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ABSTRACT

Efficiently compressing and transmitting large-scale high-fidelity 3D point clouds
is a critical bottleneck for practical applications. We introduce a novel framework
that reformulates point cloud compression as model compression. Our framework
models high-fidelity point cloud geometry and attribute with compact implicit
neural representations (INR) separately and then compresses the model parame-
ters directly via quantization and entropy coding, decoupling representation from
compression. To ensure this neural representation is both faithful and efficient,
we employ Kolmogorov-Arnold Network (KAN) as the INR backbone. Thanks
to its superior approximation properties and parameter efficiency, KAN can easily
capture fine-grained details missed by traditional MLP. Extensive evaluations on
datasets such as KITTI, ScanNet, and 8iVFB demonstrate that our method signif-
icantly outperforms the MPEG standard and prior implicit neural representation
approaches. Notably, it achieves competitive rate-distortion performance against
state-of-the-art deep learning codecs. Our findings establish implicit neural com-
pression as a powerful and practical pathway for developing the next generation
of high-efficiency point cloud codecs.

1 INTRODUCTION

Point clouds have emerged as a foundational data modality for 3D perception, powering critical
applications in autonomous driving (Li et al., 2020; Cui et al., 2021), augmented and virtual reality
(AR/VR) (Lim et al., 2022; Wang et al., 2023), and embodied intelligence (Qi et al., 2024). The
proliferation of advanced LiDAR sensing technologies (Raj et al., 2020) has made the acquisition of
large-scale, high-resolution point clouds more feasible than ever.

However, raw point clouds’ massive scale, spatial sparsity, and lack of explicit topological structure
create substantial memory and bandwidth overhead, which severely impedes their practical deploy-
ment (Graziosi et al., 2020). Consequently, the development of efficient Point Cloud Compression
(PCC) solutions becomes a critical and pressing necessity.

Early efforts to standardize PCC were developed by the Moving Picture Experts Group (MPEG),
resulting in the release of two foundational frameworks: geometry-based PCC (G-PCC) (Schwarz
et al., 2018) and video-based PCC (V-PCC) (Graziosi et al., 2020). Deep learning has subsequently
driven a paradigm shift in the field. Many of these methods (Huang & Liu, 2019; Quach et al., 2020;
Que et al., 2021; Zhang et al., 2024) are built upon generic encoder-decoder architectures, which
encode a point cloud into a compact latent representation for subsequent reconstruction. While
these data-driven codecs often surpass the rate-distortion (RD) performance of traditional standards,
their dependence on large-scale pre-training datasets limits generalization to out-of-distribution data.

To address the generalization limitations of data-driven methods, a new paradigm based on implicit
neural representations (INR) has emerged (Xue et al., 2024; Ruan et al., 2024a;b). INR-based meth-
ods do not directly learn how to reconstruct point clouds. Instead, they train a lightweight implicit
neural representation to model the distribution of a single point cloud in 3D space. This strategy in-
herently avoids the generalization issues of data-driven codecs. However, how to select the optimal
INR backbone for compression remains an open research problem, as it must balance the conflicting
demands of capturing fine-grained details and achieving a low compression rate.
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In this work, we introduce Point cloud Implicit neural COmpression (PICO), a framework that re-
formulates PCC from a signal processing problem to a neural network compression problem. PICO
begins by modeling the point cloud’s geometry and attributes using two compact INRs separately.
Subsequently, PICO directly compresses the parameters of these learned INRs through advanced
quantization and entropy coding techniques. This paradigm provides two key advantages. First, it
decouples geometry and attribute modeling, avoiding the detrimental feature entanglement. Sec-
ond, it separates point cloud representation from compression, enabling fine-grained control over
the compression rate and reconstruction quality.

PICO incorporates a multi-scale rate control mechanism that allows precise and dynamic bitrate
allocation, providing a notable advantage over existing methods. For coarse-grained control, we
select an optimal model architecture using a pre-computed Pareto frontier that profiles the trade-off
between model size and bitrate. To achieve finer-grained adjustments, we then apply a tunable ℓ1
regularization during training to promote parameter sparsity. This sparsity facilitates compression
of the trained model, allowing the final bitrate to be precisely determined by adjusting the quanti-
zation step size during entropy coding. Through jointly optimization of model size, sparsity, and
quantization, PICO achieves precise bitstream control while preserving high compression quality.

PICO adopts the Kolmogorov-Arnold Network (KAN) (Liu et al., 2025) as its INR backbone in-
stead of the typical multilayer perceptron (MLP). Inspired by KAN, we design a backbone called
Learnable Activation Function Network (LeAFNet). Compared to MLP, its learnable activation
functions can better capture the high-frequency details in point clouds, while achieving comparable
INR performance with fewer parameters, which is a critical factor for compression tasks. To fur-
ther enhance performance, we adapt LeAFNet for PCC by adding positional encoding to improve
spatial understanding and replacing B-spline functions with radial basis functions to increase model
throughput. These modifications make LeAFNet a backbone specifically designed for PCC.

PICO improves practical deployability by optimizing sampling space and strategy, as well as in-
troducing dynamic thresholding, which together substantially reduce computational overhead and
memory footprint. In addition, we explore how to extend the PICO from static to dynamic point
clouds, broadening its applicability to a wider range of point cloud types.

We evaluated PICO against MPEG standards and other PCC methods on the 8iVFB, KITTI (Geiger
et al., 2013), and ScanNet (Dai et al., 2017a) datasets, and conducted ablation studies to validate the
effectiveness of our design. On the 8iVFB dataset, PICO showed strong performance. It reduced
BD-BR by 53.54% and improved BD-PSNR by 4.92 dB for geometry compression, and in the more
challenging joint compression task, it achieved a 42.71% BD-BR reduction and a 2.70 × 10−3

improvement in BD-PCQM. These results provide strong evidence of the efficiency of PICO.

Our main contributions can be summarized as follows:

❶ We propose PICO, an implicit neural PCC framework with precise rate control mechanism, which
is further optimized for real-world deployment and applicable to a wide range of point cloud types.

❷ We propose LeAFNet, an INR backbone with learnable activation functions, which is lightweight
and highly effective at fitting implicit functions, making it well-suited for PCC.

❸ We reformulate PCC as neural network compression and conduct extensive experiments to assess
its potential as a foundation or component of next-generation PCC.

2 RELATED WORK

2.1 POINT CLOUD COMPRESSION

The MPEG 3D Graphics Coding Group has established the PCC standard, introducing two meth-
ods: G-PCC and V-PCC (Graziosi et al., 2020). G-PCC directly encodes geometry and attributes,
using an octree with entropy coding for voxelized geometry and Trisoup meshes for low-bitrate sur-
face approximation, while attributes are handled by transforms such as region-adaptive hierarchical
transform (RAHT) (De Queiroz & Chou, 2016). V-PCC projects point clouds into 2D patches and
attribute maps via planar parameterization, then packs them into video frames for High Efficiency
Video Coding (HEVC) (Sullivan et al., 2012) compression, using geometry-color separation and
motion-compensated prediction to maintain continuity.
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Recent advances in deep learning have significantly improved PCC with autoencoder-based frame-
works, which encode point clouds into compact latent representations and reconstruct them via
learned decoders, using entropy models to optimize the rate–distortion trade-off. To address point
cloud irregularity, two main architectures have emerged: voxel-based methods (Wang et al., 2021b;a;
2022), which apply hybrid 3D convolutions on volumetric representations, and point-wise meth-
ods (Huang & Liu, 2019; Sheng et al., 2021), inspired by PointNet (Qi et al., 2017), which operate
directly on raw point coordinates without voxelization artifacts. Although these approaches often
outperform traditional codecs in rate–distortion performance, they continue to struggle with gener-
alization to unseen domains and scalability to large-scale scenes (Quach et al., 2022).

To overcome the limitations of encoder–decoder frameworks, recent research has explored a new
paradigm for PCC based on INRs (Ruan et al., 2024a; Xue et al., 2024; Ruan et al., 2024b). These
methods represent an entire point cloud as a continuous, coordinate-conditioned neural function,
which mitigates the generalization limitations of prior learning-based approaches. However, these
works do not investigate how to select optimal INR backbone model for target bitrates, nor do they
address efficiency considerations for practical deployment.

2.2 IMPLICIT NEURAL REPRESENTATION

INR (Ramasinghe & Lucey, 2022; Saragadam et al., 2023; Sitzmann et al., 2020) parameterize
continuous multidimensional signals using coordinate-based neural networks. Given an input co-
ordinate x ∈ Rd, a neural network fθ, whose parameters θ are optimized to minimize the recon-
struction error with respect to the ground truth signal s(x), outputs the corresponding signal value
fθ(x) ≈ s(x). Formally, an INR can be expressed as:

fθ : x ∈ Rd 7→ s(x) ∈ Rc, θ∗ = argmin
θ
L
(
fθ(x), s(x)

)
, (1)

where L denotes a suitable reconstruction loss, d is the input coordinate dimension, and c is the
signal dimension. INRs have been widely used for data compression in other domains. For instance,
COIN and other methods (Dupont et al., 2021; Strümpler et al., 2022; Dupont et al., 2022) map pixel
coordinates to pixel colors and use meta-learning to improve fitting efficiency. These works offer
valuable insights for developing INR-based PCC.

2.3 KOLMOGOROV-ARNOLD NETWORK

KAN (Liu et al., 2025) is a network architecture designed to improve function approximation
and interpretability. Unlike MLP with fixed activation functions, KAN is inspired by the Kol-
mogorov–Arnold representation theorem, which states that any multivariate continuous function can
be expressed as a superposition of univariate continuous functions. Leveraging this insight, KAN de-
composes complex high-dimensional functions into combinations of simpler one-dimensional func-
tions, using learnable one-dimensional functions as activation units. This design enables KAN to
achieve exceptional representational efficiency, making it particularly effective for modeling high-
frequency details and complex signal, and providing a powerful tool for INR-based applications.

3 PICO

In this section, we introduce PICO. We first briefly describe how the two-stage compression is
implemented, and then present the improvements PICO makes for the two-stage process. Next, we
describe how PICO achieves rate control and the design details of LeAFNet. The pseudocode of
the compression and decompression algorithm is provided in detail in Alg. 1 and Alg. 2.

3.1 TWO STAGE COMPRESSION

The 3D point cloud P = {X ,A} in N -bit voxelized space S typically comprises two components,
geometry X representing a set of 3D coordinates, where the coordinate x satisfies:

x = (x, y, z) ∈ S =

{(
kx
2N

,
ky
2N

,
kz
2N

) ∣∣∣∣ kx, ky, kz ∈ Z, 0 ≤ kx, ky, kz < 2N
}
, (2)

3
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and attributesA representing color, material, or reflectance. PICO compresses the point cloud P by
applying geometry compression to X and attribute compression to A.

Stage 1: Geometry Compression. We train the first INR fg to learn a continuous occupancy field.
fg takes a coordinate from S as input and outputs the probability p that this coordinate is occupied
by the geometry X . Subsequently, we binarize the continuous field using a threshold τ , marking
each coordinate as either occupied or unoccupied to obtain reconstructed geometry X̂ :

fg : x ∈ S 7→ p ∈ [0, 1], (3)

X̂ = {x | fg(x) > τ,x ∈ S}. (4)

Stage 2: Attribute Compression. After obtaining X̂ , we train a second INR fa to learn the corre-
sponding attributes. fa takes a coordinate from X̂ as input and outputs the normalized attribute c
(consider color as the default attribute). We use Ã as the training ground truth, which is obtained by
mapping attributes from A to X̂ using a nearest neighbor principle. By traversing all coordinates in
X̂ through fa, we obtain the reconstructed attributes Â:

fa : x ∈ X̂ 7→ c ∈ [0, 1]3, (5)

Ã(x̂i) = A
(
arg min

xj∈X
∥x̂i − xj∥

)
, (6)

Â = {fa(x) | x ∈ X̂}. (7)

We consider the INR set {fg, fa} as a proxy for the compressed point cloud. It is only necessary
to store and transmit {fg, fa}. During point cloud decompression, we can obtain the reconstructed
point cloud P̂ = {X̂ , Â} by traversing the spatial coordinates through Eq. 4 and Eq. 7.

3.2 SAMPLING SPACE AND STRATEGY

Sampling Space. Due to the inherent sparsity of the original point cloud, the vast majority of
voxels in the voxelized space S are empty, which makes training and inference on the whole S
computationally prohibitive and difficult to optimize. To address this issue, we divide the original
space S into 2M × 2M × 2M coarse-grained cubes, and PICO processes only the set of non-empty
cubes, denoted asW , during both training and inference. The optimized sampling space V is thus
defined as the union of all voxels within these non-empty cubes:

W = {w | w = ⌊x · 2M⌋/2M ,x ∈ X}, (8)

V = {x | ⌊x · 2M⌋/2M ∈ W,x ∈ S}. (9)

Sampling Strategy Although redefining the sampling space from S to V eliminates a large num-
ber of empty voxels, non-empty voxels still constitute only a tiny fraction δ within V . This severe
class imbalance presents a huge challenge for training. To mitigate this problem, we use weighted
sampling to control the proportion of positive labels α = 0.5 in each training batch x. Sampling x
from both the non-empty voxels X and empty voxels V\X can be expressed as:

x = α · U(X )⊕ (1− α) · U(V\X ), (10)

where U(·) denotes uniform sampling,⊕ denotes the concatenation. However, computing the empty
voxels V −X incurs a time complexity of O(|V| · |X |), while storing them requires O(|V|) memory.

To reduce the time overhead, we avoid the costly operation of explicitly generating V\X . Instead,
We perform approximate sampling separately from the non-empty voxels X and the redefined sam-
pling space V . Eq. 10 can then be rewritten as:

x = α̂ · U(X )⊕ (1− α̂) · U(V), (11)

where the calibrated sampling rate α̂ = (α − δ)/(1 − δ) is used to maintain the target class ratio.
This strategy lowers the time complexity to O(1), resulting in a more efficient sampling process.

4
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Algorithm 1 PICO Compression

Input: point cloud P = {X ,A}, model dictionaryM, bitrate b, voxel space S
Parameter: learning rate γ, cube resolution M , voxel resolution N

Output: bitstream θ̃g, θ̃a

1: W ← {w | w = ⌊x · 2M⌋/2M ,x ∈ X}
2: V ← {x | ⌊x · 2M⌋/2M ∈ W,x ∈ S}
3: θ

(0)
g , θ

(0)
a , λg, λa,∆g,∆a, Tg, Ta ←M(b)

4: for t = 1 to Tg do
5: x← Sample(X ,V)
6: θ

(t+1)
g ← θ

(t)
g − γg∇Lgeometry(fg(x; θ

(t)
g , λg))

7: end for
8: θ̂g ← Quantization(θ

(Tg)
g ,∆g)

9: O ← {p | fg(x; θ̂g),x ∈ V}
10: τ ← AdaptiveThreshold(O)
11: X̂ ← {x | fg(x; θ̂g) > τ,x ∈ V}
12: for t = 0 to Ta do
13: x← Sample(X̂ )
14: θ

(t+1)
a ← θ

(t)
a − γa∇Lattribute(fa(x; θ

(t)
a , λa))

15: end for
16: θ̂a ← Quantization(θ(Ta)

a ,∆a)

17: θ̃g, θ̃a ← EntropyEncode(θ̂g, θ̂a)

Considering that we train our INRs on GPU and that a single-frame point cloud contains millions
of points, the O(|V|) memory overhead is non-negligible. We split single coordinate x into two
components, which are represented as:

x = w +w′ = ⌊x · 2M⌋/2M +w′, (12)

w′ = (x, y, z) ∈ S ′ =
{(

kx
2N

,
ky
2N

,
kz
2N

) ∣∣∣∣ kx, ky, kz ∈ Z, 0 ≤ kx, ky, kz < 2N−M

}
. (13)

where w denotes the coordinates of the non-empty cube containing x, and w′ represents the relative
position of x within w. Therefore, the process of sampling a batch of x can be expressed as:

x = w +w′ = α̂ · U(X )⊕ (1− α̂) · (U(W) + U(S ′)) . (14)

By decomposing x and sampling separately from W and S ′, we avoid explicitly storing V . In
practice, it suffices to generate a set of random coordinates fromW and S ′ independently to compute
x. This reduces the storage overhead to O(|W|). Considering that O(|W|) typically corresponds to
only 0.02% of O(|V|), this optimization is highly significant.

3.3 DYNAMIC THRESHOLD

In Eq. 4, we need a threshold τ to classify points as either occupied or unoccupied. A static threshold
is unlikely to perform robustly across diverse point clouds. So we introduce a dynamic thresholding
mechanism to improve geometric reconstruction. We first define the set of all predicted occupancy
probabilities within our sampling space V as O:

O = {p | p = fg(x),x ∈ V}. (15)

We use D1 PSNR as the metric for geometry quality, denoted byD(O, τ). Empirically, we observed
that this function is typically unimodal with respect to τ in Appendix B. Therefore, a golden section
search algorithm can be employed to find the optimal τ that maximizes D(O, τ).

3.4 DYNAMIC RATE CONTROL

In this section, we describe how PICO achieves dynamic rate control from coarse-grained to fine-
grained compression. The approach consists of three components: adaptive model selection, regu-
larized training, and quantization with entropy coding.

5
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Algorithm 2 PICO DeCompression

Input: bitstream θ̃g, θ̃a, space V
Parameter: threshold τ , model information fg, fa
Output: decompressed point cloud P̂ = {X̂ , Â}

1: θ̂g, θ̂a ← EntropyDecode(θ̃g, θ̃a)

2: X̂ ← {x | fg(x; θ̂g) > τ,x ∈ V}
3: Â ← {fa(x; θ̂a) | x ∈ X̂}
4: P̂ ← {X̂ , Â}

Adaptive Model Selection. Previous works often employ a single network architecture to compress
point clouds of varying sizes. This approach can lead to significant performance degradation when
the target bitrate changes. We observe that while small-parameter models struggle to compete with
large-parameter models in compression quality at low compression rates, they gradually surpass
larger models as the compression rate increases. This observation naturally led us to design a model
dictionary for selecting the optimal model f based on the target compression rate.

To construct this dictionary, we compress the same point cloud at different rates using models with
various parameter counts. From their rate-distortion (RD) curves, we derive a Pareto frontier to
define our model dictionaryM. In our experiments, we found that a model dictionary obtained from
a single experiment can be broadly applied to a wide range of point clouds. For excessively large
point clouds, we divide them into smaller blocks for processing. This ensures the high efficiency
and practicality of our method for real-world deployment.

Regularized Training. We employ different objective functions for the two compression stages.
For geometry compression, we use an α-modulated focal loss Lin et al. (2017), which effectively
addresses the class imbalance problem through a weighting mechanism. The balancing factor fur-
ther corrects for the label imbalance between empty and occupied voxels caused by sampling bias.
For attribute compression, we use a per-voxel mean squared error (MSE) loss, which is calculated
only on occupied voxels to ensure perceptually accurate attributes. Furthermore, we add an ℓ1 regu-
larization term during training to control the sparsity and distribution of the model parameters. The
complete loss functions for geometry and attribute compression are as follows:

Lgeometry = Lfocal + Lreg = Ep∼O[−αt(1− pt)
γ log(pt)] + λg∥Θg∥1, (16)

Lattribute = LMSE + Lreg = Ex∼X̂ [∥Ã(xi)− fa(xi)∥22] + λa∥Θa∥1. (17)

Quantization & Entropy Coding. Once the model parameters are obtained, they are quantized with
step sizes ∆g and ∆a for geometry and attributes, respectively, and then entropy-coded to generate
the final bitstream. Our framework utilizes DeepCABAC (Wiedemann et al., 2019), a specialized
context-adaptive binary arithmetic coder designed for deep neural networks.

Suppose the model has K parameters, denoted by θ, with ℓ1 regularization strength λ and a quanti-
zation step size ∆. Then the average code length of the final bitstream of θ after entropy coding can
be expressed as:

H(θ) ≈ K log
2e

λ∆
. (18)

We provide a derivation of this result in the Appendix C.

3.5 DYNAMIC POINT CLOUD COMPRESSION

We generalize the PICO framework to dynamic PCC, modeling the point cloud frame sequence
as a function over a 4D spatio-temporal domain. By exploiting temporal redundancy, we augment
the spatial coordinates (x, y, z) with a time coordinate t. Consequently, our INRs become map-
pings which take a spatio-temporal coordinate (x, y, z, t) as input and outputs a tuple containing the
geometric occupancy p ∈ R or the attribute c ∈ R3. The PICO-Dynamic can be expressed as:

fg : (x, y, z, t) 7→ p ∈ [0, 1], X̂ (t) = {x | fg(x) > τ
(t)
0 ,x ∈ V(t)}, (19)

fa : (x, y, z, t) 7→ c ∈ [0, 1]3, Â(t) = {fa(x) | x ∈ X̂ (t)}. (20)

6
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3.6 LEARNABLE ACTIVATION FUNCTION NETWORK

Figure 1: Model Architecture of LeAFNet.

We propose an INR backbone LeAFNet tai-
lored for PCC in PICO. LeAFNet is designed
to enhance the fitting of implicit functions for
both geometric and attribute compression. The
network structure is illustrated in Figure 1.

Positional Encoding. LeAFNet processes 3D
voxel coordinates through NeRF (Mildenhall
et al., 2021)-style positional encoding to ad-
dress the limited representational capacity of
raw coordinate inputs. Specifically, each co-
ordinate x is mapped to a higher-dimensional
vector using a series of sinusoidal functions be-
fore being input to the network. This trans-
formation allows the network to capture fine-
grained geometric details and subtle attribute
variations that would otherwise be lost in the
raw representation, which is critical for high-
fidelity reconstruction. The positional encoding
Γ can be expressed as:

Γ(x;L) = (x, sin(20πx), cos(20πx), ... , sin(2L−1πx), cos(2L−1πx)). (21)

Learnable Activation Layer. The design of LeAFNet aims to integrate learnable activation func-
tions to enhance implicit function approximation while maintaining parameter efficiency. The first
part of LeAFNet is several fully connected layers, which reduce the dimensionality of the positional
encoded input for subsequent processing. The core of LeafNet is the learnable activation function
layer. Here, we adopt an approach similar to KAN, using the same structure as the KAN Layer.
The difference is that we replace the low-throughput B-spline functions with efficient radial basis
functions (Li, 2024) (RBFs). The learnable activation function ϕ(x) is therefore defined as:

ϕ(x) = wb,silu(x) + ws

N∑
i=1

exp

(
−∥x− ci∥2

h2

)
, (22)

where ci and h are hyperparameters that determine the shape of the activation function, and wb

and ws are learnable linear layer weights. This design significantly accelerates both forward and
backward passes, enabling faster computation and more stable training compared to KAN.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Baselines. We selected six state-of-the-art methods as our baselines for comparison: G-PCC
(Graziosi et al., 2020), V-PCC (Graziosi et al., 2020), NeRC (Ruan et al., 2024b), NeRI (Xue et al.,
2024), SparsePCGC (Wang et al., 2022), and Unicorn (Wang et al., 2024).

Datasets We conducted experiments on three widely recognized point cloud datasets: 8iVFB (d’Eon
et al., 2019), KITTI (Geiger et al., 2012), and ScanNet (Dai et al., 2017b).

Metrics. In our experiments, we use the point-to-point error peak signal-to-noise ratio (D1 PSNR)
(dB) to measure geometric distortion across all three datasets. For attribute distortion, we use
dataset-specific metrics: PCQM (Meynet et al., 2020) (×10−3) for the 8iVFB dataset, R-PSNR
(dB) for KITTI, and Y-PSNR (dB) for ScanNet. To quantify the rate-distortion (RD) performance
gains of different methods, we utilize the Bjontegaard delta metrics (Bjontegaard, 2001).

Implementation Details. We set the coarse-grained voxel resolution to M = 5, partitioning the
space into 25 × 25 × 25 cubes, each containing 32 × 32 × 32 voxels. The network is optimized
by Adam (Kingma & Ba, 2014), with an initial learning rate of 1 × 10−3, which is decayed by a
factor of 0.1 upon reaching a performance plateau. A batch size of 32,768 is used for training. For

7
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Method KITTI ScanNet 8iVFB

Geo. Only longdress loot redandblack soldier Average

G-PCC (octree) -34.22 / 5.14 -78.65 / 6.51 -69.19 / 7.33 -71.78 / 7.84 -69.25 / 6.48 -60.76 / 6.69 -67.75 / 7.09
G-PCC (trisoup) -28.25 / 4.05 -71.24 / 5.29 -49.34 / 3.96 -53.33 / 4.36 -47.20 / 3.33 -42.75 / 4.15 -48.16 / 3.95
V-PCC -15.64 / 2.88 -56.42 / 3.67 -35.42 / 2.64 -44.66 / 3.64 -53.27 / 4.42 -45.51 / 4.20 -44.72 / 3.73

NeRC -18.57 / 3.65 -58.23 / 4.05 -33.13 / 2.80 -45.53 / 4.56 -48.12 / 4.92 -43.55 / 4.36 -42.58 / 4.16
NeRI -20.14 / 3.28 -54.78 / 3.02 -31.28 / 2.64 -49.89 / 6.54 -48.65 / 6.43 -45.47 / 5.91 -43.89 / 5.28

SparsePCGC -8.94 / 1.13 -51.98 / 3.81 -17.23 / 0.67 -22.54 / 1.25 -26.51 / 1.03 -18.28 / 1.29 -21.14 / 1.06
Unicorn 0.66 / -0.16 2.83 / -0.25 13.24 / -1.22 11.15 / -0.43 10.98 / -0.61 9.27 / -0.98 11.16 / -0.81

Method KITTI ScanNet 8iVFB

Geo. & Attr. longdress loot redandblack soldier Average

G-PCC (octree) -13.48 / 1.24 -25.61 / 2.32 -40.94 / 3.89 -74.72 / 6.86 -71.68 / 5.86 -65.87 / 7.69 -63.30 / 6.08
G-PCC (trisoup) -9.43 / 0.81 -21.20 / 1.28 -19.88 / 0.88 -47.68 / 1.43 -40.30 / 1.73 -57.49 / 2.37 -41.34 / 1.60
V-PCC -4.17 / 0.36 -8.63 / 0.55 -8.19 / 0.68 -29.53 / 0.22 -46.48 / 1.15 -26.18 / 1.08 -27.60 / 0.78

NeRC -5.20 / 0.54 -7.09 / 0.39 -17.19 / 1.35 -49.41 / 2.51 -51.77 / 2.51 -43.68 / 3.06 -40.51 / 2.36
NeRI -9.20 / 1.25 -10.10 / 0.51 -23.48 / 1.88 -48.41 / 3.78 -46.37 / 3.42 -28.74 / 5.64 -36.75 / 3.68

SparsePCGC -0.53 / 0.05 -15.52 / 0.94 -12.92 / 0.88 -18.49 / 1.56 -17.83 / 1.12 -17.04 / 1.92 -16.57 / 1.37
Unicorn 19.64 / 0.30 2.86 / -0.09 10.32 / -2.31 8.95 / 0.14 6.13 / -0.88 7.48 / -0.23 8.22 / -0.89

Table 1: We evaluated PICO’s compression performance against seven baselines on three datasets.
The top part of the table shows the results for geometry-only compression, while the bottom part
displays the results for joint geometry and attribute compression. We report the Bjontegaard delta
(BD) gains of PICO relative to baseline methods. The number before the slash indicates the BD-
Rate (%), where a lower value is better. The number after the slash represents the corresponding
metric, where a higher value is better. RD curve visualization can be found in Appendix A.

geometry compression, we set the reweighted sampling coefficient to α = 0.5 and the focal loss
modulation coefficient to γ = 2. The quantized parameters from both models are then losslessly
compressed using DeepCABAC (Wiedemann et al., 2019).

4.2 POINT CLOUD COMPRESSION

Method 8iVFB longdress

Geo. Only BD-BR (%) BD-PSNR (dB)

V-PCC -59.51 5.30
NeRC -46.25 4.38
Unicorn -3.68 0.24

Method 8iVFB longdress

Geo. & Attr. BD-BR (%) BD-PCQM (×10−3)

V-PCC -23.98 1.25
NeRC -26.81 2.14
Unicorn 6.22 -0.51

Table 2: PICO vs. baselines on the first 30 frames
of 8iVFB longdress. Top: geometry com-
pression. Bottom: joint compression.

Static Point Cloud. To evaluate PICO’s per-
formance, we selected a single frame from
each of the four point cloud sequences in
the 8iVFB dataset, and used individual point
clouds from the KITTI and ScanNet datasets.
The results are shown in Table 1. PICO
achieves substantial improvements over con-
ventional MPEG standards (G-PCC and V-
PCC), delivering higher compression efficiency
and reconstruction quality. It also surpasses
existing INR-based approaches (NeRC and
NeRI) and demonstrates a clear advantage over
SparsePCGC. Nevertheless, there remains a
small performance gap compared to the current
state-of-the-art, Unicorn.

PICO’s improvements are especially notable in
geometry compression, thanks to its continuous
occupancy representation, which fits well with the nature of INRs. Attribute compression is more
challenging, mainly because geometric errors accumulate and sharp attribute changes are difficult to
capture with the smooth mappings of INR.

Dynamic Point Cloud. To evaluate PICO-dynamic’s performance, we selected the first 30 frames
of the 8iVFB longdress sequence. We benchmarked PICO against state-of-the-art methods,
including V-PCC, NeRC, and Unicorn. The experimental results in Table 2 clearly demonstrate
that PICO exhibits superior compression performance on dynamic data. PICO consistently outper-
forms both V-PCC and NeRC. A noteworthy finding is that PICO successfully surpasses Unicorn in
geometry compression, highlighting the strength of our spatio-temporal geometry representation.
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4.3 IMPACT OF LEAFNET

Parameters 8iVFB loot

d L α BD-BR (%) BD-PSNR (dB)

24 64 0.5 25.15 0.61
48 64 0.5 -11.16 -0.11

36 48 0.5 -5.36 0.89
36 32 0.5 -25.64 1.36
36 16 0.5 -34.21 2.68
36 0 0.5 -41.63 3.38

36 64 0.25 -39.09 2.93
36 64 δ -61.78 5.63

Table 3: Ablation study of LeAFNet’s hyperpa-
rameters. Default {d, L, α} = {36, 64, 0.5}

We conducted a comprehensive ablation study
to investigate the impact of LeAFNet’s hyper-
parameters—hidden layer dimension d, posi-
tional encoding dimension L, and sampling ra-
tio α—on compression performance. For this
analysis, we established a default configuration
with d = 36, L = 64, and α = 0.5, and then
varied each hyperparameter to evaluate its in-
dividual and combined effects on PICO. The
results are summarized in Table 3.

Our analysis indicates that both the positional
encoding and the sampling strategy are crucial
for enhancing LeAFNet’s performance. In-
creasing the positional encoding dimension L
improves compression by enabling the model to
capture finer spatial details. Likewise, adjusting

the positive label ratio α from its original, highly imbalanced value δ to 0.5 leads to a substantial
gain in compression quality, as this resampling strategy mitigates training instability and facilitates
learning a more robust occupancy probability distribution. The hidden layer dimension d also plays
an important role: larger values of d increase the bitrate but simultaneously improve performance,
highlighting the effective scalability of the LeAFNet architecture.

4.3.1 ADAPTIVE MODEL PARAMETER SELECTION

0.05 0.10 0.15 0.20 0.25 0.30
Bit Per Point (bpp)

30

40

50

60

70

D1
 P

SN
R 

(d
B)

Adaptive Model Selection

Width
width=16
width=32
width=48
width=64
width=80
width=96

Depth
depth=2
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depth=4
depth=5
depth=6
depth=7

Figure 2: The 8iVFB longdress model dic-
tionary, also applicable to other point clouds.

To provide a more intuitive understanding of
the model dictionary M, we constructed a
model dictionary on the 8iVFB longdress,
as illustrated in Figure 2. We varied the hid-
den layer dimensions d ∈ 16, 32, 48, 64, 80, 96
and network depths (number of layers) ∈
2, 3, 4, 5, 6, 7, and assigned different train-
ing hyperparameters to each configuration to
achieve a balance between performance and
compression efficiency. Our experiments con-
firm the trends observed in earlier analyses: at
lower bitrates, smaller models tend to perform
better, as excessive quantization steps ∆ and
strong ℓ1 regularization λ can degrade the rep-
resentational capacity of larger models; con-
versely, at higher bitrates, larger models dom-
inate, with their increased parameter capacity
allowing them to better capture fine-grained point cloud details.

5 CONCLUSION

In this work, we introduced PICO, a INR-based PCC framework that decouples geometry and at-
tribute compression. By reformulating PCC as a neural network compression, PICO achieves flex-
ible control over bitrate and reconstruction quality. We further proposed LeAFNet, a lightweight
INR backbone with learnable activation functions, positional encoding and radial basis functions,
which effectively capture high-frequency point cloud details with fewer parameters.

Extensive experiments on 8iVFB, KITTI, and ScanNet datasets demonstrate that PICO consistently
outperforms traditional MPEG standards and existing PCC methods, achieving substantial gains in
both geometry and joint compression metrics. Overall, PICO represents a significant step toward
next-generation point cloud compression, providing a flexible, high-performance, and deployable
solution that bridges INR and practical compression needs.
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Doucet. Coin++: Neural compression across modalities. arXiv preprint arXiv:2201.12904, 2022.

Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A Chou. Jpeg pleno database: 8i voxelized
full bodies (8ivfb v2)-a dynamic voxelized point cloud dataset, 2019.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The international journal of robotics research, 32(11):1231–1237, 2013.

Danillo Graziosi, Ohji Nakagami, Shinroku Kuma, Alexandre Zaghetto, Teruhiko Suzuki, and Ali
Tabatabai. An overview of ongoing point cloud compression standardization activities: Video-
based (v-pcc) and geometry-based (g-pcc). APSIPA Transactions on Signal and Information
Processing, 9:e13, 2020.

Tianxin Huang and Yong Liu. 3d point cloud geometry compression on deep learning. In Proceed-
ings of the 27th ACM international conference on multimedia, pp. 890–898, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A Chapman, Dongpu Cao, and Jonathan Li.
Deep learning for lidar point clouds in autonomous driving: A review. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3412–3432, 2020.

Ziyao Li. Kolmogorov-arnold networks are radial basis function networks. arXiv preprint
arXiv:2405.06721, 2024.

Sohee Lim, Minwoo Shin, and Joonki Paik. Point cloud generation using deep adversarial local
features for augmented and mixed reality contents. IEEE Transactions on Consumer Electronics,
68(1):69–76, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026
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Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
representations for image compression. In European Conference on Computer Vision, pp. 74–91.
Springer, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on circuits and systems for video
technology, 22(12):1649–1668, 2012.

Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma. Multiscale point cloud geometry compression.
In 2021 Data Compression Conference (DCC), pp. 73–82. IEEE, 2021a.

Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma. Lossy point cloud geometry compression via
end-to-end learning. IEEE Transactions on Circuits and Systems for Video Technology, 31(12):
4909–4923, 2021b.

Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng, Chuntong Cao, and Zhan Ma. Sparse
tensor-based multiscale representation for point cloud geometry compression. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(7):9055–9071, 2022.

Jianqiang Wang, Ruixiang Xue, Jiaxin Li, Dandan Ding, Yi Lin, and Zhan Ma. A versatile point
cloud compressor using universal multiscale conditional coding–part i: Geometry. IEEE transac-
tions on pattern analysis and machine intelligence, 2024.

Zeyu Wang, Cuong Nguyen, Paul Asente, and Julie Dorsey. Pointshopar: Supporting environmental
design prototyping using point cloud in augmented reality. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, pp. 1–15, 2023.

Simon Wiedemann, Heiner Kirchhoffer, Stefan Matlage, Paul Haase, Arturo Marban, Talmaj
Marinc, David Neumann, Ahmed Osman, Detlev Marpe, Heiko Schwarz, et al. Deepcabac:
Context-adaptive binary arithmetic coding for deep neural network compression. arXiv preprint
arXiv:1905.08318, 2019.

Ruixiang Xue, Jiaxin Li, Tong Chen, Dandan Ding, Xun Cao, and Zhan Ma. Neri: Implicit neural
representation of lidar point cloud using range image sequence. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8020–8024.
IEEE, 2024.

Junzhe Zhang, Gexin Liu, Junteng Zhang, Dandan Ding, and Zhan Ma. Deeppcc: Learned lossy
point cloud compression. IEEE Transactions on Emerging Topics in Computational Intelligence,
2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RD CURVE VISUALIZATION

In Figure 3, we visualize the RD curves on three static point clouds, including the five methods:
PICO (Ours), G-PCC (Graziosi et al., 2020), NeRC (Ruan et al., 2024b), SparsePCGC (Wang et al.,
2022), and Unicorn (Wang et al., 2024). It can be found that PICO is basically on par with the state-
of-the-art Unicorn, showing a significant performance improvement compared to the other methods.
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Figure 3: RD Curves of five methods on three different point clouds.

B UNIMODALITY OF D(O, τ)
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Figure 4: Unimodality of D(O, τ)

In Figure 4, we visualize a set of D(O, τ) curves. For the same model, the D curves under different
regularization strengths all exhibit unimodality with respect to τ . Moreover, it can be observed that
by adjusting τ , we can achieve up to an 8 dB gain, demonstrating the effectiveness of our dynamic
thresholding method.
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C DERIVATION OF H(θ) ≈ K log 2e
λ∆

Theorem 1 (Average coding length of quantized ℓ1-regularized parameters). Suppose a model has
K parameters θ = (θ1, . . . , θK), each subject to ℓ1 regularization with strength λ, and the param-
eters are quantized with step size ∆. Then the average code length of the final bitstream of θ after
entropy coding is approximately

H(θ) ≈ K log
2e

λ∆
.

Proof. We provide a detailed derivation of Eq.18 as follows.

Consider a single model parameter θi under ℓ1 regularization. Its prior distribution is the Laplace
distribution, with probability density function (PDF):

p(θi | λ) =
λ

2
exp(−λ|θi|),

where λ is the regularization strength. This distribution forms the basis of our entropy calculation.

The differential entropy of a continuous random variable X is defined as

H(X) = −
∫ ∞

−∞
p(x) log p(x) dx.

Substituting the Laplace PDF, we have

H(θi) = −
∫ ∞

−∞

λ

2
e−λ|θi| log

(
λ

2
e−λ|θi|

)
dθi

= −
∫ ∞

−∞

λ

2
e−λ|θi|

[
log

(
λ

2

)
− λ|θi|

]
dθi

= −
[
log

(
λ

2

)∫ ∞

−∞

λ

2
e−λ|θi|dθi − λ

∫ ∞

−∞
|θi|

λ

2
e−λ|θi|dθi

]
.

The first integral evaluates to 1, because it is the integral of the PDF over the whole real line. The
second integral is the expected value of |θi| under the Laplace distribution, which is E[|θi|] = 1/λ.
Therefore, we obtain

H(θi) = −
[
log

(
λ

2

)
− λ · 1

λ

]
= log

(
2e

λ

)
,

which is the differential entropy of a single parameter.

If we quantize θi with a small step size ∆, the discrete entropy of the quantized variable, H∆(θi), is
approximately related to the differential entropy by

H∆(θi) ≈ H(θi)− log∆ = log

(
2e

λ∆

)
.

Considering the K parameters θ1, . . . , θK are drawn from the same distribution θ obtained from a
single training run, the total entropy of the parameter set is the sum of the individual entropies:

H(θ) =

K∑
i=1

H∆(θi) ≈
K∑
i=1

log

(
2e

λ∆

)
= K log

(
2e

λ∆

)
.

This final expression approximates the total number of nats required to encode all quantized param-
eters optimally.
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D BASELINES & DATASETS

We selected six methods as our baselines for comparison, representing a diverse range of point cloud
compression techniques.

• G-PCC (Graziosi et al., 2020) is a geometry-based PCC standard that uses an octree struc-
ture and entropy coding to compress voxelized geometry and attributes.

• V-PCC (Graziosi et al., 2020) is a video-based PCC standard that projects 3D point clouds
onto 2D planes for compression using video codecs.

• NeRC (Ruan et al., 2024b) is a PCC framework that uses two separate neural networks to
implicitly represent point cloud’s geometry and attributes.

• NeRI (Xue et al., 2024) compresses point clouds by projecting 3D frames into 2D range
images and encoding them via an implicit neural network.

• SparsePCGC (Wang et al., 2022) is a multiscale sparse tensor point cloud geometry com-
pression method.

• Unicorn (Wang et al., 2024) is a versatile, multiscale conditional coding framework that
uses spatial and temporal scale priors to jointly compress point clouds.

We conducted experiments on three widely recognized point cloud datasets to demonstrate the ver-
satility of our method and network.

• 8iVFB (d’Eon et al., 2019) is a dynamic voxelized point cloud dataset containing sequences
of human subjects captured at high resolution, primarily used for evaluating point cloud
compression standards like MPEG.

• KITTI (Geiger et al., 2012) is a popular dataset for autonomous driving research, featuring
a rich collection of outdoor urban scenes with synchronized data from multiple sensors,
including a 3D LiDAR scanner, stereo cameras, and GPS/IMU.

• ScanNet (Dai et al., 2017b) is a large-scale RGB-D video dataset of indoor scenes, provid-
ing richly annotated 3D reconstructions with instance-level semantic segmentations, used
for various 3D scene understanding tasks.

E GENERATIVE AI USAGE STATEMENT

In the preparation of this document, We have used generative AI tools only for grammar checking
and language refinement. All content, ideas, and technical material were developed independently,
and the AI was not used to generate original content, perform substantive analysis, or contribute to
the intellectual work itself.
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