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ABSTRACT

When training a denoising neural network, we show that more data isn’t more
beneficial. In fact the generalization error versus number of of training data points
is a double descent curve.

Training a network to denoise noisy inputs is the most widely used technique for
pre-training deep neural networks. Hence one important question is the effect of
scaling the number of training data points. We formalize the question of how many
data points should be used by looking at the generalization error for denoising
noisy test data. Prior work on computing the generalization error focus on adding
noise to target outputs. However, adding noise to the input is more in line with
current pre-training practices. In the linear (in the inputs) regime, we provide
an asymptotically exact formula for the generalization error for rank 1 data and
an approximation for the generalization error for rank r data. We show using
our formulas, that the generalization error versus number of data points follows a
double descent curve. From this, we derive a formula for the amount of noise that
needs to be added to the training data to minimize the denoising error and see that
this follows a double descent curve as well.
1 INTRODUCTION
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Figure 1: Figure showing the difference in the noise placement between the traditional supervised
learning set up for which empirical and theoretical double descent curves have been found versus our
denoising set up for which we recover double descent curves.

Denoising noisy training data is a widely used technique for pretraining networks to learn good
representations of the data. Two extremely common examples of pretraining via denoising are
Masked Language Modelling (MLM) (Devlin et al.,[2019) and Stacked Denoising Autoencoders
(SDAE) (Vincent et al.} 2010). For many modern problem, we work at large scales in terms of the
number of parameters and the number of training samples. Recently there has been significant work
in understanding the effect of scaling the number of parameters in the neural network. This resulted
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in the discovery of the much celebrated double descent phenomena (Belkin et al.,|2019). However,
we do not have as good of an understanding of the effect of scaling the number of data points.
Works such as|Nakkiran et al.| (2020); Nakkiran| (2020); |d’ Ascoli et al.| (2020); |/Adlam & Pennington
(2020) show either empirically or via theoretical analysis that sample wise double descent exists.
However, these were in the regime of supervised learning. On the other hand, our motivation comes
from understanding denoising autoencoders. For MLM and SDAEs the denoising is a pretraining
procedure, in which case the generalization error would depend on the downstream task. We shall
instead look at the generalization error with respect to denoising test data. The difference between
prior supervised learning set up and our denoising set up can be seen in Figure|I]

In an attempt to theoretically understand the denoising setting, we look at the simplest setting.
Specifically we look at the case, when our network is a linear (with respect to the inputs) network
and we are denoising data that lies on a line embedded in high dimensional space. In this setting, we
derive the exact asymptotics for the generalization error. We see that in this case, the generalization
error spikes at the interpolation threshold (Figure [5a) and the amount of noise that we want to add
also spikes at the interpolation threshold (Figure [5b). From the theoretical analysis, we see that the
spike occurs due to the variance of the model increasing.

Contributions. The main contributions of our works are as follows.

1. We empirically show that when denoising data using a feedforward network, the curve for
the generalization error versus the number of training data points as well the curve for the
ratio of the test data SNR to the optimal training data SNR has double descent. Further
changing the training data SNR can mitigate the double descent in the generalization error
curve.

2. Assuming we have mean 0, rotational invariant noise, we derive an analytical formula
for the expected mean squared generalization error for denoising rank 1 data by a linear
network. Further, we use the same method to derive an approximation for higher rank data
and experimentally verify the accuracy of the formula for general low rank data.

3. Using our formula, we show that even in this simple model, we see that the double descent
exists for the generalization error and for the amount of noise that should be added versus
the number of training data points.

Related work. Understanding deep neural networks is current active area of research with many
exciting theoretical results. The discovery that fixed depth infinite width neural networks can be
thought of as kernel regression (Jacot et al., [2018)) and the discovery of double descent for neural
networks (Belkin et al.| | 2019) has sparked significant research into understanding the generalization
in the linear regime (in parameters not inputs). The exact asymptotic for generalization loss were first
understood for ridge regression (Bartlett et al., 2020; Hastie et al.l 2019} Belkin et al., 2020} |Advani
& Saxe), [2020). This was further generalized to understand the situation for the Random Features
model and the Neural Tangent Kernel (NTK) model (Mei1 & Montanari, |2019; |Ghorbani et al., 2019;
Adlam & Pennington, 2020). A partial list of recent work for supervised learning includes |Jacot et al.
(2020); Mel & Ganguli| (2021)); Derezinski et al.| (2020); |d’ Ascoli et al.[(2020); Dobriban & Wager
(2015); |Geiger et al.| (2019); ILampinen & Ganguli| (2019); |Liang et al.| (2020); Muthukumar et al.
(2019); ILoureiro et al.[(2021). However, there has been no work, to our knowledge, that looks at the
problem either empirically or theoretically for the denoising set up.

The idea of adding noise to improve generalization has been seen before. One popular strategy is to
use Dropout (Hinton et al., |2012; [Wan et al.| 2013} Srivastava et al.||2014), where we randomly zero
out either neurons or connections. Another idea that is commonly used is data augmentation. In a
revolutionary paper, [Krizhevsky et al.[(2012) showed that augmenting the dataset with noisy versions
of the images, greatly improved the accuracy. Another area where noise is useful is adversarial
learning. Dong et al.[(2021)) shows epoch wise double descent for adversarial training.

In terms of recent theoretical work related to SDAEs, |Pretorius et al.|(2018) derived the learning
dynamics of a linear autoencoder in the presence of noise. They also establish some relationships
between the noise added and weight decay. However, they do not look at the generalization error or
quantify the optimal amount of noise that should be added. |Gnansambandam & Chan| (2020) looked
at the problem of what is the optimal amount of noise that should be added. However, they studied
this from the perspective of minimizing the variance of the performance.
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2 SET-UP

Let U € RMXT pe our feature matrix. For ease of notation, we assume that the columns of U have
unit norm and are pairwise orthogonal. Then to generate /N data points, we sample our latent variables
VeR*Nand ¥ € RT’“ such that V" has columns that have unit norm and are pairwise orthogonal
and Y. is a diagonal matrix such that |X||z = 1. Then a data matrix X is given by X = UXV’. For
us, we have two matrices X;,.,, and X4, that correspond to the train and test data sets. Hence we have
corresponding V., € R™*Nern YT Rr*Nest and 3y,.,,, 3ts¢. We make no other assumptions on
U, Virn, Ztrn Vist, 25t €xcept that they are given and fixed. Finally, let 6, 6;., € R4 be scalars
that will scale the singular values of Xy,.,,, X5 so that we can control the SNR. We also assume
that 6, is fixed and that we have control over 6y,,,. Let ¢ = M /Ny, and let Ay, Arsr be noise
matrices that are added to the training and the test data. Let W be the linear autoencoder that is the
solution to the following problem

minimizeW HetrnXtrn - W(otrnXtrn + Atrn) H%‘ (1)
N——

Yirn

Then, the expected mean squared error, is given by

10tst X st — W (0pst Xist + Atst)”%

R(etrn; atstv c, Etrn; Etst) =E Ntst

2

2.1 ASSUMPTIONS ABOUT THE NOISE

We assume that each entry of the noise matrix A has mean 0, variance 1/M and that the entries of
A are pairwise uncorrelated. Additionally, we shall assume that A is rotationally bi-invariant. That
is, if @ is an M by M (N by N) orthogonal matrix, then QA (AQ) has the same distribution as A.
Another way to phrase this is if A = U3 4 VAT is the SVD, then U4 and V4 are uniformly random
orthogonal matrices and are independent from ¥ 4 and each other. Finally, we shall assume that A
has full rank with probability 1 and that the limiting distribution of the eigenvalues of A A converge
to the Marchenko-Pastur distribution. While such assumptions on the noise may seem restrictive.
This encompasses a large family of noise distributions.

Proposition 1. If B is a random matrix that has full rank with probability 1 and its entries are

independent, have mean 0, have variance 1/M, and bounded fourth moment, and P, Q) are uniformly
random orthogonal matrices. Then A = P BQ satisfies all of our noise assumptions.

2.2  SIGNAL TO NOISE RATIO (SNR)

A quantity of interest to us will be the SNR, given by || X ||r/||A||r- Hence, we need to normalize
everything by || A|| p. In this case, due to our assumptions, we have that E[||A||%] = N. Hence, for
any variables and constants, if it has a hat, then that refers to that variable or constant normalized by
V'N. For example, given 0;,1,, X4, and Ay, then we have that

HotrnXtrn||F/||AtrnHF = otrn/”Atrn”F ~ etrn/ V Ntrn = étrn-

3 EMPIRICAL DOUBLE DESCENT

We first show that sample wise double descent occurs for denoising neural networks empirically.
Figure [2] shows that if we train a feedforward network to denoise data such that the training data
signal to noise ratio (SNR) étm is the same SNR as that of the test data set (étst), then the curve
for the denoising generalization error vs the number of training samples has the shape of a double
descent curve. Thus, together with prior work, this suggests that the double descent with respect to
the number of data points is a universal phenomena. However, unlike other hyperparameters, such as
number of features and number of training epochs, we cannot arbitrarily change the number of data
points as we are limited by the data set that we have. Hence it could be the case, that the maximum
number of data points that we have corresponds to the peak of the generalization error curve.

However, we can look at the amount of noise that we add to the training data. To see the effect of
the noise, for a variety of different 6y,.,, /0;5:, we compute the denoising generalization error versus
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Figure 2: Figure showing the double descent phenomena for the generalization error versus the
number of the training data points. The top row is for a linear network and the bottom row is for a 3

layer ReLU network. Here the training data SNR and the test data SNR both equal 6.
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Figure 3: Figure showing the denoising generalization error for a 3 layer neural network trained
for various different values of étm / étst and number of training data points. Each neural network
was trained for 1500 epochs, using gradient descent with a learning rate of 10~2. For MNIST, we
averaged over 20 trials and for CIFAR10 we averaged over 5 trials.

the number of data points curve. We do this for MNIST and CIFAR dataset. We create test data
sets by taking the test data for each and then adding Gaussian noise. We fix the test SNR to be 1
for both datasets. Hence we know the test data SNR. We then take various different fractions of the
training data and train a 3 layer ReLU neural network (without bias) for various levels of training
noise. For each of pair of parameters (number of training data points and the level of training noise),
we compute the generalization error averaged over 20 trials for MNIST and 5 trials for CIFAR. Here
the test noise and training noise is resampled for each trial. The plots for the generalization error
can be seen in Figures @ (MNIST) and @ (CIFAR10). The first thing we notice is that for most
ratios for the test SNR to training SNR we see sample wise double descent. Further, we see that the
optimal denoising error does not occur when the train SNR is equal to the test SNR. This is very
surprising as it contradicts standard thought that training data distribution should be the same as the
test data distribution. Interestingly, as seen in Figures[dand [#b] we see that the optimal ratio depends
on the number of data points and the shape of the curve for the values étm / étst that results in the
best generalization error versus the number data points also has the shape of a double descent curve.
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Figure 4: Figure showing the sample wise double descent for the optimal amount of training noise.

4 THEORETICAL RESULTS AND CONSEQUENCES

In this paper, we want to theoretically understand the phenomena seen in Section 3. The main
theoretical result of the paper is summarized below in Theorem|[T}

Theorem 1. Let o™, 0!t be entries of Xiyn, Dist and let v = 1. Let ¢ = M /Ny, be fixed. Suppose
Otrr i O(\/Nipp) and Oist is O(\/Nist) Then, if ¢ < 1, we have that

(at 9t055t)2 C2 ( (otrnaiirn)Z (otrn Uirn)ét)

R0r70§7 2r772€ 1
( trn, Utsty Cy Zitrn t 1‘) Ntst(l + (et no.frn)zc)2 M(l + (Qtrno.trn) 0)2(1 — C) +0( )
(3)
and if ¢ > 1, we have that
95 tst\2 ern trn\2
(etrnaetshc Etrny Ztst) ( i tU ) + ( L 0 )

+o(1). (4
N1+ G722+ M+ G2y —1) O @
The o(1) error term goes to 0 as Nyppn, M — 0.

We could imagine that the rank r version is the same as the above but with a summation over the

rank as shown in the equations below. But, we shall see in Section 5 that this turns out to only be an
approximation.

etétUtSt)Q c ((etrno.trn) (etrno.trn)él)
by b)) 1
R(et’l"ruetStaC) trn, tst Z Ntst 1+ 9t nO'tTn)ZC) + M(l T (Htrn trn)Qc)Q(l C) +0( )
(5)
r (etstatst)z (etrnUtm )2

¥ by = 1).
R(etrnyetstaQ trn, tst) ; tht(1+ (9tmdfr”)2)2 + M(l n (atrnﬂfrn)Q)(Cf 1) +0( )
(6)

4.1 OPTIMAL AMOUNT OF NOISE

First, if we ignore the error term, we can differentiate the formula to get the following formula for the
optimal training SNR.

07, c c
egpt—trn _ {max (07 Ntf tf (1 - ﬁ) - M(27c)) c<1
—_— = 62

Nirn max (0 2045t (¢ — 1) — N ) c>1

@)

Nist
We already see the surprising result that the optimal training SNR and the test SNR are not equal.
This is surprising, as traditional philosophy is that the training data should be drawn from the same
distribution as the test data. Here instead we see that the optimal training distribution actually depends

c. Further, the formulas in Equatlonlalso describe a double descent curve for Oy — ¢y, /Ny, versus
¢ curve as shown in Figure [5b]

"Derivation and exact assumptions for when the formulas are accurate in the appendix.
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Figure 5: Plot showing the double descent curves for the generalization error as well as for the ratio
of the test SNR to the optimal training SNR. Here M = 1000 and 6;,; = 1 and ¢ was changed by
changing Ny,

4.2 DOUBLE DESCENT CURVES

We have already seen that the optimal amount of training noise follows a double decent curve. This
is due to the double descent seen in the asymptotics for the generalization error. To understand this
phenomenon, we first note that the bias of our model is given by the first term in formula in Theorem
and the variance is given by the second term. That is, we have that the variance given by

S A (Oern o™+ Oerno™) )
i=1 "M+ Otrmol ™)2c)2(1—c)

. C((hmﬂ"n 2
Zi:l M(1+(9tmaflr")2)(c—1) ¢c>1

From these formulas, we can see that as ¢ — 1 these formulas have a singularity. Since we have a
linear model, ¢ = 1 is the interpolation threshold (i.e., the point after which we have 0 training error).
Hence as with previous models for double descent, we see that as we approach the interpolation
threshold, the variance of model increases, resulting in an increase in the generalization error.

If we fix the number of features M and change ¢ by varying Ny,.,, and also scale 0y, as 0., =
9t,,n\/Ntm, then we see that as ¢ — 1, the variance of the model increases. Once we have enough
data points so that ¢ < 1, we have the variance of the model starts decreasing. Additionally, we
see that as we increase the number of data points, the bias decreases until we hit the interpolation
threshold, after this point, the bias is constant. Similarly, if we fixed Vy,.,, and changed c by changing
M then after the interpolation threshold, the inductive bias of the model kicks in. Here we see that
the variance terms corresponds to || ||2.. Hence we see that as ¢ — oo, we have that this implicitly
regularize the weights of the network and get the second descent in the generalization error. That is,
the variance of the model decreases as ¢ — oo. Additionally, we see that as we increase the number
of parameters, the bias of the model of the model decreases and then after the interpolation threshold
it becomes constant. Note that this value is non-zero and depends on the training SNR.

In previous work (such as|Mei & Montanari|(2019)) on double descent curves for ridge regression, we
see that optimal ridge regularization results in the vanishing of the double descent phenomena. This
is also seen empirically for L, regularization for classification in Nakkiran et al.|(2020). However, in
our theoretical model even if we optimally pick the amount of training noise, we still have double
descent. This is in contrast to results seen with a deep network on real data in Figure 3]

5 PROOF OF THEOREM [1]

We prove Theorem [T} via the steps shown in Figure[6] The proofs for all of the lemmas have been
moved to the appendix. Here we present a proof sketch that details the high-level ideas.
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Figure 6: Figure showing the major steps used to derive the formula for the generalization error.

5.1 STEP 1: DECOMPOSE THE ERROR INTO BIAS AND VARIANCE TERMS

First, we decompose the error into its bias and variance.

Lemma 1. If A;s; has mean 0 entries and Ay g is independent of Xt and W, then
B 105t Xest — WYt 2] = 07 Ba,., [ Xest — WXeat|F] + Ea W AlF] . ®)

Bias Variance

5.2 STEP 2: FORMULA FOR W

In our current setup, we know that W is the solution to a least-squares problem. Hence W =
XYy Expandmg this out, we get the following formula for W. Let h = vthT k=Al u

trn- trn> trnU
s = (I AtrnA )u t= vtrn(l AtrnAtTn)’ =1+ otTnvt];"nAIrnu’ 1= trn ‘t” HkHZ + BQ
and 7 = 07,,[s || in)|2 + 2.

Proposition 2. If 5 £ 0 and A, has full rank then

2 .
‘9t7nﬂuh+ frn“h” US c > 1

9frn5 t7nHtH T gt
W= { uh + = ukt Ay, e <1

For Gaussian noise Ay, has full rank with probability 1 and 3 is a random variable whose expected
value is equal to 1, and the distribution is highly concentrated. Thus, Proposition 2] applies when
Ay 1s isotropic Gaussian noise. Here we restricted ourselves to rank 1, as usingMeyer| (1973), we
can expand formulas of the form (A 4 xy”)" where x, y are vectors. For the higher rank case, we
apply the formula form Meyer| (1973) iteratively. This is the main difficulty of the method. Previous
work on deriving asypmtotics for the generalization error had the noise on the output. Hence would
take the pseudoinverse of a matrix that only depended on the data. However, in our case, we are
taking the pseudoinverse of matrix that depends on the noise.

5.3 STEP 3:DECOMPOSE THE TERMS INTO SUM OF VARIOUS TRACE TERMS.

Let us first look at the bias term.
Lemma 2. If W is the solution to Equation[l) then

Xist ifc<1
Xigt — WXt =
tst tst { ;;‘tht ifes>1
Let us now look at the second or the variance term.

Lemma 3. [f the entries of A;s; are independent with mean 0, and variance 1 /M, then we have that
Ea, IW Awse|”] = S W)
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Note that this did not need any assumptions on W or X;,,;. All that was needed were the assumptions
on A;g. Thus, this holds more generally. This decomposition also follows from [Bishop| (1995)). In
light of Lemmas and the fact that || X, ||% = 02,,, we see that the expected mean squared
generalization error is given by,

105t X st — WYist|2] 1 B2

E =07, +—|W
Atst Ntst Nts T tst+ H ||F7

where 7; depends on whether ¢ < 1 or ¢ > 1. Finally, let us look at the ||W|| term.
Lemma 4. If 5 # 0 and Ay, has full rank, then we have that if ¢ < 1,

197 _ trnBQ hTh o ZtrnllZll trn”tH 6 thTAT trn||t||4 AT TkkTAT
H ||F - ( ) + ( trn) 7_ (( t’r’n) t'r‘n)
1 1

and if ¢ > 1, then we have that

2 2 4
etTnQﬁ ‘hH ﬁ (hTST)+ trn |hH
T

2 72

||W||%: Tr(h h)—|—2 i Tr(ss ).

5.4 STEP 4: ESTIMATE USING RANDOM MATRIX THEORY.

While the formula given by Lemmas|T} 3] and f]is correct, we need a simpler formula to analyze the
situation. Using ideas from random matrix theory, we can simplify the expression for || ||2. To do
so, we first need to prove Lemmas [5]and [f]

The main idea behind Lemmas E] and@is that due to the rotational invariance of Ay,.,,, the expectation
of the trace of products of various matrices derived from A;,.,, is determined by the expected value of
some function y of the eigenvalues of A,.,,. However, instead of directly computing this expected
value, we note that for any matrix A, that satisfies the noise assumptions, if we let M, N — oo,
with M /N — c, then the eigenvalue distribution converges to the Marchenko - Pastur distribution
(Marcenko & Pastur, [1967; Gotze & Tikhomirov, 20115120035 [2004; 2005; [Bai et al., 2003)). (Gotze &
Tikhomirov| (2004) showed that the distribution of the eigenvalues converged almost surely with a
rate of at least O(N~1/2+€) for any ¢ > 0. Thus, we can use the expected value of the y(\) for A
sampled from the Marchenko - Pastur distribution as an approximation.

For space reasons, we provide only one instance of the lemmas in the main text. The complete
versions can be found in the appendix.

Lemma 5. Suppose A is an p by q matrix such that the entries of A are independent and have mean
0, variance 1/q, and bounded fourth moment. Let W,, = AAT and let W, = AT A. Let C = p/q.
Suppose A\, \q are a random eigenvalue of W,,, W,. Then

1. Ifp < q, thenE [i] = 25 +o(1).

Lemma 6. Suppose A is an p by q matrix that satisfies the noise assumptions. Let x,y be unit vectors
in p and q dimensions. Let C = p/q. Then

1. E[Tr(zT(AAT)Tz)] = {(é_lc +o(1) p<q

1 .
;% +o(l) p>gq

Using these technical lemmas, we can now deal with all of the terms in the expressions in LemmaE}
First, let us look at the non-trace terms.

Lemma 7. If Ay, satisfies the noise assumptions, then we have that

1. E[B/01rn] = 1/0trn + o(1) and Var(B/01rn) = Graa (L Nmy=eny T o(L):
2 _ A2+¢)

2. Ifc < 1, then E[||h||*] = e + o(1) and Var(||h||*) = Now(—cf + o(1).
2090 _
3. Ife> 1, then E[||h||?] = i + o(1) and Var(||h||?) = m +o(1).
*2+¢)
E[k]!) = - + o(1) and Var(||k||*) = ﬁ +o(1).
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E[|ls|[*] = (1) and Var(||s]?) = 2
E[[t]?] = 1 — ¢ + o(1), Var(||t|[?) =

ﬁc + 0(1)
+ o(1).

trn

Lemma 8. Under the noise assumptions, we have that

E[Tr(hTkT A],.,)] = 0 and Var(Tr(hT kT A},,.)) = x3(¢)/Nirn,
where x3(c) = E[1/)\%], X is an eigenvalue for AAT and A is as in Lemma@
Lemma 9. Under the noise assumptions, we have that

c? FONT LT At 3 1 ct
+o(1) and Var(Tr((Ay,,)" kk™ Aj,,)) = MXZL(C)?MW

Tr((A]

trn

T T Aty —
) kk Atrn) - (1_0)3

where x4(c) = E[1/)\*], X is an eigenvalue for AAT and A is as in Lemma@

Lemma 10. Under the same assumptions as PropositionIZI we have that Tr(hT sT) = 0.

Lemmas [7] [81 O] and[I0]tell us that all of the terms are highly concentrated. Thus, even though such
terms may not be uncorrelated, we can use the fact that |E[XY] — E[X]E[Y]| < /Var(X)Var(Y),
to treat the terms as if they are uncorrelated. Since these variances have now been shown to
be o(1), we have that for each of these terms E[XY] = E[X]E[Y] + o(1). For example since
=B2+62 |t Hk'||2 + 0(1), using Lemmas 1| B andEI, we have that E[r] =1 + 602, c+ (1)
S1m11ar1y, E[r2] = 1+ 62, + o(1). Finally, using these lemmas, we can simplify the expressions in
Lemmad]to get the formulas for the expected generalization error shown in Equations [3| and 4]
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Figure 7: Figure showing the relative error for our formula. A =2500 and c is changed by changing
Ny, For low rank, we average over 10 trials and for high rank, we average over 100 trials.

6 ACCURACY OF APPROXIMATION

In this section we experimentally verify the accuracy of our formula for general rank r data. Here for
low SNR (041, 015¢ are O(1)), we sample 0!, gt** LLD. from the squared standard Gaussian and

for high SNR (04, Ot are ©(v/ Ny ), @(\/ tst)) we multiply this by v/ Ny, v/ Nise. As we can
from Figure[7] we see that our formula is better for low SNR and low rank data.

7 CONCLUSION

In this paper, we switch focus from supervised set up to the unsupervised set up. Specifically, we
look at the problem of denoising data. We empirically show that sample wise double descent exists
for the generalization error. Further, we show that the optimal amount of training noise is not the
same as the test noise. In fact, we see sample wise double descent for the ratio for the test SNR to the
optimal training noise. To understand this phenomena, we study the simplest model, denoising rank 1
data using a linear model. Here we derive the exact asymptotics for the generalization error.
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In this section we present all of the proofs for the results in the main text. Here we present the proofs
in the same order they appear in the text.

A  NOISE ASSUMPTIONS

Proposition (1} If B is a random matrix that has full rank with probability 1 and its entries are
independent, have mean 0, and have variance 1/M and P, Q are uniformly random orthogonal
matrices. Then A = PBQ satisfies all of our noise assumptions.

Proof. Since P, @ are a uniformly random orthogonal matrices, and A = PBQ@, then it is clear that
A is rotationally bi-invariant and has full rank.

Since each entry of B has mean 0 and each entry of A is a linear combination of entries of B where
the coefficients (i.e., the entries from P, () are independent of B), we have that each entry of B have
mean 0. Due to the orthogonal nature of P, (), we have the variance for an entry of A is the same as
the variance of entry in B.

Thus, the only thing left to prove is that the entries of A are uncorrelated. To do this, we note that

N M
a;j = Z Zpilblekj-

k=11=1
Consider two entries a;, ;, and a;, ;,. Then we have that

N M N M
<Z Zpillblekﬁ) (Z mebszka)]

k=1 1=1 k=11=1

]E[ailjd aizjz} =E

N M
= Z Z E[pillphl]]E[lek]E[qkh qka]

=11l=1
N
D B s | -
k=1

) M
= ME LX; Diy1Disl

The second inequality follows from the fact that P, @), B are independent from each other, and that
fact that the entries of B are independent and have mean 0. Hence the cross terms have expectation 0.
If we have that i; = i3 and j; # ja, then we have that since () is an orthogonal matrix

N N
> Elgrji ki) = E Z%ﬁqkm] =0.
=1 k=1

Thus, the entries are uncorrelated. Similarly when i1 # 5 since P is orthogonal matrix, we get that
the entries are uncorrelated. O

E

Convergence to Marchenko-Pastur. If we strengthened the uncorrelated condition, to the entries
being independent. Then due to the mean and variance assumptions (along with an assumption
that the fourth moment is bounded), we would have convergence to Marchenko-Pastur distribution.
However, the independence along with the bi-invariance would then force our noise distribution to be
i.i.d. Gaussian.

In general however, with relaxed assumption of the entries only being uncorrelated, convergence is
not known. However, in our case, we have a much simpler proof for matrices formed by Proposition
[1l In our case, the noise matrices B satisfy the standard assumptions for convergence. We then
multiply B by orthogonal matrices that are independent to B. Hence this has no effect on the
eigenvalue distribution. Thus, the eigenvalues distribution for these matrices also converge to the
Marchenko-Pastur distribution.

B PROOFS

Due to our data generation assumptions that |3, || = || X¢st||F = 1 for rank 1 data, we have that

ol = glst =1,

13
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B.1 STEP ??: DECOMPOSE INTO BIAS AND VARAINCE

Lemmam. If Ay has mean 0 entries and Ay is independent of X5y and W, then
Ea,. (1 Xtst = WYisll7] = Ea,., 1 Xist = WXpat| ]+ Ea,,, [IW A 7] -

Bias Variance

Proof. Using the fact that for any two matrices |G — H||% = |G||% + || H||% — 2Tr(GT H), we get
that

||tht - W}/tstHz = ||tht - Wtht - WAtst||2F
= ”tht - Wtht”%? + ||WAtst||2 - 2Tr((tht - Wtht)TWAtst)'

Then since the trace is linear, and X;s;, W are independent of Ay, and A, has mean O entries, we
see that
]EAtst [Tl‘((tht - Wtht)TWAtst)] =0

Thus, we have the needed result. O

B.2 STEP ??: FORMULA FOR W,

Proposmonl Let h = vthT k=Al us= = - Athtm)u t = vepn (I — Athtm),

trn’ trn
ﬂ = 1+ et?”nv;‘,];nAIrnu’ 1= afrn“t” Hk”2 + /82’ and T2 = 61’27""7“ || ||h||2 + 52' Ifﬂ 7é 0 and
Ay has full rank then

etrnBth'_ M‘thH US c > 1 ’

Gtrnﬁuh+ trn“t”z kTAT c < 1
Wopt = { i

Proof. Let us first proof the case when ¢ > 1. Here we know that w is arbitrary. Here we have that
Ay, has full rank. Thus, since ¢ > 1, we have that M > N,,.,,, thus Atm has rank Ny,.,,. Thus, the
rows of Ay,,, span the whole space. Thus, vy, lives in the range of A7 . Finally, since 3 # 0, we
want Theorem 5 from Meyer| (1973).

trn:*

Here let us further define

2 0 h 2
po = trng || AIrnhT etrnk and q;:_ trng || ST

and finally 7o = 62, ||s||?||2||* + 5%. Then we have from Meyer (1973) that

trn

¢ B
(At”l + etT’ﬂuvtrn) Alrn tg” AzrnhT T— 2p2qg

In our case, we only care about 0., uv?. (A¢rp + Ornuvl. )T, Thus let us multiply this through and
see what we get.

¢ B
otrnuvtj;n(Atrn + etrnuvg;n) = etrnuvhn(AIrn tﬁml AThTST - gqug)
h||? 0 2
= Orrnuh + ““”g ” izﬁ Wiy, (”"”g d AIthwt,-nk) @
h 2 h 2 02
s Bl Ol i
Then we have that
0 llsl? ||h||2 _ OuallsIPIPIT 2 OanllsIPlAN® ©)
T2 723 T2
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and
6? h|? 02
t7nﬁ h T t7n|| || t7n6 h h (10)
T2 T2 T2
Using that § — 1 = Hm,,vtTmAImu = Gtmhu we get that
6? hl? OnB(B—1
T2 T2 T2

Substituting back in and collecting like terms we get that

3 b2 —1
B titT. (Apyms + OormtitT ) = Oyt <1 _OEalslPIR® - BB )) hat

To P
02 <||h||2 07 llsPIRl* (127 (8 - 1)) T
rnt B 723 To

We can then simplify the constants as follows.

1 OoallsIPIB® — BB—=1) _ 7= OgullslPIP> - 82 +58 _ B

T2 T2 T2 T2
and
U212 0% allsI* NPT [AI*(B = 1) _ [IhI*(r2 = Oullsl®lIn]* = BB =1) _ IRI?8 _ [In]*
B 725 T2 572 57'2 T2

This gives us the result for ¢ < 1.

If ¢ > 1, then we have that M < Ny,.,,. Thus, the rank of Ay, is M the range of Ay, is the whole
space. Thus, w lives in the range of Ay,.,,. In this case, we then want Theorem 3 from Meyer] (1973).
In this case, we define

9tht|| kTAT

trn”k”ZtT
5 trn

B

Then in this case, we have that

kand ¢f = - 20 —h.

0
(Atrﬂ + atrnuvtrn) AIrn Z" tTkTAIrn - Tiiplq?

Then we simplify the equation as we did before! O
B.3 STEP ??: EXPAND INTO TRACE TERMS

Lemma If the entries of Ays: are independent with mean 0, and variance 1/M, then we have that
Ea,. [IW Asse?] = Bt W12

Proof. To see this, we note if we look at AtStAtT,;t, then this is a M by M, for which the expected
value of the off diagonal entries is equal to 0, while the expected value of each diagonal entry is
Nist/M. Thatis, Ea,,, [A AL, = Nt Iy

Then note that
||WAt5t||2 = Tr(Ag;tWTWAtst) Tr(W WAtstAtst) TI‘(WTWAtStAg;t).

Using the fact that the trace is linear again, we see that

Ntst

Nis
SETe (W TW) =

]EAtst [Tr(WTWAtStAtI;t)] Tr(WTWEAt ot [AtStAtst]) M (

W%
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Lemma 2] If W is the solution to Equation|l] then

Xist ifc<1

Xist — WXyt = { [;‘tht fos1"

Proof. To see this, we have the following calculation for when N,., > M.

Hrnes 02 95 t
Xiat — WXt = Xpat — tittﬁuhuvg;t _ M

ukT A uvl,
71 1

trn

etrnatstﬁ 0 Ht”
_ A t T trn tst T 4T T
- XtSt - 7_1 Virn Atrnu Vist 7_1 uk Atrnuvtst :

First, we note that 8 = 1 + GtTnvtTmAImu Thus, we have that thTmAfmu = B — 1. Thus,
substituting this into the second term, we get that

etstﬁ(ﬁ B 1) T trnatbt”tH

1 1
For the third term, we note that k = A} u. Thus, we have that kZAl u = kTk = ||k|%.
Substituting this into the expression, we get that
OrstB(B — 1) Ouse 18111151
Xist = WXpor = Xpop — ————uvjy, — tmg— uviy.

T1 T1

Noting that X;.; = 0;5,uvl,, we get that

-1 2] k|2
Xpot — WXt = Xpar (1 BB=1) 6.tk )

T1 1
2 lItI?[|E]* + 32, Thus, we get that
T+ B8 =B — 0 tPNEI2 B

T1 7’1.

To simplify the constants, we note that 7, = 62

For the case when N,.,, < M, we note that the first term of W is the same (modulo replacing 7; for
To) as it is for the case when ¢ > 1. Thus, we just need to deal with the last term. Here we see that
the last term is

Ose [P 7

trn usTuvl,.
T2

Here we note that s = (I — AthIm)u. Thus, in particular, s is the projection of « onto the kernel

of AT . Thus, we have that u = s + 3, where s L 3. This then tells us that s”u = ||s||2. Thus, for
this term, we get that it is equal to
62(|h]2||s||?
L.
T2

For this term we note that 75 = 3% + 62||h||?||u||?. Thus, doing the same simplification as before, we
see that for the case when NV,.,, < M, we have that

B

tht - Wtht = *thb
T2

O

In light of Lemma 2] and the fact that || X;¢||% = 67,,. We see that if we look at the expected MSE,
we have that,

| Xese — W( Xt + Avst) | _ B
ot Ntst Ntk tT

Ea etst + ||WHF,
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where 7; depends on whether ¢ < 1 or ¢ > 1.

Finally, let us look at the ||| term.
Lemmad] If 8 # 0 and Ay,y, has full rank, then we have that if ¢ < 1,

2 trnﬁQ T trn” H ﬁ T1.T At trn||t||4 T T1.1.T AT

HWHF - 7_ (h h) +2——— (h k Atrn) 7_ ((Atrn) kk Atrn)
1 1

and if ¢ > 1, then we have that

2 h h 4
||W||F: trnIB (hTh)+2 trnH || ﬁ (hTST)+ trr;” || (SS )
2 2

Proof. To deal with the term Tr(W 7T W) we are again going to have to look at whether Ny,.,, is bigger
than or smaller than M. First, let us start by looking at the case when Ny,.,, > M. Here we have that

W% =Te(WTW)

Oirm |2 . )2
_Tr<(t B s Ol kTAIm) < B s Oeallt] m;ﬂ))
T1 T1 1 1

2
— 9t7n/6 Tr(hTuTuh)+2 trn” ” B (hTuTuk,TAT

trn

Uy ¢ 1
77L52 T'ﬂt /B 7nt4

= ety 4 2Ol i a4 Ol o,y ia a1,
1 1 1

Where the last inequality is true due to the fact that ||u||? = 1. How about when Ny, < M. Then
we have the following string of equalities instead.

W% = Te(WTW)

2 T 2
o <(9mﬁuh ] ) <9tmﬁuh 02ullhl? >>
2 2 2 2

2 4 4
trn/B Tr(hT T h)+2 tfn”hH BTI‘(hT T T)_|_ 0t7n||2h|| TI‘(SUTUST)
5 T
2 4
t’rnﬂ (hTh)—|-2 trn”h” /8 (hTST)+ trn”h” (SS )
T2 T2

B.4 STEP ??: ESTIMATE USING RANDOM MATRIX THEORY.

Lemma 5| Suppose A is an p by q matrix such that the entries of A are independent and have mean

0, variance 1/q, and bounded fourth moment. Let W,, = AAT and let W, = AT A. Let C = p/q.

Suppose \p, A\q are a random eigenvalue of Wy, W,,. Then

1. Ifp < q, then E [i] = 25 +o(1).

. Ifp < g thenE :ﬁ—l—o(l).
. Ifp<q, then E = oy C) +o(1).
CZ 22C+1

= % + o(1).
—2
(1_00771)3 + o(1).

2
3
4. Ifp < q, then E
5. Ifp > q, then E
6

. Ifp>q, then E

" " " " "
nﬁr"" »oy"“ 'cﬁ"“ ﬁ%"_' wft’o"—‘
L " " " M
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-3 —1
| = S + o).
cHc+zc!
| = T o),

7. If p>q, thenE[A

‘)—‘ '@W‘H

8 Ifp>aq thenE[A

IS

Proof. Suppose A is an p by ¢ matrix such that the entries of A are independent and have mean 0,
variance 1/¢, and bounded fourth moment. Then we know that W,, = AAT is an p by p Wishart
matrix with ¢ = C. If we send p, ¢ to infinity such that p/q remains constant, then we have the
eigenvalue distribution Fj, converges to the Marchenko Pastur distribution F' in probability.

From |Rao & Edelman (2008), we know there exists a bi variate polynomial L(m, z) = czm? — (1 —
¢ — z)m + 1 such that the zeros of L(m, z) given by L(m(z), z) are such that

m(z) = / )\izdF()\) _E, [Alz} .

For the Marchenko-Pastur distribution, we have that for z = 0, we get that m(z) = 1/(1 — ¢). Thus,
for A, is an eigenvalue value of W, we have that

E“J =+ o))

For E,, [ﬁ} we need to calculate m/(0). Using the implicit function theorem, we know that

1
w() =1 (Getm),)  Sma).0)

Here we can see that 0L/0m = 2czm + ¢+ z — 1. Thus, at (1/(1 — ¢), 0), this is equal to ¢ — 1.
Also L/0z = cm? + m. Again at (1/(1 — ¢),0) this is equal to Tz T L= ﬁ Thus, we
have that

1
(1—c)*

Similarly, using the implicit function formulation, we can calculate m” (0) and m/”(0).

m'(0) =

On the other hand if ¢ < p, then W, := AT A is not a Wishart matrix here, because it is scaled by

the wrong constant. However, multiplying it by 1/C gives us the correct scaling. Thus, AT A/C'is a
Wishart matrix with ¢ = 1/C Thus, for A, is an eigenvalue value of W, we have that

1 ct

We can obtain the rest in a similar manner from the previous results. O

Lemma (6] Suppose A is an p by q matrix that satsifies the standard noise assumptions. Let x,y be
unit vectors in p and q dimensions. Let C = p/q. Then

== +o(1) p<gq
. )
%190—1 +o(l) p>gq

1. B[Tr(2T(AAT)Tz)) = {

r(z f )] = ﬁ‘f'o(l)
2. E[Tr(z" (AAT)T(AAT)T2)] = {Q%+o(1) p>q

3. E[Tr(y" (AT A)ly)] = {

4. E[Tr(y" (AT A)T (AT A)ty)] =
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Proof. Let A = ULV be the SVD. Then we have that (AAT)T = U(X2)TUT. Then since A4 is
bi-unitary invariant, we have that U is a uniformly random unitary matrix. Thus, a = U is a
uniformly random unit vector. Note with probability 1, the rank of A is full and that the non-zero
eigenvalues of A” A and AAT are the same.

If p < g, then we have that
P
E[Tr(z” (AAT) z)] = Z

Using Lemma we have that E[1/%] = 1/(1 — C) + ( ). Thus, we have that

w\»a

E[Tr(z" (AAT) z)] =) l%c +o(1).

i=1

On the other hand, if p > ¢, from Lemma 3] we have that E[1/2] = C~1/(1 — C~1) + o(1). Thus,

E[Tr(z” (AAT) z)] = > %% +o(1).
i=1

Similarly, if we had we looking at Tr(z 7 (AAT)T(AAT)Tz), we would have a 1/# term instead. Thus,
if p < ¢, we would have that

E[Tr(zT (AAT)T(AAT) 2)] =

A similar calculation holds for the others. O

Now we have the following Lemma in the main text. However, here instead of having one big proof,
we will separate each term out into its own lemma.

Lemma If Ay satisfies the standard noise assumptions, then we have that

6% ¢
1. E[f] =1+ o(1) and Var(B) = ooz i izay + o(L)-

2. Ife < 1, then B[||h||?] = é + o(1) and Var(||h||?) = m + o(1).
3. Ifc> 1, then E[||h||*] = —1 + o(1) and Var(||n||?) = m + o(1).
4. B{IMP) = 5 + o(1) and Var([k]?) = (( 5+ o)

5. B{lsl = <= + o(1) and Var(|s|) = 25— + o(1)

6. B[It|*] =1 —c+ o(1), Var(||t|?) = 2m + 0(1).

Lemma 11. S term.

Proof. First, we calculate the expected value of 3. To do so, let Ay, = U VT be the SVD. Then
since Ay, is bi-unitarily invariant, we have that U, V' are uniformly random unitary matrices. Since
u, Vg are fixed. We have that a := v}V € RN and b := UTw € RM are uniformly random
unit vectors. In particular, we have that E[a;] = 0, E[b;] = 0, Var(a;) = 1/Nypp, Var(b;) = 1/M.

Thus, if o; are the singular values for Ay,.,,, then we have that

min(M,N¢yr)

1
ﬁ =1+4+0in Z ;albl

i=1 i
Thus, if you take the expectation you get that

E[8] = 1.
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On the other hand, lets look at the variance. For the variance, we need to compute ]E[ﬁz]. Now if we

let T := O4vl, Al . Then we have that

B2=1+T2+2T.
Thus, again if we take the expectation, we get that

E[8% =1+ E[T?].

Again due to the fact that a, b are independent have have mean 0 entries, the cross terms in E[T2].
Thus, we have that

min(M,N¢yr,) 1 min(M,N¢pr) 1
21 _ 2 4 o2o9| 2 il
E[T?] = 0trn"E ; p a;b; | = 0trn MNtmE ; p

Now we need to case on whether M > Ny, or M < Ni.,. Now to use Lemma 5} we note that
q = M and p = Ny

Suppose we have that M > Ny, then in this case, we have that ¢ > p. Thus, we have that
1 1
El—-|=—— 1
Rt
where C' = p/q = Ny /M = 1/c. Thus, we have that
1 1 c

El=-|=——— 1)=—— 1).

{2] 1—1/c+0() c—1+0()

0;

Thus, we have that

E[T?] = efmﬁ +o (;4) .

Thus, we have

Var(8) = afmm +o (;4) .

On the other hand, if M < Ny,.,,. Then we have that ¢ < p. Thus, we have that

1 c1
. M =ic el

where C' = p/q = Ny /M = 1/c. Thus, we have that

E{;] = —— +ol1).

%

Thus, we have that

1 c c 1
21 _p2 - - - -
E[T ] N etrnNtrn (1 —C + 0(1)> Ntrn(l - C) +o (NtTn) .

Thus, we have

Var(ﬁ) - etrn Ntrn(l _ C) +o <Ntrn) '

Lemma 12. ||h]|? term.
Proof. We want to do a calculation similar to that in Lemma[I] Here we have that
Hh||2 = Tl'(hTh) = Tr((‘AJr )Tvt'f"fbvg;-nAIrn) = Tr(vtj':'nAITn (AIm)TUtm) = Tr(vtq;'n(Az;'nAtT"")TrUtT"")'

trn
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To use Lemma@ we note that A = AL, q= M, p = Ny.,. Let us now suppose that M < Ny.,,.
Then again taking the expectation, we see that

Bl = - (15 + o) = 15 +ol),

For the expectation of ||h||*, let A4, = USVT be the svd. Then h = vl VXTUT. Leta = v}V
and note that a is a uniformly random unit vector. Thus, we have that

M

1
02 = —5a.

i=1

For the expectation of ||k[|*, we note that

M M M
1 11
IR =222 o a?a? =D aal > m el
i=1 j= 10 i=10-7’ i;ﬁjo—l 95

Taking the expectation of the first term, we get

iE Ll?] E[a]] = ;JQW ((1i26)3 + 0(1)> = 3]\%,(613—0)3 +o(1).

trn

Taking the expectation of the second term, we get

M(M-1)E |2 2IE[ 202 _ \f(M—1)— _¢ 4 (1) ¢ ¢ (1)
— J— as o0 = — o .
o} ’ Nz, \(1—c)? (1-¢)? Ngn(l—c)?

Thus, we have that
ct A2+¢)

E[||h]|4] = 1).
W) = g+ Nt =g o)
Thus, the variance is
A2+c)

Var(||h]]?) = m o(1).

For M > Ny,.,, we instead have that
trn & C
h 1)) = 1).
B[] = gﬁn( _1+o<0 e to(l)

For the expectation of ||k[|*, we note that
Nitrn Nern Nirn

1 11
4 4 2 2
IR]I* = Z Z p 5a;a; U?ai + p 344}

i=1 j=1 i=1

Taking the expectation of the first term, we get

i=1 [ trn
Taking the expectation of the second term, we get
Nirn (N, 1)]Ei2JE[2]2—N (N — 1) L+(1)
trn trn 0_22 az‘ - trn trn Nt27nn (C — 1)2 o
c? c?
= — 1).
=17  Npme—1p " °W
Thus, we have that
c? 3 ? 2 2(2c—1)
E[||A]*] = 3 — 1) = 1
IR = e e Me— iz W= o e TV
Thus, the variance is 2
(2¢—1)
Var(||h ~ 3 1).
ar(IhP) = 57— o=y + o)
O
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Lemma 13. ||k||? term.

Proof. First note that & only appears in the formula when ¢ < 1. Thus, we can focus on this case. As
with h, we have that

II[* = Tr(u" (A}

trn

)TAIT’I’L )_ r(uT(AtT’ﬂAz;‘n) )

Again using Lemma 6] with ¢ = M,p = Ny, A = Ay, y = u. Thus, since we have ¢ = M <
Nypp = p, we get that

E[[k]*] = - +o(1).

To calculate the variance, we need to calculate the expectation of || k||*. Here be againlet A = ULVT
be the SVD. Then let b := U”u. Then we have that

M

1
I =30 2

i=1
Thus, we see that
%]t = Z *b“ +> *ﬁbfbf
i=1 i i#£]
Taking the expectation of the first term we get
M 2 - 3c?
M2(1—¢)3 M(1—-c)3
Taking the expectation of the second term we get
MM-1) & c?
M2 (1-¢)2 (1—-¢)?2 M(1l-c)?

3

Thus, we have that

B{IEIY] = s + 7o + o(0):
Thus, we have that )
Var(|[k|?) = Mff* ; +o(1).

Lemma 14. [|s||? term.

Proof. First, we note that s only appears when M > Ny,.,,. Thus, we only need to deal with that

case. For this term, we note that (I — At,.nAI,.n) is a projection matrix onto a uniformly random
M — Ny, dimensional subspace. Here be againlet A = U SVT be the SVD. Then let b := U7 w.

Nirn
E[||s]?] = EuTu — uT Apn Al u] = E [1 — b7 {IN(SM } } =1- Z s E

Similarly, we have that

Ntrn
Isll* = (1 - Z b2>

Nirn 2 Nirn
=1+ (be) -2y b}
i=1 i=1

Nirn Nirn Nirn
=14 b+ > B -2> b
=1 i#] i=1
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Taking the expectation, we get that

Nirn 1 Nirn 1 Nt'rnl

47
E[||s||]—1+3ZW+ZW—QZM

i=1 i#j i=1
_ 3 Ntrn(Ntrn - ]-) ]-
=ttt e R

3 1 1 1
=1+ —+ 5 — ——2-

Thus, we have that

1
% ) =2—
ar([|sl|") = 2—~

Lemma 15. [t|| term.

Proof. First, we note that ¢ only appears when M < Ni.,. Thus, we only need to deal with that

case. For this term, we note that (I — AImAtm) is a projection matrix onto a uniformly random
Nty — M dimensional subspace. Then similar to ||s]|?, we have that

M
I 0 1
BIIP] = B ttrn — on Al o] =B [1=a” [ (e <1230 5= 1

Similarly, we have that

1] = (1 - f:a?f

i=1
2 M
=1+ <Z a?) -2 a?
i=1 i=1
M M M
=1 +Za? JrZa?a? — 22(1?
i=1 i#j i=1

Taking the expectation, we get that

Mo Mo Mo
E[Ht||4]:1+3z N2 +ZN2 _ZZNtrn
=1 =1

trn i#j trn

SC Ntrn(Ntrn - ]-)

=1 -2
N Nt7‘n i M2 ¢
3c
=1 2__~ _ 9
* Ntrn e Ntrn ¢
—(1—¢)?
( o) + cM
Thus, we have that
c
Var(||t)|?) = 2
ar((]%) = 2

O

Now we could just use the the fact that |[E[XY] — E[X]E[Y]| < /Var(X)Var(Y). Another way to
do this is via using big O in probability. Which is defined as follows:
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Definition 1. We save that a sequence of random variables X,, is Op(ay,), if there exists an N such
that for all € > 0, there exists a constant L such that for alln > N, we have that Pr[|X,,| > La,] < e.

Then the trace terms.

Lemma @ Under standard noise assumptions, we have that
E[Tr(hTkT Af,,)] =0

and
Var(Tr(h" k" Aj,.,.)) = x3(¢)/Nizn,
where x3(c) = E[1/A3], X is an eigenvalue for AAT and A is as in Lemma@

Proof. First we note that
Tr(thTAIrn) = TI'( (AIT‘R)TUtTnuT (A;&rrn )TAIrn) = U‘T (A;&rrn )T (A;&rrn AI’I"TL)TUtTn) .

Again let Ay, = U SV be the SVD. Then, we have the middle terms depending on Ay, simplifies
to

(Al Al

(A]

trn

7' =uEhHTst(shTvT,
Thus, again letting b = «”U and a = VT vy,.,,. We see that

M
1
T1.T
Tr(hTET A ) = Z aibi—.

i=1 g
Now if take the expectation, since a, b are independent and mean 0, we see that

Ea,.[Tr(h" k" Af,,)] = 0.

Let us also compute the variance. Here we have that

. M 1
E[Tr(h" kT A],,)?] = Z E [06} E[a?]E[b?] + 0.

Now for the Marchenko Pastur distribution we have that the expectation of 1/\3 = y3(c). where 3
is some function. Thus, we have that

1
E[TH(hT KT 41,,)%) = 57— a(0) +o(1).

Lemmal9] Under standard noise assumptions, we have that

c
Tr((AIrn)TkkTAITn) = (1 _ C)S + 0(1)
and .
3 1 c
Var(Tr((4],,)" k" Al,,.) = 57xa(€) = M{d—cp

where x4(c) = E[1/\*], X is an eigenvalue for AAT and A is as in Lemma@

Proof. Now using Lemmalf] we see that

Ea,,, [Tr((A]

trn

T1.3.T 4t
kk* A = .
) t’r’n)] (1 o 6)3
Similar to proofs before, we have that
M

3 1 ct
E e [Te((AL) TRRT ALen)) = 3 gale) + 3 5 r—ggs + o1
i#]

i=1
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Where y4(c) = E[1/A%] for the Marchenko Pastur distribution. Thus, we have that
3 1 ct

WMWKQMV%WALJ%=M%dd+jjaj;ﬁ+00)
O
Lemma Under the same assumptions as Proposition we have that Tr(hT sT) = 0.
Proof. Here we note that b7 = (Al )T 4, and s7 = uT (I — Ay Al )T Thus, we have that
Tr(hT T) r(( trn) vt?"ﬂuT (Alrn)TUtTnu (AtTnAIrn)T)
- Tr(vtrn trn U ) ( (AtT’TLAIrn) (AI’I"TL)TUtTn)
- Tr(vtrn trn ) Tr(vtrnAtrnAtTnAtrnu)
= Tr(vtrn trn W ) - Tr(vtrnAIrn )
=0
O

As we can see that if we take the expectation of ||W|| over Ay, since the variance of each of the
terms is small, we can approximate E[XY] with E[X]E[Y]. Then we get the following.

If M < Ny, we have that

2 07 c? Opn(1—c)?
Bl =g =g POt U z,07 (T=op
_ 2 Ot 4O,
(1467.,0)%(1 —c)
On the other hand, M > Ny,.,,, we have that
07, c o} 2 c—1

trn
A0 0%c—1 (U+@2C-17 c

_ c 0t2rn(1 + etrn)
B c—1 (1 + 9trn>
_ otzrn

T1+62

E,,., [

W] =

Cc

trn €

Now combining everything together, we get that

efiﬂ 1 M
B,y 4 [ Xise = W(Xyst + Ass)[[] Newt(1407,,)2 + ¢ (T+07,,02(1—0) € <1
trn,Atst Ntst s+ 1 trn c c>1
NtSt(lJ’_etrnC) M 1467,,, c—1

B.5 PROOF OF THEOREM

We can see that the main text has how to put all of the pieces together to prove the main Theorem.
We don’t replicate that here.

B.6 FORMULA FOR Oopi_trn

As stated in the main text, we only need to take the derivative. So, we don’t present that calculation
here as it is fairly straightforward.

C GENERALIZATIONS

In this section we discuss some possible generalizations of the method.
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C.1 HIGHER RANK

Let us present some heuristics for the higher rank formula. To do so we shall need some notation.
Let Xy = iy 0™ u;(vi™) 7. Let A be the noise matrix. Then for 1 < j < r, define

<A + Z o_trn trn >

We shall now make some assumptions. Specifically, we assume that u, v§-7'”, and A; are all such that
for i1 # i9, and for all j we have that

Efuf A; Alus,] = E[(of™) T AL A7) = 0

Additionally, we assume that for all iy, i3, j we have that E[(v ”")TATulz] = 0. We also assume that
the variance of these terms goes to 0 as Ny,.,, M go to 1nﬁn1ty

Lemma 16. With the given assumptions, we have that for all © < j,

U;rnui(vgrn)TA} ~ Ufrnui(vfrn)TA;{il ~ O,frnu ( trn)TAT ST o_frnu’L( trn)TAIJrl

Proof. Write Aj = Aj 1 + o™ u;(vy™)" and the use Meyer|(1973) to expand the pseudoinverse

of A;. When we do this, we see that due to the assumption all terms expect ot "u; (v 2”””)TAJr | are
small

Define h; = (v t’"”)TAT k; = o”'"AT-uj, t; = (™)1 - ATA i) 85 = o™ (I — AjA;)u]‘,

@—1+wwmwmwé”—WHMW+w,m—mmmm+mﬁmmmm

@ ) (J) ()

Py, Ps 54y, and g5 ’. Now, we can write

Xtrn +A= O—?‘nu ( trn) + Ar 1

Then we have that

W = X( trng, ( trn) + A ) Zo_frnui(vtrn)T(o_f‘rnur( trn) + A )
Expanding and using the lemma, we get that

trn g trn 2
t vtrm)T Al i o Puih; + & ‘r) jed kTAT e<l
W Zam M)A = o”"ﬂ AT
Dim1 uih; + u;st c>1
T T

2

Where the second equality comes from the rank 1 results.

Now that we have an approximation for W (given our assumptions), we can now approximate the
variance and bias terms again. Let IW; denote the ith factor (corresponding to u;) of W. First, for the
bias, due to the orthogonality of the u’s we get that

2
r

Htht_WthtH%‘:Z oSty (vl WZO‘ ui (V)

i=1 F

Again, using our assumptions, we see that the terms in the j summation dropout besides when j = 3.
Then again using our rank 1 result, we get that

2
[ Xest — W Xestll7o = Z ( . f“)

i=1 7dT

For the variance, we again estimate the norm of W by expanding the trace. Here we see that the cross
terms are O due to factors of ulTl u;,. For the diagonal terms, we again use the rank 1 results and get
that

— (o)} T ( N eT PN (2 i 21 T .7 41
HVV”2 = E PRGN Tr(h; hi) +2 T e Tr(hi ki A}) + ———5——Tr((4;)" kik; A;)
=NCRIE ()2 ()2
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and if ¢ > 1, then we have that

r trn\2 22 trn trn 4
Wi = 32 gy 4 2 LW iy O il )
= ()2 (r57)2 (rs?)?

The final step would be to estimate each of these terms using random matrix theory. However,
unfortunately the A; may not satisfy all of the needed conditions. However, we know that A; is a
perturbation of A and A satisfies all of the needed conditions. Hence, if the perturbation is small,
we can replace A; with A and hopefully not incur too much cost. Note this is also the reason why
the previous assumptions might be reasonable. If we replace A;’s with A use our estimates from the
rank 1 result. We then get our estimate for the generalization error for general rank r data.

975 tO'tSt)Q c ((etrnatrn> (etTnO.trn)4>
Rernaesa 7ZT71)ZS 1
(0 sty Cy 2ut t t Z tht 1+ 9tm0tm)2 ) +M(1+ (Gthfm) ) (1 70) +o( )
(12)
and if ¢ > 1, we have that
etéto.tst)2 C(etrno.ﬁrn)Q
Re’rn,98772’rn,zs L 1).
(0; tsty Cy 2ut tst Z N1+ thatT")Q)z + M+ (Gtmagm)z)(c— 0 +0(1)
(13)

In the experimental section, we see that for small values of r for ¢ bounded away from 1. This seems
to be good estimate for the generalization error.

C.2 RANDOM FEATURES MODEL

Here we assumed that our data is given X = UXVT. One generalization of this that we have a G
who entries i.i.d Gaussian, or whose columns are uniformly distributed on the unit sphere. Then for
non linear function o, we assume that X = o(GUXVT). If we assume that o is linear, the we have
that as L — oo, GTG — Iy;. Thus, we have that GU approximately satisfies our assumptions of
orthogonal columns. Hence we expect our formula to still be a reasonable approximation.

D EXPERIMENTS
Please see accompanying notebook for code to produce the data for all of the figures.

D.1 Low SNR AND HIGH SNR DATA

For low SNR data, we sample the § times singular values from a squared standard Gaussian. We do
this independently for all 2r singular values. We call this the low SNR region because 6 is not being
scaled with the number of data points. Hence as Ny, N¢se — 00, the SNR goes to 0.

For the high rank data, we sample 6§ times singular values from a squared Gaussian and then multiply
by v/ N, v/ Nise. Hence here the SNR does not go to 0 as Ny, Nygy — 00.
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E GENERALIZATION ERROR VERSUS TRAINING NOISE LEVEL PLOTS

E.1 MORE TESTS FOR RANK 1
Here we provide more examples of ¢ and how our theoretical formula matches the experimental
performance exactly.

Each empirical point is the average over 50 trials. These were run on a laptop with 8gb of RAM and
an i3 processors. The average time to produce any of these plots is about 10 to 30 minutes.

— Ermor curve —— Emor curve
—— Theoretical aptimal —— Theoretical optimal
9x107 —— Theta_test — Theta test 10
o Emperical Result o Emperical Result

— Errorcurve
—— Theoretical aptimal
—— Theta test

& Emperical Result

002 004 006 008 o0lo o012 ols 002 004 006 008
qu

0lo  elz ol4 00z 004 006 008 010 012 014
Square root of Eftheta*2] Square root of E[theta”2] qu

jare root of Eftheta*2]

(a)c=0.1 (b)c=0.5 (c)c=0.9

X104
183107 — Theory prediction
—— Optimal
10 . — Theta test
o —rroer vy
L6x 107 B . . 107 ® Emperical Result

002 004 006 008 010 000 005 010 015 020 025 00025 00050 00075 00100 0:0125 60150 00175 £.0200
Square root of E[theta~2] Square root of E[theta”2] Square root of E[theta~2]

dec=2 (&) c=10 (0 ¢ = 2,0 = 0.01

Figure 8: Figures (a) - (e) showing the accuracy of the formula for the expected mean squared error
for ¢ = 0.1,0.5,0.9, 2, 10 for fixed value of 6;,;. Figure (f) empirically verifies the existence of a
regime where training on pure noise is optimal. Here the red and green lines represent E[fZ,] and

]E[éfm] respectively. Each empirical data point is averaged over at least 50 trials.

E.2 RANK 2 DATA

Let us now demonstrate that the double descent shaped curve exists beyond rank 1 data and linear
autoencoders. We will do this by gradually making the set up more complicated until we can no
longer recreate this phenomena. First, we consider rank 2 data is of the following form. Let W4,
be some fixed matrix, then our data is generated by

X = relu(Wygarelu(uv®).

Where a different v is sampled for the training and test data. the results for this can be seen in Figure
[ As we can from the figure, we have the exact same qualitative trend for ¢ that we saw before. That

is, as ¢ goes from 0 to 1, we have that étm goes from étst to 0, and then as ¢ — oo, we have that étm
goes to infinity as well.

E.3 MNIST DATA
‘We now look at the linear network with MNIST data.

E.3.1 NON-LINEAR NETWORK

Here, we trained each network for 1500 epochs. During each epoch we computed a gradient using
the whole data set. We used Adam as the optimizer with the code written in Pytorch. Each data point
was generated over 20 trials.
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Figure 10: MNIST

() e=39.2

These experiments take a little bit more time to run and the one with bigger amounts of data can take
upto 5 hours on a google cloud instance with 16gb RAM. Here we used a Telse P4 gpu.

LRL - is a model with a reLU at the end of the first layer only.
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Figure 11: MNIST - LRL model
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