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ABSTRACT
Cross-Domain Sequential Recommendation (CDSR) has recently
gained attention for countering data sparsity by transferring knowl-
edge across domains. A common approach merges domain-specific
sequences into cross-domain sequences, serving as bridges that en-
able mutual enhancement between domains. One key challenge is
to correctly extract the effective shared knowledge among these se-
quences and appropriately transfer it. Most existing works directly
transfer unfiltered cross-domain knowledge rather than extracting
domain-invariant components and adaptively integrating them into
domain-specific modelings. Another challenge lies in aligning the
domain-specific and cross-domain sequences. Existing methods
align these sequences based on timestamps, but this approach can
cause prediction mismatches when the current tokens and their tar-
gets belong to different domains. In such cases, the domain-specific
knowledge carried by the current tokens may degrade performance.
To address these challenges, we propose the A-B-Cross-to-Invariant
Learning Recommender (ABXI). Specifically, leveraging LoRA’s
effectiveness for efficient adaptation as supported by numerous
studies, our model incorporates two types of LoRAs to facilitate
the adaptation process. First, all sequences are processed through
a shared encoder that employs a domain LoRA for each sequence,
thereby preserving unique domain characteristics. Next, we in-
troduce an invariant projector that extracts domain-invariant in-
terests from cross-domain representations, utilizing an invariant
LoRA as well to adapt these interests into recommendations in
each specific domain. Besides, to avoid prediction mismatches, all
domain-specific sequences are re-aligned to match the domains
of the cross-domain ground truths. Experimental results on three
datasets demonstrate that our approach achieves better results than
other CDSR counterparts, with an average improvement of 17.30%
in HR@10 and 18.65% in NDCG@10. The codes are available in
https://anonymous.4open.science/status/ABXI-WWW25-1D04.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender Systems, Cross-Domain Sequential Recommenda-
tion, Low-Rank Adaptation
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1 INTRODUCTION
In the era of information explosion, the Internet is flooded with
massive amounts of content, yet users are exposed to only a small
fraction of it. Such data sparsity remains a persistent challenge in
modern recommender systems. Cross-Domain Sequential Recom-
mendation (CDSR) has recently emerged as a promising approach
to alleviate this sparsity issue by transferring knowledge across dif-
ferent domains to enrich user profiles [4, 5, 9, 11, 30, 41, 53, 55, 60].

A common strategy in CDSR involves merging domain-specific
sequences into cross-domain sequences that serve as bridges, en-
abling mutual enhancement between domains [4, 9, 30, 53, 55].
Figure 1 illustrates an example of a user’s domain-specific and
cross-domain interaction sequences. In the book domain, the user’s
interests encompass science fiction and romantic novels, while in
the movie domain, the user prefers science fiction and comedy films.
From the perspective of cross-domain sequences, the user’s interest
in science fiction can be leveraged in both the book and movie do-
mains to create more comprehensive user profiles. On the contrary,
the specific interests in romantic books and comedy movies should
not be indiscriminately shared between domains. However, most
existing CDSR approaches mix up the concepts of cross-domain
and domain-invariant interests by directly transferring unfiltered
cross-domain knowledge into domain-specific modeling. This prac-
tice can introduce domain-specific information from one domain to
interfering with another, adversely affecting recommendation per-
formance. Therefore, extracting domain-invariant knowledge from
cross-domain sequences is essential to facilitate effective sharing
across specific domains.

Furthermore, another challenge lies in aligning domain-specific
and cross-domain sequenceswhenmaking recommendationswithin
each domain. Current self-attention-based methods typically align
cross-domain and domain-specific sequences based on timestamps
[9, 30, 55], as depicted in Figure 2b. Although this approach is intu-
itive and facilitates the enhancement of cross-domain sequential
features with domain-specific features through direct token-wise
addition, it has inherent limitations. Generally, cross-domain train-
ing sequences comprise a mixture of items from different domains.
If the current token and its ground truth token belong to different
domains, the domain-specific information encoded in the current to-
ken may negatively impact the prediction of the ground truth token.
For instance, as illustrated in Figure 2b, consider selecting token
A4 as the current token to predict token B4. The timestamp-guided
alignment enables the model to incorporate encoded cross-domain
interests along seqX as well as encoded domain-specific interests

1
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Figure 1: Our proposal on generating recommendations by integrating domain-specific interests with domain-invariant interests
extracted from the cross-domain sequence.

A4B1 B2 B3seq A1 A2 A3-

A4A3A1 A2- - - -seq

gt - A4B1 B2 B3A2 A3 B4

A4B1 B2 B3seq A1 A2 A3-

gt - A4B1 B2 B3A2 A3 B4

(b) Timestamp-guided alignment
seq  and seq  are masked seq

gt  and gt  are then aligned accordingly

gt - A4A2 A3- - - -

gt - B1 B2 B3 B4---

Mismatch
Match

- - padded

gt - B2 B3 B4 --- -

gt - A4A2 A3- -- -

(c) Task-guided alignment
gt  and gt  are masked gt

seq  and seq  are then aligned accordingly

A3A1 A2- - --seq -

B1 B2- - -- -seq B3 B1 B2- - -- -seq B3

A4B1 B2 B3(a) Raw training sequence A1 A2 A3pad B4

Figure 2: Illustration of the sequence splits under different alignments, where gt denotes the ground truth. (a) illustrates
the input training sequence. (b) and (c) demonstrate the split outcomes of timestamp-guided and task-guided alignment,
respectively.

along seqA. However, since the target token B4 originates from
domain B, it does not correspond with the A-specific knowledge,
potentially degrading the model’s performance. We refer to this
issue as the prediction mismatch throughout the remainder of this
paper.

To tackle the prediction mismatch issue and address the chal-
lenges of exploiting domain-invariant interest, we propose the A-B-
Cross-to-Invariant Learning Recommender (ABXI). Specifically, we
first realign all domain-specific sequences according to the domains
of the ground truths to prevent prediction mismatches with cross-
domain sequences. We then employ a shared self-attention encoder
as the sequence model to encode all sequences into sequential repre-
sentations. This shared encoder deploys one domain LoRA (dLoRA)

for each sequence, which can efficiently switch modes to encode
every cross-domain and domain-specific sequence. Additionally, we
instantiate an invariant projector to extract the domain-invariant
interests from cross-domain representations. This projector has
integrated one invariant LoRA (iLoRA) for recommendations in
each specific domain to conduct efficient adaptation. While LoRAs
are typically used for fine-tuning, we extend their application to
single-stage training by concurrently training LoRA modules with
all other components in ABXI. Having introduced these designs,
ABXI renovates both the pipelines of obtaining cross-domain and
domain-specific interests.

To thoroughly evaluate ABXI with state-of-the-art CDSR meth-
ods, we conduct extensive experiments on three publicly available

2
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datasets. Experimental results show that ABXI outperforms all base-
lines by a significant margin, achieving notable improvements of
17.30% on HR@10 and 18.65% on NDCG@10. Ablation studies and
sensitivity analyses further demonstrate the effectiveness of our
proposed designs.

To conclude, our contributions can be summarized as follows:

• We identify the prediction mismatch problem within previ-
ous sequence-model-based CDSR works, and introduce a
task-guided alignment to solve this problem.

• We introduce two types of LoRA: dLoRAs switch the mode
of the encoder to handle encoding each sequence; iLoRAs
adaptively integrate domain-invariant interests into recom-
mendations in each specific domain.

• Extensive experiments are provided to demonstrate the
effectiveness of ABXI. Results show that ABXI outperforms
all baselines including state-of-the-art CDSR counterparts.

The rest of this paper is organized as follows: Section 2 provides
an overview of related work. In Section 3, we formalize the CDSR
problem we aim to solve and introduce our proposed ABXI. Sec-
tion 4 evaluates ABXI through extensive experiments; Section 5
presents the conclusion.

2 RELATEDWORK
2.1 Cross-Domain Recommendation
Cross-Domain Recommendation (CDR) leverages transfer learn-
ing techniques to mitigate data sparsity. Common methods in-
clude domain alignment, which aligns users’ or items’ represen-
tations across different domains [36, 50, 58], and domain adapta-
tion, which adapts source knowledge to enhance target domains
[10, 16, 27, 33, 61]. Besides these typical CDR works, Multi-Modal
Recommendation (MMR) can also be considered a form of CDR, as
different modalities can be viewed as domains due to their shared
semantics [18, 28, 51, 52].

Recently, Large Language Models (LLMs) have attracted much
attention for their strong performance and scalability [2, 47]. Re-
searchers have attempted to introduce LLMs into recommender
systems as well [1, 31]. However, these LLMs are Pretrained Lan-
guage Models (PLMs) that are pretrained on Natural Language
Processing (NLP) tasks. Therefore, researchers need to adapt these
models to the recommendation domain. Under this perspective,
using PLMs for recommendation can be seen as a cross-domain
approach, where the source domain is the pretrained NLP domain,
and the target domain is the recommendation domain.

A widely used solution is to leverage Parameter-Efficient Fine-
Tuning (PEFT) techniques to perform this adaptation at affordable
costs. Most works utilize Low-RankAdaptation (LoRA) [15] for such
adaptation [1, 29, 31, 56, 59]. Other techniques are also employed,
such as prompt tuning [23, 25, 42, 44, 54, 57] and adapter tuning
[12, 17].

2.2 Cross-Domain Sequential Recommendation
Sequential Recommendation (SR) aims to predict users’ next inter-
acted items based on their historical interaction sequences [7, 21,
45]. Similar to CDR, CDSR introduces transfer learning into SR to
conduct knowledge transfer in sequential scenarios. Early CDSR

Rec

Shared Item and Pos Embedding

seq
pos

Sequence Split and Alignment

seq
pos

seq
pos

ProjProj Proj

Rec

Shared Self-Attention Encoder w/ dLoRA

training sequence

B1 B2 B3A1 A2 A3pad

iLoRA

Norm & Add Norm & Add

iLoRA

Figure 3: Processed ABXI model.

works focus on the assumption of multiple users sharing the same
account [14, 38, 39, 46].

More recently, a broader concept of Cross-Domain Sequential
Recommendation (CDSR) has emerged, focusing on leveraging
bridging knowledge to enhance performance across domains. De-
pending on the type of knowledge transferred, CDSR approaches
can be categorized into several types. Some studies [24, 26, 30]
leverage overlapping users who have interacted in both domains
as bridges to enhance performance for all users, including non-
overlapping ones. Some methods [4, 5, 9, 53, 55] focus exclusively
on overlapping users to strengthen their profiling in target domains.
IESRec [35] leverages semantic similarities in natural language to
align domains in scenarios without overlapping users. MAN [30]
utilizes user groups to facilitate aligning domains. Additionally,
similar to MMR, researchers have introduced multi-modal data into
Sequential Recommendation (SR) to develop Multi-Modal Sequen-
tial Recommendation (MMSR) models [8, 20, 49].

3 METHODOLOGY
3.1 Problem Formulation
In this study, we focus on the dual-target CDSR task, involving
two distinct domains denoted as A and B. Let a user’s histori-
cal interaction sequences in domains A and B be represented as
seqA = (𝑖A1, 𝑖A2, 𝑖A3, . . . , 𝑖A𝑛) and seqB = (𝑖B1, 𝑖B2, 𝑖B3, . . . , 𝑖B𝑚), re-
spectively. The objective is to predict the user’s next interaction
items in each domain, specifically 𝑖A(𝑛+1) and 𝑖B(𝑚+1) . The task
can be formulated as:
Input: One user’s domain-specific sequences, seqA = (𝑖A1, 𝑖A2, 𝑖A3,
. . . , 𝑖A𝑛) and seqB = (𝑖B1, 𝑖B2, 𝑖B3, . . . , 𝑖B𝑚).
Output: A recommender system that estimates the probability of
this users’ next items, 𝑖A(𝑛+1) and 𝑖B(𝑚+1) , to interact.

3
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3.2 Overview
The architecture of our proposed ABXI model, as depicted in Fig-
ure 3, comprises four components: (1) sequence formulation and
embedding; (2) shared self-attention encoder with domain LoRA; (3)
projectors with invariant LoRA; and (4) the optimization objective.

3.3 Sequence Formulation and Embedding
Given a user’s raw training sequence, we first extract the last in-
teraction and the first interaction to form the cross-domain se-
quence seqX and the cross-domain ground truth gtX, following
the seq2seq paradigm. For simplicity, we denote the combined do-
main as domain X. As illustrated in Figure 2c, we then derive the
domain-specific ground truths gtA and gtB by masking the respec-
tive domains in gtX.

Subsequently, we create the domain-specific sequence seqA and
seqB by masking respective domain in seqX and re-aligning them
based on gtA and gtB with paddings. The aligned sequences seqA
and seqB are ensured to have the same target items, position-wise,
as seqX. In this way, the prediction mismatch issue encountered by
previous works [9, 55] is addressed.

Besides, we use gtA and gtB solely as intermediate terms to re-
align domain-specific sequences, and they are not utilized during
optimization. Consequently, the ground truths of seqX and its seqA
and seqB are unified, which eliminates the need for standalone
domain-specific recommendation loss. The position indices of each
sequence are assigned separately in reverse chronological order.

Each item is then embedded into a learnable vector at length 𝑑 .
We initialize the item embedding table E𝐼 ∈ R𝑁×𝑑 , where 𝑁 the
total number of items, and the position embedding table E𝑃 ∈ R𝐿×𝑑 ,
where 𝐿 is the maximum sequence length. Besides that, we also
initialize the position embedding table E𝑃 ∈ R𝑁×𝑑 . Both embed-
ding tables are shared across all sequences. Finally, The sequence
embeddings for each sequence are obtained by adding the item and
position embeddings, followed by a dropout operation to mitigate
overfitting. We denote these sequence embeddings as 𝑬X, 𝑬A and
𝑬B for domain X, A and B, respectively.

3.4 Low-Rank Adaptation
Many recommendation system studies [13, 19, 22, 37] have already
demonstrated that index-based methods exhibit low-rank natures
because of data sparsity. LoRA [15], designed as a PEFT technique,
exploits similar low-rank characteristics in data to conduct efficient
task adaptations [3]. We leverage LoRA to conduct efficient do-
main adaptation in recommendation by proposing two modules:
domain LoRA (dLoRA), which helps shared encoders adapt to both
cross-domain and domain-specific modeling; and invariant LoRA
(iLoRA), which adapts the extracted domain-invariant knowledge
into specific final recommendations. Besides, notice that incorpo-
rating dropout operators can mitigate overfitting in LoRAs [32];
Therefore, the forward pass of our proposed LoRAs yields:

LoRA(𝑿 ) = Drop
(
𝑴↑

𝐵
𝑴↓

𝐴
𝑿
)
, (1)

whereDrop depicts dropout operator,𝑴↓
𝐴
∈ R𝑟×𝑑 , and𝑴↑

𝐵
∈ R𝑑×𝑟

denote the down- and up-projection matrices with rank 𝑟 < 𝑑 . We
argue that LoRA’s potential is not confined to multi-stage training

but can be effectively applied in single-stage training as well. Thus,
all LoRAs in ABXI are trained together with the rest of the model.

3.5 Shared Encoder with Domain LoRAs
Inspired by the effectiveness of SASRec [21], numerous sequen-
tial recommenders adopt self-attention encoder as the backbone
sequence model [6, 43, 45]. Among them, all CDSR models instanti-
ate multiple self-attention encoders for modeling sequences from
different domains [4, 5, 9, 30, 55].

We posit that a single self-attention encoder is sufficient to cap-
ture the majority of the necessary knowledge for recommendations,
given the overlap in domain-invariant knowledge across domains.
Consequently, we instantiate one shared encoder to all sequences.
To preserve the specific uniqueness of each domain, we introduce
three dLoRA modules in parallel with the encoder’s feedforward
network. These dLoRAs enable the shared encoder to switch modes
efficiently among the domains X, A, and B, thereby maintaining
domain-specific nuances without compromising shared knowledge.
The encoding process for a domain-X sequence embedding 𝑬X is
formulated as follows:

𝑯X = LN (𝑬X + Drop (MHA (𝑬X))) , (2)
𝑯 enc

X = LN (𝑯X + Drop (FFN (𝑯X)) + dLoRAX (𝑯X)) , (3)

where LN denotes LayerNorm, dLoRAX denotes the dLoRA unit for
domain X, MHA denotes the multi-head attention networks, and
FFN denotes the feedforward networks. Similarly, by replacing the
domain notation X with A and B in Eqs. 2 and 3, we obtain the
encoded sequential representations 𝑯 enc

A and 𝑯 enc
B , respectively.

3.6 Projectors with Invariant LoRAs
To convert the encoded sequential representations into effective
recommendation representations, we utilize a dedicated projec-
tor for each domain. Each domain-specific projector consists of
a SwishGLU variant of MLP [47]. The structure of a projector is
defined as follows:

Proj (𝑿 ) = Drop
( (
Swish (𝑿𝑾1) ⊗ 𝑯 enc

A 𝑾2
)
𝑾3

)
, (4)

where𝑾1 ∈ R𝑑×
8
3𝑑 ,𝑾2 ∈ R𝑑×

8
3𝑑 and𝑾3 ∈ R

8
3𝑑×𝑑 are learnable

matrices. The Swish activation function is defined as Swish(𝑥) =
𝑥

1+𝑒−𝛽𝑥 , with 𝛽 set to 1 [47].
For projectors within specific domains, we incorporate skip con-

nections to obtain the projected domain-specific representations:

𝑯
p
A = LN

(
𝑯 enc

A + ProjA
(
𝑯 enc

A
) )
, (5)

𝑯
p
B = LN

(
𝑯 enc

B + ProjB
(
𝑯 enc

B
) )
. (6)

In contrast to domain-specific projectors, the invariant projector
integrates two iLoRAs to adapt domain-invariant interests into final
recommendations for domains A and B. The projected invariant
representations are obtained as follows:

𝑯
p
i2A = LN

(
𝑯 enc

X + Proji
(
𝑯 enc

X
)
+ iLoRAA

(
𝑯 enc

X
) )
, (7)

𝑯
p
i2B = LN

(
𝑯 enc

X + Proji
(
𝑯 enc

X
)
+ iLoRAB

(
𝑯 enc

X
) )
. (8)

Here, Proji shares the same structure as ProjA and ProjB, while
iLoRAA and iLoRAB are the two instantiations of iLoRA in ABXI.

4
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The final recommendation representations are obtained by sum-
ming the projected invariant and domain-specific representations:

𝑯 rec
A = 𝑯

p
A + 𝑯

p
i2A, (9)

𝑯 rec
B = 𝑯

p
B + 𝑯

p
i2B . (10)

3.7 Optimization Objective
Previous works’ adopting timestamp-guided alignment [9, 55] re-
quires separate optimization on the cross-domain sequences. How-
ever, since our proposed task-guided alignment unites the ground
truths of domain-specific and cross-domain sequences, ABXI can be
optimized entirely with only one set of positive and corresponding
negative samples. We split the input training sequences in the man-
ner of the seq2seq paradigm, and randomly select 𝑁neg unobserved
items within the same domain for each positive sample to form
the negative set. We use InfoNCE [48] to optimize ABXI. Given
a recommendation representation ℎ, we denote the embedding of
the corresponding positive sample as 𝑒+, and the embedding set
of the union of positive and negative samples as 𝑬 . Therefore, the
InfoNCE can thus be given as:

𝑓 (ℎ) = −log
exp

(
ℎ · 𝑒+/𝜏

)∑
𝑒∈𝑬 exp (ℎ · 𝑒/𝜏) , (11)

where 𝜏 denotes the temperature factor. The final loss of sequence
can then be obtained as:

𝐿𝑜𝑠𝑠 =
1

|𝑯 rec
A |

∑︁
ℎ∈𝑯 rec

A

𝑓 (ℎ) + 1
|𝑯 rec

B |
∑︁

ℎ∈𝑯 rec
B

𝑓 (ℎ). (12)

4 EXPERIMENTS
We design our experiments to answer the following research ques-
tions:
RQ1: How does ABXI perform in comparison to state-of-the-art
CDSR models?
RQ2: How do the proposed task-guided alignment, projectors,
iLoRA, and dLoRA of ABXI benefit its performance?
RQ3: What is the impact on ABXI’s performance when replacing
the proposed iLoRAs or dLoRAs with dense layers?
RQ4: How does the choice of rank hyperparameter in iLoRA and
dLoRA affect the performance of ABXI?

4.1 Datasets
We conduct our experiments on three datasets derived from the
Amazon review datasets1 [40], encompassing six distinct domains:
Food-Kitchen (FK), Beauty-Electronics (BE), and Movie-Book (MB).
Specifically, FK includes the ‘Grocery and Gourmet Food’ as A
and ‘Home and Kitchen’ as B; BE comprises ‘Beauty’ as A and
‘Electronics’ as B; MB consists of ‘Movies and TV’ as A and ‘Books’
as B.

In our preprocessing setup, each review is treated as a user in-
teraction. We retain users who have interacted in both domains,
aggregating and reordering their interactions chronologically based
on the timestamps. Subsequently, we remove items that have been
interacted with fewer than five times among these users. To further

1https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html

reduce computational load, we limit each user’s interaction se-
quence to the latest 50 interactions, following [21]. This truncation
may result in some users no longermeeting the domain-overlapping
criteria, necessitating a secondary filtering step to exclude these
users.

The statistics of the processed datasets are summarized in Table 1.
We evaluate all methods using five different random seeds to ensure
the robustness and reproducibility of the results. Performance is
measured using Hit Rate (HR) and Normalized Discounted Cumu-
lative Gain (NDCG) [34] at cutoff values K={5, 10}. For single-target
models, hyperparameters are selected based on the NDCG@10
score within each domain. In contrast, hyperparameters are opti-
mized for dual-target models based on the aggregate NDCG@10
scores across both domains.

4.2 Baselines
We compare ABXI with several baseline models, categorized into
four types:
ST-SDSR Single-Target Single-Domain Sequential Recommenders:

SASRec-1 and BERT4Rec-1.
DT-SDSR Dual-Target Single-Domain Sequential Recommender:

SASRec-2 and BERT4Rec-2.
ST-CDSR Single-Target Cross-Domain Sequential Recommender:

CD-SASRec, CD-ASR and MGCL.
DT-CDSR Dual-Target Cross-Domain Sequential Recommender:

C2DSR and DREAM.
These baseline models are described as follows:
• SASRec [21] utilizes the self-attention encoder to generate

sequential representations. We implement two versions: ST-
SASRec-1 and SASRec-2, corresponding to ST and DT settings,
respectively. Specifically, losses in SASRec-2 are calculated sep-
arately within each domain and then summed.

• BERT4Rec [45] introduce Cloze objectives on top of SASRec.
Similarly, we use two versions: BERT4Rec-1 and BERT4Rec-2.

• CD-SASRec [5] aggregates the encoded source-domain sequences
into the target-domain encoding using two self-attention en-
coders.

• CD-ASR [4] fuses source and target domain sequences encoded
by separate self-attention encoders.

• C2DSR [9] instantiate difference set of graphical and self-attention
encoder to encode cross-domain and domain-specific sequences,
leveraging augmentation for contrastive learning.

• MGCL [53] integrates graphical and sequential information
under different views and strengthens the profiling via user-to-
user contrastive learning on views.

• DREAM [55] employs separate self-attention encoders for cross-
domain and domain-specific sequences, incorporating specific-
to-cross knowledge transferring and a similar user-to-user con-
trastive learning on domains.

4.3 Implementation Details
We adopt the leave-one-out strategy commonly used in SR. Specifi-
cally, we remove the last two interactions from each user sequence
to serve as the ground truths for validation and testing. Evaluation
metrics are computed separately for each domain. Besides basic
statistics, Table 1 summarizes the number of validation and testing
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Table 1: Statistics of CDSR Datasets.

Datasets FK BE MB
Food (A) Kitchen (B) Beauty (A) Electronics (B) Movie (A) Book (B)

Users 7,144 4,474 28,350
Items 11,837 16,258 10,379 14,188 35,712 90,958

Interactions 83,663 89,885 50,329 63,800 347,654 403,147

Val. GT 2,837 4,307 2,086 2,388 11,728 16,622
Test GT 2,419 4,725 1,875 2,599 10,935 17,415

A → B transitions 30,308 - 17,841 - 108,318 -
B → A transitions - 29,407 - 17,888 - 105,696

Table 2: Hyperparameters selection.

Hyperparameter Value

Embedding dimension 𝑑 256
# self-attention layer 1

dropout rate 0.3
# negative sample 𝑁neg 128

Optimizer AdamW
Temperature 𝜏 0.75
Max epoch 500

Warm-up epoch 5
Learning rate {1e-3, 1e-4}
Weight decay {5, 2, 1}×{1e1, 1e0, 1e-1, 1e-2, 1e-3}, 0

Learning rate decay ×0.3162, after 30 stable epochs
Random seed {3407, 0, 1, 2, 3}

ground truths per domain, as well as the counts of cross-domain
item-to-item transitions within all sequences (i.e., A→B and B→A).
Hyperparameters not specified elsewhere are listed in Table 2.

Our experimental setup treats CDSR as SDSR with added side
domain information. By comparing both types of models under
identical conditions, we aim to assess the performance improve-
ments fairly through CDSR. If new CDSRmodels do not outperform
classic SDSR models within this setting, their practical utility may
be limited.

4.4 Overall Performance Comparison (RQ1)
To evaluate ABXI and address RQ1, we compare our model with
state-of-the-art CDSR models and other baseline methods. For each
dataset, we designate the domain with better performance metrics
as the ‘easy’ domain and the other as the ‘hard’ domain. The overall
results are reported in Table 3.

Across all datasets, ABXI significantly outperforms all base-
line models on all evaluation metrics, with statistical significance
(p<0.01). This improvement is evident in both domains, indicating
that a single sequence model augmented with auxiliary modules is
sufficient to capture both cross-domain and domain-specific knowl-
edge.

In contrast, other DT-CDSR models do not demonstrate substan-
tial improvements over their SDSR counterparts. Only in the Movie
domain do we observe that DREAM outperforms the SDSR models.

This can be attributed to the prediction mismatches in timestamp-
guided alignment within these DT-CDSR models, causing them to
make predictions in incorrect domains. Conversely, ST- and DT-
SDSR models do not encounter such issues, as they do not require
domain-specific sequences.

Furthermore, the ST-CDSRmodels demonstrate notably poor per-
formance compared to all other types of models. This underperfor-
mance stems from their training from scratch without supervision
in the source domains, which hinders the extraction of domain-
invariant information. Without supervision from the source do-
main, these models cannot effectively distinguish domain-invariant
knowledge from domain-specific knowledge. This results in source-
specific information, which should have been filtered out, being
introduced into the target domain.

4.5 Ablation Studies (RQ2)
To further investigate the contribution of each proposed compo-
nent, we designed five ablation variants: V1 removes all dLoRAs;
V2 removes all projectors; V3 removes all iLoRAs; V4 removes all
dLoRAs, iLoRAs and projectors; V5 replaces the task-guided align-
ment with the timestamp-guided alignment. The results of these
ablation studies are reported in the middle section of Table 4.

Compared to all ablation variants, ABXI achieves the best per-
formance. Notably, we have the following observations.

Projectors contribute the most among all trainable modules. Due
to their substantial number of learnable parameters, projectors
provide sufficient capacity to transform encoded sequential repre-
sentations into recommendation representations.

The performance gaps between V1, V3 and ABXI, as well as
between V2 and V4, indicate that iLoRA and dLoRA effectively
enhance performance with few additional parameters.

The performance improvements of ABXI over V1 and V3, as well
as of V2 over V4, demonstrate that iLoRA and dLoRA effectively
enhance performance with a small number of additional parameters.

Among all variants, reverting to timestamp-guided alignment in
V5 results in the most significant performance degradation. Since
ABXI does not employ specialized domain-specific ground truths
under timestamp-guided alignment, it suffers severely from the
prediction mismatch issue.
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Table 3: Recommendation performance (RQ1). The best and the runner-up are highlighted in bold and underlined respectively.

Type Methods Food Kitchen
HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

ST

SASRec-1 0.1867±0.0041 0.2530±0.0037 0.1309±0.0033 0.1524±0.0032 0.1213±0.0029 0.1786±0.0019 0.0822±0.0014 0.1006±0.0014
BERT4Rec-1 0.1812±0.0030 0.2482±0.0038 0.1244±0.0021 0.1461±0.0022 0.1099±0.0042 0.1652±0.0059 0.0736±0.0032 0.0914±0.0036
CD-SASRec 0.1641±0.0163 0.2277±0.0135 0.1119±0.0131 0.1326±0.0120 0.0993±0.0060 0.1594±0.0082 0.0645±0.0044 0.0837±0.0045
CD-ASR 0.1892±0.0022 0.2590±0.0050 0.1287±0.0025 0.1513±0.0033 0.1146±0.0016 0.1727±0.0023 0.0760±0.0017 0.0946±0.0018
MGCL 0.1753±0.0061 0.2465±0.0052 0.1191±0.0026 0.1423±0.0025 0.1173±0.0073 0.1803±0.0111 0.0782±0.0046 0.0985±0.0059

DT

SASRec-2 0.2269±0.0021 0.2857±0.0017 0.1568±0.0018 0.1760±0.0024 0.1458±0.0030 0.2105±0.0031 0.0988±0.0018 0.1196±0.0018
BERT4Rec-2 0.2157±0.0046 0.2827±0.0042 0.1475±0.0054 0.1693±0.0041 0.1366±0.0051 0.2047±0.0050 0.0904±0.0039 0.1123±0.0038

C2DSR 0.2071±0.0074 0.2669±0.0053 0.1453±0.0028 0.1647±0.0029 0.1244±0.0037 0.1841±0.0069 0.0850±0.0024 0.1043±0.0033
DREAM 0.1947±0.0041 0.2521±0.0090 0.1369±0.0022 0.1555±0.0038 0.1244±0.0039 0.1790±0.0060 0.0830±0.0031 0.1007±0.0037
ABXI 0.2499±0.0037 0.3187±0.0038 0.1752±0.0035 0.1977±0.0033 0.1757±0.0039 0.2439±0.0029 0.1205±0.0017 0.1425±0.0009

Beauty Electronics
HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

ST

SASRec-1 0.1616±0.0021 0.2286±0.0041 0.1130±0.0020 0.1346±0.0027 0.1172±0.0026 0.1711±0.0031 0.0803±0.0009 0.0976±0.0010
BERT4Rec-1 0.1648±0.0031 0.2354±0.0037 0.1141±0.0034 0.1368±0.0037 0.1307±0.0020 0.1870±0.0016 0.0901±0.0016 0.1082±0.0013
CD-SASRec 0.1303±0.0104 0.2016±0.0128 0.0887±0.0081 0.1116±0.0083 0.1131±0.0072 0.1645±0.0104 0.0766±0.0050 0.0932±0.0057
CD-ASR 0.1587±0.0042 0.2389±0.0042 0.1082±0.0035 0.1341±0.0033 0.1258±0.0029 0.1842±0.0020 0.0856±0.0027 0.1044±0.0023
MGCL 0.1400±0.0076 0.2096±0.0090 0.0952±0.0056 0.1176±0.0060 0.1272±0.0033 0.1828±0.0055 0.0863±0.0027 0.1043±0.0031

DT

SASRec-2 0.2371±0.0062 0.3210±0.0037 0.1678±0.0028 0.1949±0.0020 0.1353±0.0032 0.2041±0.0038 0.0901±0.0027 0.1124±0.0021
BERT4Rec-2 0.1810±0.0060 0.2794±0.0063 0.1228±0.0046 0.1545±0.0048 0.1467±0.0029 0.2148±0.0026 0.1002±0.0025 0.1221±0.0028

C2DSR 0.1927±0.0090 0.2785±0.0122 0.1310±0.0051 0.1588±0.0058 0.1361±0.0052 0.1905±0.0060 0.0930±0.0033 0.1105±0.0030
DREAM 0.2007±0.0077 0.2918±0.0067 0.1362±0.0045 0.1656±0.0035 0.1164±0.0065 0.1733±0.0071 0.0794±0.0043 0.0977±0.0043
ABXI 0.2722±0.0024 0.3722±0.0025 0.1862±0.0030 0.2186±0.0025 0.1642±0.0044 0.2389±0.0061 0.1138±0.0036 0.1377±0.0041

Movie Book
HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

ST

SASRec-1 0.2258±0.0031 0.2961±0.0037 0.1647±0.0025 0.1874±0.0027 0.1357±0.0029 0.1789±0.0033 0.1007±0.0022 0.1147±0.0023
BERT4Rec-1 0.2155±0.0021 0.2907±0.0019 0.1546±0.0016 0.1789±0.0015 0.1429±0.0020 0.1874±0.0025 0.1069±0.0009 0.1212±0.0011
CD-SASRec 0.2187±0.0065 0.2944±0.0074 0.1555±0.0044 0.1800±0.0047 0.1413±0.0081 0.1829±0.0082 0.1045±0.0065 0.1179±0.0064
CD-ASR 0.2088±0.0011 0.2819±0.0015 0.1492±0.0015 0.1728±0.0017 0.1294±0.0015 0.1742±0.0014 0.0925±0.0014 0.1070±0.0013
MGCL 0.1980±0.0084 0.2662±0.0078 0.1416±0.0083 0.1636±0.0080 0.1163±0.0011 0.1533±0.0016 0.0866±0.0009 0.0985±0.0010

DT

SASRec-2 0.2150±0.0026 0.2837±0.0013 0.1557±0.0013 0.1779±0.0011 0.1251±0.0014 0.1671±0.0016 0.0931±0.0011 0.1066±0.0013
BERT4Rec-2 0.2064±0.0022 0.2790±0.0028 0.1476±0.0014 0.1710±0.0017 0.1399±0.0011 0.1854±0.0016 0.1038±0.0004 0.1185±0.0005

C2DSR 0.2135±0.0049 0.2813±0.0042 0.1551±0.0036 0.1770±0.0034 0.1155±0.0053 0.1538±0.0063 0.0863±0.0037 0.0987±0.0039
DREAM 0.2308±0.0073 0.3060±0.0084 0.1665±0.0058 0.1908±0.0062 0.1299±0.0058 0.1766±0.0076 0.0938±0.0043 0.1089±0.0047
ABXI 0.2790±0.0030 0.3590±0.0015 0.2078±0.0016 0.2335±0.0014 0.1901±0.0015 0.2472±0.0015 0.1429±0.0009 0.1613±0.0007

Table 4: Ablation studies in NDCG@10. (RQ2, 3)

iLoRA Proj dLoRA Alignment Food Kitchen Beauty Electronics

ABXI ✓ ✓ ✓ task 0.1977±0.0033 0.1425±0.0009 0.2186±0.0025 0.1377±0.0041

V1 ✓ ✓ - task 0.1977±0.0026 0.1417±0.0017 0.2151±0.0020 0.1353±0.0014
V2 ✓ - ✓ task 0.1938±0.0013 0.1381±0.0015 0.2092±0.0015 0.1345±0.0039
V3 - ✓ ✓ task 0.1970±0.0027 0.1402±0.0011 0.2173±0.0028 0.1349±0.0026
V4 - - - task 0.1923±0.0034 0.1327±0.0018 0.2062±0.0024 0.1366±0.0026
V5 ✓ ✓ ✓ timestamp 0.1753±0.0028 0.1305±0.0032 0.2011±0.0082 0.1198±0.0017

ABXI-i3 3×Proj ✓ ✓ task 0.1954±0.0025 0.1415±0.0022 0.2185±0.0022 0.1348±0.0032
ABXI-i2 2×Proj ✓ ✓ task 0.1953±0.0037 0.1413±0.0020 0.2191±0.0042 0.1366±0.0034
ABXI-d ✓ ✓ 3×encoders task 0.1976±0.0016 0.1405±0.0018 0.2114±0.0042 0.1329±0.0031
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4.6 Effectiveness of LoRA (RQ3)
LoRA is renowned for its efficient adaptation. However, in the
context of non-LLM CDSR, we need to determine whether this
efficiency translates into effectiveness. Therefore, we design the
following three variants: ABXI-i3: replace iLoRAA and iLoRAB
with X-to-A and X-to-A projectors; ABXI-i2: remove the Proji in
ABXI-i3; ABXI-d: replace the shared encoder with dLoRAs with
three self-attention encoders for domains 𝑋 , 𝐴 and 𝐵, respectively.
The results are reported in the bottom section of Table 4.

Among them, ABXI-i2 achieves performance closely matching
that of ABXI. This suggests redundancy between the X-to-A and
X-to-A projectors, which indicates that they can be functionally
replaced by the combination of the Proji and two iLoRA modules.

ABXI-i3 utilizes the shared Proji along with specialized X-to-A
and X-to-A projectors. However, this configuration does not yield
significant performance improvements. The introduction of these
projectors substantially increases the capacity for cross-to-specific
transformations, which diminishes ABXI’s reliance on the Proji and
impedes its ability to extract domain-invariant knowledge.

ABXI-d degrades performance by instantiating three encoders
for each domain instead of the shared one with dLoRAs. We at-
tribute this degradation to our task-guided alignment. Since we
unify the downstream recommendation tasks, we do not need to
employ additional domain-specific ground truths like C2DSR [9]
and DREAM [55]. Therefore, these domain-specific encoders cannot
achieve the same performance as they do in those baselines.

4.7 Rank Analysis in LoRA (RQ4)
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Figure 4: Performance of all domains under different values
of ranks of dLoRA (𝑟𝑑 ) and iLoRA (𝑟𝑖 ) in NDCG@10 (RQ4).

This subsection investigates the impact of different rank values
𝑟𝑑 for dLoRA and 𝑟𝑖 for iLoRA on the ABXI’s performance. We
vary these ranks over {8, 16, 32, 64, 128} and present the results in
Figure 4.

From Figure 4, we observe a general tendency across all six
domains: both large and small ranks tend to yield poorer results,
although some fluctuations are evident. This behavior is due to the
limited capacity of LoRA modules within the one-stage training

framework of ABXI. To achieve optimal performance, we select
(𝑟𝑑 = 16, 𝑟𝑖 = 64) for FK, (𝑟𝑑 = 16, 𝑟𝑖 = 32) for BE, and (𝑟𝑑 =

32, 𝑟𝑖 = 32) for MB.

5 CONCLUSION
In this paper, we propose ABXI, a novel CDSR model. Specifically,
ABXI addresses the prediction mismatch issue by integrating task-
guided alignment to unify cross-domain and domain-specific opti-
mizations. ABXI leverages domain projectors equipped with invari-
ant LoRA modules to extract and adapt domain-invariant interests,
enabling efficient and effective knowledge transfer Furthermore,
ABXI employs a single shared encoder with domain LoRA to con-
duct efficient encoding. Extensive experimental results on three
datasets demonstrated that ABXI significantly outperforms state-of-
the-art CDSR models by a large margin. Ablation studies confirmed
the effectiveness of each component, highlighting the importance
of task-guided alignment and invariant interest extraction. For fu-
ture work, we aim to further explore domain-invariant dynamics
to achieve more accurate disentanglement.
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