoding semantic dependencies as hard constraints via CSG, we empirically assess them by introducing a metric Key Node Dependency (KND) in §2.1. KND is simple to implement, requires less domain expertise than a full CSG specification, and statistically captures correlations in the data.

Once the CFG is defined, the user also specifies a set of *key nodes*. For instance, if the CFG defines a set of node types $\mathcal{S} = \{\text{Query}, \text{Response}, \text{Follow-Up}\}$, the set of key nodes \mathcal{K} can be any subset of \mathcal{S} . Key nodes are expected to exhibit strong dependencies in the data. For example, in ShareGPT, we would define each query-response as a pair of key nodes. We will assess whether the correlations

¹The CFG specification only needs to be performed manually once when the dataset is onboarded, and it may be possible to leverage LLMs to summarize the structure and generate the CFG automatically [53].

among these key nodes are preserved in the synthetic data, as detailed later in §2.1. If a user does not specify key nodes, all nodes are treated as key nodes.

Privacy Constraint In this work, our goal is to evaluate differentially private synthetic data generation algorithms. A data generator \mathcal{M} is (ϵ, δ) -differentially-private if for any neighboring datasets \mathcal{D}_0 and \mathcal{D}_1 (i.e., \mathcal{D}_0 and \mathcal{D}_1 differ one sample), and any set $S \subseteq \text{range}(\mathcal{M})$, we have

$$\mathbb{P}(\mathcal{M}(\mathcal{D}_0) \in S) \leq e^\epsilon \cdot \mathbb{P}(\mathcal{M}(\mathcal{D}_1) \in S) + \delta .$$

Intuitively, the output synthetic data distribution should not depend too much on any single sample in the input dataset. Today, there exist many algorithms for generating DP synthetic data (some of which can accommodate text and/or structured data) [63, 60, 22, 49, 51]. Struct-Bench provides a systematic way of comparing DP synthetic data generators.

Struct-Bench can also be applied to other forms of privacy-preserving synthetic data, such as those generated under frameworks like quantitative information flow [46], statistical maximal leakage [31, 58], and distribution privacy [48], among others. To ensure a fair comparison, all synthetic data generation baselines should be compared under the same privacy framework.

Remark: Private DP data synthesis and non-private data synthesis are two problems with different applications and objectives. In the private setting, the goal is typically to match synthetic data to a private dataset as closely as possible under a DP constraint [51, 42, 29, 22, 60]. On the other hand, if there is no privacy constraint and if one wants to match the real data as closely as possible, one should just use the real data. Indeed, in the non-private setting, synthetic data is typically designed to deviate from the “real” dataset (e.g., conditional generation of a specific class of data) [18, 35, 9, 10, 11, 30]. In our design and evaluation, we focus on DP synthetic data, so Struct-Bench is designed to measure similarity between synthetic and real datasets. However, the metrics in Struct-Bench could be helpful for benchmarking non-private synthetic data as well; we leave this to future work.

Summary of Inputs In summary, the Struct-Bench framework takes as input: (1) a real dataset \mathcal{D} ,² (2) a synthetic dataset \mathcal{D}' , (3) a CFG that represents the structural characteristics of the data, (4) a set of key nodes (optional) from the CFG, which represent the types of nodes whose correlations are important. Given these inputs, Struct-Bench automatically calculates the following suite of metrics.

2.1 Struct-Bench Metrics

We report three types of metrics: structural, non-structural, and downstream task accuracy.

Structural Metrics These are metrics that depend on the CFG in some way. Within a sample, structure can be defined at the level of the whole sample (*CFG Pass Rate*, *Attribute Match*), groups of nodes (*Key Node Dependency*), and individual nodes (*Attribute Match*). (1) **CFG Pass Rate (CFG-PR)** measures the fraction of samples in the synthetic dataset \mathcal{D}' that parse correctly under the CFG. (2) **Key Node Dependency (KND)** measures the semantic dependencies between “key node pairs”, which are pairs of nodes believed to have a meaningful relation;³ for example, in a question-and-answer dataset, we would expect that each associated question and answer pair should have a strong correlation. Programmatically, users specify pairs of key nodes with Tregex [26], a tool for matching regular expressions on trees. Typically, we can measure the dependencies by cosine similarity of the node embeddings, while one can also adopt LLM as a judge or other dependency functions defined by the users. For a dataset, we can construct a distribution of dependencies of node pairs in the same pattern. To evaluate the similarity of the node dependencies captured by the private and synthetic dataset, we then calculate the distributional distance, e.g., Wasserstein-2 distance, between the private and synthetic dependency distributions. (3) **Attribute Match (AM)** measures the distributional distance of sample-level attributes (e.g., number of nodes) or node-level attributes (e.g., node token length) between the private and synthetic datasets. The attribute can be a statistical property or a semantic property, and it can be derived either from an explicit attribute function or through human annotation or LLM-based labeling. The distributional distance can be Wasserstein-2 distance if the attribute is numeric or total variation distance if the attribute is categorical. Precise definitions and instantiation guidelines for KND and AM are in §A. For structural metrics, higher CFG-PR is better, whereas lower KND and AM indicate better performance.

²The input data should be in string format. For structured data with categorical or numerical values, we convert it to a JSON object where the attribute of each column is the key, and the actual value/text is its value.

³We measure dependencies between node pairs and do not consider higher-order relationships, as they are more computationally intensive and the dependency functions can vary across different scenarios.

Table 1: List of datasets with descriptions, key nodes, and sizes of real and generated data.

Dataset	Description	Key Nodes	Number of Samples	
			Real	Generated
ShareGPT	Human–GPT conversations	query, response	3 000	600
ICLR	ICLR paper reviews & rebuttals	review, rebuttal, comment	3 000	300
Adult	Census dataset	native country, workclass	50 000	31 561
Water	Water-bottle reviews	title, review	25 000	20 000
Arena	Chatbot-Arena conversations	conversation 1 & 2	25 000	20 000
Reviews	Synthetic product reviews	review, rating	2 000	2 000
Grounding	Synthetic grounded QA	query, response	2 500	2 000

Non-Structural Metrics Following prior precedent [51, 5], non-structural metrics are per-sample metrics that do not rely on the CFG, i.e. they are unrelated to the structure of the data. These metrics quantify the similarity between the content of the generated synthetic data and the real/private data. Moreover, as in prior works on unstructured DP synthetic data [25, 60], we report the precision (**KNN-Precision**) and recall (**KNN-Recall**) for each synthetic dataset. Roughly, KNN-Precision (resp. KNN-Recall) calculates the proportion of synthetic (resp. private) samples whose embedding distance to a private (resp. synthetic) sample is smaller than this sample’s k -th nearest neighbor within its own dataset. KNN-Precision evaluates the average semantic quality of the synthetic samples, and KNN-Recall assesses the semantic diversity of the samples [25].

Downstream Evaluations (DE) Based on Label Prediction The eventual goal of synthetic data is typically a **Downstream Task**, e.g., training a machine learning (ML) model. Struct-Bench allows users to design their own downstream label prediction tasks. Our pipeline includes label generation, downstream model training, and evaluation. (1) *Label Generation*: The evaluation pipeline requires labels both for the synthetic and real data. Labels can either be generated by a human or we can use large language models (LLMs) to simulate a human labeler. In our evaluation, we adopted GPT-4o to label the samples, but the Struct-Bench codebase gives users flexibility to choose a different LLM. We provide guidelines for the label generation process in §A.3. (2) *Downstream Model Training*: To conduct label prediction, we fine-tune a language model based on the synthetic dataset and its label. Since the samples may have long text, we adopt Longformer [7] in this paper. (3) *Evaluation*: We evaluate the downstream task by calculating the prediction accuracy (Acc) on a held-out test set from the real data. This is commonly done in synthetic data evaluations, and is known as the train-synthetic-test-real (TSTR) framework [56, 39, 30].⁴

3 Benchmarking Differentially Private Synthetic Data

To demonstrate the utility of the Struct-Bench framework, we instantiate and implement it on a set of seven datasets and four DP synthetic data generation methods.

3.1 Struct-Bench Datasets

We include three types of datasets in Struct-Bench (details in §B.2).

Real-World Datasets with Graph-Structured Dependencies We use **ShareGPT** [1] and **ICLR** 2024 paper reviews [2], two real-world graph-structured datasets that differ in (1) *Content*: multi-round user–GPT conversations vs. author–reviewer reviews, rebuttals, and comments; (2) *topic*: open-domain vs. AI-research-specific; and (3) *structure*: linear query–response chains vs. tree-structured threads (multiple reviews, rebuttals, and follow-up discussions). Both offer diverse semantics, clear structure, and at least two node types. Notably, the ICLR 2024 dataset was released after the training data cut-off date for the LLMs we evaluate.

Real-World Tabular Datasets Although there exist benchmarks for tabular data [5, 51], they do not naturally extend to natural language fields. We evaluate Struct-Bench on three tabular datasets: **Water** [52] and **Arena** [67], which include textual fields, and **Adult** [6], which contains only numeric and categorical values. We include Adult to demonstrate that Struct-Bench can be applied to non-textual

⁴Some evaluation frameworks compare TSTR with train-real-test-real (TRTR) for a self-contained evaluation [64]. However, since we are comparing different synthetic data generation algorithms *against each other*, we compute only TSTR in this case, which is slightly more interpretable.

data as well, though this data type is not the focus of our work. Water comprises water-bottle reviews, Arena pairs human–model conversations, and Adult provides census records.

Synthetic Datasets with Controllable Data Attributes To explicitly control structural and semantic complexity, we create two datasets: **Synthetic Reviews**, with reviews varying in sentiment and scores, and **Synthetic Grounding**, with source documents paired with question–answer tasks.

We show the key nodes of each dataset and the sizes of the real and generated data in [Table 1](#), and defer the detailed data modeling to [§B.3](#).

3.2 Struct-Bench Synthetic Data Generation Baselines

Since we focus on structured datasets that contain natural language, we select LLM-based DP synthetic data generators as our baselines, specifically, Private Evolution (PE) [27, 60, 28], DP model fine-tuning [63, 59, 65], and some variants. While several methods have been proposed to generate DP tabular data using LLMs [4, 55], they are typically limited to handling only numerical or categorical values and cannot generate structured data that incorporates natural language.

Private Evolution (PE) [27, 60, 28] PE is a leading training-free DP synthetic data generation algorithm that makes use of foundation models pre-trained on public data [27, 60, 28, 22, 16, 57]. PE first uses a Random API to generate initial samples from the foundation language model. Then, it iteratively: (1) constructs a differentially private (noisy) voting histogram based on private samples voting for their nearest synthetic counterparts; (2) draws samples according to this histogram; and (3) creates new samples with a Variation API that generates perturbed versions of the original samples. We use the PE variant, Augmented Private Evolution (Aug-PE) [60], provided by the Private Evolution library;⁵ our only modification is to choose the prompt for the Random and Variation APIs.

Instruction Following (IF) IF prompts a foundation model with the target structure and uses no private data ($\epsilon = 0$). It is effectively a zero-shot PE, i.e., equivalent to using only Random API in PE.

DP Fine-Tuning (DP-FT) [63, 59, 65] DP-FT adopts DP stochastic gradient descent (DP-SGD) [3] to fine-tune the language model on the next token prediction task. We generate synthetic data unconditionally from the fine-tuned model. This simple baseline remains competitive when training is allowed [16]. Since PE generates synthetic data based on the instructions in a prompt in the Random and Variation APIs, we also include a variant of DP-FT that conditionally generates samples according to the same instructions after DP fine-tuning, which we refer to as *Instruct DP-FT*. We provide details of this instruction fine-tuning in [§C](#).

Real Data Fine-Tuning (FT) FT fine-tunes models without privacy guarantees ($\epsilon = \infty$), serving as a best-case reference for DP-FT. We also include *Instruct FT* with instruction-conditioned generation.

Since DP-FT and FT require model training, we are limited to open-source models and thus use only GPT-2. In contrast, PE and IF do not use model weights, and require only API access. We evaluate them on both GPT-2 and the state-of-the-art GPT-4o. We further evaluate our baselines on additional foundation models in [§C.3](#). PE is run for 10 iterations, and DP-FT and FT are run for 20 epochs. We take $\epsilon \in \{1, 2, 4\}$ for PE and DP-FT, and $\delta = 0$.

3.3 Experimental Results

We present the results of benchmarking the DP synthetic data generation methods under ShareGPT and ICLR datasets with $\epsilon = 4$ in [Table 2](#), and defer the results on other datasets to [§C.1](#). We illustrate the performance of the baselines on CFG-PR and KNN-Recall across all datasets in radar plots shown in [Fig. 2](#). We specify the metrics reported and the whole set of evaluation metrics we adopt in [§B.4](#); additional results for $\epsilon = 2$ and $\epsilon = 1$ the on the ShareGPT and ICLR datasets can be found in [§C.2](#). [Table 2](#) and [Fig. 2](#) highlight several main takeaways:

- *No single metric fully describes synthetic data quality.* For a single algorithm and dataset, some metrics can be high, while others remain low (e.g., see CFG-PR and KNN-Recall in [Fig. 2](#)). This further motivates the need for Struct-Bench, which aggregates many diverse metrics.

⁵<https://github.com/microsoft/DPSDA>

- *Existing DP synthetic data generators struggle to learn complicated data structures.* All baselines achieve a CFG-PR score below 0.2 on the ICLR dataset, which features more node types and a significantly more intricate graph structure than ShareGPT.
- *DP fine-tuning alone cannot learn structure.* At $\epsilon = 4$, it achieves a CFG-PR of 0 on all of our datasets. Even at $\epsilon = \infty$, it fails to learn structural information on all datasets except ShareGPT, where it achieves a CFG-PR of 0.53; this is likely because ShareGPT contains fewer formatting tokens compared to other datasets (e.g., JSON tags in tabular datasets).
- *PE and IF learn structure at the expense of semantic performance.* Although PE and IF reliably capture data structure with SOTA models, they have poor semantic performance (low KNN-Recall).
- *The performance gap between PE and DP-FT may arise from the foundation models they employ and the use of instruction-guided generation.* Unlike DP-FT, PE does not require model training, which allows us to leverage SOTA models in the Random and Variation APIs. In contrast, DP-FT relies on fine-tuning, and we thus need to use smaller, open-source models due to computational restrictions and the weight access requirement. Nevertheless, with instruction-guided conditional generation, Instruct DP-FT achieves performance comparable to PE across most metrics on both ShareGPT and ICLR, when both use the same foundation model (GPT-2).

Table 2: DP synthetic data generation benchmarking results on Struct-Bench with $\epsilon = 4$. All baselines use GPT-2 unless otherwise specified.

Dataset	Baseline	Structural Metrics			Non-Structural Metrics		DE Acc \uparrow
		CFG-PR \uparrow	KND \downarrow	AM \downarrow	KNN-Precision \uparrow	KNN-Recall \uparrow	
ShareGPT	IF ($\epsilon = 0$)	0.03	0.07	41.86	0.64	0.31	0.28
	IF ($\epsilon = 0$) (<i>GPT-4o</i>)	0.87	0.06	43.85	0.72	0.26	0.38
	FT ($\epsilon = \infty$)	0.53	0.03	52.70	0.76	0.66	0.37
	Instruct FT ($\epsilon = \infty$)	0.59	0.04	30.70	0.80	0.54	0.37
	DP-FT	0	-	-	0.02	0	-
	Instruct DP-FT	0.55	0.18	32.59	0.77	0.31	0.35
	PE	0.57	0.12	34.51	0.78	0.33	0.38
	PE (<i>GPT-4o</i>)	0.86	0.07	38.17	0.81	0.15	0.39
ICLR	IF ($\epsilon = 0$)	0.09	0.11	207.62	0.66	0.28	0.39
	IF ($\epsilon = 0$) (<i>GPT-4o</i>)	0.17	0.26	204.80	0.84	0.03	0.47
	FT ($\epsilon = \infty$)	0	-	-	0.71	0.47	0.46
	Instruct FT ($\epsilon = \infty$)	0.09	0.16	208.37	0.77	0.29	0.51
	DP-FT	0	-	-	0	0	0.18
	Instruct DP-FT	0.08	0.22	237.52	0.49	0.18	0.40
	PE	0.10	0.20	248.73	0.49	0.20	0.41
	PE (<i>GPT-4o</i>)	0.19	0.26	240.94	0.98	0.02	0.52

4 Case Studies

In this section, we demonstrate how users can leverage Struct-Bench to better understand and improve PE. We focus on PE because, unlike DP-FT, it does not require *training* on private data, offering both efficiency and qualitative advantages [60, 22]. We use the ShareGPT dataset for this case study. While GPT-4o might achieve stronger performance, we adopt Llama3-8b as the foundation model in this section since it is more cost-efficient for our experiments and, importantly, more affordable and accessible to end users.

We mainly focus on improving structural validity and semantic diversity of the PE synthetic data in this section, and defer a more thorough analysis as well as methods on improving node dependency (KND) to §D.

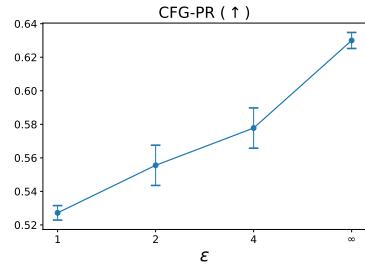


Figure 3: CFG-PR of vanilla PE on ShareGPT. Each data point is averaged over three independent trials. CFG-PR is low for all ϵ .

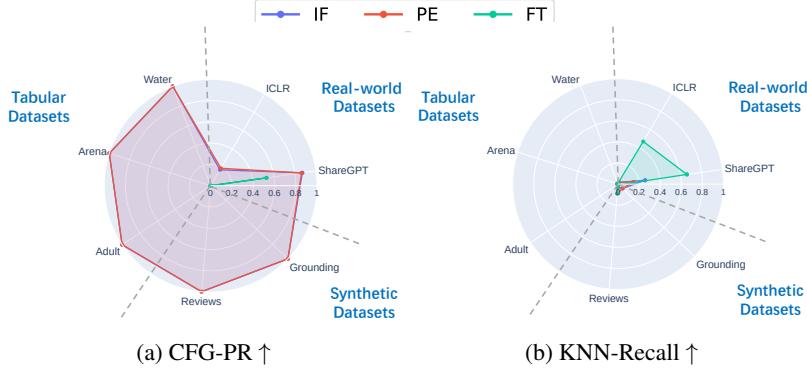


Figure 2: CFG-PR and KNN-Recall of baselines on Struct-Bench with different datasets. While frontier models capture the syntactic structure (high CFG-PR), existing DP synthetic data generators fail on semantic diversity (KNN-Recall). With GPT-4o, IF and PE achieve perfect CFG-PR on tabular and synthetic data, while FT with GPT-2 fails to learn the format. All baselines show near-zero KNN-Recall on tabular and synthetic datasets. We exclude DP-FT because it scores zero on both metrics. Instruction-tuned DP-FT and FT may perform better, as noted in Table 2.

Problem 1: Structural Validity (CFG-PR) is low. Structural validity, i.e., CFG-PR, is a critical metric, as many downstream applications on structured datasets expect data to be formatted in a particular way for compatibility with utilities and dataset-specific pipelines. Fig. 3 shows that the CFG-PR of vanilla PE is below 60% when $\epsilon \leq 4$, and only achieves $\sim 63\%$ in the non-private setting (i.e., we run PE with no added noise). This suggests that with smaller foundation models (e.g., Llama3-8B), vanilla PE fails to capture even simple structural constraints.

Solution 1: LLM-Assisted reformatting can improve CFG compliance. To improve structural validity, we introduce a *reformatting* feature to the Random and Variation APIs by prompting LLMs to explicitly check and reformat CFG-invalid samples (see §D.2). For example, if PE generates ‘HUMAN: How are you?’, the model detects the missing response and reformats it to ‘HUMAN: How are you? GPT: I’m fine.’

As described in §3.2, PE iteratively generates candidate samples and uses private voting to select the highest-quality ones. Sample reformatting can happen before or after the PE private voting process. We compare both reformatting methods with vanilla PE at $\epsilon = 4$ in Fig. 4. We see that the CFG-PR of both our methods increases by over 20% compared with vanilla PE, and reformatting after the private voting process does the best.

Reformatting can help enforce structural correctness but may distort semantics. For example, as illustrated in Fig. 6, if PE generates “How are you? I’m fine. Thanks.”, the model may detect missing format tokens and reformat it to “HUMAN: How are you? I’m fine. GPT: Thanks!” While the reformatted version follows a valid structure, its semantics are flawed—the user’s query includes part of the response. Thus, reformatting-before-voting can bias voting against such semantically distorted samples. In contrast, reformatting-after-voting directly reformats only the most highly-voted samples, which are either used as a final output (at the last iteration of PE) or used as seeds in the next iteration.

Problem 2: Semantic diversity (KNN-Recall) is low. As described in §2.1, KNN-Precision measures the semantic quality of the generated samples, and the KNN-Recall measures how well the semantic diversity of the private dataset is captured in the synthetic data. As we see in Fig. 5, as ϵ increases, i.e., with looser privacy constraints, the KNN-Precision of vanilla PE increases from 0.56 to 0.69, increases from 0.56 to 0.69,

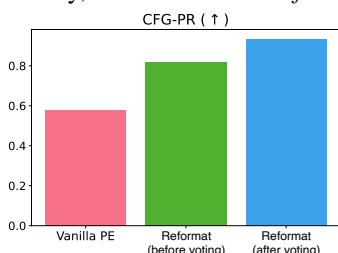


Figure 4: CFG-PR of vanilla PE and PE with reformatting, $\epsilon = 4$.

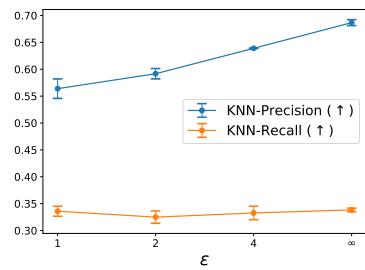


Figure 5: KNN-Precision and KNN-Recall of vanilla PE on ShareGPT under different privacy guarantees. Both are low.

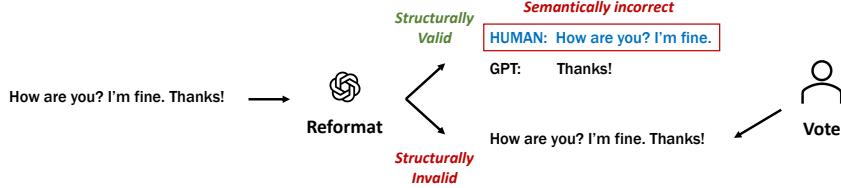


Figure 6: Illustration of reformatting-before-voting on the ShareGPT dataset. The syntactically-correctly reformatted sample follows a valid structure but has flawed semantics—the user’s query includes part of the response. The incorrectly reformatted sample preserves semantic integrity; the voting process can select samples that are semantically consistent but structurally invalid.

while KNN-Recall remains very low, around 0.35. This suggests that vanilla PE focuses on semantic quality while sacrificing diversity.

Solution 2: Node extraction & auto-generation can improve semantic diversity. In the Variation API, PE generates new samples by first masking a subset of the original text and then using the LLM to fill in the blanks based on the remaining context. This process largely preserves the original meanings, which limits semantic diversity. For example, if a conversation is about weather, and its masked version retains keywords like ‘cloudy’ or ‘rainy’, the blank-filled new sample will likely still be about weather, rather than an unrelated topic like dogs.

To improve semantic diversity, we *extract* specific nodes for blank-filling, and use the LLM to conditionally generate the remaining nodes. We call this “Node extraction and auto-generation” (example on the ShareGPT dataset in Fig. 7). The user specifies which nodes to extract—for instance, roots in the parse tree of the CFG. The remaining nodes are generated by asking an LLM to generate the remaining nodes in the sample, given only the extracted nodes (with blank-filled variations). This pipeline incurs no additional privacy cost due to the post-processing property of DP.

We compare the performance of vanilla PE and PE with node extraction in Fig. 8. Recall that the ShareGPT dataset has only two types of nodes: query and response nodes. In Fig. 8, we consider two variants of the node extraction method: (1) extract all queries and auto-generate all responses (listed as Extract Query), and (2) extract all responses and auto-generate all queries (shown as Extract Response). We show three metrics: KNN-Recall, KNN-Precision, and CFG-PR.

Fig. 8 shows that Extract Query not only improves the KNN-Recall but also the KNN-Precision, (i.e., semantic quality) as auto-generation also ensures the semantic meaning is more consistent and natural across nodes. However, Extract Response does not improve KNN-Recall as the semantic diversity depends mainly on responses, while queries are fairly constrained for a given response. This indicates that the type of nodes extracted is crucial to the performance of semantic diversity.

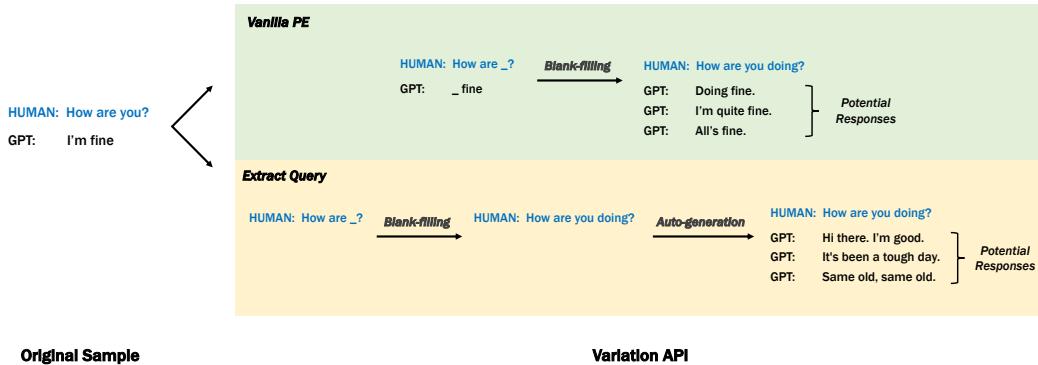


Figure 7: Example executions of the Variation API of vanilla PE and PE with node extraction and auto-generation on ShareGPT. Vanilla PE masks parts of the original text and has the LLM fill the blanks from the remaining context. In our variant, we first extract a node (here, the “Query”), perform blank-filling only on that node, and then generate responses conditioned on the query. By imposing fewer semantic constraints, this approach yields more semantically diverse samples.

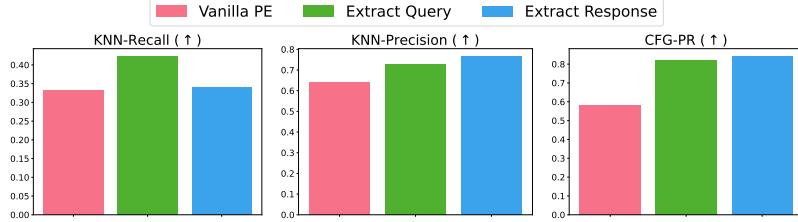


Figure 8: KNN-Precision & KNN-Recall and CFG-PR of vanilla PE and PE with node extraction.

Additionally, since the formatting tokens around the extracted critical nodes will not be accidentally modified by Variation API, the CFG-PR of PE with node extraction is also higher than vanilla PE.

Combination of our solutions achieves the best performance on most metrics. We finally compare the performance of our proposed methods. In Fig. 9, we plot the performance of vanilla PE, PE + Reformat, PE + Extract Query, and PE + Reformat + Extract Query. To better visualize differences in the performance of different methods, we scale the metrics in these radar plots as follows: We assign a score of 0 if CFG-PR=0 or a structure-related metric is not applicable for the dataset, and rescale the values of other metrics from 20 to 100, where 20 indicates the worst performance among all methods, and 100 indicates the performance upper bound the synthetic data can achieve (e.g., CFG-PR=1 or AM=0).

The combination of our proposed methods (orange curve) significantly improves in CFG-PR, achieving up to 94%, and it also outperforms or performs comparably to other methods in most metrics, including semantic metrics (KNN-Precision, KNN-Recall), and statistic metrics (AM on response length and node count).

5 Related Work

Differentially Private (DP) Synthetic Data Generation DP synthetic data generation has developed as an effective tool in the machine learning model development pipeline [66, 42, 27, 60, 28, 55], especially with the advent of instruction-following LLMs generating natural and fluent text [4, 60, 38, 17, 50]. Prior methods, such as Private Evolution (PE) [27, 60, 28, 22, 68, 23, 57], leverage pretrained models (e.g., large language models) or non-neural approaches (e.g., computer graphics tools) for DP synthetic data generation. [27, 60, 28] show that PE could be competitive with DP fine-tuning baselines [63, 59, 65, 13] while does not require training on the private data.

DP Synthetic Data Evaluation Evaluating DP synthetic data presents a unique challenge, namely of quantifying adherence of the synthetic data to arbitrary private datasets [51, 44]. Several benchmarks have been proposed to evaluate DP synthetic data in image [16, 24, 32, 61], text [40, 45, 64], tabular [42, 14, 5, 37, 34, 33], time series [47], and graph data [15]. However, these benchmarks either do not explicitly consider data structure, or their evaluation is confined to numerical or categorical data types, thus limiting their scope.

6 Conclusion

In this work, we proposed a new benchmark for DP synthetic data generation named Struct-Bench. To the best of our knowledge, Struct-Bench is the first benchmark to comprehensively evaluate DP synthetic data derived from structured datasets that contain natural language data. Struct-Bench also has the strength of being a composite benchmark, wherein a diverse collection of datasets might preclude algorithmic research to overfit to only a few data types. Through our evaluations, we also characterize the limitations of existing SOTA DP synthetic data generation methods and conduct a case study to show how to improve on SOTA methods using the insights from Struct-Bench.

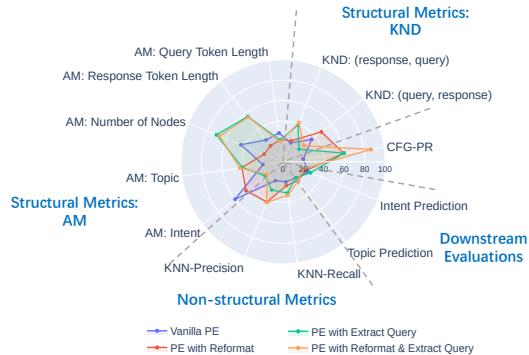


Figure 9: Performance of Different Methods on ShareGPT with $\epsilon = 4$.

Acknowledgements

The authors would like to thank Sivakanth Gopi for his helpful suggestions. This work was supported in part by the National Science Foundation under grants CCF-2338772 and CNS-2148359.

References

- [1] ShareGPT_Vicuna_unfiltered Dataset. Hugging Face Datasets https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/bcd32a724d8460ebe14e1d05b0195e30e9a46cb1, apr 2023.
- [2] *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
- [3] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC conference on computer and communications security*, pages 308–318, 2016.
- [4] Tejumade Afonja, Hui-Po Wang, Raouf Kerkouche, and Mario Fritz. Dp-2stage: Adapting language models as differentially private tabular data generators. *arXiv preprint arXiv:2412.02467*, 2024.
- [5] Christian Arnold and Marcel Neunhoeffer. Really useful synthetic data—a framework to evaluate the quality of differentially private synthetic data. *arXiv preprint arXiv:2004.07740*, 2020.
- [6] Barry Becker and Ronny Kohavi. Adult <https://doi.org/10.24432/C5XW20>. UCI Machine Learning Repository, 1996.
- [7] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. *arXiv preprint arXiv:2004.05150*, 2020.
- [8] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, Mukund Lahoti, and Pratik Narang. A universal metric for robust evaluation of synthetic tabular data. *IEEE Transactions on Artificial Intelligence*, 5(1):300–309, 2022.
- [9] Hari Prasanna Das, Ryan Tran, Japjot Singh, Xiangyu Yue, Geoffrey Tison, Alberto Sangiovanni-Vincentelli, and Costas J Spanos. Conditional synthetic data generation for robust machine learning applications with limited pandemic data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 11792–11800, 2022.
- [10] Georgios Douzas and Fernando Bacao. Effective data generation for imbalanced learning using conditional generative adversarial networks. *Expert Systems with applications*, 91:464–471, 2018.
- [11] Justin Engelmann and Stefan Lessmann. Conditional wasserstein gan-based oversampling of tabular data for imbalanced learning. *arXiv preprint arXiv:2008.09202*, 2020.
- [12] Sebastian Gehrmann, Tosin Adewumi, Karmany Aggarwal, Pawan Sasanka Ammanamanchi, Anuoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu, Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek, Chris Chinene, Emezue, Varun Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei, Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank Santhanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, and Jiawei Zhou. The GEM benchmark: Natural language generation, its evaluation and metrics. In Antoine Bosselut, Esin Durmus, Varun Prashant Gangal, Sebastian Gehrmann, Yacine Jernite, Laura Perez-Beltrachini, Samira Shaikh, and Wei Xu, editors, *Proceedings of the 1st Workshop on Natural Language Generation, Evaluation*,

and Metrics (GEM 2021), pages 96–120, Online, August 2021. Association for Computational Linguistics.

- [13] Sahra Ghalebikesabi, Leonard Berrada, Sven Gowal, Ira Ktena, Robert Stanforth, Jamie Hayes, Soham De, Samuel L Smith, Olivia Wiles, and Borja Balle. Differentially private diffusion models generate useful synthetic images. *arXiv preprint arXiv:2302.13861*, 2023.
- [14] Matteo Giomi, Franziska Boenisch, Christoph Wehmeyer, and Borbála Tasnádi. A unified framework for quantifying privacy risk in synthetic data. *arXiv preprint arXiv:2211.10459*, 2022.
- [15] Alexander Goldberg, Giulia Fanti, Nihar Shah, and Steven Wu. Benchmarking fraud detectors on private graph data. *KDD*, 2025.
- [16] Chen Gong, Kecen Li, Zinan Lin, and Tianhao Wang. Dpimagebench: A unified benchmark for differentially private image synthesis. *arXiv preprint arXiv:2503.14681*, 2025.
- [17] Mandeep Goyal and Qusay H Mahmoud. An llm-based framework for synthetic data generation. In *2025 IEEE 15th Annual Computing and Communication Workshop and Conference (CCWC)*, pages 00340–00346. IEEE, 2025.
- [18] Begüm Hattatoğlu, Abdulhakim A Qahtan, Heysem Kaya, and Yannis Velegrakis. Synthfair: Ensuring subgroup fairness in classification via synthetic data generation. In *World Congress in Computer Science, Computer Engineering & Applied Computing*, pages 347–363. Springer, 2024.
- [19] Mikel Hernadez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic tabular data evaluation in the health domain covering resemblance, utility, and privacy dimensions. *Methods of information in medicine*, 62(S 01):e19–e38, 2023.
- [20] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances in neural information processing systems*, volume 30, 2017.
- [21] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages, and computation. *Acm Sigact News*, 32(1):60–65, 2001.
- [22] Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia Fanti, and Daniel Lazar. Pre-text: training language models on private federated data in the age of llms. In *Proceedings of the 41st International Conference on Machine Learning*, pages 19043–19061, 2024.
- [23] Charlie Hou, Mei-Yu Wang, Yige Zhu, Daniel Lazar, and Giulia Fanti. Private federated learning using preference-optimized synthetic data. *arXiv preprint arXiv:2504.16438*, 2025.
- [24] Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin Ding, David Forsyth, Bo Li, and Dawn Song. Sok: Privacy-preserving data synthesis. In *2024 IEEE Symposium on Security and Privacy (SP)*, pages 4696–4713. IEEE, 2024.
- [25] T. Kynkänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila. Improved precision and recall metric for assessing generative models. In *Advances in Neural Information Processing Systems*, volume 32, 2019.
- [26] Roger Levy and Galen Andrew. Tregex and tsurgeon: Tools for querying and manipulating tree data structures. In *LREC*, pages 2231–2234. Genoa, 2006.
- [27] Z. Lin, S. Gopi, J. Kulkarni, H. Nori, and S. Yekhanin. Differentially private synthetic data via foundation model APIs 1: Images. In *International Conference on Learning Representations (ICLR)*, 2024.
- [28] Zinan Lin, Tadas Baltrusaitis, Wenyu Wang, and Sergey Yekhanin. Differentially private synthetic data via apis 3: Using simulators instead of foundation model. *arXiv preprint arXiv:2502.05505*, 2025.

[29] Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, and Sergey Yekhanin. Differentially private synthetic data via foundation model apis 1: Images. In *ICLR*, 2024.

[30] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing networked time series data: Challenges, initial promise, and open questions. In *Proceedings of the ACM internet measurement conference*, pages 464–483, 2020.

[31] Zinan Lin, Shuaiqi Wang, Vyas Sekar, and Giulia Fanti. Summary statistic privacy in data sharing. *IEEE Journal on Selected Areas in Information Theory*, 5:369–384, 2024.

[32] Yintong Liu, U Rajendra Acharya, and Jen Hong Tan. Preserving privacy in healthcare: A systematic review of deep learning approaches for synthetic data generation. *Computer Methods and Programs in Biomedicine*, page 108571, 2024.

[33] Ioannis E Livieris, Nikos Alimpertis, George Domalis, and Dimitris Tsakalidis. An evaluation framework for synthetic data generation models. In *IFIP International Conference on Artificial Intelligence Applications and Innovations*, pages 320–335. Springer, 2024.

[34] Yunbo Long, Liming Xu, and Alexandra Brintrup. Evaluating inter-column logical relationships in synthetic tabular data generation. *arXiv preprint arXiv:2502.04055*, 2025.

[35] Maria Antonietta Longo. *A Synthetic Data Generation Approach for Subgroup-Based Bias Mitigation in Structured Data*. PhD thesis, Politecnico di Torino, 2025.

[36] Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. Aim: An adaptive and iterative mechanism for differentially private synthetic data. *arXiv preprint arXiv:2201.12677*, 2022.

[37] Parisa Movahedi, Valtteri Nieminen, Ileana Montoya Perez, Hiba Daafane, Dishant Sukhwal, Tapio Pahikkala, and Antti Airola. Benchmarking evaluation protocols for classifiers trained on differentially private synthetic data. *IEEE Access*, 2024.

[38] Md Mahadi Hasan Nahid and Sadid Bin Hasan. Safesynthdp: Leveraging large language models for privacy-preserving synthetic data generation using differential privacy. *arXiv preprint arXiv:2412.20641*, 2024.

[39] Zhaozhi Qian, Thomas Callender, Bogdan Cebere, Sam M Janes, Neal Navani, and Mihaela van der Schaar. Synthetic data for privacy-preserving clinical risk prediction. *Scientific Reports*, 14(1):25676, 2024.

[40] Krithika Ramesh, Nupoor Gandhi, Pulkit Madaan, Lisa Bauer, Charith Peris, and Anjalie Field. Evaluating differentially private synthetic data generation in high-stakes domains. *arXiv preprint arXiv:2410.08327*, 2024.

[41] Brian Richards. Type/token ratios: What do they really tell us? *Journal of child language*, 14(2):201–209, 1987.

[42] Lucas Rosenblatt, Xiaoyan Liu, Samira Pouyanfar, Eduardo de Leon, Anuj Desai, and Joshua Allen. Differentially private synthetic data: Applied evaluations and enhancements. *arXiv preprint arXiv:2011.05537*, 2020.

[43] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing generative models via precision and recall. *Advances in neural information processing systems*, 31, 2018.

[44] Viktor Schlegel, Anil A Bharath, Zilong Zhao, and Kevin Yee. Generating synthetic data with formal privacy guarantees: State of the art and the road ahead. *arXiv preprint arXiv:2503.20846*, 2025.

[45] Viktor Schlegel, Yuping Wu, Warren Del-Pinto, Goran Nenadic, and Anil Anthony Bharath. Ai for data science: A benchmark for differentially private text dataset generators. In *AI4X 2025 International Conference*.

[46] Geoffrey Smith. On the foundations of quantitative information flow. In *International Conference on Foundations of Software Science and Computational Structures*, pages 288–302. Springer, 2009.

[47] Michael Stenger, Robert Leppich, Ian Foster, Samuel Kounev, and André Bauer. Evaluation is key: a survey on evaluation measures for synthetic time series. *Journal of Big Data*, 11(1):66, 2024.

[48] Anshuman Suri and David Evans. Formalizing and estimating distribution inference risks. *arXiv preprint arXiv:2109.06024*, 2021.

[49] Bowen Tan, Zheng Xu, Eric Xing, Zhitong Hu, and Shanshan Wu. Synthesizing privacy-preserving text data via finetuning without finetuning billion-scale llms. *arXiv preprint arXiv:2503.12347*, 2025.

[50] Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with differentially private few-shot generation. *arXiv preprint arXiv:2309.11765*, 2023.

[51] Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Jerome Miklau. Benchmarking differentially private synthetic data generation algorithms. *arXiv preprint arXiv:2112.09238*, 2021.

[52] Tharunmss. Water Bottle Dataset - Flipkart <https://www.kaggle.com/datasets/tharunmss/water-bottle-dataset-flipkart>. Kaggle, 2024.

[53] Mohammad Jalili Torkamani. Kajal: Extracting grammar of a source code using large language models. *arXiv preprint arXiv:2412.08842*, 2024.

[54] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differentially private synthetic data and label generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 0–0, 2019.

[55] Toan V Tran and Li Xiong. Differentially private tabular data synthesis using large language models. *arXiv preprint arXiv:2406.01457*, 2024.

[56] Boris Van Breugel, Zhaozhi Qian, and Mihaela Van Der Schaar. Synthetic data, real errors: how (not) to publish and use synthetic data. In *International Conference on Machine Learning*, pages 34793–34808. PMLR, 2023.

[57] Haoxiang Wang, Zinan Lin, Da Yu, and Huishuai Zhang. Synthesize privacy-preserving high-resolution images via private textual intermediaries. *arXiv preprint arXiv:2506.07555*, 2025.

[58] Shuaiqi Wang, Zinan Lin, and Giulia Fanti. Statistic maximal leakage. In *2024 IEEE International Symposium on Information Theory (ISIT)*, pages 2742–2747. IEEE, 2024.

[59] Lukas Wutschitz, Huseyin A Inan, and Andre Manoel. dp-transformers: Training transformer models with differential privacy, 2022.

[60] Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Haotian Jiang, Huishuai Zhang, Yin Tat Lee, et al. Differentially private synthetic data via foundation model apis 2: Text. In *International Conference on Machine Learning*, pages 54531–54560. PMLR, 2024.

[61] Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and Kristin P Bennett. Generation and evaluation of privacy preserving synthetic health data. *Neurocomputing*, 416:244–255, 2020.

[62] Scott Cheng-Hsin Yang, Baxter Eaves, Michael Schmidt, Ken Swanson, and Patrick Shafto. Structured evaluation of synthetic tabular data. *arXiv preprint arXiv:2403.10424*, 2024.

[63] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning of language models. *arXiv preprint arXiv:2110.06500*, 2021.

- [64] Yefeng Yuan, Yuhong Liu, and Liang Cheng. A multi-faceted evaluation framework for assessing synthetic data generated by large language models. *arXiv preprint arXiv:2404.14445*, 2024.
- [65] X. Yue, H. A. Inan, X. Li, G. Kumar, J. McAnallen, H. Sun, D. Levitan, and R. Sim. Synthetic text generation with differential privacy: A simple and practical recipe. In *ACL*, 2023.
- [66] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo He, Jiming Chen, and Yang Zhang. {PrivSyn}: Differentially private data synthesis. In *30th USENIX Security Symposium (USENIX Security 21)*, pages 929–946, 2021.
- [67] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, et al. Judging LLM-as-a-judge with MT-bench and chatbot arena, 2023.
- [68] Tianyuan Zou, Yang Liu, Peng Li, Yufei Xiong, Jianqing Zhang, Jingjing Liu, Xiaozhou Ye, Ye Ouyang, and Ya-Qin Zhang. Contrastive private data synthesis via weighted multi-plm fusion. *arXiv preprint arXiv:2502.00245*, 2025.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction clearly states the claims made, including the contributions made in the paper and important assumptions and limitations.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Although our Struct-Bench is general to evaluate synthetic data in any type, we mainly focus on evaluating synthetic datasets derived from structured datasets that contain natural language data in this paper.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: the paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the dataset descriptions and experimental settings in § B to C, and provide our codes at <https://github.com/struct-bench/structpe>.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide our synthetic datasets at <https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets>, and provide our codes at <https://github.com/struct-bench/structpe>.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experimental settings are provided in § 3 to D.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include the statistical significance of the experiments in § 4 and D.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We provide compute resources in § C and D.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: Our work aims to benchmark privacy-preserving synthetic data generation techniques, which can aid in building machine learning models in privacy-critical domains such as healthcare. We believe that our work can have a positive impact by allowing ML practitioners and researchers to develop better algorithms for privacy-preserving machine learning. However, this may also creates a risk that companies could gain access to datasets they would otherwise not use or be permitted to access.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset in § B and 3.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: **[Yes]**

Justification: We provide our synthetic datasets at <https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets>, and provide our codes at <https://github.com/struct-bench/structpe>.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: **[NA]**

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: **[NA]**

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Metric Definitions and Instantiation Guidelines

A.1 Key Node Dependency (KND)

Definition KND measures the distributional distance of node pair dependencies between the synthetic and original data. For a key node pair (O_i, O_j) , let $C_{i,j}$ be the cosine similarity between their embeddings, and let $\omega_{C_{i,j}}$ and $\omega'_{C_{i,j}}$ be the distributions of these similarities in the original and synthetic data, respectively. Then, KND is defined as:

$$\text{KND}(O_i, O_j) = \text{Dis}(\omega_{C_{i,j}}, \omega'_{C_{i,j}}),$$

where Dis is the Wasserstein-2 distance.

Instantiation Guideline We allow the user to specify key nodes. If not specified, all nodes parsed by CFG are treated as key nodes by default. To instantiate key nodes, we recommend users ask the question “*Which nodes are central to our downstream tasks, and which nodes are semantically related to them?*”. For example, key node pairs could be a query and response in a conversation dataset, or a review and its rating in a product review dataset. We’ve specified the key nodes of our datasets in [Table 1](#).

A.2 Attribute Match (AM)

Definition AM calculates the distributional distance of a given attribute between the synthetic and original data. For attribute a , let ω_a and ω'_a denote its distributions in the original and synthetic data, respectively. Then, AM is defined as:

$$\text{AM}(a) = \text{Dis}(\omega_a, \omega'_a).$$

For distributional distance Dis , we use Wasserstein-2 distance for numeric attributes and total variation distance for categorical attributes.

Instantiation Guideline Users can specify semantic or statistical attributes. A guiding question is: “*Which data properties matter for our downstream tasks?*” Common semantic attributes include topic, intent, and sentiment; statistical attributes include token length (overall or per node). Original categorical/numerical values are also often relevant. The selected attributes for our datasets are detailed in [§B.4](#).

A.3 Downstream Evaluations (DE)

Label Generation Guideline To instantiate labels for downstream evaluation, we recommend that users first determine whether the label should be extracted directly from the sample or generated. Extracted labels typically include original categorical or numerical values—such as income level in our Adult dataset or paper decision in the ICLR dataset. If the label is to be generated, we suggest considering the question: “*What is a data property that is present and can be inferred from each node in a sample and is relevant to our downstream tasks?*” Generated labels are usually semantic attributes of the samples or nodes, such as topic, intent, or sentiment. To discourage prompt gaming by data uploaders, we provide a suggested prompt template for labeling: “*For each sample in _____ scenarios, label the _____ property. Possible answers include {_____, ____, ___, ...}.*” The specific labels used for our datasets are detailed in [§B.4](#).

B Data Modeling and Evaluation Items of Each Dataset

B.1 Examples on ShareGPT

To support the running example of data modeling and representation discussed in [§2](#), we first show a sample of the ShareGPT dataset, the data modeling of it, and the context-free grammar (CFG) according to its data structure.

A sample of ShareGPT

```

1 HUMAN: Pretend you are a successful and very thorough real estate
2 investor and financial analyst
3 GPT: Sure, I can help you with that. As a successful real estate
4 investor and financial analyst, I have a deep understanding of the
5 real estate market and the financial factors that drive its
6 performance. Here are some key things that I would keep in mind
when analyzing investment opportunities:...
7 HUMAN: Assume the debt down payment is 50%
8 GPT: Sure, I can adjust the calculations to assume a 50% down payment.
9 Here is how the projections would change:...
10 HUMAN: What is the IRR from the perspective of the equity
11 GPT: To calculate the IRR from the perspective of the equity, we need
12 to adjust the cash flows to reflect the equity portion of the
profits. Here is how we can calculate the equity IRR:...

```

Illustration of the data modeling of ShareGPT

We illustrate the data modeling of ShareGPT in [Fig. 10](#).

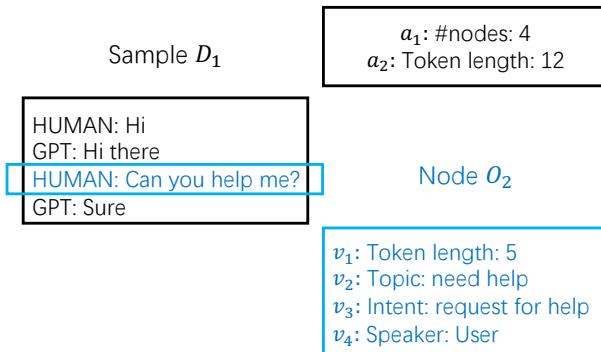


Figure 10: Illustration of the data modeling of ShareGPT.

CFG of ShareGPT

```

1 ShareGPT: conversation (conversation)*
2     // ShareGPT contains one or more conversation rounds
3 conversation: query response
4     // Each conversation round contains a query and a response
5 query: "HUMAN:_" query_text
6     // The query starts with "HUMAN:_""
7 response: "GPT:_" response_text
8     // The response starts with "GPT:_""
9 query_text: /(s).+?(?=(:GPT: |$))/
10    // The query text ends before "GPT:_" or the end of the string
11 response_text: /(s).+?(?=(:HUMAN: |$))/
12    // The response text ends before "HUMAN:_" or the end of the
string

```

B.2 Dataset Descriptions

ShareGPT [1] The ShareGPT dataset contains multi-round conversations between users and GPT. We structure each conversation such that each user’s query starts with ‘HUMAN: ’ and each GPT’s response starts with ‘GPT: ’. The downstream task we conduct is to predict the user’s intent and conversation topic based on user queries.

ICLR [2] The ICLR dataset contains the reviews, author rebuttals, follow-up discussions, and final decisions of the papers submitted to ICLR 2024 [2]. Each review or reviewer’s comment starts with

‘Reviewer n ’ where n represents the reviewer’s identity, and each author rebuttal or discussion starts with ‘Response’. The downstream task is to predict the research area of the paper based on the review and rebuttals.

Water [52] The Water dataset contains reviews of water bottles. The columns are product_name, overall_rating, title, cleaned_review and the goal is to predict the current rating (column “rating”) of the bottle, which takes values 1, 2, 3, 4, 5.

Arena [67] The Arena dataset contains pairs of human-model conversations. The columns are conversation_a, conversation_b and the goal is to predict which of the conversations are better (column “winner”), which takes values model_a, model_b, tie, “tie (bothbad)”.

Adult [6] The Adult dataset contains census data. The columns are age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-country and the goal is to predict income (column “income”), which takes values $\leq 50k$ or $> 50k$.

Synthetic Datasets with Controllable Data Attributes We include two synthetic datasets⁶ named **Synthetic Reviews** and the **Synthetic Grounding Dataset**. The reviews dataset has 4 fields, namely text, sentiment, emotion, and rating. The grounding dataset has 4 fields including two source documents, a query, and a response. We generate these datasets through a multi-step synthetic data generation process with GPT-4o wherein we verify whether the fields satisfy certain conditions, e.g., the reviews dataset is a 1:1 split of extreme negative and extreme positive reviews about products and the grounding dataset is a 1:1:1:1 split of relevant/irrelevant queries and consistent/inconsistent source documents. In particular, the reviews dataset is composed on only extreme reviews, either very positive or very negative. This differs from a typical review distribution and is unique to this particular dataset. Similarly, for the grounding dataset, we vary the samples along two axes, first on the consistency of the information between the sources and second, on the relevancy of the query to the sources. Each of the synthetic datasets is balanced in both their training and (downstream) test sets on these variations.

B.3 Data Modeling of Each Dataset

Tables 3 and 4 shows the data modeling and structure rules of each dataset.

Table 3: Data modeling of each dataset

Dataset	Sample D	Sample Attributes	Node O	Node Attributes
ShareGPT	a conversation	a_1 : number of nodes a_2 : token length	a query/response	v_1 : token length v_2 : topic v_3 : intent v_4 : speaker
ICLR	reviews & rebuttals of a paper	a_1 : number of nodes a_2 : token length a_3 : topic a_4 : final decision	a post from the reviewer/author	v_1 : token length v_2 : writer v_3 : review score
Water	water bottle review	a_1 : number of nodes a_2 : attitude	a column of the tabular data	v_1 : token length v_2 : review score
Arena	2 conversations to compare	a_1 : number of nodes a_2 : winner	a column of the tabular data	v_1 : token length v_2 : winner
Adult	census information of an adult	a_1 : age a_2 : workclass	a column of the tabular data	v_1 : token length v_2 : income
Reviews	annotated product review	a_1 : number of nodes a_2 : rating	a review text	v_1 : token length v_2 : rating
Grounding	2 sources and a QA pair	a_1 : number of nodes a_2 : answer	a grounded response	v_1 : token length v_2 : answer

⁶<https://www.kaggle.com/datasets/structpedataset/structpe-synthetic-datasets>

Table 4: Structure rules of each dataset

Dataset	Rules
ShareGPT	<p>[Alternate Speakers] $\forall O_i, O_{i+1} : O_i[\text{Speaker}] \neq O_{i+1}[\text{Speaker}]$.</p> <p>[Format] $O[\text{Speaker}] \in \{\text{User, AI Agent}\}$. If $O[\text{Speaker}] = \text{User}$, the text starts with ‘HUMAN:’; If $O[\text{Speaker}] = \text{AI Agent}$, the text starts with ‘GPT:’.</p>
ICLR	<p>[Format] $O[\text{Writer}] \in \{\text{Author, Reviewer 1-9, Meta Reviewer}\}$. If $O[\text{Writer}] = \text{Author}$, the text starts with ‘Response:’; if $O[\text{Writer}] = \text{Reviewer } n$, the text starts with ‘Reviewer n:’ ($1 \leq n \leq 9$). [Format] $O[\text{Review Score}] \in \{1, 3, 5, 6, 8, 10\}$. [Format] $D[\text{Final Decision}] \in \{\text{Reject, Accept:poster, Accept:top5\%, Accept:top25\%}\}$.</p>
Water	<p>[Format] $O[\text{Overall_rating}] \in \{1.0, 1.1, 1.2, \dots, 4.9, 5.0\}$. [Format] $O[\text{Rating}] \in \{1, 2, 3, 4, 5\}$</p>
Arena	<p>[Format] $O[\text{Winner}] \in \{\text{model_a, model_b, tie, tie (bothbad)}\}$. $O[\text{Conversation_a}]$ starts with “Question:” and has “Answer:” before somewhere in the following text. $O[\text{Conversation_b}]$ starts with “Question:” and has “Answer:” before somewhere in the following text.</p>
Adult	<p>[Format] $O[\text{income}] \in \{<= 50k, > 50k\}$. [Format] Some of the columns are categorical (e.g. <code>workclass</code>, <code>native-country</code>). [Format] Some of the columns are numerical (e.g. <code>age</code>, <code>capital-gain</code>).</p>
Reviews	[Format] $O[\text{Rating}] \in \{1, 2, 3, 4, 5\}$
Grounding	<p>[Format] $O[\text{Consistency}] \in \{1, 2, 3, 4, 5\}$. [Format] $O[\text{relevancy}] \in \{1, 2, 3, 4, 5\}$</p>

B.4 Evaluation Metrics of Each Dataset

The evaluation items of each dataset are summarized in [Table 5](#).

For ShareGPT, in our experimental results, we show the semantic similarity of the node pair (query, response) as KND, show the distributional distance of the queries’ token lengths as AM, and present the prediction accuracy of the conversation topics in downstream task performance.

For ICLR, we show the semantic similarity of the node pair (review, rebuttal) as KND, show the distributional distance of the reviews’ token lengths as AM, and present the prediction accuracy of the paper’s research area in downstream task performance.

C Additional Results on Struct-Bench

Resource Costs All baselines are implemented and performed on a server with eight H100 GPUs. Running experiments took approximately 400 GPU hours.

Implementation Details on Instruction Fine-tuning For both Instruct DP-FT and Instruct FT, we use the same instructions as those in the Random API of PE. We prepend the instructions to each training sample and fine-tune the foundation model for 20 epochs with batch size 32, weight decay 0.01, and learning rate 10^{-4} . The fine-tuned model then generates new samples conditioned on the given instructions.

C.1 Benchmarking DP Synthetic Data Generation Across Datasets

We present the results of benchmarking the DP synthetic data generation methods under different datasets with $\epsilon = 4$ in [Table 6](#). We use GPT-2 for FT and DP-FT, and use GPT-4o for IF and PE.

C.2 Benchmarking DP Synthetic Data Generation with Varying Privacy Budget

We illustrate the performance of PE and DP-FT on all metrics under different privacy budgets $\epsilon \in \{1, 2, 4, \infty\}$ on ShareGPT and ICLR datasets by radar plots in [Figs. 11](#) and [12](#). Similar to [§C.1](#), we use GPT-2 for FT and DP-FT, and use GPT-4o for IF and PE.

Table 5: Metrics for Different Datasets.

Dataset	Structural Metrics	Non-structural Metrics	Downstream Task
ShareGPT	CFG-PR KND 1. (query, response) pair 2. (response, query) pair AM 1. number of nodes 2. query token length 3. response token length 4. topic 5. intent	1. KNN-Precision 2. KNN-Recall	1. topic prediction 2. intent prediction
ICLR	CFG-PR KND 1. (review, rebuttal) pair 2. (rebuttal, comment) pair 3. (review, review) pair from different reviewers AM 1. number of nodes 2. review token length 3. rebuttal token length 4. Recommendation 5. final decision 6. topic	1. KNN-Precision 2. KNN-Recall	topic prediction
Arena	CFG-PR KND 1. (conversation_a, conversation_b) pair AM 1. winner	1. KNN-Precision 2. KNN-Recall	winner prediction
Water	CFG-PR KND 1. (title, cleaned_review) pair AM 1. attitude	1. KNN-Precision 2. KNN-Recall	rating prediction
Adult	CFG-PR KND 1. (native country, workclass) pair AM 1. income	1. KNN-Precision 2. KNN-Recall	income prediction
Reviews	CFG-PR KND 1. (text, sentiment) pair AM 1. review token length	1. KNN-Precision 2. KNN-Recall	review label prediction
Grounding	CFG-PR KND 1. (source1, source2) pair AM 1. query relevancy	1. KNN-Precision 2. KNN-Recall	query relevancy prediction

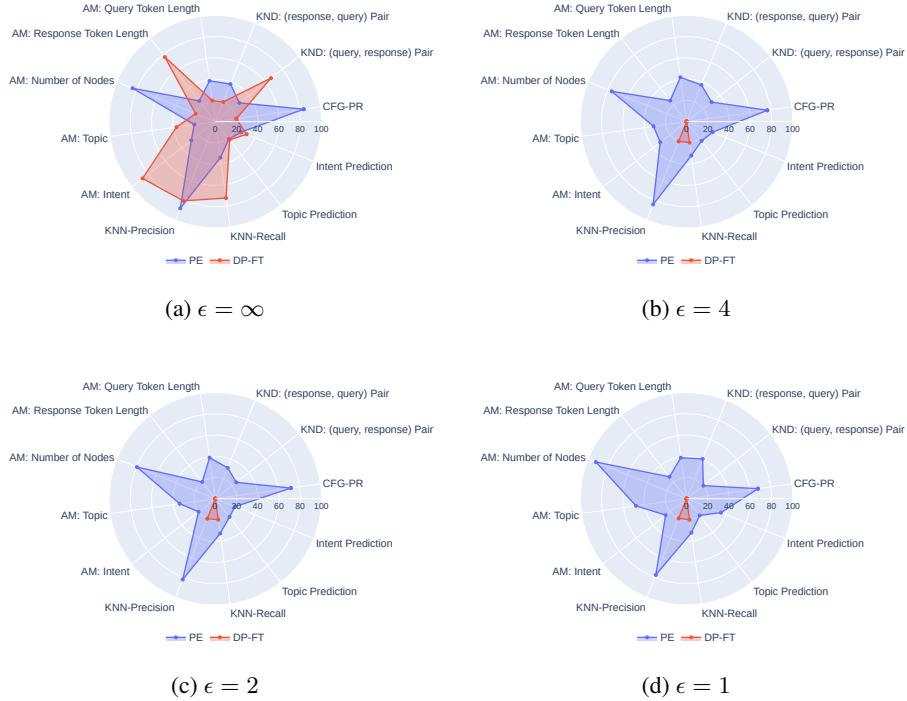


Figure 11: Performance of PE and DP-FT on all metrics under different privacy budgets on ShareGPT.

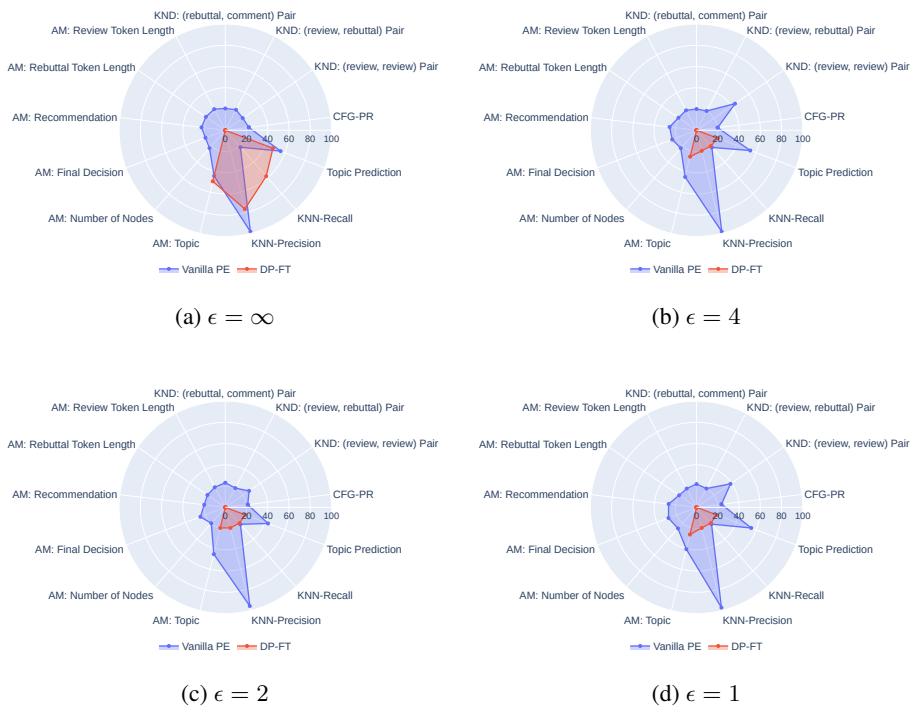


Figure 12: Performance of PE and DP-FT on all metrics under different privacy budgets on ICLR.

Table 6: DP synthetic data generation benchmarking results on Struct-Bench with $\epsilon = 4$

Dataset	Baseline	Structural Metrics			Non-Structural Metrics		DE
		CFG-PR \uparrow	KND \downarrow	AM \downarrow	KNN-Precision \uparrow	KNN-Recall \uparrow	
ShareGPT	IF ($\epsilon = 0$)	0.8700	0.0635	43.8514	0.7217	0.2627	0.3754
	FT ($\epsilon = \infty$)	0.5378	0.0315	52.6984	0.7594	0.6588	0.3718
	DP-FT	0	-	-	0.0161	0.0000	-
	PE	0.8633	0.0660	38.1678	0.8050	0.1528	0.3816
ICLR	IF ($\epsilon = 0$)	0.1733	0.2582	204.7997	0.8400	0.0257	0.4715
	FT ($\epsilon = \infty$)	0	-	-	0.7056	0.4747	0.4584
	DP-FT	0	-	-	0.0000	0.0000	0.1806
	PE	0.1900	0.2599	240.9434	0.9800	0.0207	0.5218
Water	IF ($\epsilon = 0$)	1.0000	0.4222	0.1574	0.0000	0.0060	0.5485
	FT ($\epsilon = \infty$)	0	-	-	0.0000	0.0060	-
	DP-FT	0	-	-	0.0000	0.0060	-
	PE	1.0000	0.2877	0.0236	0.0000	0.0070	0.6130
Arena	IF ($\epsilon = 0$)	1.0000	0.1257	0.9395	0.0000	0.0090	0.3607
	FT ($\epsilon = \infty$)	0	-	-	0.0000	0.0060	-
	DP-FT	0	-	-	0.0000	0.0060	-
	PE	1.0000	0.1054	0.9193	0.0000	0.0070	0.3510
Adult	IF ($\epsilon = 0$)	1.0000	0.0290	0.0332	0.0030	0.0030	0.7920
	FT ($\epsilon = \infty$)	0	-	-	0.0030	0.0030	-
	DP-FT	0	-	-	0.0030	0.0030	-
	PE	1.0000	0.0042	0.0000	0.0030	0.0060	0.8017
Reviews	IF ($\epsilon = 0$)	1.0000	0.3510	0.4010	0.0334	0.0344	0.6000
	FT ($\epsilon = \infty$)	0	-	-	0.0020	0.0900	0.5400
	DP-FT	0	0.0020	0.0060	0.0020	0.0900	0.5600
	PE	1.0000	0.2495	0.0770	0.0290	0.0900	0.5400
Grounding	IF ($\epsilon = 0$)	1.0000	0.5800	0.6006	0.0500	0.0600	0.6400
	FT ($\epsilon = \infty$)	0	-	-	0.0290	0.0900	0.4000
	DP-FT	0	-	-	0.0430	0.0900	0.4000
	PE	1.0000	0.1435	0.4710	0.0300	0.0600	0.6000

C.3 Benchmarking DP Synthetic Data Generation on ShareGPT using Llama2-7b

We illustrate the performance of PE, DP-FT, and Instruct DP-FT in Fig. 13, where each dimension corresponds to a different metric from Struct-Bench. To better visualize differences in the performance of different methods, we scale the metrics in these radar plots as follows: We assign a score of 0 if CFG-PR=0 or a structure-related metric is not applicable for the dataset, and rescale the values of other metrics from 20 to 100, where 20 indicates the worst performance among all methods, and 100 indicates the performance upper bound the synthetic data can achieve (e.g., CFG-PR=1 or AM=0).

Fig. 13 shows that (1) DP-FT does not learn any structural information (CFG-PR); and (2) with instruction-guided conditional generation, Instruct DP-FT achieves similar performance to PE on most metrics and has a slight edge in terms of structure learning CFG-PR.

D Detailed analysis of the case study on PE

Resource Costs All baselines are implemented and performed on a server with eight H100 GPUs. Running experiments took approximately 1000 GPU hours.

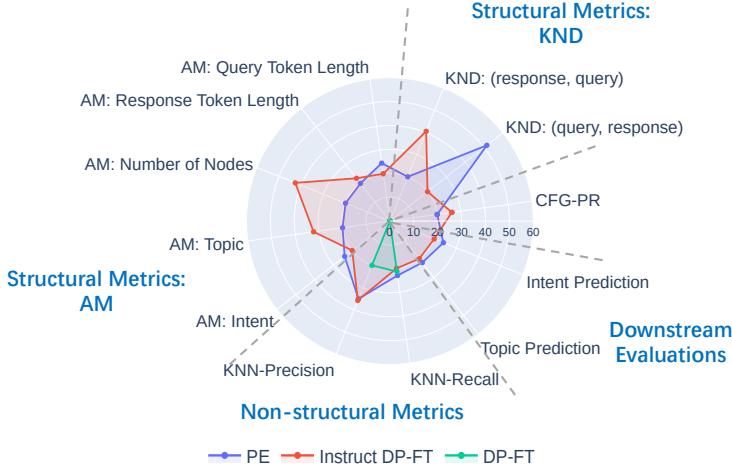


Figure 13: Performance of different baselines on ShareGPT using Llama2-7b with $\epsilon = 4$. With instruction-guided conditional generation, Instruct DP-FT achieves similar performance to PE on most metrics and has a slight edge in terms of CFG-PR.

D.1 Analyzing Vanilla PE on ShareGPT Dataset

In this section, we analyze the performance of PE under the ShareGPT dataset according to our proposed benchmark. We further divide the metrics into semantic and statistic metrics, and the evaluation items for ShareGPT can be categorized in Table 7.

Table 7: Metrics for ShareGPT.

	Statistic Metrics	Semantic Metrics	CFG-PR
Structural Metrics	AM: 1. number of statements 2. query token length 3. response token length	KND: 1. (query, response) pair 2. (response, query) pair AM: 1. topic 2. intent	CFG-PR
Non-structural Metrics	-	1. KNN-Precision 2. KNN-Recall	-
Downstream Tasks	-	1. topic prediction 2. intent prediction	-

We illustrate and compare the performance of PE with privacy parameter $\epsilon \in \{1, 2, 4, \infty\}$ under structural semantic and statistic metrics in Figs. 14c and 14d respectively, and plot the CFG-PR and KNN-Precision & KNN-Recall in Figs. 14a and 14b. We do not include PE with $\epsilon = 0$ (that is, IF) as its CFG-PR is only 2% and thus its performance under structural metrics is unreliable.

As we can observe, only CFG-PR and KNN-Precision improve with the increase of ϵ , while the value of KNN-Recall always keep around 0.35 and the performance under other semantic metrics and all statistic metrics does not necessarily increase with more relaxed privacy constraints. Additionally, CFG-PR drops below 60% when $\epsilon \leq 4$. Since downstream tasks also depend on structural information, we can conclude that PE mainly focuses on non-structural semantic quality of the synthetic samples, while suffers from poor performance on semantic diversity and structure-based properties.

D.2 CFG Reformat Prompt

```

1 You are required to REFORMAT the provided conversation between a user
  and an AI agent in ChatGPT. The format should be:
2 -User prompt must start with "HUMAN:□", and ChatGPT response must
  start with "GPT:□".

```

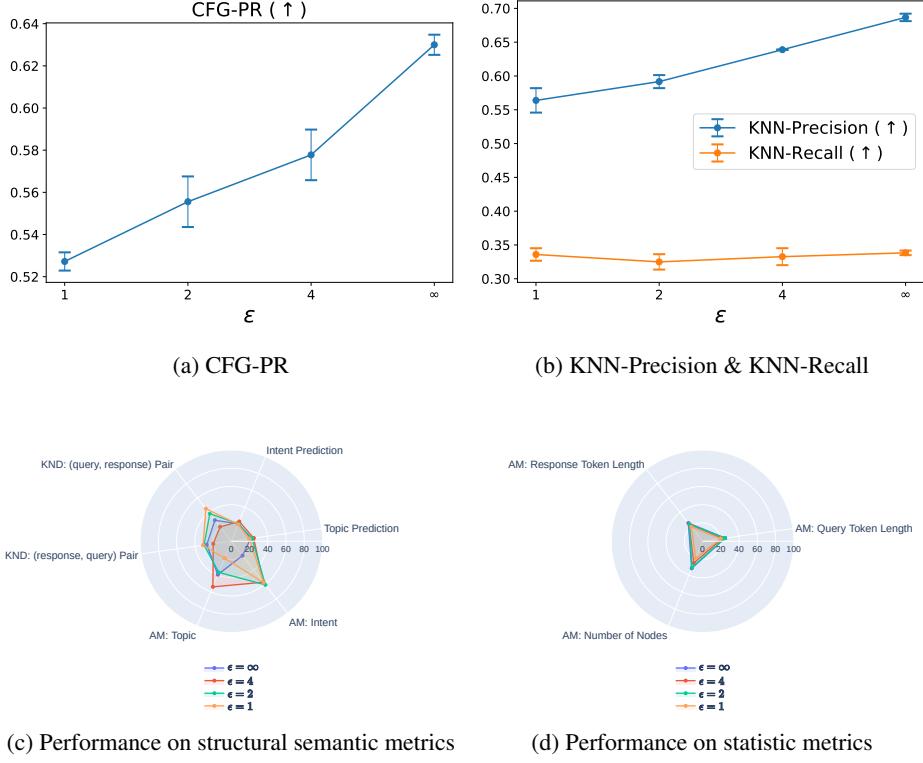


Figure 14: Performance of Vanilla PE with different privacy guarantees under ShareGPT dataset

```

3      -The conversation may contain one or multiple rounds. Each round
4          includes ONE user prompt and ONE ChatGPT response.
5      -User prompts and ChatGPT responses appear alternately.
6      -The conversation begins with a user prompts.
7  The reformatted conversation follows the following context-free
8      grammar:
9      sharegpt: round (round)*
10     round: request response
11     request: "HUMAN:_" user_string
12     response: "GPT:_" gpt_string
13     user_string: /(?s).+?(?=(:GPT: | HUMAN: | $))/
14     gpt_string: /(?s).+?(?=(:GPT: | HUMAN: | $))/
15     %import common.WS
16     %ignore WS
Do NOT change the content of the conversation.
For example: If the input conversation is: "How\u00e7are\u00e7you?_I'm\u00e7fine."
You should reformat it as "HUMAN:_How\u00e7are\u00e7you?_GPT:_I'm\u00e7fine."

```

D.3 Further Analysis on CFG Reformat as Self-debugging

We compare the performance of vanilla PE and PE with CFG reformat on all evaluation items in Fig. 15. Self-debugging after voting directly reformats voted samples, which are taken as output or utilized as seeds in the next PE iteration without further selection, resulting in higher CFG-PR while lower performance on semantic and statistic properties.

D.4 Improving Node Dependency (KND): Fix Format Token in Variation API

Key node dependency (i.e., KND) is an important semantic metric that measures the similarity of the node pair dependencies between the private and synthetic datasets. To improve KND, we fix the format tokens during blank-filling in variation API. Since nodes are recognized and separated by

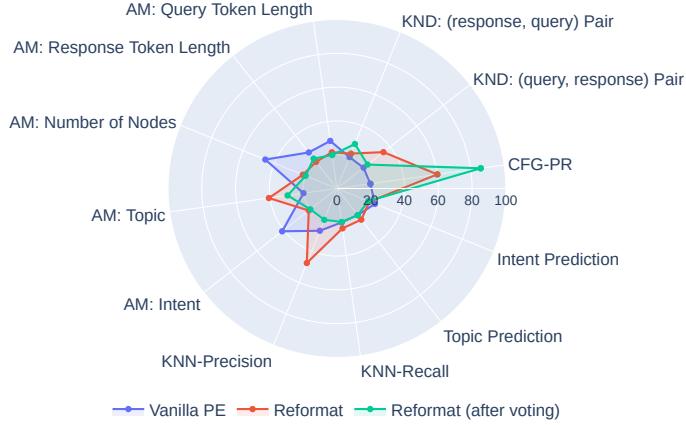


Figure 15: Performance of PE with CFG Reformat on ShareGPT with $\epsilon = 4$

format tokens in textual datasets, fixing the format tokens ensures that multiple nodes will not be mistakenly merged into one and thus helps to remain the original semantic meaning of each node, and therefore the node semantic dependencies. We compare the performance of vanilla PE and PE with fixed format token on KND on (query, response) and (response, query) pairs and CFG-PR in Fig. 16, where we consider two variants of our method: fix all the format tokens (shown as Fixed Token) and randomly fix 65% of the format tokens (shown as Fixed Selected Token). We can observe that our methods achieve better semantic performance on KND compared to vanilla PE, and Fixed Token outperforms since it keeps more node structures than Fixed Selected Token. Additionally, as fixing format tokens avoids node merging, it also improves the structural validity, i.e., CFG-PR.

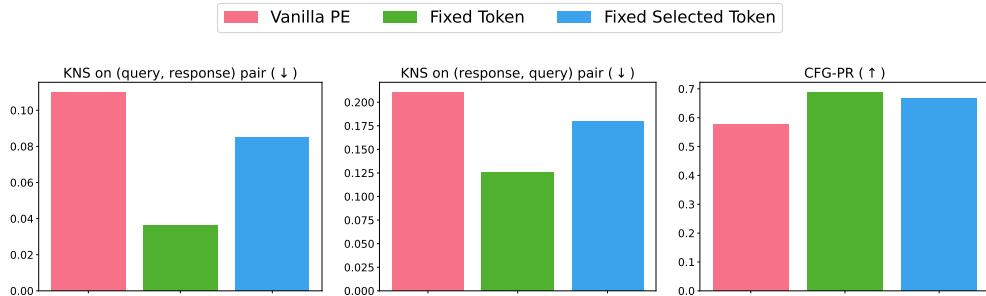


Figure 16: Performance of Vanilla PE and PE with fix token on CFG-PR and KND

We then compare the performance of vanilla PE and our methods on all metrics in Fig. 17. Since Fixed Token fixes all format tokens, the blank-filling process becomes less flexible, e.g., the number of nodes after blank-filling will never decrease, which is ensured by existing format tokens. Therefore, its performance in most statistic properties is worse than that of vanilla PE and Fixed Selected Token.

D.5 Further Analysis on Node extraction & Auto-generation

To further examine the semantic diversity of the dataset, we adopt another metric Type to Token Ratio (TTR) [41] to provide auxiliary information. TTR measures diversity in the tokens used in the dataset by dividing the number of unique tokens by the total number of tokens in the dataset. A higher TTR suggests a more diverse vocabulary. Fig. 18 shows that Extract Query has a higher TTR than vanilla PE.

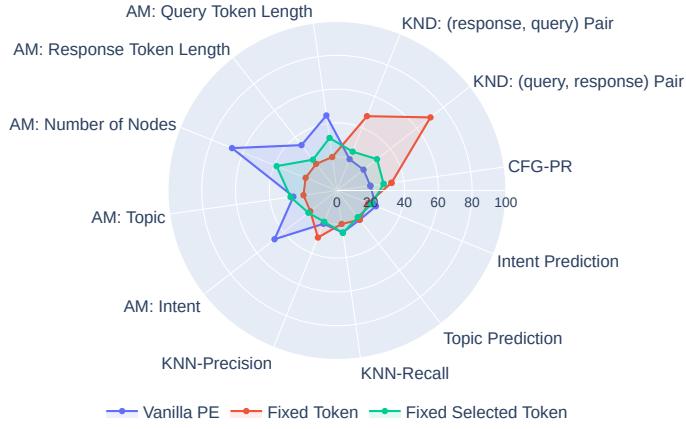


Figure 17: Performance of PE with Fix Format Token on ShareGPT with $\epsilon = 4$

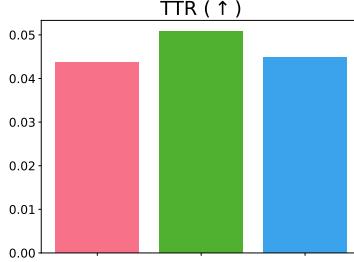
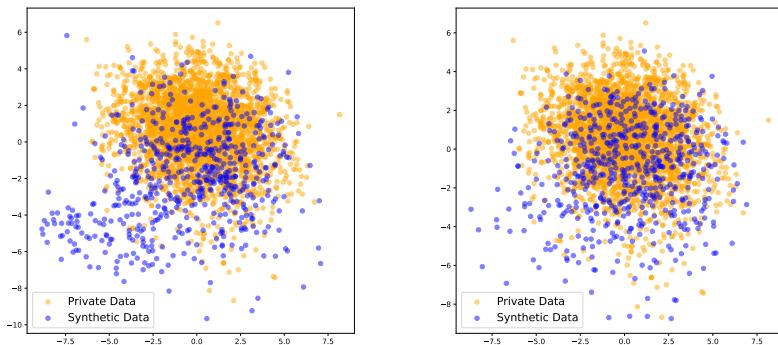


Figure 18: Performance of vanilla PE and PE with node extraction on Type to Token Ratio (TTR).

To illustrate the semantic quality and diversity of the synthetic dataset, we then focus on the embeddings of the generated sample, and draw them in a 2-dimensional plot after principal component analysis (PCA). As shown in Figs. 19a and 19b, the embeddings of vanilla PE and PE with query node extraction (blue dots) are drawn together with the embeddings of private data (yellow dots). We can easily observe that the embeddings of PE with query node extraction have more overlaps with the private data embeddings, indicating a higher sample semantic quality and diversity.



(a) Embeddings of Vanilla PE

(b) Embeddings of PE with node extraction

Figure 19: Embedding distributions of Vanilla PE and PE with node extraction.

We then compare the performance of vanilla PE and PE with node extraction on all metrics in Fig. 20, where we consider several variants of our method: extract all query nodes and auto-generate all response nodes (shown as Extract Query); combination of query node extraction, reformat before voting, and fix format token (Extract Query & Reformat & Fixed Token); combination of query node extraction, reformat before voting, and fix 65% format token (Extract Query & Reformat & Fixed Selected Token); combination of response node extraction, reformat before voting, and fix 65% format token (Extract Response & Reformat & Fixed Selected Token). We can observe that (1) Extract Query outperforms vanilla PE across most statistic properties, CFG-PR, and semantic properties including KNN-Precision, KNN-Recall, and KND on (response, query) pair. (2) Extract Query & Reformat & Fixed Selected Token outperforms or achieves similar performance to other node extraction variants on CFG-PR, most statistic and semantic metrics. This indicates that the combination of reformat and fix selected format tokens to node extraction improves CFG-PR and structural semantic performance without degrading statistic performance. (3) Extracting query nodes outperforms extracting response nodes, indicating that the type of nodes extracted significantly influences the synthetic data performance.

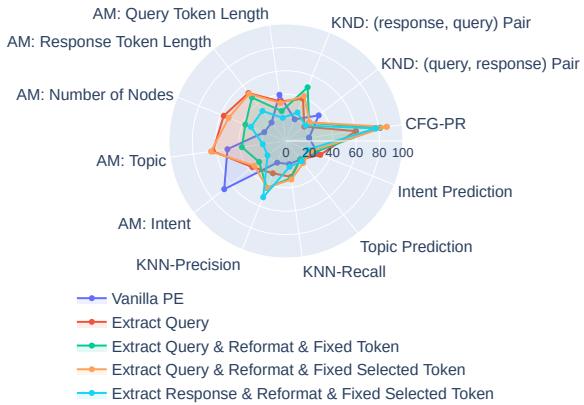


Figure 20: Performance of PE with Node Extraction on ShareGPT with $\epsilon = 4$

D.6 Performance Comparison between Different Methods

We compare the performance of our proposed methods and some combinations of them according to our benchmark. Specifically, in Fig. 21, we illustrate the performance of vanilla PE; PE with CFG reformat; PE with fixed format token; combination of CFG reformat and fix format token (Fixed Token & Reformat); and combination of CFG reformat, fix partial format token, and query node extraction (Extract Query & Reformat & Fixed Selected Token). As we can observe, Extract Query & Reformat & Fixed Selected Token outperforms on structural validity CFG-PR, semantic properties KNN-Precision and KNN-Recall, and statistic properties AM on conversation round and response token length; while Fixed Token & Reformat outperforms mainly on semantic properties KND on (query, response) and (response, query) pair. As different methods focus on different aspects of the synthetic data, users can choose the method according to their practical needs. The algorithm design and analysis based on our benchmark also pave the way to propose a method that outperforms on all evaluation metrics, which we leave as a future work.

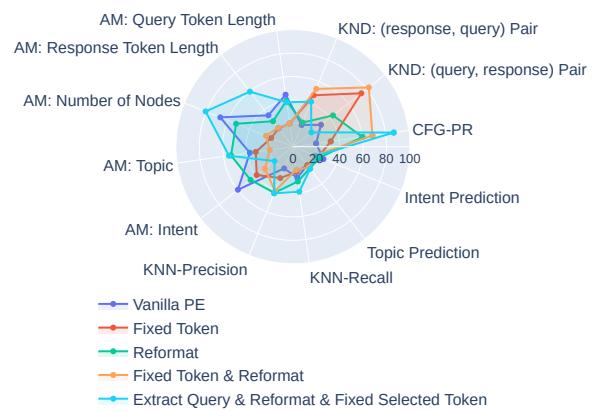


Figure 21: Performance of Different Methods on ShareGPT with $\epsilon = 4$