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ABSTRACT

Although deep neural network (DNN)-based controllers are popularly used to con-
trol uncertain nonlinear dynamic systems, most results use DNNs that are pre-
trained offline and the corresponding controller is implemented post-training. Re-
cent advancements in adaptive control have developed controllers with Lyapunov-
based update laws (i.e., control and update laws derived from a Lyapunov-based
stability analysis) for updating the DNN weights online to ensure the system states
track a desired trajectory. However, the update laws are based on the tracking er-
ror, and offer guarantees on only the tracking error convergence, without provid-
ing any guarantees on system identification. This paper provides the first result
on simultaneous online system identification and trajectory tracking control of
nonlinear systems using adaptive updates for all layers of the DNN. A combined
Lyapunov-based stability analysis is provided, which guarantees that the tracking
error, state-derivative estimation error, and DNN weight estimation errors are uni-
formly ultimately bounded. Under the persistence of excitation (PE) condition,
the tracking and weight estimation errors are shown to exponentially converge to
a neighborhood of the origin, where the rate of convergence and the size of this
neighborhood depends on the gains and a factor quantifying PE, thus achieving
system identification and enhanced trajectory tracking performance. As an out-
come of the system identification, the DNN model can be propagated forward to
predict and compensate for the uncertainty in dynamics under intermittent loss of
state feedback. Comparative simulation results are provided on a two-link manip-
ulator system and an unmanned underwater vehicle system with intermittent loss
of state feedback, where the developed method yields significant performance im-
provement compared to baseline methods.

1 INTRODUCTION

Deep neural network (DNN)-based methods have garnered popularity as a means for identifica-
tion and control of uncertain nonlinear dynamic systems. Traditional DNN-based control tech-
niques involve initial offline system identification based on datasets gathered from experimental tri-
als (Abbeel, Coates, and Ng, 2010; Bansal, Akametalu, Jiang, Laine, and Tomlin; Karg and Lucia,
2020; Li, Qian, Zhu, Bao, Helwa, and Schoellig, 2017; Punjani and Abbeel, 2015; Shi, Shi, OCon-
nell, Yu, Azizzadenesheli, Anandkumar, Yue, and Chung, 2019; Zhou, Helwa, and Schoellig, 2017).
Subsequently, the identified DNN is used as a model to design controllers using traditional model-
based control techniques. However, the weight estimates of the DNN are fixed and not updated
during task execution, raising questions about the model’s reliability and adaptability. Moreover,
it is often implicitly assumed that minimizing a loss function would result in the DNN identifying
the system dynamics. Whether a system model can be identified depends on whether the system
trajectories generate information sufficient for the model to be identified, which manifests in terms
of the persistence of excitation (PE) condition on the model (Sastry and Bodson, 1989). Although
the PE condition is well-studied and understood in the system identification literature for linear re-
gression models, only a few recent works remark on the PE condition for DNNs (Lamperski, 2022;
Nar and Sastry, 2019;2; Sridhar, Sokolsky, Lee, and Weimer, 2022). If the model is not identified,
the DNN may not generalize its performance well beyond the explored trajectories. Consequently,
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the controller may not accurately compensate for the uncertainty, thus hazarding the stability of the
closed-loop system.

Recent results in (Griffis, Patil, Bell, and Dixon, 2023; Hart, Griffis, Patil, and Dixon, 2024; Joshi,
Virdi, and Chowdhary, 2020; Le, Greene, Makumi, and Dixon, 2022a; Le, Patil, Nino, and Dixon,
2022b; Muthirayan and Khargonekar, 2023; Patil, Le, Greene, and Dixon, 2022a; Sun, Greene, Le,
Bell, Chowdhary, and Dixon, 2022) offer online weight updates for the DNN-based controllers to
achieve tracking error convergence. The online weight update laws are derived from a Lyapunov-
based stability analysis, and the corresponding controllers are popularly known as Lyapunov-based
(Lb)-DNN controllers. These results can achieve tracking error convergence regardless of whether
the PE condition is satisfied. However, the update laws in these results are based only on tracking
error feedback and are primarily meant to achieve tracking error convergence. Since the parameter
update law converges to zero upon convergence of the tracking error in such results, it is difficult
to draw conclusions regarding the accuracy of the parameter estimate. To address this problem,
incorporating a prediction error, i.e., a measure of the discrepancy between the actual dynamics
and their DNN-based estimate, into the adaptation law can help with parameter estimation. It is
desirable to estimate the DNN parameters to achieve system identification in addition to trajectory
tracking, where the identified model can be used to perform new tasks. For example, the identified
model can be used to predict and compensate for the uncertain dynamics under intermittent loss
of feedback (Bell, Sun, Volle, Ganesh, Nivison, and Dixon, 2023; Chen, Bell, Deptula, and Dixon,
2019; Pulido, Volle, Waters, Bell, Ganesh, and Shin, 2024). However, the prediction error is difficult
or often impossible to obtain since the dynamics are unknown and the state-derivative is typically
either unavailable or noisy.

The classical result in (Slotine and Li, 1989) develops adaptive controllers with a composite adap-
tation law that incorporates both tracking and prediction errors for nonlinear systems with linear-
in-parameters (LIP) uncertainties, where a low-pass filter is applied on both sides of the dynamics
to eliminate the unknown state-derivative term. However, extending the composite adaptation law
from (Slotine & Li, 1989) to nonlinear-in-parameters (NIP) uncertainties such as DNNs is chal-
lenging because the inner-layer weights are embedded in nonlinear activation functions in a nested
fashion. Thus, when a low-pass filter is applied to the dynamics, the resultant expression is not
separable in terms of the model parameters, which introduces technical challenges as detailed in
Appendix B.2.

Main Contributions. This paper provides the first result on simultaneous online system identifi-
cation and trajectory tracking control of nonlinear systems using online updates for all layers of
the DNN. The development involves a composite adaptation law based on a new prediction error
formulation using a dynamic state-derivative observer, which is combined with the tracking error to
construct a least squares-based composite adaptation law. To address the challenges posed by the
nested and NIP structure of DNNs, the Jacobian of the DNN is used in a composite adaptation law.
Then, a first-order Taylor series expansion of the DNN is used in the analysis to express the predic-
tion error in terms of the parameter estimation error. Since the adaptation laws are tightly coupled
with the observer and system dynamics, a combined Lyapunov-based stability analysis is performed
which guarantees the tracking, observer, and parameter estimation errors are uniformly ultimately
bounded (UUB). If the PE condition is satisfied, the tracking and weight estimation errors are shown
to exponentially converge to a neighborhood of the origin. Specifically, guarantees on estimating the
ideal DNN parameters imply accurate system identification. Thus, the identified DNN model can
generalize beyond the points encountered by the system trajectory. As a result, the composite adap-
tive model is suitable for systems involving intermittent loss of state feedback, where the identified
DNN model can be propagated forward in time to predict the uncertain dynamics when feedback is
lost, under developed sufficient dwell-time conditions. To demonstrate the performance and efficacy
of the developed method on different systems, comparative simulation results are provided on two
systems: a robot manipulator and an unmanned underwater vehicle (UUV) with intermittent loss
of state feedback. The developed composite adaptive Lb-DNN controller yields significant perfor-
mance improvement when compared to the tracking error-based adaptive Lb-DNN in (Patil et al.,
2022a) and state-derivative observer-based disturbance rejection controllers as baseline methods.
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2 PROBLEM FORMULATION AND CONTROL DESIGN

Consider the second order nonlinear system

ẍ = f(x, ẋ) + g(x, ẋ)u, (1)

where x, ẋ ∈ Rn denote the states with available measurements, ẍ ∈ Rn is the unknown state-
derivative, f : Rn × Rn → Rn denotes an unknown continuously differentiable drift function,
g : Rn ×Rn → Rn×m denotes a known locally Lipschitz control effectiveness matrix, and u ∈ Rm

denotes the control input. Let the tracking error e ∈ Rn be defined as

e ≜ x− xd(t), (2)

where xd : R≥0 → Rn denotes a smooth reference trajectory that is designed to satisfy ∥xd(t)∥ ≤
xd, ∥ẋd(t)∥ ≤ ẋd, and ∥ẍd(t)∥ ≤ ẍd where xd, ẋd, ẍd ∈ R>0 are user-selected constants. The
control objective is to design a DNN-based adaptive controller with a composite adaptation law
that yields UUB tracking and parameter estimation errors. To aid the subsequent development, the
following assumption is made.

Assumption 1. The function g is full row rank, and its right pseudoinverse g+ : Rn×Rn → Rm×n

given by g+(x, ẋ) ≜ g(x, ẋ)⊤
(
g(x, ẋ)g(x, ẋ)⊤

)−1
is assumed to be bounded.

Assumption 1 implies the system is not under-actuated. Many electromechanical systems satisfy
this assumption, e.g., the robot manipulator and UUV considered in Section 4 of this paper, Stewart
platforms, hexapod robots, etc. The developed method can be extended on a case-by-case basis to
underactuated systems using standard nonlinear control tools (e.g., backstepping) unique for such
underactuated systems. Because a universal closed-form stabilizing nonlinear controller cannot ob-
tained for an arbitrary underactuated system even with perfect model knowledge, the derivation has
to be done on a case-by-case basis for each specific underactuated system, depending on how g is
structured. For more information on performing such an extension, the extension to nonholonomic
mobile robots is provided in Appendix F.

2.1 CONTROL DEVELOPMENT

To facilitate the control development, let the auxiliary error r ∈ Rn be defined as

r ≜ ė+ α1e, (3)

where α1 ∈ R>0 denotes a constant control gain. Taking the time-derivative on both sides of (3),
and substituting (1)-(3) yields

ṙ = f(x, ẋ) + g(x, ẋ)u− ẍd(t) + α1 (r − α1e) . (4)

DNNs are a powerful tool for approximating unstructured uncertainties, such as f , based on their
universal function approximation capabilities (Kidger and Lyons, 2020). Consider the compact set
Ω ≜ {ζ ∈ R2n : ∥ζ∥ ≤ (α1 + 2)χ + xd + ẋd}, where χ ∈ R>0 is a user-selected constant
that defines bounds on signals defined in the subsequent development. Additionally, let Φ : R2n ×
Rp → Rn denote a general DNN architecture, where p ∈ Z>0 denotes the total number of DNN
parameters. According to the universal function approximation theorem, the function space of DNNs
is dense in C(Ω), where C(Ω) denotes the space of functions continuous over Ω (Kidger & Lyons,
2020). Thus, given a prescribed accuracy ε ∈ R>0, there exists a DNN Φ with ideal weights
θ∗ ∈ Rp such that supX∈Ω ∥f(x, ẋ)− Φ(X, θ∗)∥ ≤ ε, where X ≜

[
x⊤ ẋ⊤ ]⊤

. Therefore, the
drift function can be modeled as

f(x, ẋ) = Φ(X, θ∗) + ε(X), (5)

where ε : R2n → Rn denotes an unknown function reconstruction error that can be bounded as
supX∈Ω ∥ε(X)∥ ≤ ε. The following typical assumption is made to aid the subsequent development
(cf., (Lewis, Yegildirek, and Liu, 1996a, Assumption 1)).

Assumption 2. There exists a known constant θ ∈ R>0 such that the unknown ideal weights can be
bounded as ∥θ∗∥ ≤ θ.
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Assumption 2 is reasonable because, in practice, the user can select θ a priori to restrict the parame-
ter search space. If such a selection does not obey Assumption 2, the selection may no longer allow
the user to make ε̄ arbitrarily small as guaranteed by the universal function approximation property.
However, a bound ε̄ satisfying supX∈Ω ∥ε(X)∥ ≤ ε still exists due to the continuity of f and Φ over
Ω. Using heuristic approaches, if such ε̄ is found to be larger than the maximum allowable error,
then θ̄ can be iteratively increased until it achieves the prescribed ε̄. Notably, DNN architectures
that contain spectral normalization layers (e.g., in (Shi et al., 2019)) inherently involve bounded
ideal weights since the weight matrices are normalized by their spectral norms.

Based on (4) and the subsequent analysis, the control input is designed as

u = g+(x, ẋ)
(
ẍd(t)− (α1 + kr) r +

(
α2
1 − 1

)
e− Φ

(
X, θ̂

))
, (6)

where kr ∈ R>0 denotes a constant control gain, and θ̂ ∈ Rp denotes the adaptive estimate of the
DNN weights θ∗ that is developed using subsequently designed adaptation laws. Substituting (5)
and (6) into (4) yields

ṙ = Φ(X, θ∗)− Φ
(
X, θ̂

)
+ ε(X)− e− krr. (7)

2.2 COMPOSITE ADAPTATION LAW

The classical result in (Slotine & Li, 1989) develops a composite adaptation law using tracking
and prediction errors for robot manipulators that involve linearly parameterized uncertainties in the
absence of exogenous disturbances. However, for NIP uncertainties such as DNNs, the traditional
development of the prediction error is not applicable and a new approach is required. Hence, an
innovation of this paper is a new prediction error formulation based on a dynamic state-derivative
estimator that provides an estimate of the ground truth value of the drift f (c.f., (Kamalapurkar,
Reish, Chowdhary, and Dixon, 2017)). The dynamic state-derivative observer is designed as

˙̂r = g(x, ẋ)u− ẍd(t) + α1 (r − α1e) + f̂ + α2r̃,
˙̂
f = kf

(
˙̃r + α2r̃

)
+ r̃, (8)

where r̂, f̂ ∈ Rn denote the observer estimates of r and f , respectively, r̃, f̃ ∈ Rn denote the
observer errors r̃ ≜ r − r̂ and f̃ ≜ f(x, ẋ) − f̂ , respectively, and α2, kf ∈ R>0 denote constant
observer gains. As is typical of observer designs, observer error r̃ is known because r and r̂ are
known, and is used as feedback to the observer in (9) to estimate f . Since ˙̃r is unknown, (8) can be
implemented by integrating both sides and using the relation

∫ t

t0
˙̃r (τ) dτ = r̃(t) − r̃(t0) to obtain

f̂(t) = f̂(t0)+kf r̃(t)−kf r̃(t0)+
∫ t

t0
(kfα2+1)r̃(τ)dτ , where t0 denotes the initial time. Note that

although f̂ generated by the state-derivative estimator can also be used to compensate for f , such
an approach results in a robust high-gain design which does not achieve the system identification
objective and can cause large overshoots in the control input.

Taking the time-derivative of r̃ and f̃ and substituting their definitions along with (4) and (8) yields

˙̃r = f̃ − α2r̃,
˙̃
f = ḟ − kf f̃ − r̃, (9)

where ˙̃
f is derived after substituting in ˙̃r. Using the dynamic state-derivative estimator, the predic-

tion error E ∈ Rn is designed as

E ≜ f̂ − Φ
(
X, θ̂

)
. (10)

Then, the composite least squares adaptation law is designed as

˙̂
θ = proj

(
−kθ̂Γ(t)θ̂ + Γ(t)Φ′⊤

(
X, θ̂

)
(r + α3E)

)
, (11)

where proj (·) denotes a continuous projection operator (cf. (Krstic, Kanellakopoulos, and Koko-
tovic, 1995, Appendix E)) which ensures θ̂(t) ∈ Bθ̄ ≜ {θ ∈ Rp : ∥θ∥ ≤ θ̄} for all t ∈ R≥0, α3, kθ̂ ∈

R>0 denote constant gains, Φ′
(
X, θ̂

)
∈ Rn×p denotes the Jacobian Φ′

(
X, θ̂

)
≜

∂Φ(X,θ̂)
∂θ̂

. The
reader is referred to Appendix C for details on calculation of the Jacobian for a fully-connected
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DNN. Similar development could also be used to derive the Jacobian for other DNN architectures.
The term Γ: R≥0 →Rp×p denotes a positive-definite (PD) time-varying least squares adaptation
gain matrix that is a solution to (Slotine & Li, 1989, Eqns. (16) and (17))

d

dt
Γ−1(t) = −β(t)Γ−1(t) + Φ′⊤

(
X, θ̂

)
Φ′
(
X, θ̂

)
, (12)

with the bounded-gain time-varying forgetting factor β : R≥0 → R≥0 designed as

β(t) ≜ β0

(
1− ∥Γ(t)∥

κ0

)
, (13)

where β0,κ0 ∈ R>0 are user-defined constants denoting the maximum forgetting rate and the bound
on λmax {Γ(t)}, respectively. The adaptation gain in (12) is initialized to be PD such that ∥Γ(t0)∥ <
κ0, and it can be shown that Γ(t) remains PD for all t ∈ R≥t0 (Slotine & Li, 1989). Since Γ(t) is
PD, there exists a constant κ1 ∈ R>0 such that λmin {Γ(t)} ≥ κ1 for all t ∈ R≥t0 . The term β(t)
can be lower bounded as β ≥ β1, where β1 ∈ R≥0 is a constant which satisfies the properties stated
in the following remark.

Remark 1. Consider the case when Φ′
(
X, θ̂

)
satisfies the PE condition, i.e., there exists

constants φ1, φ2 ∈ R>0 for all t ∈ R≥t0 and some T ∈ R>0 such that φ1Ip ≤∫ t+T

t
Φ′⊤

(
X(τ), θ̂(τ)

)
Φ′
(
X(τ), θ̂(τ)

)
dτ ≤ φ2Ip. In this case, it can be shown that β1 > 0

(Slotine & Li, 1989, Sec. 4.2).

The following section shows the stability analysis for the developed DNN-based composite adaptive
control method over the time-interval [t0,∞) ⊆ R≥0.

3 STABILITY ANALYSIS

DNNs are nonlinear with respect to the weights. Designing adaptive controllers and performing
stability analyses for systems that are NIP has historically been a challenging task. A method to
address the NIP structure of the uncertainty, especially for DNNs, is to use a first-order Taylor series
approximation (Patil et al., 2022a). Let θ̃ ≜ θ∗ − θ̂ ∈ Rp denote the parameter estimation error.
Applying a first-order Taylor series approximation yields

Φ(X, θ∗)− Φ
(
X, θ̂

)
= Φ′

(
X, θ̂

)
θ̃ +O

(∥∥∥θ̃∥∥∥2) , (14)

where O
(∥∥∥θ̃∥∥∥2) ∈ Rn denotes the higher-order terms and O(·) denotes the asymptotic notation.

Substituting (14) into (7) yields the closed-loop error system

ṙ = Φ′
(
X, θ̂

)
θ̃ +∆− e− krr, (15)

where ∆ ∈ Rn is defined as ∆ ≜ O
(∥∥∥θ̃∥∥∥2) + ε(X). To facilitate the subsequent analysis, the

prediction error E in (10) can be rewritten by adding and subtracting f , substituting in (5) and (14),
and using the relation f̂ = f − f̃ , which yields

E = Φ′
(
X, θ̂

)
θ̃ − f̃ +∆. (16)

Taking the time-derivative of θ̃, substituting in (11), and then applying (16) and the relation θ̂ =
θ∗ − θ̃ yields the parameter estimation error dynamics

˙̃
θ = −proj

(
Γ(t)

(
kθ̂ + α3Φ

′⊤
(
X, θ̂

)
Φ′
(
X, θ̂

))
θ̃ + Γ(t)Φ′⊤

(
X, θ̂

)
r

−α3Γ(t)Φ
′⊤
(
X, θ̂

)
f̃ + α3Γ(t)Φ

′⊤
(
X, θ̂

)
∆− kθ̂Γ(t)θ

∗
)
. (17)

Let z ≜
[
e⊤ r⊤ r̃⊤ f̃⊤ θ̃⊤

]⊤ ∈ R4n+p denote the concatenated state. Since the universal
function approximation property of the DNN stated in (5) holds only on the compact domain Ω, the

5
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subsequent stability analysis requires ensuring X(t) ∈ Ω for all t ∈ [t0,∞). This is achieved by
yielding a stability result which constrains z in a compact domain. Consider the compact domain
D ≜

{
ζ ∈ R4n+p : ∥ζ∥ ≤ χ

}
in which z is supposed to lie. To facilitate the stability analysis, let

V : R4n+p → R≥0 be the candidate Lyapunov function defined as

V (z) =
1

2
e⊤e+

1

2
r⊤r +

1

2
r̃⊤r̃ +

1

2
f̃⊤f̃ +

1

2
θ̃⊤Γ−1(t)θ̃, (18)

which satisfies the inequality
λ1 ∥z∥2 ≤ V (z) ≤ λ2 ∥z∥2 , (19)

where λ1 ≜ min{ 1
2 ,

1
2κ0

}∈ R>0 and λ2 ≜ max{ 1
2 ,

1
2κ1

}∈ R>0. Taking the time-derivative of
V (z), substituting in (3), (9), (12), (15), and (17), applying the property of projection operators
−θ̃⊤Γ−1(t)proj(µ) ≤ −θ̃⊤Γ−1(t)µ (Krstic et al., 1995, Lemma E.1.IV), and canceling coupling
terms yields

V̇ ≤ −α1 ∥e∥2 − kr ∥r∥2 − α2 ∥r̃∥2 − kf

∥∥∥f̃∥∥∥2 − (kθ̂ + β(t)

2κ0

)∥∥∥θ̃∥∥∥2 + r⊤∆+ f̃⊤ḟ

−
(
α3 −

1

2

)
θ̃⊤Φ′⊤

(
X, θ̂

)
Φ′
(
X, θ̂

)
θ̃ + α3θ̃

⊤Φ′⊤
(
X, θ̂

)(
f̃ −∆

)
+ kθ̂ θ̃

⊤θ∗. (20)

Due to Assumption 2 and the use of the projection operator, ∥θ∗∥ ,
∥∥∥θ̂∥∥∥ ≤ θ̄; hence,

∥∥∥θ̃∥∥∥ ≤ 2θ̄.

Additionally, since f and Φ are continuously differentiable, the bounds ∥∆∥ ≤ γ1,
∥∥∥ḟ∥∥∥ ≤ γ2,

and
∥∥∥Φ′

(
X, θ̂

)∥∥∥
F

≤ γ3 hold for all z ∈ D, where γ1, γ2, γ3 ∈ R>0 denote bounding constants.

Therefore, using Young’s inequality yields the bounds r⊤∆ ≤ γ1

2 ∥r∥2+ γ1

2 , f̃⊤ḟ ≤ γ2

2

∥∥∥f̃∥∥∥2+ γ2

2 ,

kθ̂ θ̃
⊤θ∗ ≤ kθ̂

2

∥∥∥θ̃∥∥∥2 + kθ̂

2 θ̄2, and α3θ̃
⊤Φ′⊤

(
X, θ̂

)(
f̃ −∆

)
≤ α3γ3

∥∥∥θ̃∥∥∥2 + α3γ3

2

∥∥∥f̃∥∥∥2 + α3γ3γ
2
1

2 .

As a result, V̇ can further be upper-bounded as

V̇ ≤ −λ3 ∥z∥2 + c−
(
α3 −

1

2

)
θ̃⊤Φ′⊤

(
X, θ̂

)
Φ′
(
X, θ̂

)
θ̃, (21)

for all z ∈ D, where λ3 ≜ min{α1, kr − γ1

2 , α2, kf − γ2+α3γ3

2 ,
kθ̂

2 + β1

2κ0
− α3γ3}∈ R and c ≜

γ1+γ2+kθ̂ θ̄
2+α3γ3γ

2
1

2 ∈ R>0. To facilitate the subsequent analysis, the following gain condition is
introduced

min

{
λ3, α3 −

1

2

}
> 0. (22)

Additionally, the set S ≜ {ζ ∈ R4n+p : ∥ζ∥ ≤
√

λ1

λ2
χ2 − c

λ3
} is defined to initialize z in the

subsequent analysis, where it is shown that if z(t0) ∈ S ⊂ D then z(t) is UUB and does not escape
D. The following theorem states the main result of this paper.

Theorem 2. Let Assumptions 1 and 2 and the gain condition in (22) hold, and let χ >
√

λ2c
λ1λ3

.
Then, for the system in (1), the DNN-based controller in (6) and the composite adaptation law in (11)

ensure z is UUB in the sense that ∥z(t)∥ ≤
√

λ2

λ1
∥z(t0)∥2 e−

λ3
λ2

(t−t0) + λ2c
λ1λ3

(
1− e−

λ3
λ2

(t−t0)
)

for

all t ∈ [t0,∞), provided that ∥z (t0)∥ ∈ S.

Proof. See Appendix A.

Remark 3. Since λ3 = min{α1, kr − γ1

2 , α2, kf − γ2+α3γ3

2 ,
kθ̂

2 + β1

2κ0
− α3γ3}, the gains

α1, α2, α3, kr, and kf can be selected to be sufficiently high such that λ3 =
kθ̂

2 + β1

2κ0
− α3γ3.

Since β1 is positive under the PE condition as mentioned in Remark 1, a larger value for λ3 is ob-
tained, which implies faster exponential convergence to a smaller neighborhood of the origin. When
the PE condition does not hold, the gain kθ̂, which is based on the sigma modification technique
in (Ioannou and Sun, 1996, Sec. 8.4.1), helps achieve the UUB stability result. However, selecting
a high value for kθ̂ can deteriorate tracking and parameter estimation performance since it yields a
higher value for c.
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Table 1: Robot Manipulator Performance Comparison

Adaptation Law ∥e∥RMS (deg) ∥u∥RMS (Nm)

Function
error

on-trajectory
(rad/s2)

Mean
function

error on test
data (rad/s2)

Tracking Error-Based 0.629 10.100 0.430 1.215

Composite 0.308 7.962 0.131 0.260

Observer-Based 0.310 10.612 0.204 N/A

Nonlinear PD 3.142 6.642 N/A N/A

Nonlinear MPC 1.101 8.275 N/A N/A

4 SIMULATIONS

To demonstrate the performance of the developed method, comparative simulations are performed
on two different systems, i.e. a two-link manipulator and a UUV.

4.1 TWO LINK MANIPULATOR

To demonstrate the performance of the developed composite adaptive Lb-DNN, comparative sim-
ulations are performed on the two-link robot manipulator model (see Appendix D.1.1 for the dy-
namics) in (de Queiroz, Hu, Dawson, Burg, and Donepudi, 1997) for 100 seconds. Baseline meth-
ods used for comparison include DNN-based adaptive controller with tracking error-based adap-
tation law developed in (Patil et al., 2022a), an observer-based disturbance rejection controller
(Han, 2009) (i.e., u = g+(x, ẋ)

(
ẍd − (α1 + kr) r +

(
α2
1 − 1

)
e− f̂

)
), a nonlinear proportional-

derivative (PD) controller u = g+(x, ẋ)
(
ẍd − (α1 + kr) r +

(
α2
1 − 1

)
e
)
, and nonlinear model

predictive control (MPC) (see Appendix D.1.1 for more details on baseline control methods). The
comparative simulation is performed using a fully-connected DNN with 5 hidden layers and 5 neu-
rons in each layer with hyperbolic tangent activation functions (see Appendix D.1.2 for ablation
study). The DNN weights are initialized randomly from the distribution U(−0.5, 0.5). For a real-
istic simulation, an additive white Gaussian (AWG) measurement noise with a signal-to-noise ratio
of 50 dB is considered in all state measurements.

To evaluate the tracking and drift compensation performance of the developed and baseline meth-
ods, the root mean square (RMS) values of the tracking error norm, denoted by ∥e∥RMS, and func-
tion approximation error along the trajectory are calculated in the steady state (i.e., in the interval
[50,100] seconds). The corresponding values are provided in Table 1. Since the trajectory explored
by the system essentially acts as a training dataset for the DNNs, the RMS function approxima-
tion error does not indicate whether the DNN model is overfit and how well the model generalizes
over unexplored data. Thus, to evaluate the performance of the DNN beyond the trajectory, a test
dataset involving 100 random datapoints with values selected from the distribution U(−0.25, 0.25)

is constructed, and the mean
∥∥∥f(x, ẋ)− Φ

(
X, θ̂

)∥∥∥ across all points in the dataset is evaluated.

The value of the mean
∥∥∥f(x, ẋ)− Φ

(
X, θ̂

)∥∥∥ on the test dataset at the end of each simulation (i.e.,
at t = 100 seconds) is then used as a metric in Table 1 for comparing the generalization perfor-
mance of each method. To evaluate the control effort required by each controller throughout the
transient and steady states, the RMS values of the control input norm, ∥u∥, are calculated in the
time-interval [0,100] seconds and provided in Table 1 for each method. As evident from Table 1
and Figure 1, the developed composite adaptive Lb-DNN significantly improved the tracking per-
formance compared to tracking error-based adaptive Lb-DNN, nonlinear PD, and nonlinear MPC
with comparable control effort and approximately 50%, 90%, and 70% improvements in ∥e∥RMS,
respectively. The tracking error-based adaptive Lb-DNN exhibited more chattering in the control
input due to measurement noise, which might be because the update law involved a constant high
adaptation gain. In contrast, the composite update law has a decreasing gain due to the least squares
approach which mitigates noise amplification resulting from the adaptation gain. Additionally, the
tracking performance with the observer-based disturbance rejection method is comparable to the
developed method, which is expected because the developed method also used the observer-based
estimate f̂ to formulate the prediction error. However, notice the increased control effort due to
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Table 2: UUV Performance Comparison
e-based Composite Observer-based NMPC NPD

RMS position tracking error norm (m) 0.201 0.152 0.158 0.254 0.186

RMS angular tracking error norm (rad) 0.037 0.012 0.024 0.054 0.028

RMS linear control input norm (N) 0.069 0.065 0.126 0.128 0.067

RMS angular control input norm (Nm) 0.041 0.035 0.072 0.036 0.032

RMS linear dynamics estimation error norm (m/s2) 4.370 2.585 19.423 N/A N/A

RMS angular dynamics estimation error norm (rad/s2) 2.058 1.408 3.021 N/A N/A

large overshoots in the controller resulting from high gains in the state-derivative observer in (8).
Although the developed composite adaptation law also used the state-derivative estimates generated
by the high-gain observer, the state-derivative estimates are not directly used in the control input.
Using the state-derivative estimates in the adaptation law did not cause as large overshoots in the
control input because the adaptation law involves an integrator that effectively acts as a low pass
filter on any overshoots in the state-derivative estimates. Furthermore, note that the observer-based
controller only provides instantaneous estimates of f , due to the lack of a model. Hence, it cannot
be generalized for off-trajectory points, thus not achieving the system identification objective. Addi-
tionally, despite the fact that nonlinear MPC uses model knowledge, the developed method achieved
improved tracking with reduced control effort compared to nonlinear MPC.

The evolution of the mean function approximation error on the aforementioned test dataset is shown
on the right in Figure 1. The mean function approximation error with the composite method on the
test dataset initially overshot followed by oscillatory behavior during the initial 10 seconds. Such a
behavior is expected since the combined system goes through the initial transients, and the online
data in the first few seconds based on which the DNN has learned is limited. However, after 10 s, the
composite adaptation law exhibited a consistent decrease in the mean function approximation error,
unlike the tracking error-based adaptation law. As a result, the composite adaptation law achieved
72.04% improvement in the final value of mean function approximation error.
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Figure 1: Left: Comparative plots of the tracking error norm and control input norm along the trajectory
with the developed and baseline controllers. A zoomed view during the time interval [10, 20] is added in
each subplot for visual clarity. Right: Comparative plots of the mean of function estimation error norm∥∥∥f(x, ẋ)− Φ

(
X, θ̂

)∥∥∥ using tracking error-based adaptation and composite adaptation on the test dataset.
(See Fig. 4-5 in Appendix D for larger plots)

4.2 UNMANNED UNDERWATER VEHICLE

Comparative simulation results are also provided for the UUV system (see Appendix D.2 for dy-
namics) from (Fischer, Hughes, Walters, Schwartz, and Dixon, 2014) using the composite adaptive
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Figure 2: Left: Plot of the position trajectories taken by the UUV using the developed and baseline methods.
The plot is restricted to the trajectories from the time-interval [0, 9] seconds for visual clarity. The points where
each controller loses feedback are marked by a red × and points where each controller regains feedback are
marked by a blue ⃝. Right: Comparative plots of the linear tracking error norm (m) and angular tracking error
norm (rad) for the UUV. The time intervals corresponding to the feedback denied zones are marked in grey
patches. (See Fig. 6-7 in Appendix D for larger plots)
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Figure 3: Left: Comparative plots of the estimation error norm (i.e.,
∥∥∥f(x, ẋ)− Φ

(
X, θ̂

)∥∥∥ during feedback

availability and
∥∥∥f(x, ẋ)− Φ

(
Xd(t), θ̂

)∥∥∥ during loss of feedback) for the UUV with the developed and base-
line methods. Right: Comparative plots of the linear and angular control input norms for the UUV. Zoomed
views during the time interval [0, 0.2] seconds are added for visual clarity. (See 8-9 in Appendix D for larger
plots)

Lb-DNN under intermittent loss of feedback, with the same baselines as in Subsection 4.1. Since
the DNN identifies the system dynamics, the identified DNN could be used to predict the uncer-
tainty when the state feedback is intermittently lost. Let i ∈ Z≥0 denote the time index such that
the state feedback is available in the time interval [t2i, t2i+1) and unavailable in the time interval
[t2i+1, t2i+2) for all i ∈ Z≥0. During the time interval [t2i, t2i+1), when the feedback is available,
the control and adaptation laws in (6) and (11) are used for all i ∈ Z≥0. However, during the time
interval [t2i+1, t2i+2) when the state feedback is unavailable, an open-loop controller is developed
as u = g+ (xd(t), ẋd(t))

(
ẍd(t)− Φ

(
Xd(t), θ̂(t2i+1)

))
. The reader is referred to Appendix E

for sufficient dwell-time conditions and stability analysis under which the system can stably oper-
ate under intermittent loss of feedback. For both the composite and tracking error-based adaptive
Lb-DNN methods, a fully-connected DNN with 5 hidden layers with 5 neurons in each layer with
hyperbolic tangent activation function was used. During feedback unavailability, the observer-based
disturbance rejection and nonlinear PD controllers were designed to be u = g+ (xd(t), ẋd(t)) ẍd(t),

with ˙̂x,
˙̂
f = 0 for the observer-based method, and the nonlinear MPC was designed using model

9
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predictions propagated forward over the horizon treating xd as the current state. To simulate the
performance of the system under intermittent loss of feedback, each simulation was performed for
30 seconds where the feedback was made unavailable for the time intervals [5, 6), [7, 8), [9, 10),
[11, 12), [14, 15), [17, 18), [19, 20), [21, 22), [24, 25), and [26, 27) seconds, respectively. For a real-
istic simulation, an AWG measurement noise with a signal-to-noise ratio of 50 dB is considered in
all state measurements.

Figure 2, on the left, shows the reference trajectory and the actual trajectories taken by the UUV
using each controller. On the right, Figure 2 shows comparative plots of linear tracking error and an-
gular tracking error norms. The developed method outperforms the baseline methods in tracking the
reference trajectory, especially during the loss of feedback as also evident from Table 2. Addition-
ally, Figure 3 shows the comparative plot of the linear and angular dynamics (function) estimation
error norms on the left and control input norms on the right. Since tracking error-based adapta-
tion does not involve guarantees on parameter estimation, the resulting predictions quickly diverge
during absence of feedback due to model identification errors. However, the composite adaptive Lb-
DNN controller can better predict and compensate for the drift dynamics under the absence of state
feedback. Additionally, when feedback is available, the state-derivative observer-based approach
can yield a tracking performance comparable to the DNN-based controllers since it essentially in-
volves a robust high-gain approach. However, the tracking performance degrades significantly in the
absence of feedback using the observer-based approach when compared to the composite adaptive
Lb-DNN controller. Furthermore, the observer-based approach requires significantly higher control
effort as compared to both of the DNN-based adaptive controllers due to reasons discussed in Sub-
section 4.1. Additionally, despite the fact that nonlinear MPC uses model knowledge, the developed
method achieved improved tracking with reduced control effort compared to nonlinear MPC.

5 CONCLUSION

A composite adaptive Lb-DNN is developed for simultaneous online system identification and con-
trol, using the Jacobian of the DNN, the tracking error, and a prediction error based on a novel
formulation using a dynamic state-derivative observer. A Lyapunov-based stability analysis guaran-
tees the tracking, observer, and parameter estimation errors are UUB, with tighter bounds on these
errors when the DNN’s Jacobian satisfies the PE condition. Comparative simulation results demon-
strate a significant improvement in tracking, function estimation and generalization capabilities with
the developed method in comparison to the tracking error-based Lb-DNN in (Patil et al., 2022a) and
observer-based disturbance rejection controller as baseline methods.

6 LIMITATIONS AND SCOPE FOR FUTURE WORK

The persistence of excitation condition for identifying the parameters is restrictive as there are chal-
lenges in verifying it online. For linear regression, recent developments in the adaptive control
literature such as (Chowdhary, Yucelen, Mühlegg, and Johnson, 2013b; Ortega, Aranovskiy, Pyrkin,
Astolfi, and Bobtsov, 2021; Pan and Yu, 2018; Parikh, Kamalapurkar, and Dixon, 2019; Roy, Bhasin,
and Kar, 2018) provide parameter estimation methods that guarantee parameter convergence under
excitation conditions weaker than PE. All of these methods involve some form of regression ex-
tension by storing the history of the regression in memory over an interval of time. However, these
methods are restricted to linear regression and have not been explored for NIP models such as DNNs
yet. Thus, insights from this paper may be used in future work to develop adaptation laws for DNNs
that yield parameter estimation guarantees under excitation conditions weaker than PE. Further-
more, extensions of the developed online system identification approach in optimization-based con-
trol paradigms such as MPC and reinforcement learning can be explored. Moreover, future research
efforts can also investigate how to combine the developed method with control barrier functions to
satisfy state and input constraints.
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APPENDICES

A PROOFS

A.1 THEOREM PROOF

Proof of Theorem 1. Consider the candidate Lyapunov function in (18). Then, using (19) and (21),
when the gain condition in (22) is satisfied, V̇ can be upper-bounded as

V̇ ≤ −λ3

λ2
V + c, (23)

for all z ∈ D. Solving the differential inequality in (23) over the time-interval [t0,∞) yields

V (z(t)) ≤ V (z(t0)) e
−λ3

λ2
(t−t0) +

λ2c

λ3

(
1− e−

λ3
λ2

(t−t0)
)
, (24)

for all z ∈ D. Then applying (19) to (24) yields

∥z(t)∥ ≤
√

λ2

λ1
∥z(t0)∥2 e−

λ3
λ2

(t−t0) +
λ2c

λ1λ3

(
1− e−

λ3
λ2

(t−t0)
)
, (25)

for all z ∈ D. To ensure z(t) ∈ D for all t ∈ R≥0, further upper-bounding the right hand side of (25)

yields ∥z(t)∥ ≤
√

λ2

λ1
∥z(t0)∥2 + λ2c

λ1λ3
for all t ∈ R≥0. Since D =

{
ζ ∈ R4n+p : ∥ζ∥ ≤ χ

}
, z(t) ∈

D always holds if
√

λ2

λ1
∥z(t0)∥2 + λ2c

λ1λ3
≤ χ, which is guaranteed if ∥z(t0)∥ ≤

√
λ1

λ2
χ2 − c

λ3
, i.e.,

z(t0) ∈ S. Thus, the trajectories of z do not escape D if z is initialized in S. Since ∥z∥ ≤ χ implies
∥e∥ , ∥r∥ ≤ χ, the following relation holds: ∥X∥ ≤ ∥x∥ + ∥ẋ∥ ≤ ∥e+ xd∥ + ∥r − α1e+ ẋd∥ ≤
(α1 + 2)χ + xd + ẋd. Thus, based on the definition of the set Ω, X(t) ∈ Ω for all t ∈ [t0,∞).
Furthermore, for the feasibility of initial conditions, S is required to be non-empty, which is ensured

by selecting χ >
√

λ2c
λ1λ3

.

A.2 ROBUSTNESS OF DYNAMIC STATE-DERIVATIVE ESTIMATOR TO SENSOR NOISE

Consider noisy state measurement for r given by rn = r + δ(t), where δ(t) ∈ Rn is a bounded
noise assumed to satisfy ∥δ(t)∥ ≤ δ̄ with the bounding constant δ̄ ∈ R>0. Replacing the r term in
(9) with the noisy measurement rn yields

˙̃r = f̃ − α2r̃ − α2δ(t) (26)

f̃ = ḟ − kf f̃ − r̃ − δ(t). (27)

To analyse the noise sensitivity, consider the candidate Lyapunov function Vn = 1
2 r̃

⊤r̃ + 1
2 f̃

⊤f̃ .
Taking its time-derivative and substituting (26) and (27) and canceling the cross terms yields

V̇n = −α2 ∥r̃∥2 − kf

∥∥∥f̃∥∥∥2 − α2r̃
⊤δ(t) + f̃⊤

(
ḟ − δ(t)

)
. (28)

Using Young’s inequality, −α2r̃
⊤δ(t) ≤ α2

2 ∥r̃∥2 + α2

2 ∥δ(t)∥2 ≤ α2

2 ∥r̃∥2 + α2

2 δ̄2 and

f̃⊤
(
ḟ − δ(t)

)
≤ kf

2

∥∥∥f̃∥∥∥2 + 1
2kf

∥∥∥ḟ − δ(t)
∥∥∥2 ≤ kf

2

∥∥∥f̃∥∥∥2 + 1
kf

(∥∥∥ḟ∥∥∥2 + ∥δ(t)∥2
)

≤ kf

2

∥∥∥f̃∥∥∥2 +
γ2
2+δ̄2

kf
. Substituting these inequalities into (28) yields

V̇n ≤ −α2

2
∥r̃∥2 − kf

2

∥∥∥f̃∥∥∥2 + γ2
2 + δ̄2

kf
+

α2

2
δ̄2

≤ −λnVn + cn, (29)

where λn ≜ 1
2 min (α2, kf ) and cn ≜ γ2

2+δ̄2

kf
+ α2

2 δ̄2. Solving the differential inequality in (29)

yields Vn(t) = Vn (t0) e
−λn(t−t0) + cn

λn

(
1− e−λn(t−t0)

)
. Let zn ≜

[
r̃⊤ f̃⊤

]⊤
. Using Vn =

1
2 ∥zn∥

2 yields ∥zn(t)∥ ≤
√
∥zn(t0)∥ e−λn(t−t0) + 2cn

λn

(
1− e−λn(t−t0)

)
, implying the error f̃ is

UUB with the ultimate bound
√

2cn
λn

=

√
2
λn

(
γ2
2+δ̄2

kf
+ α2

2 δ̄2
)

. Thus, the state-derivative estimator

is robust to noise in the sense the ultimate bound on f̃ grows linearly with δ̄.
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B RELATED WORK

B.1 ON NEURAL NETWORK-BASED ADAPTIVE CONTROL

Classical results (Ge, Hang, Lee, and Zhang, 2002; Lewis, Yesildirek, and Liu, 1996b; Lewis, 1996)
develop adaptive controllers for neural networks with a single hidden layer, where online updates
are performed for the input and output layer weights. In recent results (Joshi et al., 2020; Le et al.,
2022a; Sun et al., 2022), adaptive controllers were developed for DNNs. In these results, the outer-
layer weights of the DNN are updated in real-time using Lyapunov-based adaptation laws, whereas
the inner-layer weights are updated either using iterative batch updates on discrete intervals of time
(Joshi et al., 2020; Le et al., 2022a; Sun et al., 2022), or using a modular design (Le et al., 2022a).
Since the inner-layer weight updates in (Joshi et al., 2020; Le et al., 2022a; Sun et al., 2022) happen
using batch updates, the updates are essentially performed offline. In (Le et al., 2022a), the weights
are updated online but the update laws are selected arbitrarily and not by a stability-driven approach.
In (Patil et al., 2022a), Lyapunov-based adaptation laws are developed for all layers of a fully-
connected DNN (i.e., so-called Lb-DNN methods). Since the control and adaptation laws are derived
from a Lyapunov-based stability analysis, the development is guaranteed to ensure stability of the
closed-loop system. More recent Lb-DNN results develop Lyapunov-based adaptation laws for more
complex architectures, specifically, deep residual networks (ResNets) (Patil, Le, Griffis, and Dixon,
2022b) and long short-term memory (LSTM) networks (Griffis et al., 2023). However, as stated in
the manuscript, the updates are based solely on tracking error feedback and are primarily meant to
achieve tracking error convergence. These results do not achieve guarantees on parameter estimation
and system identification.

B.2 ON COMPOSITE ADAPTIVE CONTROL

The classical result in (Slotine & Li, 1989) develops adaptive controllers with a composite adaptation
law that includes both tracking and prediction errors for nonlinear systems with linear-in-parameters
(LIP) uncertainties. The result in (Slotine & Li, 1989) constructs a form of the prediction error using
the swapping technique (also known as input or torque filtering), where a low-pass filter is applied
on both sides of the dynamics to eliminate the unknown state-derivative term. For a brief illustration
of the swapping technique in (Slotine & Li, 1989), consider the system

ẋ = Y (x)θ + u,

where Y (x) is the regressor, θ is the vector of unknown parameters, and u is the control input. If the
state-derivative ẋ could be measured, the system can be expressed in terms of the linear regression
equation ẋ−u = Y (x)θ. Then the corresponding prediction error with an adaptive estimate θ̂ could
be developed as ϵ = ẋ − u − Y (x)θ̂, which can be expressed linearly in terms of the parameter
estimation error θ̃ = θ− θ̂ as ϵ = Y (x)θ̃. However, ẋ measurements are typically either unavailable
or extremely noisy. To avoid using state-derivative information, (Slotine & Li, 1989) applied a
low-pass filter on both sides of the dynamics, which results in the filtered regression

e−βt ∗ (ẋ− u) =
(
e−βt ∗ Y (x)

)
θ,

where ∗ denotes the convolutional integral operation (i.e., a(t) ∗ b(t) =
∫ t

0
a(t − τ)b(τ)dτ ) and

e−βt is the impulse response of the low-pass filter with a positive constant decay rate β. Since
e−βt ∗ ẋ = x(t)− x(0)e−βt + βe−βt ∗ x, the filtered regression can be expressed as

x(t)− x(0)e−βt + βe−βt ∗ x− e−βt ∗ u =
(
e−βt ∗ Y (x)

)
θ,

which is implementable without using state-derivative information. The prediction error for the
filtered regression can be developed as

ϵ = x(t)− x(0)e−βt + βe−βt ∗ x− e−βt ∗ u−
(
e−βt ∗ Y (x)

)
θ̂

=
(
e−βt ∗ Y (x)

)
θ −

(
e−βt ∗ Y (x)

)
θ̂

=
(
e−βt ∗ Y (x)

)
θ̃.

= Yf θ̃,
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where Yf =
(
e−βt ∗ Y (x)

)
. Since ϵ is linear in θ̃, a composite adaptation law can be developed

with a Y ⊤
f ϵ term which would yield negative θ̃ terms in the corresponding Lyapunov-based stability

analysis. However, yielding this form of ϵ using a filtered regression was possible because the uncer-
tainty Y (x)θ is linear in terms of θ, which allowed θ to be separable from e−βt ∗Y (x) in the filtered
regression. If Y (x)θ is replaced by terms nonlinear in θ, such as the DNN-based approximation
Φ(x, θ) + ε(x), applying a low pass filter on both sides would yield

e−βt ∗ (ẋ− u) = e−βt ∗ (Φ(x, θ) + ε(x)) .

Notice that θ is not separable from the convolutional integral in the term e−βt ∗ Φ(x, θ) since Φ is
nonlinear in θ. As a result, the swapping technique from (Slotine & Li, 1989) does not apply for
nonlinear in parameter uncertainties such as DNNs.

Results in (Patre, Mackunis, Johnson, and Dixon, 2010b) introduce a robust integral of the sign of
the error (RISE)-based swapping technique to formulate the prediction error and design compos-
ite adaptive controllers for LIP uncertainties with additive disturbances. The RISE-based swapping
technique is extended in (Patre, Bhasin, Wilcox, and Dixon, 2010a) for NN-based models, but the
development is restricted to single-hidden-layer NNs. Extending this for DNNs is mathematically
challenging due to their nested NIP structure. Moreover, using RISE-based swapping requires ad-
ditional RISE-based terms in the control input, which can debilitate the learning performance of
the adaptive feedforward term. Notably, the results in (Patre et al., 2010b) and (Patre et al., 2010a)
only ensure asymptotic tracking error convergence, and no guarantees are provided on the parameter
estimates under the persistence of excitation (PE) condition.

The recent result in (OConnell, Shi, Shi, Azizzadenesheli, Anandkumar, Yue, and Chung, 2022)
developed a new learning representation uncertainties involving a composited disturbance given by
f(x, ẋ, w) = ϕ (x, ẋ) a (w), where ϕ (·) denotes a basis function that is learned using a DNN and
a (w) denotes a set of linear parameters accounting for an unknown disturbance time-varying distur-
bance w. Since f is linear in terms of a, the composite adaptive approach from (Slotine & Li, 1989)
is used to design an adaptation law ˙̂a to update the estimates of a given by â. To obtain a disturbance-
invariant representation of ϕ using DNNs, a domain adversarially invariant meta-learning (DAIML)
algorithm is developed to train the DNN offline. To the best of our knowledge, this is the only
existing work using a composite adaptive approach in the context of deep learning-based control.
However, since the DNN learning ϕ (x, ẋ) has an NIP structure, the aforementioned challenges ap-
ply for constructing a Lyapunov-based online adaptation law.

B.3 ON ALTERNATIVE DATA-DRIVEN APPROACHES

Besides DNNs, other methods such as Gaussian processes (GPs), Koopman operator, kernel meth-
ods have been explored to compensate for system uncertainty (Beckers, Kulic, and Hirche, 2019;
Berkenkamp and Schoellig, 2015; Bevanda, Sosnowski, and Hirche, 2021; Chowdhary, Kingravi,
How, and Vela, 2013a; Joshi and Chowdhary, 2018; Kingravi, Chowdhary, Vela, and Johnson, 2012;
Lederer, Umlauft, and Hirche, 2019; Umlauft and Hirche, 2020). GP models can be updated online
and implemented in the control design as a feedforward estimate of nonlinear system uncertainties.
In (Beckers et al., 2019; Berkenkamp & Schoellig, 2015; Lederer et al., 2019), safety guarantees are
derived for the developed adaptive GP architectures and overall control designs. The use of a prob-
abilistic model provides a measure of confidence in the GP estimates. Similar to Lb-DNN-based
control, the use of adaptive GPs is motivated by integrating the data-driven estimation capabilities
of modern machine learning models with the stability guarantees, online learning capabilities, and
robustness to real-time disturbances of adaptive control techniques.

C DEEP NEURAL NETWORK MODEL

For simplicity in the illustration, a fully-connected DNN will be described here. The following
control and adaptation law development can be generalized for any network architecture Φ with a
corresponding Jacobian Φ′. The reader is referred to (Patil et al., 2022b) and (Griffis et al., 2023)
for extending the subsequent development to ResNets and LSTMs, respectively. Given some matrix
A ≜ [ai,j ] ∈ Rn×m, where ai,j denotes the element in the ith row and jth column of A, the
vectorization operator is defined as vec(A) ≜ [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m]⊤ ∈ Rnm. Let
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σ ∈ RLin denote the DNN input with size Lin ∈ Z>0, and θ ∈ Rp denote the vector of DNN
parameters (i.e., weights and bias terms) with size p ∈ Z>0. Then, a fully-connected feedforward
DNN Φ(σ, θ) with output size Lout ∈ Z>0 is defined using a recursive relation Φj ∈ RLj+1 given
by

Φj ≜

{
V ⊤
j ϕj (Φj−1) , j ∈ {1, . . . , k} ,

V ⊤
j σa, j = 0,

(30)

where Φ(σ, θ) = Φk , and σa ≜
[
σ⊤ 1

]⊤
denotes the augmented input that accounts for

the bias terms, k ∈ Z>0 denotes the total number of hidden layers, Vj ∈ RLj×Lj+1 denotes the
matrix of weights and biases, Lj ∈ Z>0 denotes the number of nodes in the jth layer for all j ∈
{0, . . . , k} with L0 ≜ Lin + 1 and Lk+1 = Lout. The vector of smooth activation functions is
denoted by ϕj : RLj → RLj for all j ∈ {1, . . . , k}. If the DNN involves multiple types of
activation functions at each layer, then ϕj may be represented as ϕj ≜

[
ςj,1 . . . ςj,Lj−1 1

]⊤
,

where ςj,i : R → R denotes the activation function at the ith node of the jth layer. For the DNN
architecture in (30), the vector of DNN weights is θ ≜

[
vec(V0)

⊤ . . . vec(Vk)
⊤ ]⊤

with size
p = Σk

j=0LjLj+1. The Jacobian of the activation function vector at the jth layer is denoted by
ϕ′
j : RLj → RLj×Lj , and ϕ′

j(y) ≜ ∂
∂zϕj(z)

∣∣
z=y

, ∀y ∈ RLj . Let the Jacobian of the DNN

with respect to the weights be denoted by Φ′ (σ, θ) ≜ ∂
∂θΦ(σ, θ), which can be represented using

Φ′ (σ, θ) = [ Φ′
0, Φ′

1, . . . , Φ′
k ], where Φ′

j ≜ ∂
∂vec(Vj)

Φ (σ, θ) for all j ∈ {0, . . . , k}. Then,

using (30) and the property ∂
∂vec(B)vec(ABC) = C⊤ ⊗A yields

Φ′
0 =


↶
k∏

l=1

V ⊤
l ϕ′

l (Φl−1)

 (IL1 ⊗ σ⊤
a ), (31)

and

Φ′
j =


↶
k∏

l=j+1

V ⊤
l ϕ′

l (Φl−1)

(ILj+1
⊗ ϕ⊤

j (Φj−1)
)
, (32)

for all j ∈ {1, . . . , k}. In (31) and (32), the notation
↶∏

denotes the right-to-left matrix product op-

eration, i.e.,
↶∏m

p=1
Ap = Am . . . A2A1 and

↶∏m

p=a
Ap = I if a > m, and ⊗ denotes the Kronecker

product.

D MORE SIMULATION RESULT DETAILS

All simulations were performed in MATLAB on a desktop with 64 GB RAM and 13th Gen Intel
Core i9-13900 @2.00 GHz processor.

D.1 TWO LINK MANIPULATOR

D.1.1 DYNAMIC MODEL

The two-link robot manipulator was modeled by the uncertain Euler-Lagrange dynamics

M (x) ẍ+ C (x, ẋ) ẋ+ Fẋ = u, (33)

where x ≜ [x1, x2]
⊤ ∈ R2, ẋ ∈ R2, and ẍ ∈ R2 denote the vector of angular position, velocity, and

acceleration of joints, respectively, M (x) ∈ R2×2 represents the inertia matrix, C (x, ẋ) ∈ R2×2

represents the centripetal-Coriolis matrix, F ∈ R2×2 represents friction effects, and u ∈ R2 denotes
the torque inputs. In (33), the dynamics were modeled as (de Queiroz et al., 1997)

M (x) =

[
p1 + 2p3c2, p2 + p3c2
p2 + p3c2, p2

]
, (34)
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C (x, ẋ) =

[
−p3s2ẋ2, −p3s2 (ẋ1 + ẋ2)
p3s2ẋ1, 0

]
, (35)

F =

[
f1, 0
0, f2

]
, (36)

where the short-hand notations c2 and s2 are defined as c2 ≜ cos (x2) and s2 ≜ sin (x2) , respec-
tively. The nominal parameters of the two-link robot model in (34)–(36) were p1 = 3.473 kg ·m2

, p2 = 0.196 kg ·m2, p3 = 0.242 kg ·m2, f1 = 5.3Nm · sec, and f2 = 1.1Nm · sec. The two-
link manipulator dynamics can be expressed using Eq. (1) from the manuscript with f(x, ẋ) =
−M−1 (x) (C (x, ẋ) ẋ+ Fẋ) and g(x, ẋ) = M−1 (x). The gains are selected as α1 = 5, α2 = 10,
α3 = 20, Γ(0) = I, kr = 5, kf = 10, kθ̂ = 0.0001, β0 = 10, and κ0 = 2. The
states are initialized as x(0) = [1,−1]⊤ rad and ẋ(0) = [0, 0]⊤ rad/s, the initial parameter es-
timate θ̂(0) is selected from the uniform distribution U(−0.5, 0.5), and the desired trajectory is
xd = 0.25 exp(− sin(t))[sin(t), cos(t)]⊤ rad. The weights are randomly initialized from the distri-
bution U(−0.5, 0.5). Baseline methods used for comparison include DNN-based adaptive controller
with tracking error-based adaptation law developed in (Patil et al., 2022a), an observer-based distur-
bance rejection controller (Han, 2009) (i.e., u = g+(x, ẋ)

(
ẍd − (α1 + kr) r +

(
α2
1 − 1

)
e− f̂

)
),

a nonlinear proportional-derivative (PD) controller u = g+(x, ẋ)
(
ẍd − (α1 + kr) r +

(
α2
1 − 1

)
e
)
,

and nonlinear model predictive control (MPC) The baseline DNN-based adaptive controller uses the
tracking error-based adaptation law given by (Patil et al., 2022a)

˙̂
θ = proj

(
−kθ̂Γ(t0)θ̂ + Γ(t0)Φ

′⊤
(
X, θ̂

)
r
)

with a constant Γ (unlike the developed method which uses a time-varying Γ), where it was selected
as Γ = I . For a fair comparison, the set of gains common to the developed and baseline methods
were selected to be exactly the same. The nonlinear MPC was designed to minimize the cost

J(e(tk), r(tk), u(tk)) =

N∑
i=1

(
e(tk+i)

⊤Qee(tk+i)

+r(tk+i)
⊤Qrr(tk+i) + u(tk+i)

⊤Ru(tk+i)
)

subjected to the model dynamics discretized using Euler’s method with a step size of 0.01 seconds.
The controller was implemented using MATLAB’s fmincon optimizer with Qe = I , Qr = I ,
R = 0.0001I and a prediction horizon of N = 5 steps and bounded control input search space with
upper and lower bounds of 50 and -50, respectively, for every control input.

An ablation study is performed to demonstrate the performance of the developed method for vari-
ous DNN architectures mentioned in Table 3. The same set of gains are used and the weights are
randomly initialized from the distribution U(−0.5, 0.5). As evident from the percentage decrease in
Table 3, the developed composite adaptation law significantly improves the tracking, drift compen-
sation, and generalization performance of the DNN across all DNN architecture with a comparable
control effort. Notably, although all DNN architectures yielded acceptable performance (i.e., with
∥e∥RMS less than 0.5 deg) with the developed composite adaptive Lb-DNN controller, no conclusive
trend was obtained to comment on the selection of appropriate size for the DNN for this application.
Importantly, using DNN of a greater size did not affect the control effort.

D.2 UUV SYSTEM

The simulations were performed on an unmanned underwater vehicle (UUV) system that can be
modeled as (Fischer et al., 2014)

ẍ = −M
−1

(x)
(
C (x, ẋ, ν) ẋ+D (x, ν) ẋ+G (x)

)
+M

−1
(x) τn, (37)

where x ∈ R6 denotes a vector of position and orientation with coordinates in the earth-fixed frame,
ẋ ∈ R6 denotes a vector of linear and angular velocities with coordinates in the earth-fixed frame,
and ν ∈ R6 denotes a vector of linear and angular velocities with coordinates in the body-fixed
frame. The inertial effects, centripetal-Coriolis effects, hydrodynamic damping effects, gravitational
effects, and control input in the earth-fixed frame can be represented by M : R6 → R6×6, C :
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Table 3: Performance Comparison

Architecture Adaptation Law ∥e∥RMS (deg) ∥u∥RMS (Nm)

Function
error

on-trajectory
(rad/s2)

Final mean
function

error on test
data (rad/s2)

Layers Neurons

3 3

Tracking Error-Based 0.731 7.484 0.430 0.954

Composite 0.315 7.944 0.138 0.140

% Decrease 56.97 -6.14 67.77 85.29

4 3

Tracking Error-Based 3.338 7.021 1.636 0.725

Composite 0.338 7.957 0.154 0.325

% Decrease 89.87 -13.33 90.58 55.024

4 4

Tracking Error-Based 0.685 7.731 0.426 0.759

Composite 0.309 7.957 0.132 0.154

% Decrease 54.85 -2.87 68.93 79.64

5 5

Tracking Error-Based 0.664 7.800 0.395 1.22

Composite 0.307 7.955 0.131 0.342

% Decrease 53.69 -1.99 66.87 72.04

5 10

Tracking Error-Based 0.351 7.940 0.192 1.010

Composite 0.308 7.959 0.130 0.110

% Decrease 12.41 -0.235 32.13 89.07

10 10

Tracking Error-Based 0.584 8.826 1.330 2.624

Composite 0.307 7.965 0.130 0.206

% Decrease 47.34 9.75 90.22 92.15

R6 × R6 × R6 → R6×6, D : R6 × R6 → R6×6, G : R6 → R6, and τn : R≥0 → R6, respectively.
The velocities in the body-fixed frame can be related to the velocities in the earth-fixed frame using
the relation

ẋ = J (x) ν, (38)

where J : R6 → R6×6 is a Jacobian transformation matrix relating the two frames (Fischer
et al., 2014, Equation (2)). Thus, the dynamics in (37) can be represented using Eq. (1) from
the manuscript with

f(x, ẋ) = −M
−1

(x)
(
C (x, ẋ, ν) ẋ+D (x, ν) ẋ+G (x)

)
and

g(x, ẋ) = M
−1

(x) .

Using the kinematic transformation in (38), the earth–fixed dynamics in (37) can be expressed
using body-fixed dynamics as M = J−⊤MJ−1, C = J−⊤

[
C (ν)−MJ−1J̇

]
J−1, D =

J−⊤D (ν) J−1, G = J−⊤G, and τn = J−⊤τb, where M ∈ R6×6, C : R6 → R6×6,
D : R6 → R6×6, G : R6 → R6, and τb : R≥0 → R6 denote the inertial effects, centripetal-Coriolis
effects, hydrodynamic damping effects, gravitational effects, and control input in the body-fixed
frame, respectively. The inertial effects, centripetal-Coriolis effects, and hydrodynamic damping
effects in the body-fixed effects can be expressed as (Dixon, Behal, Dawson, and Nagarkatti, 2003,
Equation (2.246))

M = diag {m1,m2,m3,m4,m5,m6} ,
D = diag {d11 + d12 |ν (1)| , d21 + d22 |ν (2)| , d31 + d32 |ν (3)| ,

d41 + d42 |ν (4)| , d51 + d52 |ν (5)| , d61 + d62 |ν (6)|} ,

Vm =


0 0 0 0 m3ν3 −m2ν2

0 0 0 −m3ν3 0 m1ν1

0 0 0 m2ν2 −m1ν1 0
0 m3ν3 −m2ν2 0 m6ν6 −m5ν5

−m3ν3 0 m1ν1 −m6ν6 0 m4ν4

m2ν2 −m1ν1 0 m5ν5 −m4ν4 0

 ,

where the numerical values of mass, inertia, and damping parameters listed in Table 4 were used.
The considered UUV is neutrally buoyant, thus G = 06×1. The desired trajectory was selected as a
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Figure 4: Comparative plots of the tracking error norm and control input norm along the trajectory with the
developed and baseline controllers.

helical trajectory given by xd(t) = [2cos (0.5t)m, 2sin(0.5t)m,0.1t m, 0 rad, 0 rad,−0.125t rad]⊤,
and the system was initialized with x(0) = [−0.5m,−0.5m,−0.5m, 0 rad, 0 rad, 0 rad]⊤ and
ẋ(0) = [01×3 m/s, 01×3 rad/s]

⊤. The following gains were used in the simulation: α1 = 5,
α2 = 10, α3 = 40, kr = 20, kf = 20, kθ̂ = 0.0001, Γ(0) = 0.5I221, β = 10. The weights
are randomly initialized from the distribution U(−0.5, 0.5). Similar to the two-link manipulator, for
a fair comparison, the set of gains common to the developed and baseline methods were selected to
be exactly the same. The MPC was implemented in a similar manner as the two-link manipulator
(see Appendix D.1.1 for details), except with optimizer with Qe = I , Qr = I , R = 10I , N = 5
steps, and bounded control input search space with upper and lower bounds of 5 N and -5 N, respec-
tively, for every linear control input, and 5 Nm and -5 Nm, respectively, for every angular control
input, as these values were empirically found to yield the most desirable performance.

Table 4: UUV System Parameters (Dixon et al., 2003, Equation (2.247))
m1 = 215 kg d11 = 70 Nm·sec d41 = 30 Nm·sec
m2 = 265 kg d12 = 100 N·sec2 d42 = 50 N·sec2
m3 = 265 kg d21 = 100 Nm·sec d51 = 50 Nm·sec

m4 = 40 kg·m2 d22 = 200 N·sec2 d52 = 100 N·sec2

m5 = 80 kg·m2 d31 = 200 Nm·sec d61 = 50 Nm·sec
m6 = 80 kg·m2 d32 = 50 N·sec2 d62 = 100 N·sec2.

D.3 BETTER RESOLUTION FIGURES

In the interest of plots in Figures 1-3 had to be shrinked. However, for a better visualization, the
plots are reproduced in Figures 4-9.
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Figure 5: Comparative plots of the mean of function estimation error norm
∥∥∥f(x, ẋ)− Φ

(
X, θ̂

)∥∥∥ on the
test dataset.
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Figure 6: Plot of the position trajectories taken by the UUV using the developed and baseline methods. The
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marked by a blue ⃝.
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Figure 7: Comparative plots of the linear tracking error norm (m) and angular tracking error norm (rad) for
the UUV. The time intervals corresponding to the feedback denied zones are marked in grey patches.
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Figure 8: Comparative plots of the estimation error norm (i.e.,
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(
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)∥∥∥ during feedback avail-

ability and
∥∥∥f(x, ẋ)− Φ

(
Xd(t), θ̂

)∥∥∥ during loss of feedback) for the UUV with the developed and baseline
methods.
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Figure 9: Comparative plots of the linear and angular control input norms for the UUV.

E DWELL-TIME CONDITIONS FOR STABLE OPERATION UNDER
INTERMITTENT LOSS OF STATE FEEDBACK

Since the DNN identifies the system dynamics, the identified DNN estimates could be used to predict
the uncertainty when the state feedback is intermittently lost. Let i ∈ Z≥0 denote the time index
such that the state feedback is available in the time interval [t2i, t2i+1) and unavailable in the time
interval [t2i+1, t2i+2) for all i ∈ Z≥0. During the time interval [t2i, t2i+1), when the feedback is
available, the developed composite adaptive control and adaptation laws developed in the manuscript
are used for all i ∈ Z≥0. However, during the time interval [t2i+1, t2i+2) when the state feedback
is unavailable, the control input is designed to be an open-loop controller based on the last DNN
weight estimate that was identified the feedback was available. The open-loop controller is given by

u = g+ (xd(t), ẋd(t))
(
ẍd(t)− Φ

(
Xd(t), θ̂(t2i+1)

))
. (39)

Substituting (39) into ẍ = f(x, ẋ) + g(x, ẋ)u, subtracting ẍd on both sides, adding and subtracting
Φ
(
Xd, θ̂(t2i+1)

)
, and rearranging terms yields

ë = Φ(X, θ∗)− Φ
(
Xd(t), θ̂(t2i+1)

)
+ ε(X)

+
(
g(x, ẋ)g+ (xd(t), ẋd(t))− In

) (
ẍd(t)− Φ

(
Xd(t), θ̂(t2i+1)

))
. (40)

For the purpose of this section, it is assumed the drift dynamics f are globally Lipschitz with a Lips-
chitz constant ϖ ∈ R>0, and the control effectiveness and its pseudoinverse, g and g+, are globally
bounded functions without bounds g, g+ such that ∥g(x, ẋ)∥ ≤ g and ∥g+(x, ẋ)∥ ≤ g+. The global
Lipschitzness of f is assumed in order to rule out the possibility of the drift dynamics causing finite-
time escape during the absence of state-feedback. Such an assumption is reasonable since finite-time
escape is usually not inherent to the uncontrolled dynamics for most practical systems of interest.
Additionally, assuming that g and g+ are bounded is reasonable for most practical engineering sys-
tems, since the control effectiveness term usually results from the inertia matrix or the kinematic
Jacobian of the system, and systems that may have potentially singular kinematic Jacobians in prac-
tice are not considered here. Additionally, in this section, a requirement is imposed on the selected
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DNN Φ to contain bounded globally Lipschitz activation functions. Thus, using bounds on g, g+,
Φ
(
Xd, θ̂(t2i+1)

)
, θ̃(t2i+1), and ẍd, it can be shown that there exists constants LU , δU ∈ R>0 such

that ∥ë∥ ≤ LU ∥e∥+LU ∥ė∥+δU . Using the relations r = ė+α1e and ë = ṙ−α1ė yields the inequal-
ity ∥ṙ∥ ≤

(
α2
1 + LUα1 + LU

)
∥e∥+(LU + α1) ∥r∥+ δU . Additionally, since f is considered to be

globally Lipschitz in this section, it follows that
∥∥∥∂f
∂x

∥∥∥ ,∥∥∥∂f
∂ẋ

∥∥∥ ≤ ϖ. As a result, it can be shown that∥∥∥ḟ∥∥∥ ≤
(
2α2

1 + (LU + 1)α1 + LU

)
ϖ ∥e∥+ (LU + 2α1 + 1)ϖ ∥r∥+

(
δU + ẋd + ẍd

)
ϖ. During

the loss of state feedback, all observer and adaptive update laws are selected to be zero, i.e., ˙̂r = 0,
˙̂
f = 0, and ˙̂

θ = 0.

The growth of the Lyapunov function in (18) is examined using the bounds on ṙ and ḟ to analyze
the growth of the error states during the loss of state feedback. By successive use of Holder’s
and Young’s inequalities, it can be shown that V̇ ≤ λUV + ∆U , when feedback is unavail-
able, where λU ≜ 2max(

3α2
1+LUα1+LU+1

2 + (2α2
1 + (LU + 1)α1 + LU )

2ϖ2 + (α2
1 + LUα1 +

LU )
2,

α2
1+(LU+2)α1+3LU+δU+1

2 + (LU + 2α1 + 1)2ϖ2 + (LU + α1)
2, 1

2 ) and ∆U ≜ δU
2 + δ2U +

(δU + ẋd+ ẍd)
2ϖ2. Solving for V for yields V (t) ≤ V (t2i+1)e

λU (t−t2i+1)+ ∆U

λU
(eλU (t−t2i+1)−1)

for all (t, i) ∈ [t2i+1, t2i+2) × Z≥0. Then applying the bounds in (19) and taking the square root
yields

∥z(t)∥ ≤
√

λ2

λ1
∥z(t2i+1)∥2 eλU (t−t2i+1) +

2∆U

λ1λU

(
eλU (t−t2i+1) − 1

)
, (41)

for all (t, i) ∈ [t2i+1, t2i+2)× Z≥0.

When the system regains feedback, the condition z(t2i+2) ∈ S needs to be satisfied for the compos-
ite adaptive Lb-DNN to yield the results in Theorem 1 of the manuscript. Imposing this condition
yields the following condition for maximum dwell time during which feedback can be unavailable
without affecting the UUB properties of the resulting switched system,

(t2i+2 − t2i+1) ≤
1

λU
ln

(
λ1

λ2
χ2 + 2∆U

λ1λU
− c

λ3

λ2

λ1
∥z(t2i+1)∥2 + 2∆U

λ1λU

)
, (42)

for (t, i) ∈ [t2i+1, t2i+2) × Z≥0. The maximum dwell time in (42) should be positive for the
system to sufficiently allow feedback unavailability, which holds when λ1

λ2
χ2 + 2∆U

λ1λU
− c

λ3
>

λ2

λ1
∥z(t2i+1)∥2 + 2∆U

λ1λU
. Imposing this condition on ∥z(t2i+1)∥2 and using Theorem 1 of the

manuscript yields the following condition for minimum dwell time during which the feedback
should be available

(t2i+1 − t2i) ≥
λ2

λ3
ln

 λ2

λ1
∥z(t2i)∥2

λ2
1

λ2
2
χ2 − λ2c

λ1λ3
− λ1c

λ2λ3

 , (43)

for all (t, i) ∈ [t2i+1, t2i+2) × Z≥0. Note that it is permissible to obtain negative values for the
dwell-time in (43), since a negative minimum dwell-time for feedback availability would imply the
stability guarantees hold even if feedback continues to be unavailable after the time instance t2i.

Additionally, the size of set D, i.e., χ needs to be selected according to χ >
√

λ3
2c

λ3
1λ3

+ λ2c
λ1λ3

, to
ensure a positive denominator in (43), thus guaranteeing the feasibility of the minimum dwell-time
condition.

F EXTENSION TO UNDERACTUATED SYSTEMS: NONHOLONOMIC MOBILE
ROBOT

Although the main control development in Section 2 is dedicated to fully-actuated systems, the de-
veloped method can be extended to under-actuated systems on a case-by-case basis by a specialized
treatment. A brief illustration of the extension to nonholonomic mobile robots is provided in this
section, based on the previous work Fierro and Lewis (1998), where a shallow NN-based controller
for fully-actuated systems in Lewis et al. (1996b) was extended for nonholonomic mobile robots.
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A mobile robot having an n-dimensional configuration space with generalized coordinates q ∈ Rn

subjected to m constraints can be described by

M (q) q̈ + Vm (q, q̇) q̇ + F (q̇) = B (q) τ −A⊤ (q)λ, (44)

where M (q) ∈ Rn×n is a symmetric, positive-definite inertia matrix, Vm (q, q̇) ∈ Rn×n is the
centripetal-Coriolis matrix, F (q̇) ∈ Rn denotes the surface friction, B (q) ∈ Rn×(n−m) denotes
the input transformation matrix, A(q) ∈ Rm×n denotes the matrix associated with constraints, and
λ ∈ Rm denotes the constraint forces. The kinematic equality constraints can be expressed as

A (q) q̇ = 0. (45)

Let S (q) ∈ Rn×(n−m) be a matrix of rank (n−m) satisfying

S⊤ (q)A⊤ (q) = 0. (46)

For more details on the structures of the above matrices, the reader is referred to Fierro & Lewis
(1998).

Due to (45) and (46), there exists an auxiliary vector time function v(t) ∈ Rn−m such that, for all t,

q̇ = S (q) v (t) . (47)

Therefore, the system in (44) can be described using a transformed representation given by

q̇ = S (q) v

M (q) v̇ + Vm (q, q̇) v + F (q̇) = B (q) τ (48)

where M (q) ≜ S⊤ (q)M (q)S (q) and Vm (q, q̇) ≜ S⊤ (q)
(
M (q) Ṡ (q) + Vm (q, q̇)S (q)

)
de-

note the transformed inertia and centripetal Coriolis matrices, and B (q) ≜ S⊤ (q)B (q) denotes a
transformed input matrix which is invertible. For a wheeled mobile robot, q = [x, y, ϑ]

⊤, where
x, y denotes its position coordinates, and ϑ denotes its orientation. To formulate a feasible trajectory
tracking problem, let the reference cart be defined as

ẋr = vr cosϑr

ẏr = vr sinϑr

θ̇r = wr

qr = [xr, yr, ϑr]
⊤
, (49)

where vr ∈ R>0 denotes the reference speed, wr ∈ R denotes the reference angular velocity, and
qr denotes the reference trajectory generated by the cart. The tracking error is expressed in the basis
of a frame linked to the mobile robot as[

e1
e2
e3

]
=

[
cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1

][
xr − x
yr − y
ϑr − ϑ

]
. (50)

An auxiliary velocity term that can achieve tracking, when only the kinematics is considered, is
given by

vc =

[
vr cos e3 +K1e1

wr +K2vre2 +K3vr sin e3

]
, (51)

where K1,K2,K3 ∈ R>0 are constant control gains. Let the error in tracking the auxiliary velocity
vc be defined as

ec = vc − v. (52)

Differentiating on both sides of (52), multiplying by M (q) on both sides, and substituting (48)
yields

M (q) ėc = M (q) v̇c + Vm (q, q̇) v + F (q̇)−B (q) τ. (53)

By pre-multiplying the both sides of (53) by M
−1

(q), the following form of the system is obtained
given by

ėc = F (q, q̇, ec, vr, wr, v̇r, ẇr) +G (q) τ, (54)
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where Xm ≜
[
q⊤, q̇⊤, e⊤c , v

⊤
r , w

⊤
r , v̇

⊤
r , ẇ

⊤
r

]⊤
is a concatenated vector, F (Xm) ≜ v̇c +

M
−1

(q)
(
Vm (q, q̇) v + F (q̇)

)
is the uncertainty in the system, and G (q) ≜ −M

−1
(q)B (q) de-

notes the known control effectiveness. Using the universal function approximation property, the
term F (Xm) can be approximated as

F (Xm) = Φ (Xm, θ∗) + ε (Xm) ,

for all Xm ∈ Ω, where Ω ⊂ Rdim(Xm) is a compact set, and supXm∈Ω ∥ε (Xm)∥ ≤ ε̄ for a
prescribed accuracy ε̄ ∈ R>0. Therefore, the error system in (54) can be rewritten as

ėc = Φ(Xm, θ∗) + ε (Xm) +G (q) τ.

The control input is designed as

τ = G−1 (q)
(
−Φ

(
X, θ̂

)
−K4ec

)
. (55)

To formulate the prediction error for constructing the composite adaptive update, a dynamic state-
derivative estimator can be designed as

˙̂ec = F̂ +G (q) τ +K5ẽc
˙̂
F = K6

(
˙̃ec +K4ẽc

)
+ ẽc, (56)

and the corresponding observer error system is given by

˙̃ec = F̃ −K5ẽc
˙̃
F = Ḟ −K6F̃ + ẽc,

where ẽc ≜ ec − êc and F̃ = F (Xm)− F̂ . Accordingly, the prediction error is formulated as

E = F̂ − Φ
(
X, θ̂

)
. (57)

Using the prediction error E and velocity error ec, the adaptive update law for θ̂ is designed as

˙̂
θ = proj

(
−kθ̂Γ(t)θ̂ + Γ(t)Φ′⊤

(
X, θ̂

)
(ec + α3E)

)
.

To show stability guarantees, the Lyapunov-based stability analysis for this system can be performed
in a similar manner as Theorem 1, using the candidate Lyapunov function

VM =
1

2
e⊤1 e1 +

1

2
e⊤2 e2 +K3vr (1− cos e3) +

1

2
e⊤c ec

+
1

2
ẽ⊤c ẽc +

1

2
F̃⊤F̃ +

1

2
θ̃⊤Γ−1θ̃.

For more details on the time-derivative calculations of the first four terms in VM , the reader is
referred to Fierro & Lewis (1998).
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